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Recent studies on disorder-induced many-body localization (MBL) in non-Hermitian quantum systems have
attracted great interest. However, the non-Hermitian disorder-free MBL still needs to be clarified. We consider
a one-dimensional interacting Stark model with nonreciprocal hoppings having time-reversal symmetry, the
properties of which are boundary dependent. Under periodic boundary conditions (PBCs), such a model exhibits
three types of phase transitions: the real-complex transition of eigenenergies, the topological phase transition,
and the non-Hermitian Stark MBL transition. The real-complex and topological phase transitions occur at the
same point in the thermodynamic limit but do not coincide with the non-Hermitian Stark MBL transition, which
is quite different from the non-Hermitian disordered cases. By the level statistics, the system transitions from the
Ginibre ensemble (GE) to the Gaussian orthogonal ensemble (GOE) to the Possion ensemble with the increase
of the linear tilt potential’s strength. The real-complex transition of the eigenvalues is accompanied by the GE-
to-GOE transition in the ergodic regime. Moreover, the second transition of the level statistics corresponds to
the occurrence of non-Hermitian Stark MBL. We demonstrate that the non-Hermitian Stark MBL is robust
and shares many similarities with disorder-induced MBL, which several existing characteristic quantities of the
spectral statistics and eigenstate properties can confirm. The dynamical evolutions of the entanglement entropy
and the density imbalance can distinguish the real-complex and Stark MBL transitions. Finally, we find that
our system under open boundary conditions lacks a real-complex transition, and the transition of non-Hermitian
Stark MBL is the same as that under PBCs.

DOI: 10.1103/PhysRevB.108.184205

I. INTRODUCTION

Many-body localization (MBL) has revolutionized our un-
derstanding of quantum systems by revealing the existence
of robust localized states in disordered interacting systems
[1–11]. It provides an example of a quantum interacting sys-
tem that results in the preservation of a nonthermal state
[12–16]. Much theoretical effort was invested in its unusual
features, such as the connections between MBL transitions
and the random matrix theory [17,18], the logarithmic in-
crease in entanglement entropy with time [19,20], area law
entanglement entropy for eigenstates [21,22], the persistent
density imbalance [23,24], the emergent integrability [25,26],
and the response to external probes [27,28] and periodic driv-
ing [29–31]. The experimental community has also devoted
significant attention to this field, particularly since it provides
pathways to implement quantum memories and quantum
dynamical control [23,32–36]. Experimental realizations of
MBL have been achieved for different platforms, including ul-
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tracold atoms [32,33], trapped ions [35], and superconducting
circuits [23,36].

The disorder is not the only mechanism to realize MBL,
which can be used to localize single-particle states [37,38].
Some studies have suggested that MBL may exist in a trans-
lationally invariant system, such as in a system with gauge
invariance or multiple particle components [39,40]. Recently,
this issue was approached in another way: the study of the so-
called Wannier-Stark localization of a noninteracting system
in a uniformly tilted lattice [41–43]. From this, interact-
ing systems with Wannier-Stark potentials exhibit MBL-like
characteristics, named Stark MBL, which has attracted con-
siderable theoretical and experimental focus [41–53]. On the
other hand, traditional quantum mechanics is based on the
postulate of Hermiticity, which assumes that Hermitian op-
erators represent physical observables. This postulate ensures
that the eigenvalues of these operators are real and the cor-
responding eigenvectors are orthogonal [54,55]. However, in
recent years, there has been growing interest in exploring non-
Hermitian quantum mechanics to understand and describe
a wide range of physical phenomena that cannot be cap-
tured within the framework of traditional Hermitian quantum
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mechanics, such as the non-Hermitian skin effect (NHSE)
[56,57], boundary-dependent spectra [58], the failure of the
bulk-edge correspondence [59,60], and the non-Bloch band
theory [61–63]. Introducing non-Hermiticity into disorder
systems has brought a new perspective on the localization
features. According to the random matrix theory, the spectral
statistics of non-Hermitian disorder systems display distinct
features from the Hermitian ones [64–67]. The interplay
between the on-site random disorder and the nonreciprocal
hopping, first proposed by the pioneering works of Hatano and
Nelson, reveals a finite delocalization-localization transition
accompanied by a real-complex transition of a single-particle
spectrum and a topological phase transition point [68–70].
Furthermore, one can find that the random on-site poten-
tial can suppress the complex spectrum of an interacting
Hatano-Nelson model with time-reversal symmetry (TRS) un-
der periodic boundary conditions (PBCs) [71], which exhibits
a coincidence of the spectral transition with the non-Hermitian
MBL transition and the topological phase transition [72].
Such a triple-phase transition has also been detected in TRS
quasiperiodic systems under PBCs with and without inter-
actions [73–76]. However, due to anomalous behavior under
open boundary conditions (OBCs) for a non-Hermitian case
that describes the localization occurring at one of the bound-
aries of non-Hermitian open lattices for a vast number of bulk
modes, more and more studies have focused on the so-called
NHSE, which can be understood by applying the non-Bloch
band theory. More recently, the fate of skin modes in interact-
ing fermionic and bosonic systems and the robustness of the
NHSE on the localization features of many-body disordered
systems have been investigated [62].

Here, we approach the question of non-Hermitian MBL
without disorder from a different point of view by introduc-
ing interactions into a one-dimensional (1D) nonreciprocal
single-particle model subjected to Wannier-Stark potentials
with TRS. The so-called non-Hermitian Stark MBL is robust,
exhibiting many similarities to and differences from non-
Hermitian disorder-induced MBL with TRS. Under PBCs,
with the uniform force increase, the system’s spectral statis-
tics change from the Ginibre ensemble (GE) to the Gaussian
orthogonal ensemble (GOE) to Poisson statistics [64–66]. The
first transition corresponds to the real-complex and topologi-
cal phase transitions in the thermodynamic limit. Moreover,
the second transition corresponds to the non-Hermitian Stark
MBL transition. These two transitions do not coincide, which
is quite different from non-Hermitian disordered cases. In
Refs. [71–73], the authors studied a non-Hermitian disordered
system with a random or quasiperiodic modulated on-site
potential. Under PBCs, both non-Hermitian disordered sys-
tems display a coincidence of the real-complex transition,
the topological phase transition, and the MBL transition.
The corresponding statistical distribution behavior transitions
from the GE to the Poisson ensemble with the increase
of the disorder amplitude. However, under OBCs, the sys-
tem exhibits a non-Hermitian Stark MBL with a spectral
transition from GOE to Poisson statistics. We also study
the similarities and differences of non-Hermitian many-body
Stark systems with PBCs and OBCs using the dynami-
cal entanglement entropy and the evolution of the density
imbalance.

The rest of this paper is organized as follows. In Sec. II, we
introduce a 1D nonreciprocal lattice model in the presence of a
linear potential. In Sec. III, we discuss the spectral transition,
the topological phase transition, the level statistics, the static
entanglement entropy, the entanglement entropy with time,
and the quench dynamics of the density imbalance under
PBCs. In Sec. IV, we study the non-Hermitian Stark MBL
transition under OBCs. In Sec. V, we display the phase dia-
grams under PBCs and OBCs. Finally, a conclusion is given
in Sec. VI.

II. MODEL

We consider a 1D interacting Stark model with nonrecip-
rocal hoppings with TRS, which can be described by

Ĥ = J
∑

j

(egĉ†
j ĉ j+1 + e−gĉ†

j+1ĉ j ) +
∑

j

Wj

(
n̂ j − 1

2

)

+ V
∑

j

(
n̂ j − 1

2

)(
n̂ j+1 − 1

2

)
, (1)

where ĉ†
j is the fermionic creation operator at site j, n̂ j = ĉ†

j ĉ j

is the associated particle-number operator, J is the nearest-
neighbor hopping strength, and V is the nearest-neighbor
interaction strength. One can tune the parameter g to control
the non-Hermiticity of the system. To realize a non-Hermitian
setup, one can continuously monitor quantum many-body sys-
tems and justify the non-Hermitian dynamics for individual
quantum trajectories with no quantum jumps [55,77–79]. We
emphasize that studying the non-Hermitian treatment for a
many-body Stark model is nontrivial, quite different from the
Hermitian case and the master-equation approach [80]. To
study the non-Hermitian Stark MBL transition, we consider
the on-site potential energy, which can be written as [41–43]

Wj = −γ j + α

(
j

L − 1

)2

, (2)

where γ is the linear tilt strength, α represents the strength
of the curvature, and L is the system size. We introduce a
small value of α to weakly break translation invariance, so
the curvature’s effect is to lift the degeneracies and stabilize
the localization. The factor of 1/(L − 1)2 in Eq. (2) is re-
quired to prevent the curvature from dominating the linear
part in the thermodynamic limit. For a noninteracting Her-
mitian case with V = 0 and g = 0, the single-particle wave
functions display Wannier-Stark localization [41–43]. With
interaction, the Hermitian case has Stark MBL, which was
observed in Refs. [45–48]. The MBL of the Stark model with
weak disorder was discussed in Refs. [44,51]. However, the
non-Hermitian case has been discussed less.

This work focuses on the non-Hermitian interacting Stark
model with system size L at half filling and total particle
number N = L/2. We apply the exact diagonalization method
to study this non-Hermitian system with Hilbert space di-
mension D = ( L

L/2) under PBCs and OBCs separately. For
convenience, we set J = 1 as the unit of energy and choose
V = 1, g = 0.1, and α = 0.5 for our discussion.
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FIG. 1. (a)–(c) The eigenvalues of the Hamiltonian (1) with L =
16 for γ = 0.2, 0.8, and 4, respectively. (d) The dependence of fIm

on γ for different system sizes. As L increases, fIm increases for
γ � γ R

c (≈ 0.4) and decreases for γ � γ R
c . (e) The critical scaling

collapse of fIm as a function of (γ − γ R
c )L1/υ , with γ R

c = 0.4 and
υ = 0.55. Here, we choose PBCs.

III. INTERACTING NON-HERMITIAN STARK MODEL
UNDER PERIODIC BOUNDARY CONDITIONS

A. Real-complex transition of eigenvalues

We first consider the spectral transition of the Hamiltonian
(1). Figures 1(a)–1(c) show the eigenvalues of the Hamilto-
nian (1) with L = 16 under PBCs for γ = 0.2, 0.8, and 4,
respectively. Due to the TRS, the energy spectrum is symmet-
ric around the real axis. As the uniform force γ increases, the
eigenvalues with nonzero imaginary parts decrease. To quan-
titatively investigate the fraction of the complex eigenvalues,
we define fIm = DIm/D with a cutoff C = 10−13 [71,73,81].
When |ImE | � C, it is identified as a machine error. Here,
DIm is the number of the eigenvalues with nonzero imagi-
nary parts. In Fig. 1(d), we show fIm as a function of γ for
different system sizes L. As L increases, fIm increases for
γ � γ R

c ≈ 0.4 and decreases for γ � γ R
c . We further perform

the finite-size scaling collapse of fIm by employing the ansatz
(γ − γ R

c )L1/υ [Fig. 1(e)], indicating a real-complex transition
of many-body eigenvalues at γ = γ R

c with υ ≈ 0.55 in the
thermodynamic limit. That means in the thermodynamic limit,
almost all the eigenvalues are complex when γ < γ R

c , and for
γ > γ R

c , the eigenvalues become real numbers. Similar results
are found in a non-Hermitian many-body system with random
or quasiperiodic on-site potentials.

B. Topological phase transition

Unlike the Hermitian cases, our interacting non-Hermitian
Stark system displays a topological phase transition in the
complex energy plane [73,74,82]. We introduce the wind-
ing number ω to characterize the topological feature of our
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FIG. 2. The dependence of det [H (�)]/| det [H (0)]| in the com-
plex plane with L = 10 for (a) γ = 0.4 and (b) 1.0. (c) The winding
number ω as a function of γ with L = 8, 10, 12, and 14 for V = 1.
Inset: The topological phase transition γ T

c as a function of size 1/L.

system, which is given as follows [73,74]:

ω =
∫ 2π

0

d�

2π i
∂� ln det [H (�) − EB], (3)

where H (�) is the Hamiltonian (1) under PBCs, the phase
� is a magnetic flux penetrating through the center of the
ring chain, and EB is the basis energy. The winding number
ω counts the times the complex spectral trajectory encircles
the chosen basis energy EB when the phase � rolls from
0 to 2π . One study demonstrated that the winding number
does not depend on the choice of EB [83]. In this case, we
choose EB = 0. Since it is hard to directly apply Eq. (3) for
many-body systems, we alternatively use the � dependence
of det [H (�)]/ det [H (0)] to calculate the number of loops
winding around EB, which is equal to the winding number
[83]. Figures 2(a) and 2(b) show det [H (�)]/ det [H (0)] in
the complex plane with the rolling of the phase � from 0 to
2π with L = 10 for γ = 0.4 and 1, respectively. In Fig. 2(a),
we find that det [H (�)]/ det [H (0)] draws a close loop around
EB = 0 eight times, which corresponds to ω = 8. In contrast,
det [H (�)]/ det [H (0)] for γ = 1 and L = 10 in Fig. 2(b)
shows a close curve without surrounding EB = 0, correspond-
ing to a topologically trivial case. Figure 2(c) shows the
winding number ω as a function of γ for different L. As
seen in Fig. 2(c), the change in ω depends on the increase
of γ , unlike in the single-particle Hermitian cases with only
nearest-neighbor hoppings, in which the winding number is
found to be ω = ±1 for the topologically nontrivial phase.
This implies that non-Hermitian many-body systems have
much more complicated topological structures. On the other
hand, the curves in Fig. 2(c) show a transition from a topolog-
ically nontrivial phase with ω > 0 to a trivial one with ω = 0
at around 0.64, 0.59, 0.55, and 0.52 for L = 8, 10, 12, and 14,
respectively. Note that the topological phase transition does
not equal the real-complex transition in finite-size cases. How-
ever, complex eigenvalues are necessary to construct the close
loops in the energy plane. The winding number defined in
the complex plane by the gauge transformation is a collective
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FIG. 3. (a)–(c) The unfolded nearest-level-spacing distribution
of the Hamiltonian (1) with L = 16 for γ = 0.2, 0.8, and 4, respec-
tively. The green, blue, and red lines represent the Ginibre, GOE, and
Poisson distributions, respectively. Here, we choose PBCs.

indicator of eigenvalues being complex or real for the original
Hamiltonian. The slight difference between γ R

c and γ T
c can

be ascribed to the finite-size effect. A finite-size scaling of
γ T

c with 1/L is shown in the inset of Fig. 2(c). In the ther-
modynamic limit, the topological phase transition converges
to the finite value γ T

c = 0.36 ± 0.04 (the error represents the
95% confidence interval), which is close to the real-complex
transition point. Hence, we can conjecture that the transition
points should coincide in the thermodynamic limit.

C. Non-Hermitian Stark many-body localization

We next study an ergodicity-to-MBL transition in the in-
teracting non-Hermitian Stark system. The level statistics is
a powerful tool to diagnose the emergence of non-Hermitian
MBL. In conventional non-Hermitian disorder systems with
TRS, the ergodic phase follows the GE, and the MBL phase
follows the real Poisson ensemble. We first consider the
nearest-level-spacing distribution of unfolded eigenenergies
in the complex plane [17,71]. Here, the nearest level spacings
for a given eigenvalue En (before unfolding) are defined as
d1,n = minm |En − Em| in the complex energy plane, which
is nonuniversal and system dependent. In order to compare
theoretical predictions of random matrix theory with actually
computed level sequences, one should perform an unfolding
procedure. After a standard unfolding procedure, one can ob-
tain the normalized level spacing s with

∫ ∞
0 p(s)ds = 1. The

unfolding nearest level spacings sn = d1,n
√

ρ̄n, where ρ̄n =
ñ/(πd2

ñ,n) is the local mean density; ñ is sufficiently larger
than unity, i.e., ñ ≈ 30; and dñ,n is the ñth nearest-neighbor
distance from En.

For a small uniform force, the complex energy spectrum
obeys the GE distribution PGE(s) = cp(cs) shown in Fig. 3(a)
with γ = 0.2, where [71]

p(s) = lim
N→∞

⎡
⎣N−1∏

n−1

en
(
s2

)
e−s2

⎤
⎦ N−1∑

n−1

2s2n+1

n!en(s2)
, (4)

with en(x) = ∑n
m=0

xm

m! and c = ∫ ∞
0 sp(s)ds = 1.1429, which

matches the non-Hermitian random matrices in the AI sym-
metry class. When we further increase γ beyond γ R

c , the
system’s spectrum exhibits a real-complex transition, where
the real eigenspectrum of a weak uniform force case follows
the level statistics of the GOE. The level-spacing distribution

of the GOE is [71]

PGOE(s) = πs

2
e−πs2/4. (5)

As shown in Fig. 3(b) with γ = 0.8 > γ R
c , the nearest-level-

spacing distribution becomes a GOE case. For large enough
γ , the system is immersed in the MBL phase with the real
eigenspectrum, which is characterized by the real Poisson
level distribution [71],

PPois(s) = e−s. (6)

We take γ = 4 as an example [Fig. 3(c)]; the real eigenspec-
trum distribution becomes the Poissonian one. These results
demonstrate that the non-Hermitian Stark system also has
an MBL phase transition with the increase of γ . However,
in the ergodic regime, the system undergoes a real-complex
transition of eigenvalues, which leads to the nearest-neighbor
level-spacing distribution from the GE distribution to the GOE
distribution.

We further consider that the complex spacing ratio (CSR)
for the nth eigenvalue is defined as the ratio of complex
differences, given by [65]

ξn = En − ENN
n

En − ENNN
n

= rneiθn , (7)

where ENN
n and ENNN

n are the nearest and the next-nearest
neighbors of the energy level En in the complex plane, respec-
tively. Note that rn and θn are the magnitude and the argument
of the complex ratio ξn. The nearest-neighbor difference is
nonuniversal and depends on the local density of states. In
contrast, in the ratio ξn, the local density of state information
is washed away. Hence, the CSR is a preferable diagnostic
to detect an ergodicity-to-MBL transition. According to the
definition of the CSR, rn ∈ [0, 1], and θ ∈ (−π, π ] ∀ n. We
focus on the radial and angular marginal distributions, denoted
by �(r) and �(θ ), respectively. Both distributions �(r) and
�(θ ) have distinct features for different random matrix en-
sembles. Figure 4 shows �(r) and �(θ ) for different γ with
L = 16. For γ = 0.2, the complex-valued spectrum of our
system follows a GE distribution, in which the spectrum ex-
periences level repulsion with the vanishing of �(r) for small
r [Fig. 4(a)], and �(θ ) display a nonuniformity [Fig. 4(b)].
When γ > γ R

c , the eigenvalues become real, and the angular
marginal distribution �(θ ) collapses to θ = 0 and π . When
the system is localized in the ergodic regime following the
GOE, �(r) displays behavior similar to that following the
GE [see Fig. 4(c), in which γ = 0.8]. In Fig. 4(d), in which
γ = 4, the system is immersed in the MBL phase with an
uncorrelated energy level, and the corresponding �(r) is flat.
The solid red lines in Fig. 4 were obtained by calculating
�(r) and �(θ ) for the 200 × 200 symmetric random matrices,
with the corresponding random matrix ensembles averaged
over 1000 realizations, which are fit well with the interac-
tion non-Hermitian Stark model. By detecting the average 〈r〉
and −〈cos θ〉, we can obtain the phase transition information,
where 〈r〉 = ∫ 1

0 drr�(r) and −〈cos θ〉 = − ∫ π

−π
dθ cos θ�(θ ).

We first consider 〈r〉 as a function of γ , as shown in Fig. 4(e)
with L = 16. For a small γ (γ < γ R

c ), 〈r〉 attains a constant
value ≈0.74 for the GE distribution [65,81,84,85]. When γ
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FIG. 4. (a) and (b) The marginal distributions �(r) and �(θ )
with γ = 0.2 for the complex energy spectrum. (c) and (d) The
distributions �(r) with γ = 0.8 and 4 for the real energy spectrum,
respectively. The solid red lines are obtained by calculating �(r) and
�(θ ) of the 200 × 200 symmetric random matrices with the corre-
sponding random matrix ensembles averaged over 1000 realizations.
(e) The average magnitude 〈r〉 as a function of γ . The solid, dashed,
and dotted lines represent 〈r〉 = 0.74, 0.56, and 0.5, respectively.
(f) −〈cos θ〉 as a function of γ . The solid, dashed, and dotted lines
denote −〈cos θ〉 = 0.22, 0.4, and 0, respectively. Here, we choose
PBCs and L = 16.

is chosen as an intermediate value, Fig. 4(e) shows a transi-
tion to 〈r〉 ≈ 0.56, corresponding to the GOE [81,85]. This
transition is consistent with the corresponding spectral tran-
sition. When γ increases to the strong tilt limit, the system
undergoes the γ -induced Stark MBL transition accompanied
by a change in 〈r〉 from GOE to real Poisson statistics. For a
real Poisson statistic, the non-Hermitian system has 〈r〉 ≈ 0.5
[81,85]. Likewise, the single-number signature of −〈cos θ〉
can also distinguish the different phase regimes with different
level distributions. For the system with the GE distribu-
tion, −〈cos θ〉 ≈ 0.22 [65,81,84], which is shown in Fig. 4(f)
with −〈cos θ〉 as a function of γ . As γ increases, we find a dip
in −〈cos θ〉, which can demarcate the complex and real energy
phases. In the GOE regime, −〈cos θ〉 approaches a finite value
of about 0.4. Although the spectrum is real in this case, the
real CSR ξn ∈ [−1, 1], with the argument of ξn being θ = 0
or π . We find that there are more ξn with negative values
than with positive values. By statistics, −〈cos θ〉 approaches
0.4 in the GOE regime. When the system goes into the Stark
MBL phase with the Poisson statistics, −〈cos θ〉 = 0. The
main features of −〈cos θ〉 agree with the behavior of 〈r〉.
Notice that when γ → 0, the values of 〈r〉 and −〈cos θ〉
display a distinct deviation from the standard values in the
GE regime. Observing the on-site potential (2), we find that
in the γ → 0 limit, the quadratic term predominates. In the
small-γ limit, the symmetry axis of the potential function jo =
γ (L − 1)2/(2α) ∈ [0, L − 1], which leads to the increase of
the energy degeneracy and the deviation of the corresponding
〈r〉 and −〈cos θ〉. To avoid the deviation, one can choose a
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FIG. 5. (a) The averaged half-chain entanglement entropy 〈S〉 as
a function of L for different γ . (b) 〈S〉/L as a function of γ for
different L. (c) The critical scaling collapse of 〈S〉/L as a function
of (γ − γ M

c )L1/μ, with γ M
c ≈ 1.9 and μ ≈ 0.77. Here, we choose

PBCs.

larger γ � 2α/(L − 1) for discussion (see the Appendix for
details).

We use the static half-chain entanglement entropy Sn =
−Tr[ρn

L/2 ln ρn
L/2] to exactly obtain the non-Hermitian Stark

MBL transition point. Here, ρn
L/2 = TrL/2[|Er

n 〉〈Er
n |], where

|Er
n 〉 are normalized right eigenstates, i.e., 〈Er

n |Er
n 〉 = 1, and

ρn
L/2 is the half-chain reduced density matrix obtained by

tracing out half of the system. In Fig. 5(a), we display the
average entanglement entropy 〈S〉 averaged over all the right
eigenstates as a function of L with different γ . From Fig. 5(a),
where γ = 0.2 and 0.8, we can see that 〈S〉 follows a volume
law in the ergodic phase. However, it decreases to a constant
independent of L in the deep MBL phase with γ = 4, which
fulfills an area law. Figure 5(b) shows the L dependence of
〈S〉/L as a function of γ . In Fig. 5(b), we can see that the
average entanglement entropy 〈S〉/L exhibits a crossover from
the volume to area law as the non-Hermitian Stark MBL
phase sets in around γ M

c ≈ 1.9. We confirm the critical scaling
collapse as a function of (γ − γ M

c )L1/μ, which is shown in
Fig. 5(c), where μ = 0.7. These results show that the ergodic
and stark MBL phases can be distinguished by entanglement
entropy, even in non-Hermitian systems, like the Hermitian
cases.

According to our numerical calculation, there are three
kinds of phase transitions: the real-complex transition of
eigenvalues, the topological phase transition, and the non-
Hermitian Stark MBL transition. The corresponding transition
points γ R

c and γ T
c coincide in the thermodynamic limit but do

not coincide with γ M
c , which differs from the non-Hermitian

cases with disordered on-site potentials.
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FIG. 6. (a) Dynamics of the half-chain entanglement entropy
S(t ) for different γ . (b) The dynamical evolution of the density
imbalance I (t ) for different γ . Here, L = 16 under PBCs, and the
initial state is set as |ψ0〉 = |0101 · · · 〉.

D. Dynamical features

In this section, we discuss the nonequilibrium time evolu-
tion of the non-Hermitian Stark system from the perspective
of quantum trajectories without jump conditions for the con-
tinuously monitored system. We choose a given initial state
|ψ0〉 = |0101 · · · 〉 at t = 0; the dynamical evolution can be
encoded in the wave function |ψt 〉 = e−iĤt |ψ0〉/

√
N with the

normalized coefficient N = 〈ψ0|eiH†t e−iHt |ψ0〉. With the help
of the time-dependent wave function, many dynamical fea-
tures can be detected.

The dynamics of half-chain entanglement entropy can be
defined as [86]

S(t ) = −Tr[ρL/2(t ) ln ρL/2(t )], (8)

where ρL/2(t ) = TrL/2[|ψt 〉〈ψt |] is the reduced density matrix
of |ψt 〉. The time evolution of S(t ) for different γ with L = 16
is shown in Fig. 6(a). For γ = 4, the evolution of S(t ) displays
logarithmic growth, which characterizes the Stark MBL. For
the γ = 0.2 and 0.8 cases, the short-time evolution of S(t )
shows linear growth. However, S(t ) can decrease after t ≈ 10
in the complex eigenvalue phase (γ = 0.2) but remains a
stable value in the real eigenenergy phase (γ = 0.8). The
results of the dynamical evolution of S(t ) imply that one can
detect the occurrence of the Stark MBL using the short-time
evolution of S(t ), and the long-time behavior of S(t ) signifies
the real-complex transition.

We further investigate the dynamics of density imbalance
for different γ , which is defined as [23,24,81]

I (t ) = Ne(t ) − No(t )

Ne(t ) + No(t )
, (9)

where Ne(t ) = ∑
j̃〈ψt |n̂2 j̃ |ψt 〉 and No(t ) = ∑

j̃〈ψt |n̂2 j̃+1|ψt 〉,
with j̃ being an integer. Figure 6(b) shows the dynamics of
density imbalance I (t ) for different γ . In the ergodic phase,
I (t ) relaxes to zero as time evolves, losing the memory of the
initial information. For large γ , I (t ) remains nonzero at long
times, which indicates that the system is localized in the Stark
MBL phase.
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0 1 2 3
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FIG. 7. The unfolded nearest-level-spacing distribution of the
Hamiltonian (1) with L = 16 for (a) γ = 0.2 and (b) γ = 4. The
green and red lines represent the GOE and Poisson distributions.
(c) The average ratio of adjacent energy gaps 〈r′〉 as a function of
γ with L = 16. The solid and dashed lines correspond to the GOE
and Poisson predictions, respectively. (d) 〈S〉/L as a function of γ for
different L. Inset: The critical scaling collapse of 〈S〉/L as a function
of (γ − γ M

c )L−1/μ, with γ M
c ≈ 1.9 and μ ≈ 0.77. Here, we choose

OBCs.

IV. NON-HERMITIAN STARK MANY-BODY
LOCALIZATION UNDER OPEN

BOUNDARY CONDITIONS

The existence of the real spectrum under OBCs can be
explained using an imaginary gauge transformation. Under
OBCs, the nonreciprocal many-body Stark model with TRS
can be mapped to a Hermitian model,

Ĥ = J
∑

j

(ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j ) +
∑

j

Wj

(
n̂ j − 1

2

)

+ V
∑

j

(
n̂ j − 1

2

)(
n̂ j+1 − 1

2

)
, (10)

by using a gauge transformation [87], that is, ĉ j → e−gj ĉ j

and ĉ†
j → egj ĉ†

j . Hence, under OBCs, the spectrum of the
Hamiltonian (1) is always real, and the real-complex transition
of eigenvalues vanishes. In this section, we mainly discuss the
Stark MBL transition under OBCs.

A well-established signature of the transition from the er-
godic phase to the MBL phase is the level statistics of the
spectrum. For our model under OBCs with the real spectrum
in the delocalized and ergodic phase, we expect the GOE of
the random matrix theory to be relevant. In contrast, the MBL
phase with a real spectrum will lead to real Poisson level
statistics. We perform a standard unfolding procedure of the
real energy spectrum, obtaining level sequences of unit mean
spacing. Figures 7(a) and 7(b) show the nearest-level-spacing
distribution P(s) of unfolded eigenvalues under OBCs with
L = 16 for γ = 0.2 and 4, respectively. For γ = 0.2, P(s) fits

184205-6



FROM ERGODICITY TO MANY-BODY LOCALIZATION IN … PHYSICAL REVIEW B 108, 184205 (2023)

10-2 100 102
0

5
(a)

10-2 100 102

0

0.5

1
(b)

10-2 100 102

0

0.2

0.4 (c)

FIG. 8. (a) Dynamics of the half-chain entanglement entropy
S(t ) for different γ . (b) The dynamical evolution of the density im-
balance I (t ) for different γ . (c) Dynamics of the left-right imbalance
ILR(t ) for different γ . Here, L = 16 under OBCs, and the initial state
is set as |ψ0〉 = |0101 · · · 〉.

the GOE distribution described by Eq. (5). However, when
the system is localized in the MBL phase, the nearest-level-
spacing distribution follows the real Poisson distribution in
Eq. (6), as shown in Fig. 7(b) for γ = 4. A simple indicator
for a real spectrum to detect the MBL transition is the average
ratio 〈r′〉 between the smallest and largest adjacent energy
gaps, given by [18]

〈r′〉 = min
{
δE

n , δE
n−1

}
max

{
δE

n , δE
n−1

} , (11)

where δE
n = En − En−1 and En is ordered in ascending or-

der. In the ergodic (MBL) phase, 〈r′〉 is close to the GOE
value 〈r′〉 ≈ 0.53 (the Poisson value 〈r′〉 ≈ 0.38). As shown
in Fig. 7(c), we can see that 〈r′〉 exhibits a clear transition
from 0.53 to 0.38 with the increase of γ , which indicates the
non-Hermitian Stark MBL also emerges under OBCs.

We further determine the Stark MBL phase transition us-
ing the static half-chain entanglement entropy under OBCs.
Figure 7(d) shows the system-size dependence of 〈S〉/L av-
eraged over all the eigenstates for different L as a function
of γ under OBCs. The static half-chain entanglement entropy
exhibits a crossover from the volume to area law. We perform
a finite-size critical collapse for 〈S〉/L, as shown in the inset
of Fig. 7(d). Our numerical results show that γ M

c ≈ 1.9 and
μ ≈ 0.77 under OBCs are the same as those under PBCs.

In Fig. 8(a), we show the results for the dynamics of
half-chain entanglement entropy S(t ) with the initial state
|0101 · · · 〉 under OBCs. For γ > γ M

c (γ = 4.0), S(t ) grows
as a logarithmic behavior and remains low in the long-time
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0.8 (a)
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FIG. 9. (a) Phase diagram for the non-Hermitian Stark model
under PBCs, which contains three phases: the complex ergodic phase
(phase I), the real ergodic phase (phase II), and the Stark MBL phase
(phase III). The phase transition positions γ R

c and γ M
c are marked by

the dashed and solid lines, respectively. (b) Phase diagram for the
non-Hermitian Stark model under OBCs.

limit, indicating the emergence of Stark MBL. For γ = 0.2,
the short-time evolution of S(t ) shows linear growth. Unlike
the PBC case, S(t ) remains a stable value without decreasing,
which indicates that the spectrum of the system in the small-γ
case is real.

The NHSE is an iconic phenomenon which exhibits the
localization of a large number of eigenstates at the boundaries
under OBCs [88,89]. To distinguish the Stark MBL from the
NHSE, we can utilize the dynamical evolution of the density
imbalance I (t ) and the left-right imbalance [90],

ILR(t ) =
∑

j�L/2

〈n̂ j (t )〉 −
∑

j>L/2

〈n̂ j (t )〉, (12)

with the even L, as shown in Figs. 8(b) and 8(c), respectively.
Here, we choose the initial state |0101 · · · 〉. When the sys-
tem is localized in the ergodic phase γ < γ M

c exhibiting the
NHSE, I (t ) decays quickly with t , and in the long-time limit,
I (t ) → 0, and ILR(t ) is finite. However, for γ = 4.0, as shown
in Fig. 8(b), I (t ) displays a decay in the short-time limit; I (t )
remains finite, and ILR tends to zero in the long-time limit,
which indicates that the system is localized in the Stark MBL
phase without exhibiting the NHSE.

V. PHASE DIAGRAMS

In this section, we observe the phase diagrams of Hamilto-
nian (1) on the g-γ plane under PBCs and OBCs, as illustrated
in Figs. 9(a) and 9(b), respectively. As seen in Fig. 9(a), there
are three phases in this system under PBCs: phases I, II, and
III correspond to the ergodic regime with the GE distribu-
tion, the ergodic regime with the GOE distribution, and the
Stark MBL regime with the Poisson statistics, respectively.
The phase transition positions γ R

c and γ M
c are marked by

the dashed and solid lines, respectively. As g increases, the
regime with the complex spectrum gets larger. However, the
transition of the Stark MBL is not sensitive to g. Under OBCs,
as shown in Fig. 9(b), there are two phases in the phase
diagram due to the real spectrum for the whole parameter
region. The Stark MBL transition points seem g insensitive,
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i.e., γ M
c ≈ 1.9 ± 0.1, which is marked by the solid line in

Fig. 9(b).

VI. CONCLUSIONS

In this paper, we first discussed the real-complex tran-
sition, topological phase transition, and Stark MBL phase
transition in an interacting non-Hermitian Stark model with
TRS under PBCs. Unlike the non-Hermitian disordered cases
with the random or quasiperiodic modulated on-site potential
displaying the coincidence of the three transitions, our nu-
merical results show that these three types of phase transition
do not coincide. The level statistics show that the statistics
change from the GE to the GOE to the Poisson ensemble
under PBCs. The first transition corresponds to a spectral
transition and the topological phase transition in the thermo-
dynamic limit. Moreover, the second transition corresponds
to an ergodicity-to-MBL transition. We also demonstrated
that the non-Hermitian Stark MBL is robust and similar to
disorder-induced MBL. The quench dynamics can corroborate
the signature of the real-complex transition and the non-
Hermitian Stark MBL. Finally, we studied the non-Hermitian
Stark MBL under OBCs. Due to the real energy spectrum
under OBCs, there is only one transition for the level statistics
from the GOE to the Poisson ensemble, corresponding to the
occurrence of non-Hermitian Stark MBL at γ M

c ≈ 1.9, the
same as in the case under PBCs.

Non-Hermitian systems with tunable nonreciprocal quan-
tum transport were realized for ultracold atoms using dis-
sipative Aharonov-Bohm rings in Refs. [91,92], which has
potential application in our non-Hermitian Stark model. By
detecting the time-dependent atom population of each site,
we could realize the measurement of the particle popula-
tion over time in the non-Hermitian Stark model, allowing
us to distinguish the NHSE and the Stark MBL using the
dynamical quantities I (t ) and ILR(t ). Besides relying on
measuring dynamical quantities, analyzing the statistics of
the energy spectrum is also a way to determine the Stark
MBL. Fortunately, in a superconducting circuit, the many-
body spectroscopy technique can retrieve the many-body
eigenenergies and thereby provide information on the level
statistics of the Hamiltonian [16,36]. However, measuring
energy spectra in non-Hermitian systems is challenging due
to the complex energy levels. Further developments in energy
spectrum measurement techniques are needed in these cases.

Note added. Recently, we came across a paper [93] in
which the authors studied a similar problem and the main
results of the emergence of the non-Hermitian Stark MBL
were obtained. That paper emphasizes that the real-complex
transition, the topological transition point, and the MBL tran-
sition are not identical in the interacting non-Hermitian Stark
system under PBCs. However, we show the occurrence of the
non-Hermitian Stark MBL without a real-complex transition
in the energy spectrum under OBCs.
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APPENDIX: SPECTRUM STATISTICS FOR γ → 0

In the main text, Figs. 4(e) and 4(f) show a distinct de-
viation from the standard values in the GE case for γ → 0.
The on-site potential (2) displays a parabolic form. In the
small-γ limit, the quadratic part is predominant. We can
see that a symmetry axis jo = γ (L − 1)2/(2α) exists in the
insets of Figs. 10(a) and 10(b), and it may induce the en-
ergy degeneracy. Figures 10(a) and 10(b) show the unfolded
nearest-level-spacing distribution of the Hamiltonian (1) with
L = 16 for γ = 0.03 and γ = 0.1, respectively. When jo ∈
[0, L − 1], the corresponding level statistics show a Poisson-
like distribution [see Fig. 10(a)], where a peak emerges at
s → 0, indicating the existence of high degeneracy. When
jo > L − 1, the level statistics restore the GE distribution
[see Fig. 10(b)], and the corresponding degeneracy breaks. To
avoid the effect of the quadratic part, one can consider a larger
γ , satisfying the condition γ � γs = 2α/(L − 1), which can
ensure the monotonicity of the on-site potential with the lattice
site. To further verify the system-size-dependent condition,
we plot 〈r〉 and −〈cos θ〉 as a function of γ for different L
in Figs. 10(c) and 10(d), respectively. The different vertical
lines correspond to γs for different L. We can see that when
γ > γs, 〈r〉 and −〈cos θ〉 tend to the corresponding standard
values of the GE distribution. Hence, for the small-γ case,
the deviation of the level statistics comes from the energy
degeneracy. To avoid the deviation, one can consider the
system-size-dependent condition γ > γs for the calculation.
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