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Machine learning wave functions to identify fractal phases
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We demonstrate that an image recognition algorithm based on a convolutional neural network provides a
powerful procedure to differentiate between ergodic, nonergodic extended (fractal), and localized phases in
various systems: Single-particle models, including random-matrix and random-graph models, and many-body
quantum systems. We propose an efficient procedure in which the network is successfully trained on a small data
set of only 500 wave functions (images) per class for a single model which exhibits these phases. The trained
network is then used to classify phases in the other models. We discuss the strengths and limitations of the
approach.
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I. INTRODUCTION

Computational physics has effectively addressed numer-
ous challenges in solid-state physics. The recent advances in
machine learning techniques [1] including deep learning [2]
make it a natural choice for tackling complex problems in
physics. Indeed, since circa 2016 [3,4], there has been a surge
of interest in applying machine learning methods to problems
in condensed-matter physics [5,6].

One crucial application of machine learning is the extrac-
tion of features from data. However, electron states in random
systems often exhibit intricate features. Neural networks ob-
tained through supervised training, which have demonstrated
immense potential in image recognition [2], are anticipated to
be effective for analyzing electron wave behavior in random
systems as images [7].

Random free-electron systems exhibit the Anderson-type
metal-insulator transition, also known as the Anderson transi-
tion [8–10]. Analyzing the wave functions of random quantum
systems can be challenging due to the significant fluctuations
in their distribution. Nevertheless, a trained convolutional
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neural network (CNN) has been proven to successfully detect
such quantum phase transitions [7,11–14]. As is well known
in the condensed-matter literature, the Anderson problem, al-
though theoretically very interesting, deals with an idealized
situation in which interactions are absent. Therefore, it is of
crucial importance to determine whether Anderson localiza-
tion is robust when interactions are present and, ultimately, in
a genuine quantum many-body setup, the latter being usually
dubbed as many-body localization (MBL) [15–17]. In re-
cent years considerable theoretical [18–39] and experimental
[40–51] progress in the study of MBL has been achieved.
Therefore, it is natural to apply the same CNN approach to
detect the Anderson-type MBL transition. Such a task has
been addressed from various perspectives and by training the
neural networks with different kinds of data in the past few
years [52–56].

Some models exhibit localized and extended phases. An-
derson’s model of localization for the three-dimensional (3D)
case and above is a well-known example. In contrast with
such models, it is generally believed, although still un-
der intense debate, that certain models, including numerous
many-body interacting systems, can exhibit an intermedi-
ate phase depending on the associated disorder parameter
in which eigenstates are neither fully delocalized nor local-
ized. In the intermediate phase, the states are characterized
by nontrivial fractal or multifractal dimensions. The role
of (multi)fractality in the Anderson localization transition
has been studied in single-particle models [10,57–66] as
well as many-body systems [67–73] based on an analysis,
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which requires a large amount of data. A procedure, like the
one proposed in this work, which is capable of identifying
(multi)fractal properties of wave functions based on small data
sets is thus advantageous.

We have explored the capacity of a CNN to recognize the
presence or absence of a fractal phase, both in single-particle
and in interacting many-body systems, in addition to the lo-
calized and extended phases. To this end, we train the CNN
by means of the eigenstates of the generalized Rosenzweig-
Porter (gRP) model [74,75], a random-matrix model, which
can be seen as a disordered single-particle system and for
which the presence of a fractal phase has been determined
analytically [75]. After the CNN has been successfully trained
to identify the ergodic, fractal, and localized phases in the
gRP model, we apply the same CNN, without additional
training, to single-particle, random, and many-body systems.
In this way, we assess the capability of the CNN in general-
izing the acquired knowledge to new models and situations,
a generalization capability, that, in the context of MBL, has
been studied in Ref. [76]. As we will discuss in detail, our
results show that the trained CNN can indeed be used on
new and unknown models to successfully verify the presence
of the three phases learned on the training model. We will
also demonstrate that this result can be reached by using an
amount of data being significantly lower than that required
when employing standard numerical techniques, though with
less accurate estimates of the critical disorder. All in all,
our results will show that a CNN, trained on a well-known
physical model, can be considered as an efficient preliminary
tool to charter the phase diagram of a given model.

The paper is organized as follows. The methods, namely
the CNN and the exact diagonalization, are introduced
in Sec. II. The various models of interest are discussed in
Sec. III and their phase diagrams are schematically shown in
Fig. 1. The generalized Rosenzweig-Porter model, introduced
in Sec. III A, is used to train and test the CNN, as given in
Sec. III B. That network is then applied to other models in
Sec. III C. Finally, the results are discussed and the conclu-
sions are given in Sec. IV.

II. METHODS

Convolutional neural networks are networks which take
a certain input in the form of a single or multiple arrays,
process it, and produce an output, based on the task to be
fulfilled. In the case of image recognition the CNN takes an
image as an input and as an output classifies the content of the
image. A famous example is the handwritten digit recognition
[77], where the task is to correctly recognize handwritten
digits. Here we use the CNN to recognize different phases
of matter [4,11,13], specifically the ergodic extended phase,
the nonergodic extended (fractal) phase, and a localized phase
in various systems. Typical CNNs are composed of several
main parts: Convolutional layers, pooling layers, and standard
dense layers. The first two of these offer an improvement
compared to the simpler artificial neural networks, consist-
ing of only dense layers, while also reducing the number of
parameters to be optimized. We refer the interested reader to
Ref. [7] for further details on supervised learning of disor-
dered quantum systems.

FIG. 1. Schematic phase diagrams of the considered models. The
CNN is trained and tested on the gRP model. The corresponding
phase diagram is shown in (a). The same network is then applied
to (b) the Aubry-André-Harper model (AAH), (c) the power-law
banded matrices (PLBM), (d) the Anderson model on random graphs
(ARG), (e) the mass-deformed Sachdev-Ye-Kitaev model (SYK),
(f) the extended Harper’s model (eH), and (g) the 3D Anderson
model (3DA). In the left and right panels the dots and dashed lines,
respectively, mark known phase transitions (see main text). Blue dots
mark the parameter value where the model Hamiltonian is a member
of the GOE. The orange dot in (b) signifies that (multi)fractal states
are present in the AAH only at the transition point. The letters E , F, L
denote the ergodic, fractal, localized phases, respectively, which are
the output classes of the CNN. The asterisk in the phase diagrams
of the PLBM model and the Anderson model on random graphs
signifies that the corresponding phases are observed in the finite-size
systems that are considered.

To obtain the eigenfunctions of various models we use
the exact diagonalization by solving the equation H |ψμ〉 =
εμ|ψμ〉, which is written as |ψμ〉 = ∑

i ψμ(i)|i〉, where ψμ(i)
are the coefficients of the μth eigenfunction in the basis
spanned by the states |i〉. Unless stated otherwise, we choose
the computational basis. The input data given to the CNN
are the squares of the absolute value of the eigenstate coef-
ficients |ψμ(i)|2 (the probabilities of site occupations). For
comparison we also calculate the inverse participation ratio
(IPR) I, given by I = 〈∑i |ψμ(i)|4〉, where the average can
be either over the eigenstates μ in a chosen energy window
or over different disorder realizations or both. The output
classes of the CNN are the probabilities that an eigenfunction
belongs to the ergodic (E ), fractal (F ), and localized (L) states,
respectively.

III. MODELS AND RESULTS

We consider a set of models that exhibit a transition from
extended to localized phases. In some of these models the
transition takes place via an intermediate fractal phase. In
other models, such as Anderson’s model of localization, a
fractal regime (as opposed to a phase) can be observed as a
consequence of a finite-size effect.

A. Generalized Rosenzweig-Porter model (gRP)

To train and test the CNN we use the eigenstates of the gRP
model [74,75], which comprises Hermitian random matrices
whose elements are Gaussian distributed with zero mean. The
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variances of the diagonal and off-diagonal elements, denoted
by σ 2

d and σ 2
of f , respectively, are defined as

σ 2
d = 〈

H2
nn

〉 = 1

2N
, σ 2

of f = 〈
H2

nm

〉 = 1

4 Nγ+1
. (1)

Here, the parameter γ determines the strength of the off-
diagonal matrix elements compared to that of the diagonal
ones. In this work we consider real matrices implying that for
γ = 0 they are members of the Gaussian orthogonal ensemble
(GOE). In Ref. [75] the phase diagram, which is schematically
shown in Fig. 1(a), was established. It was shown that the
states around the band center exhibit three distinct phases,
namely, an ergodic phase for γ < 1, an extended nonergodic
phase for 1 < γ < 2, and a localized phase for γ > 2. At
γE = 1 and γL = 2 they undergo continuous ergodic and
Anderson transitions, respectively. The characteristics of the
recently discovered extended nonergodic phase is the occur-
rence of fractal eigenstates whose fractal dimension equals
2 − γ . The phase diagram was confirmed and the properties of
the model were further studied recently [78–87]. The ergodic
and localized phases can also be determined using simple
criteria [88,89], as shown in Appendix E. Here we use the
three distinct phases of the gRP model as the output classes of
the CNN.

B. CNN training and testing on the gRP model

For training the CNN we use the eigenstates obtained
from diagonalizing the gRP model. We use N × N matrices
with N = 2048 and provide the absolute-value square of the
eigenstate coefficients, that is, the occupation probabilities
of the sites in the computational basis, to the input layer.
For each of the three phases we extract a single eigenstate
corresponding to the eigenenergy closest to the band center,
which is at energy 0, for in total 3 × 500 (ergodic, fractal,
localized) random-matrix realizations and use them as input
training data set. During the training 90% of the input data
are used as a training set and the remaining 10% as the vali-
dation set. We observed that the performance improved when
applying for all the eigenfunctions a cyclic permutation to the
component indices such that the maximum occupation is at
the center of the computational basis. Accordingly, assuming
periodic boundaries, we applied this procedure to all the data
considered. The output layer classifies the ergodic, fractal,
and localized phases in terms of probabilities for each phase.
The objective of this work is to first use the CNN to classify
these three phases in the trained model itself and then to apply
the same network to various systems: Single-particle models,
including random-matrix models, random-graphs models, and
many-body quantum systems. In this way, we will test the
ability of CNNs to serve as diagnostic tool, i.e., as a tool to
uncover the presence of interesting phase diagrams in new and
unknown models.

The network architecture consists of two convolutional
layers, each followed by a pooling layer where we utilize a
max pooling strategy. We flatten the data and apply a dense
layer after the second pooling layer, followed by a rectified
linear unit (ReLU) activation function. Finally, a second dense
layer is applied followed by a softmax activation [7]. Fur-
ther details and the network hyperparameters are provided in
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FIG. 2. Testing the trained CNN on the gRP model. The proba-
bilities of each of the phases as well as the average IPR (black dashed
line) are shown. The gray vertical lines indicate the analytical values
γE and γL for the ergodic and Anderson transitions.

Appendix A. We use the categorical cross entropy between
the output probabilities as a loss function during the training
for each of the three phases and the corresponding labels.

After the training, we test the CNN on a new set of data
generated as follows. We consider a sequence of values of
γ ∈ [0, 3] in which γ is increased in steps of 0.03. For each
γ we generate five different random-matrix realizations. For
each realization we input to the CNN the eigenstate with
energy closest to the band center and average the probabilities
output by the CNN over the five realizations. The resulting
probabilities for the three phases are shown in Fig. 2. The
CNN successfully recognizes each of the phases with prob-
ability close to 1. For both the phase transitions, the precision
of the determination of the critical value of γ is about 10%.
For comparison, we also plot the average IPR. We see that,
for a given system size and pool of eigenstates, the different
phases are more clearly discernible with the CNN.

C. Generalization capability: Application to other models

Having demonstrated that a CNN can successfully clas-
sify the phases of the gRP model, we next demonstrate a
generalization capability: A CNN trained on one model, the
gRP model, can classify phases of other models, without any
retraining of the model.

1. Aubry-André-Harper model (AAH)

The Aubry-André-Harper (AAH) model [90] is a one-
dimensional (1D) single-particle model of a particle hopping
along a tight-binding chain with homogeneous hopping (set to
1) and a quasiperiodic onsite potential, with the Hamiltonian
given by

Hψn = Vnψn + ψn+1 + ψn−1. (2)

The potential at site n is Vn = λ cos(2παn + ϕ), with a mod-
ulation parameter α chosen as an irrational number. We chose
for its value the inverse golden mean α = (

√
5 − 1)/2. The

angle ϕ ∈ [0, 2π ) is a simple phase shift of the modula-
tion. We use it to generate multiple disorder realizations in
finite-size systems. The model has two phases, metallic with
extended eigenstates for λ < 2 and insulating with localized
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FIG. 3. Testing the trained CNN on the AAH model. The prob-
abilities of each of the phases are shown as well as the average IPR
(dashed line). The Anderson transition takes place at λL = 2.

eigenstates for λ > 2. At the Anderson transition (λL = 2)
the eigenstates are multifractal. Furthermore, the two phases
are connected via a duality transformation as can be seen by
looking at the Fourier transform of the Hamiltonian in Eq. (2).
All the eigenstates have the same characteristic length, given
by the localization length ξ = 1/ log(λ/2) where λ > 2 [90].
The phase diagram is shown in Fig. 1(b).

We test the CNN, previously trained on the gRP model,
as follows. We consider a sequence of values of λ ∈ [0, 4] in
which λ is increased in steps of 0.05. For each λ we generate
five quasidisorder realizations. For each realization we input
to the CNN the eigenstate with energy closest to the energy
0 and average the probabilities output by the CNN over the
five realizations. We use the same system size N = 2048 as
for the gRP model and impose open boundary conditions. As
can be seen in Fig. 3, the CNN recognizes the two distinct
phases and also correctly identifies the transition point itself
as being fractal, all with probabilities close to 1. The transition
region is sharper than in the gRP model. To get a clearer
picture of its structure, we reduced the λ step to 0.005 and
increased the number of realizations to 50. The results are
plotted in Fig. 4. The curves for the localized and fractal
phases cross at approximately λ = 2.012. For this value of λ,
the localization length is ξ ≈ 167. This is approximately one
order of magnitude smaller than the system size N .
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FIG. 4. Zoom into the transition region of the AAH model. The
probabilities of each of the phases are shown as well as the average
IPR (dashed line).

2. Extended Harper’s model (eH)

For the extended Harper’s model (eH) the phase diagram
was recently established analytically [91] and is schematically
shown in Fig. 1(f). It is a one-dimensional nearest-neighbor
hopping model. The Hamiltonian is given by

Hψn = Vnψn + tnψn+1 + t∗
n−1ψn−1,

Vn = 2 cos(2παn + ϕ), (3)

tn = λ1 e−2iπα(n+1/2)−iϕ + λ2 + λ3 e2iπα(n+1/2)+iϕ

with the modulated onsite potential Vn and modulated nearest-
neighbor hoppings tn. As in the AAH model we choose α =
(
√

5 − 1)/2. In studies of the eH model, disorder realizations
are often generated by taking ϕ to be randomly distributed on
[0, 2π ). However, below we consider only a single realization
and accordingly set ϕ = 0. The three parameters λ1, λ2, λ3

determine the phase diagram of the model. Without loss of
generality we restrict to the cases λ2 � 0, λ1 + λ3 � 0, and
λi > 0 for at least one of i = 1, 2, 3. We consider the sym-
metric case λ1 ≡ λ3 where tn = 2λ1 cos[2πα(n + 1/2)] + λ2

and the Hamiltonian in Eq. (3) is purely real.
It was shown in Ref. [91] that in the symmetric case of a

purely real Hamiltonian the spectrum of the eH model belongs
to one of the three distinct cases:

(i) Region I: Localized eigenfunctions and pure point
spectrum: 0 � λ1 + λ3 � 1, 0 < λ2 � 1.

(ii) Region II: Extended eigenfunctions and purely abso-
lutely continuous spectrum: 0 � λ1 + λ3 � λ2, λ2 � 1.

(iii) Region III: Fractal eigenfunctions and purely singular
continuous spectrum: max {1, λ2} � λ1 + λ3, λ2 > 0.

The transition lines between the three regions exhibit frac-
tal eigenstates. In the nonsymmetric case, that is, for λ1 
= λ3,
regions I and II persist, whereas the eigenstates of region III
become extended.

To reduce the number of parameters, we consider a closed
loop in the two-parameter space λ1, λ2, which transverses all
the three distinct phases of the model. We parametrized the
loop by an angle ζ so that

λ1 = 0.5 + r0 sin(ζ ),

λ2 = 1.0 + 2r0 cos(ζ ). (4)

We set r0 = 1
4 and increased ζ from 0 to 2π in steps of

0.02π . For each point on the loop, we test the CNN on
the full spectrum of eigenfunctions. We use open boundary
conditions, for which localized edge states appear in the band
gaps. The results are presented in Fig. 5. The CNN recognizes
the ergodic and localized phases with probabilities close to
1 for the majority of the states and correctly identifies about
85% of the fractal states. The transition regions are sharp. The
localized edge states are also successfully identified by the
CNN.

Recently, a related model, called the generalized AAH
model, was studied [92] using a topological machine learning
technique of persistent homology. The authors successfully
distinguished the localized, extended, and critical phases
within the model.
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FIG. 5. Testing the trained CNN on the eH model. Upper panel:
Logarithm of the IPR while traversing a loop in the parameter space
for the full energy spectrum ε. Lower panel: A simple function
of the probabilities associated with the different phases obtained
from the CNN, P = 0 · PL + 1 · PF + 2 · PE , where PL, PF , PE are the
probabilities for localized (L), fractal (F ), and ergodic (E ) phases,
respectively [12]. Gray vertical lines mark the transition values. Note
the presence of localized states in the ergodic and fractal phases.
They originate from the open boundary conditions.

3. Three-dimensional Anderson model (3DA)

A paradigmatic model of metal-insulator transitions is
Anderson’s model of localization [8–10]. It describes a single-
particle hopping on a tight-binding lattice. We consider a
three-dimensional (3D) cubic lattice, with homogeneous hop-
ping (set to unity) and a random onsite potential disorder. The
onsite potentials are independently and uniformly distributed
on [−W/2,W/2]. The parameter W defines the disorder
strength. The model has been extensively studied numerically
[63,64,93–99]. Its phase diagram is shown schematically in
Fig. 1(g). At the phase boundary, an Anderson transition,
where eigenstates are multifractal, separates localized and
extended eigenstates. In Refs. [12,14] the 3DA was recently
studied using the CNN, and the authors demonstrated that
the CNN can efficiently recognize the metallic and Anderson
localized phases.

We simulate a 16 × 16 × 8 lattice and impose periodic
boundary conditions. We increase W through the range [0,35]

FIG. 6. Testing the trained CNN on the 3DA model. Upper panel:
The logarithm of the IPR for different disorder strengths W and for
the full energy spectrum ε. Lower panel: Probability P for the differ-
ent phases obtained using CNN. Here, P is defined in the caption of
Fig. 5. Note the very strong finite-size effects (orange colored points
in the lower panel) attributed to the small system size of 16 × 16 × 8
yielding N = 2048).

in steps of 0.5. For each W , we generate a single realization
and compute the entire spectrum by exact diagonalization.
While the lattice has N = 2048 states, which matches the
input layer of the CNN, we need to flatten the data. In doing
so, some spatial information is lost.

In Fig. 6 we show the results. The CNN correctly recog-
nizes the ergodic phase for W < 7, however, it incorrectly
classifies most of the states for 7 < W < 30 as being fractal
and only at the stronger disorder W > 30 the eigenstates are
gradually identified as localized.

One possible explanation for this failure is that it is a
finite-size effect. At the band center ε = 0, the Anderson
transition occurs at a critical disorder Wc = 16.54 ± 0.01 [97].
Estimates for the correlation and localization lengths for the
band center have been tabulated in Ref. [95]. The correlation
length is approximately 1 lattice spacing for W = 10 and
the localization length is approximately 2 lattice spacings for
W = 30. Given the results above for the gRP model and the
dimensions of the systems simulated here, an explanation in
terms of a finite-size effect is plausible. Another possibility is
that the failure is due to the loss of spatial information that
results from the flattening of the data that is dictated by the
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FIG. 7. Testing the trained CNN on the PLBM model. The prob-
abilities of each of the phases are shown as well as the average IPR
(black dashed line). The gray vertical line marks the analytical value
sL for the transition from extended to localized states.

gRP model, which was used to train the CNN, and for which
there is no concept of a spatial lattice.

4. Power-law random banded matrices (PLBM)

The power-law random banded matrices [100] that we con-
sider are real symmetric matrices with Gaussian distributed
elements with zero mean and variances

σ 2
d = 〈

H2
nn

〉 = 1

2N
, σ 2

of f = 〈
H2

nm

〉 = 1

4 N
a2(|n − m|). (5)

Here, N is the matrix dimension and a(|n − m|) is a func-
tion of the distance r = |n − m| from the diagonal, which at
large distances decreases according to a power law a(r) ∼
r−s for r � 1 with s � 0. We adopt the function a(r) in-
troduced in the original work on power-law random banded
matrices [100],

a(r) =
{

1, r � b

(r̄/b)−s, r > b
(6)

where we define r̄ = min(r, N − r) to reduce boundary effects
and b is an additional parameter. It was shown analytically
[100] that for b � 1 the model exhibits a phase transition
from extended to localized eigenstates as a function of s at
s = 1. However, the case b = 1 shows an anomalously large
critical region around the transition point sL = 1 [101] where
multifractal eigenstates persist up to extremely large system
sizes. We focus on that case.

We test the CNN as follows. We increase s through the
range [0,3] in steps 0.03. For each s we generate five realiza-
tions, extract a single eigenstate closest to the band center,
and input them in turn to the CNN. We then average the
probabilities output by the CNN over the five realizations.
The probabilities for each of the phases and the average IPR
are shown in Fig. 7. In good agreement with other numerical
results [101] the CNN recognizes the ergodic and localized
phases, with the intermediate fractal regime.

5. Anderson model on random graphs (ARG)

The Anderson model on random graphs (ARG) has been
extensively studied recently [102–112]. Here we consider
two types of graphs: The first is a variant of the celebrated

FIG. 8. Examples of the small-world network with p = 0.25
(left) and an RRG (right), both have 30 nodes.

small-world networks [113–116] and the second is the ran-
dom regular graph (RRG). The corresponding Hamiltonian
describing a single particle on a tight-binding lattice with
onsite potential disorder, where the lattice is defined by the
choice of the graph, can be written as

Hψn = εnψn +
∑

m

Anmψm. (7)

Here εn is the onsite potential and A is the adjacency matrix of
the random graph with hopping set to 1. For the small-world
network [116] we use the nearest-neighbor hopping and add
additional long-range connections among two random sites
with probability p, so that the average node degree is 2 + 2p.
Note that the case p = 0 corresponds to the 1D Anderson
model. For the RRG the node degree is a fixed number v,
which we choose to be v = 3. In order to compare our results
to the literature, we use Gaussian onsite potentials with zero
mean and variance W for the small-world network and a
uniform distribution εn ∈ [−W/2,W/2] for the RRG. The ran-
dom graphs were generated by the NETWORKX library [117].
Examples of random graphs that we considered are shown
in Fig 8.

The exact phase diagrams of these models continue to be a
subject of intense debate. For the case of the Anderson model
on the RRG it has been unequivocally established that for suf-
ficiently strong disorder WL ≈ 18.17, Anderson localization
occurs. Several works have reported the existence of a noner-
godic extended (multifractal) phase for intermediate disorder
strengths [102–104] as sketched in Fig. 1(d), while others
[105–107,118] argue that any nonergodic behavior is due to
strong finite-size effects, whose scale diverges exponentially
at both sides of the transition. It is worth mentioning also
the supposition stated in Ref. [108] that there is no ergodic
but only a fractal phase. For the small-world networks the
critical properties depend on two length scales that diverge
with different critical exponents, which leads to strong finite-
size effects [109–111]. Here we are interested in relatively
small system sizes where all studies agree that there is a
range of disorder strength exhibiting a regime of multifractal
states.

In Fig. 9 we show the results of testing the CNN with the
wave functions of the Anderson model on random graphs.
We increase W through [0, 3], [0, 7], [0, 30], in steps of
0.025, 0.05, 0.3 for Figs. 9(a), 9(b), 9(c), respectively. For
each W , we generate 50 realizations of the disorder. For
each realization we input the wave function with energy clos-
est to ε = 0 to the CNN. We then average the probabilities
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FIG. 9. Testing the trained CNN for the Anderson model on the
small-world network with p = 0.06, 0.25 and the RRG are shown in
(a), (b), and (c), respectively. The probabilities of each of the phases
are shown as well as the average IPR (black dashed line) as a function
of the onsite disorder strength W . The gray vertical line indicates the
numerical value for the Anderson transition WL .

output by the CNN over the 50 realizations. The values of
the disorder where the Anderson transition occurs are given
by WL ≈ 1.65, 4.0 for the small-world networks [111] and
WL ≈ 18.17 for the RRG. These values are indicated by gray
vertical lines. The CNN identifies ergodic, fractal, and local-
ized phases. Note the similarity of the results obtained for
different random graphs. The ergodic transition is found at
small disorder strengths of about W ∼ 0.3WL, whereas the
Anderson transition is blurred. Identifying the crossing point
of the probabilities PF and PL with the Anderson localization
transition yields that the CNN overestimates the value of W
where it occurs. There are several possible explanations for
this discrepancy: (i) the criterion PF = PL overestimates the
transition, which has already been seen in the case of the AAH
model, or (ii) due to the finite-size effects the multifractal

regime extends further into the localized phase (see Fig. 14
of Ref. [111]).

6. Mass deformed Sachdev-Ye-Kitaev
model (SYK)

A modification of the Sachdev-Ye-Kitaev (SYK) model
[119–121] was introduced recently, called mass-deformed
SYK model [122–127]. It is a many-body model of an
even number NM of interacting Majorana fermions χ̂i, i =
1, . . . , NM , which obey the Clifford algebra {χ̂i, χ̂ j} = δi j .
The Hamiltonian comprises one-body and two-body parts,
both being all-to-all connected,

Ĥ ≡ 2√
NM

Ĥ4 + κ Ĥ2,

Ĥ4 = −
∑

i< j<k<l

Ji jkl χ̂iχ̂ jχ̂kχ̂l , (8)

Ĥ2 = i
∑
i< j

Ji j χ̂iχ̂ j,

where the coupling constants Ji jkl and Ji j are Gaussian dis-
tributed with zero mean and variances 6/N3

M and 1/NM ,
respectively. The Hamiltonian does not preserve the number
of particles but their parity, yielding N = 2NM/2−1 for the
dimension of the relevant Hilbert space.

The model is analytically solvable in the thermodynamic
limit [126] and the analytical predictions have been verified
numerically in finite systems [126–128]. In Ref. [126] the
authors identified four regimes in the phase diagram of the
model1 that can be distinguished by the localization properties
of the eigenstates in the Fock space, when studied in the
eigenbasis of the one-body term. In regime I (κ < κ1) the
eigenstates are ergodically extended over the full Fock space.
In regimes II (κ1 < κ < κ2) and III (κ2 < κ < κ3) the eigen-
states are still ergodically extended, implying, in particular,
that they do not have any fractal properties as extensively dis-
cussed in Ref. [127], but their extension is over energy shells
whose dimension still scales exponentially in N . In regime
II (III), all (a fraction of) the nearest neighbors of a chosen
unperturbed state are hybridized, respectively. In regime IV
(κ > κ3) the eigenstates are localized in the Fock space. In-
terestingly, as a consequence of the one-body term being all
to all, the eigenstates are fully delocalized in all regimes in
the computational basis implying that localization properties
must be studied in the eigenbasis defined by the eigenstates of
the one-body term (see Appendix C for further details). This
is confirmed by the procedure used in this work. The values of
the regime boundaries are κ1 =

√
(NM − 2)(NM − 3)/(2N3

M ),

κ2 = √
NM κ1, and κ3 = Z/

√
8ρ W (2

√
πZ ), with ρ = (NM

4

)
,

Z = (NM/2
4

)
, and W (x) denoting the Lambert function. The

schematic phase diagram is shown in Fig. 1(e).
We test the CNN on 5 eigenfunctions expanded in the

eigenbasis of Ĥ2 for each value of κ ∈ [0.1, 1000] on a loga-
rithmic scale for 200 values of κ . We use NM = 24, so that the

1Note that our notation differs from that used in Ref. [126]. It is
the same as in Ref. [128]. The mapping between the two notations is
given in Appendix A of Ref. [128].
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FIG. 10. Testing the trained CNN on the mass-deformed SYK
model. The probabilities of each of the phases are shown as well as
the average IPR (dashed black line) as a function of the parameter
κ , which is plotted on a logarithmic scale. The gray vertical lines
indicate the analytical values κ1, κ2, κ3 for the transitions.

Hilbert space has dimension 2048. As can be seen in Fig. 10,
the CNN identifies three distinct phases, ergodic, fractal, and
localized. It should be stressed once again that the model does
not have a genuine fractal phase [127]. Nevertheless, it is rea-
sonable to expect that the CNN, once required to classify the
intermediate regime and knowing only about the existence of
three phases, finds highest similarity of it with the previously
learned fractal phase of the gRP model. More quantitatively,
the ergodic transition is found at κE ≈ 0.5, which is slightly
larger than the value of κ2, while the Anderson transition is
observed at κL ∼ 2 which underestimates the analytical value.
However, it is interesting to note that the values κ at the
transitions κE and κL identified by the CNN coincide well
with those where another quantity of interest in the study of
many-body systems, namely, the adiabatic gauge potential,
which is related to the fidelity susceptibility [129–132], shows
maximally chaotic behavior [128], the onset being close to κE ,
whereas it exhibits a peak at κL. Similar behavior is observed
in the gRP model [87,133].

IV. DISCUSSION AND CONCLUSIONS

In this work we have trained a CNN to identify ergodic,
fractal, and localized states in the gRP model. The model
was chosen for its simplicity, one of the simplest models dis-
playing localization, and because its phase diagram is known
exactly [75]. Moreover, in the fractal phase of the gRP model
the states have a fractal dimension given as 2 − γ , implying
that we use in the training set for the fractal phase states with
fractal dimensions between 0 and 1. In contrast, generally,
models may exhibit a (multi)fractal phase (or regime) con-
sisting of multifractal states, whose dimensions are peaked
around a certain value. We expect that the network trained on
such models has difficulties in identifying fractal states with
dimensions close to either 0 or 1.

The main result of this work is a demonstration of the
generalization capability. The same network was applied to
diverse systems: Single-particle models, including random-
matrix models, random graphs, and a many-body quantum
system. The training set of only 500 states per class and testing
sets of several states per test point suffice to discern the three

phases for a fixed system size, making the network efficient.
Thus, it can be effectively used also for full spectra.

On the other hand, we have found that improving the preci-
sion is not straightforward. For example, using larger training
sets (5000 states for each class in the training) or larger system
sizes (N = 4096, 8192) produces results similar to the ones
presented. Thus, more detailed analyses such as finite-size
scaling are hard to perform. Steps in this direction are outlined
in Appendixes C and D. From those results we can see that an
estimate of the critical point is feasible, however, the universal
features such as critical exponents require much larger amount
of data as compared to what we have used in this work. A
similar conclusion was reported recently in an attempt to use
a neural network for the detection of the many-body localiza-
tion transition [53].

Note that in our approach we use relatively small system
sizes, implying that it may exhibit strong finite-size effects.
This is particularly evident in the cases of the 3DA model, the
PLBM models, and the Anderson model on random graphs.
Yet, comparable sizes are frequently used in numerical sim-
ulations, so especially for these the results deduced from
the CNN provide relevant information on wave-function lo-
calization properties. Furthermore, in all these models the
characteristic length scales corresponding to the three phases
become large in a non-negligible range around the parameter
values where the transition takes place, implying that there
the interpretation of phases or locating the transition can be
complicated like, e.g., for the Anderson model on an RRG.
Nevertheless, our approach provides a good qualitative agree-
ment with other procedures as outlined in this work.

Note added. Recently, we became aware of a work [134],
where the authors use an artificial neural network to study
delocalized, multifractal, and localized phases in a variant of
the AAH model, the long-range AAH model. They construct a
multilayer perceptron, which is a dense neural network that is
trained on the long-range AAH and tested on the AAH and the
training model itself, implying that our study of generalization
capabilities is obviously more extensive. Another disadvan-
tage as compared to the gRP model is that in the long-range
AAH the multifractal or localized phases coexist with the
delocalized one. This is a drawback for preparing high-quality
training sets. Above all, in distinction to the AAH, the gRP
model is an all-to-all model, which thus can be applied to
various types of systems, including single-particle systems
like the AAH, as demonstrated in this work.
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APPENDIX A: CNN HYPERPARAMETERS

As described in Sec. III B we use a simple CNN which we
constructed using KERAS [135] as the front end and TENSOR-
FLOW [136] as the back end. The CNN parameters related to
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TABLE I. The structure and hyperparameters of the CNN used.
The total number of trainable parameters is 245 808.

Layer class Filters Kernel Size Stride Output size

Input (1, 2048)
Convolutional 1 64 256 1 (64, 1793)
Pooling 1 2 2 (64, 896)
Convolutional 2 16 128 1 (16, 769)
Pooling 2 2 2 (16, 384)
Dense 1 (16)
Dense 2 (3)

its structure, such as the number of different layers, their sizes,
etc., are known as hyperparameters. We have tried several
CNN architectures and found that the one given in Table I
performed best. The convolutional layers apply filtering on the
data using a number of kernels of given sizes. The number of
kernels that have been employed is provided in the table under
filters. The stride is a translation for which the kernel moves
along the data. The output size corresponds to that of the data
in each of the layers. In the pooling layers we have used max
pooling. No padding was used. To minimize the categorical
cross entropy we have used the Adam optimizer.

FIG. 11. Examples for the eigenvector occupations for (a)–(c) the gRP model, (d)–(f) the AAH model, (g)–(i) the eH model, (j)–(l) the
3DA model, (m)–(o) the PLBM model, (p)–(r) the Anderson model on RRG, and (s)–(u) the mass-deformed SYK model. Note the logarithm
scale for the y axis. The values of the parameters used are given in panels. See main text for details.
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FIG. 12. Generalization capability on the PLBM (left panel) and
the Anderson model on a small-world network with p = 0.06 (right
panel) on a larger data set reduces fluctuations. We used 50 and 500
realizations per each point for left and right panel, respectively.

APPENDIX B: EXAMPLES OF WAVE FUNCTIONS

Examples of the eigenvector occupations, the raw data that
we use as input for CNN, are shown in Fig. 11. Note that
these are the original states that are not centered. The left,
middle, and right panels display states that were classified
by the CNN as extended, fractal, and localized, respectively.
Results are shown for (a)–(c) the gRP model, (d)–(f) the
AAH model, (g)–(i) the eH model, (j)–(l) the 3DA model,
(m)–(o) the PLBM model, (p)–(r) the Anderson model on
RRGs, and (s)–(u) the mass-deformed SYK model. For the
gRP, PLBM, and Anderson models on RRGs we used the
computational basis. In the single-particle models (AAH, eH,
and 3DA) the computational basis is the real-space basis.
For the mass-deformed SYK model we use the eigenbasis
of Ĥ2. The probability distributions of the gRP and PLBM
were studied recently in Refs. [83,88]. In the ergodic regime
they are given by the Porter-Thomas distribution [137–139].
For the eH and 3DA models we show states from the lowest
band (see Fig. 5) and from the vicinity of the band center,
respectively.

APPENDIX C: ADDITIONAL RESULTS

Here we show some additional results that address four
points: (i) larger testing data set, (ii) larger training data set,
(iii) possible further training improvements, and (iv) the im-
portance of the choice of basis.

Especially in the cases of the PLBM and the Anderson
models on random graphs the testing data averaged over 5
and 50 states, as shown in Figs. 7 and 9, respectively, fluctuate
strongly. In Fig. 12 we demonstrate that increasing the testing
data amount by a factor of 10 reduces the fluctuations consid-
erably. However, the transition values of the associated param-
eter do not change up to the currently achievable precision.

Regarding the supervised machine learning the amount
of training data can be important since it can improve the
performance of the trained network. In the main text we have

trained the network on only 500 images per phase. Here we
used the same architecture as given in Appendix A and trained
the network on 10 times more data, again based on the gRP
model. The results of testing are shown in Fig. 13. We can see
that the performance of the CNN can improve slightly when
tested on the same gRP model. However, the generalization
capability does not seem to improve.

Aside from increasing the training data set we considered
other activation functions and/or increasing the validation
set to achieve improvement of training. Exponential recti-
fied linear unit (eLU) as an activation function has been
shown to produce better accuracy and to converge faster
[140] compared to other activation functions including ReLU,
which is used in this work. During multiple training attempts
with eLU we observe on average (i) reduced validation loss
with similar training loss, thus reducing overfitting as com-
pared to the training using the ReLU activation and (ii) faster
convergence, while the accuracy and validation accuracy is
similar to that achieved with ReLU. The loss (validation loss)
is the average cross-entropy loss Sc between the predictors and
labels Lν in the training (validation) set during the training,
Sc = −∑

ν Lν ln(Pν ), with the predictors being the probabil-
ities Pν predicted by the CNN, where ν = E , F, L denote the
output classes. In Fig. 14 we compare three training cases
for different activation functions and ratios of the validation
data set. As a test case, denoted ReLU, we consider the same
validation ratio of 10% and ReLU activation function as in
all the other cases in this work. The case called eLU shows
results using the eLU activation function and the validation
ratio of 10%. The last case denoted val shows results obtained
using ReLU activation and an increased validation ratio of
20%. For each of the three cases we performed 70 different
training attempts. Compared to the hyperparameters given in
Table I, we have changed only the number of filters in the
convolutional 1 layer, from 64 down to 16, thus reducing the
total number of trainable parameters to 135 216 and speeding
up the training. We have used 500 wave functions per phase
for the total training set. In Fig. 14 we show one testing result
for each of the three cases considered. Similar performance is
observed for all three cases.

Finally, we note that the localization properties depend
crucially on the choice of basis. We show exemplary for the
mass-deformed SYK model in Fig. 15 the CNN testing results
when the chosen basis is the computational basis of the full
Hamiltonian (8) rather than the eigenbasis of Ĥ2.

APPENDIX D: COMBINING MODELS

For a more systematic study, improved accuracy, and es-
timates of the errors of the CNN predictions we employ

FIG. 13. Training the CNN on a larger data set (5000 eigenfunctions per phase) slightly improves testing results on the same model, as
seen in the leftmost panel. However, the generalization capability does not necessarily improve as can be seen in the cases of (from left to right)
AAH model, PLBM, Anderson model on RRG, and the mass-deformed SYK model. The same testing data as in the main text were used.

184202-10



MACHINE LEARNING WAVE FUNCTIONS TO IDENTIFY … PHYSICAL REVIEW B 108, 184202 (2023)

FIG. 14. Testing results after training the CNN on 500 eigenfunctions per phase for three different cases, ReLU, eLU, and increased
validation val, from top to bottom, respectively. The testing is performed on gRP model, AAH model, PLBM, Anderson model on small-world
network with p = 0.06, and the mass-deformed SYK model, from left to right, respectively. Except for the small-world network case (where
we have rather used 50 out of 500 states per disorder strength as used in Fig. 12) the same testing data as in the main text was used.

a simple scheme of combining multiple trained models gi,
known as bootstrap aggregation [6,141], or in short bagging.
To obtain the trained models we prepare a training set con-
sisting of a total of 26 100 wave functions from the gRP
model corresponding to the energy closest to 0, each from
a different disorder realization. All states are labeled by the
class E , F , or L they belong to. For the training we randomly
select 5000 wave functions from each of the three classes
and perform 70 training procedures. We choose 10 successful
trainings for each of the system sizes N = 2048, 4096, 8192,
thus giving m = 10 training models g1, . . . , g10 per system
size. The structure and hyperparameters of the CNN used are
the same as given in Table I, except the number of filters
in the convolutional 1 layer, which was reduced to 16 (thus
reducing also the output sizes in the convolutional and pooling
layers). Note that due to the overlap in the training data sets,
these trained models are partially correlated. Each training
model gi, when applied on the states for one of the systems
considered, gives probabilities PE ,i, PF,i, PL,i that the state is
ergodic, fractal, or localized, respectively. Bagging treats the
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FIG. 15. Testing results of CNN when applied to data from the
computational basis of the mass-deformed SYK model, showing
complete delocalization.

training models as independent and averages over the training
models, namely, the prediction P̄ν for the state to be in the νth
class (ν = E , F, L) is P̄ν = 1/m

∑m
i=1 Pν,i.

In Fig. 16 we apply the bagging to the AAH model.
We consider three different system sizes and show sepa-
rate predictors PF,i and the averages P̄ν . Note the different
λ ranges used. In Fig. 17 we show the averaged prob-
abilities in one plot. From the crossings of P̄E (λE ) =
P̄F (λE ) and P̄F (λL ) = P̄L(λL ) we estimate the ergodic and
localization transitions to be λE = 1.9897, 1.9911, 1.9943
and λL = 2.023, 2.0124, 2.0064 for the system sizes N =
2048, 4096, 8192, respectively.

Alternatively we can estimate the transition points
from the condition PF,i = 0.5 for each model gi and
obtain the estimates 〈λE 〉 = 1.9888 ± 0.0015, 1.99122 ±
0.00094, 1.99451 ± 0.00064 and 〈λL〉 = 2.0219 ±
0.0018, 2.0118 ± 0.0012, 2.00654 ± 0.00052 for the
system sizes N = 2048, 4096, 8192, respectively. We
show the results in Fig. 18. From the linear fit and
extrapolation we obtain for the transition points the estimates
λE = 1.9957 ± 0.0011 and λL = 2.0014 ± 0.0012, where the
errors are the standard deviations of 5000 transition estimates
obtained via Monte Carlo sampling of synthetic data from
their averages 〈λE 〉 and 〈λL〉. However, we believe that these
errors are underestimated, due to (i) the correlations in the
trained models gi and (ii) using the same testing data on
all trained models. Nevertheless, the results are consistent
for both transitions, whose values actually coincide, with
the known transition [90] λL = 2. Furthermore, we expect
that the difference between the crossing and the predicted
critical point should be proportional to N−1/ν and ν = 1 for
AAH model. We can see that up to the errors the results are
consistent with the expected scaling.

As another example we consider the Anderson model
on the small-world network with p = 0.06. In Fig. 19 we
show the bagging results with the focus on the localization
transition. Again we consider three different system sizes
and show separate predictors PF,i and the averages P̄ν .
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FIG. 16. The averaged probabilities P̄ν for (ν = E , F, L) for the bagging predictions based on 10 training models for each system size
N = 2048, 4096, 8192 for the AAH model, while the training was done on the gRP model. With dotted lines we show the 10 probabilities PF,i.

From the crossings of P̄F (WL ) = P̄L(WL ) we can estimate
the localization transition to be WL = 2.12, 2.12, 1.98 for
the system sizes N = 2048, 4096, 8192, respectively. If
alternatively we estimate WL,i for each of the trained models
gi from the condition PF,i = 0.5 we obtain 〈WL〉 = 2.13 ±
0.06, 2.13 ± 0.04, 1.99 ± 0.05, where we give mean and
standard error of WL,i for the system sizes N =
2048, 4096, 8192, respectively.

APPENDIX E: CRITERIA FOR ERGODICITY AND
LOCALIZATION FOR FULL RANDOM MATRICES

The rule of thumb criteria for ergodicity and localization
in dense matrices are based on the following sums of the
averages of matrix elements [88,89]:

Sq(N ) = 1

NAq

N∑
n,m=1

〈|Hnm|q〉, (E1)

where q = 1, 2, A =
√

〈|Hnn|2〉 = σd and N is the dimension
of the matrix. The criteria are as follows:

(i) The Anderson localization criterion states that when
limN→∞ S1(N ) < ∞ the eigenstates are localized.

(ii) The ergodicity criterion states that when
limN→∞ S2(N ) → ∞ the eigenstates are ergodic.

(iii) Additionally, a sufficient condition for full ergodicity
is met [89] if limN→∞ S1(N ) → ∞, limN→∞ S2(N ) → ∞,

FIG. 17. The averaged probabilities P̄ν for (ν = E , F, L) for the
bagging predictions based on 10 training models for each system size
for the AAH model, while the training was done on the gRP model.

and limN→∞ S̄(N ) → ∞, where

S̄(N ) =
(∑

m〈|Hnm|2〉t
)2

A2 S2(N )
, (E2)

and the typical value is given as 〈|Hnm|2〉t = exp〈ln(|Hnm|2)〉.
For a Gaussian distribution given by

P (x) = exp
[−x2/(2σ 2)

]
/
√

2πσ 2, (E3)

the moments can be calculated exactly 〈|x|q〉 =
2q/2σ q�(q/2 + 1/2)/

√
π for q > −1, with the gamma

FIG. 18. Estimates of the ergodic (squares) and localization (cir-
cles) transitions for the AAH model as function of the inverse of the
system size. The extrapolation to the thermodynamic limit gives the
estimates for the transition points, marked with full symbols. The
errors are estimated via Monte Carlo sampling of synthetic data.
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FIG. 19. The averaged probabilities P̄ν for (ν = E , F, L) for the bagging predictions based on 10 training models for each system size
N = 2048, 4096, 8192 for the Anderson model on the small-world network with p = 0.06, while the training was done on the gRP model.
With dotted lines we show the 10 probabilities PF,i.

function �(a) = ∫ ∞
0 xa−1 exp(−x)dx, while the typical value

of the second moment is 〈|x|2〉t = σ 2/[2 exp(γE )], with
γE being the Euler-Mascheroni constant. Note that since
S̄ = S2/[2 exp(γE )] for Gaussian distributions, the criterion
for full ergodicity coincides with the criterion for ergodicity.

For the gRP model, the variances are given in Eq. (1)
and we get S1(N ) = √

2/π [1 + 1/
√

2(N − 1)N−γ /2] and
S2(N ) = 1 + 1/2(N − 1)N−γ . Taking the limit N → ∞ and
using the above criteria follows the phase diagram of gRP.

For the PLBM, the variances are given in Eq. (5) and we get
S1(N ) = √

2/π [1 + 1/
√

2 HN,s] and S2(N ) = 1 + 1/2 HN,2s,
where HN,s are the generalized harmonic numbers. For s > 1

we have limN→∞ HN,s = ζ (s), where ζ (s) is the Rie-
mann zeta function, whereas for 0 < s � 1 the limit can
be bounded 0 < Is < limN→∞ HN,s < 1 + Is, with a simple
integral Is = ∫ ∞

1 x−sdx. The integral diverges logarithmically

for s = 1 whereas
∫ N

1 x−sdx = N1−s/(1 − s) − 1/(1 − s) for
0 < s < 1. The Anderson localization criterion then gives
limN→∞ S1(N ) = √

2/π [1 + 1/
√

2 ζ (s)] for s > 1, whereas
the ergodic criterion is satisfied for s � 1

2 . The eigenvector
distribution in the region 1

2 < s < 1 was shown [88] to have
no anomalous scaling, implying that the fractal dimensions
are the same as for the nonbanded random matrices and thus
that this phase is ergodic.
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