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Dynamically stabilized phases with full ab initio accuracy:
Thermodynamics of Ti, Zr, Hf with a focus on the hcp-bcc transition

Jong Hyun Jung , Axel Forslund , Prashanth Srinivasan ,* and Blazej Grabowski
Institute for Materials Science, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

(Received 29 August 2023; accepted 30 October 2023; published 27 November 2023)

Certain systems feature phases that are dynamically unstable at 0 K but are stabilized by vibrations at
higher temperatures. Treatment of these phases by conventional 0-K methods is not feasible and effective
harmonic models introduce approximations. Here, we significantly advance the direct upsampling methodology
[npj Comput. Mater. 9, 3 (2023)] to obtain free energies including the anharmonic contribution to full ab initio
accuracy also for such dynamically stabilized phases. The centerpiece behind the procedure is accurate machine-
learning potentials (moment tensor potentials) which are used to efficiently scan the volume-temperature space
to uncover the stability regime and to perform thermodynamic integration on a dense grid within the stable
window. We apply the methodology to the prototype systems Ti, Zr, and Hf and calculate hcp-bcc transition
properties and thermodynamic properties of both phases. We find a very good agreement for the heat capacities
with existing experimental/CALPHAD data, and an overall best agreement for Ti. The transition properties agree
well on a relative temperature axis, where the temperature is scaled with respect to the transition temperature.
Anharmonic free energies increase the transition temperature by up to one thousand kelvin. Electronic effects
are smaller and bring down the transition temperature by as much as 172 K. We establish a new definition of
the 0-K energy-volume curve for the dynamically stabilized bcc phase. Instead of using static lattice ab initio
values, an extrapolation of the high-temperature high-accuracy free-energy surface to 0 K provides a physically
more meaningful description. With this effective 0-K definition, discrepancies existing in the literature between
CALPHAD and ab initio values are addressed.
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I. INTRODUCTION

Thermodynamic properties such as the Gibbs energy, heat
capacity, expansion coefficient, and bulk modulus are crucial
for materials design [1–3]. The Gibbs energy for example
determines phase stability and facilitates the prediction of
phase diagrams. To calculate thermodynamic properties with
ab initio accuracy, a precise representation of the free-energy
surface is needed. Two factors are crucial in this regard—a
very dense volume-temperature grid on which free-energy
calculations are performed, and the inclusion of the rele-
vant physical excitation mechanisms. Recently, an efficient
methodology—direct upsampling—was introduced to per-
form such high-accuracy calculations [4,5]. However, the
prototype systems in these previous works were single-phase
elements with the considered phases being thermodynami-
cally and dynamically stable across the entire temperature
range from 0 K up to the melting temperature.

Severe challenges arise for systems featuring a high-
temperature phase that is dynamically unstable1 at 0 K [6–8].

*prashanth.srinivasan@imw.uni-stuttgart.de,
prashanth.s.iitm@gmail.com

1Conventionally, dynamically unstable phases are those that corre-
spond to a saddle point on the potential energy surface and thus show
imaginary 0-K phonon frequencies. We consider here such phases
with the additional requirement that they are stabilized by thermal

While the phase is stabilized at higher temperatures through
anharmonic vibrations, it inevitably transforms into a differ-
ent, low-symmetry phase at lower temperatures. Prototype
systems are the elements in group IV of the periodic table—
titanium (Ti), zirconium (Zr) and hafnium (Hf)—which are
dynamically stable in the body-centered cubic (bcc) phase
at high temperatures and transform into the hexagonal ω

or hexagonal close-packed (hcp) phase at lower tempera-
tures depending on the boundary conditions of the simulation
box [9,10]. Conventional 0-K approximations cannot be ap-
plied to dynamically unstable phases, since it is impossible to
obtain free energies from imaginary phonon frequencies.

Methods exist in literature that enable the treatment of
dynamically unstable phases. Large-displacement phonons
were used to describe the bcc phase of Ti, Zr and Hf [11].
Quasiharmonic Debye-Grüneisen models were applied to bcc
Ti [12,13]. The phase transition in Zr was modeled with
a temperature-dependent effective potential (TDEP) [14,15],
and using machine-learned force fields [16]. A piecewise
polynomial potential partitioning was applied to describe the
local minima near the equilibrium bcc configuration [17].
Table I lists a compilation of relevant works where thermo-
dynamic properties of the prototype systems were calculated.

vibrations before melting sets in. Since we treat these phases pri-
marily in their metastable and thermodynamically stable temperature
regime, we mostly refer to them as “dynamically stabilized” phases.
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TABLE I. Ab initio studies of the isobaric heat capacity (Cp), the thermal expansion coefficient (α) and the bulk modulus (B) for hcp and
bcc Ti, Zr, and Hf. The employed exchange-correlation (XC) functionals and the potentials representing the core electrons are listed. The
columns under “Contributions to F” indicate which terms were included to the total free energy [0-K static energy (E0K ), electronic (el),
quasiharmonic (qh), and anharmonic (ah)]. For works that included the anharmonic contribution, the number of volume V (or pressure P) and
temperature T data points is mentioned. Studies including the explicit anharmonic contribution up to all orders and to the accuracy of DFT are
printed in boldface. All of the used abbreviations are expanded in Ref. [19].

DFT methodology Contributions to F

Year Ref. Elements XC Potential E0K el qh ah Grid for ah Cah
p αah Bah

2007 [20] hcp Ti LDA, PBE PAW x x x
2007 [21] hcp Ti, hcp Zr LDA NC x x x
2008 [22] hcp Zr GGA PAW x x x
2009 [12] hcp, bcc Ti PBE PAW x x x,

bcc: qh Debye
2010 [13] hcp, bcc Ti PBE PAW x x x,

bcc: qh Debye
2011 [23] hcp, bcc Zr PBE PAW x x x,

bcc: qh Debye
2012 [11] bcc Ti, Zr, Hf - PAW x large displacement
2012 [24] hcp, bcc Zr PBE PAW x qh Debye
2013 [25] hcp Hf PBE PAW x x x
2017 [17] bcc Ti PBE PAW x x x piecewise polynomial 1P × 7T x

potential partitioning
2019 [26] hcp, bcc Hf PBE PAW x x x, qh Debye
2020 [27] bcc Ti PBE PAW x x AIMD, 1P × 4T x x

stress-strain curve
2022 [28] bcc Ti PBE PAW x large displacement

2023 this work hcp, bcc Ti, Zr, Hf PBE PAW x x x direct upsampling � 12V × 7T x x x

While such effective models typically provide access to
good renormalized phonons, they are approximate in nature
with respect to the fully anharmonic ab initio description,
especially at high temperatures [4,5,18]. The methods are
hence inadequate for accurate prediction of thermodynamic
and phase transformation properties, which are strongly af-
fected even by small changes in the free energy. Thus, further
development of computational methods that take full anhar-
monicity into account is needed.

In the present work, we address this challenge and sig-
nificantly advance the direct upsampling methodology to
be applicable also for dynamically stabilized phases. We
demonstrate the performance of the method on Ti, Zr, and
Hf. The key ingredient of the methodology is optimized
machine learning potentials, specifically, moment tensor po-
tentials (MTPs) [29,30]. For each element, we train accurate
MTPs to high temperature density-functional-theory (DFT)
data of the hcp and bcc phase. The MTPs are used to obtain
stability maps, which are crucial in determining the volume-
temperature (V, T ) grid for the free-energy calculations. For
the bcc phase, the stability window is restricted and requires a
rigorous adjustment of the (V, T ) grid. At lower temperatures,
there is a constraint due to the transformation to the hexagonal
ω phase [9], whereas at high temperatures, Frenkel defects oc-
cur. Within the stability regime, careful treatment is required
to fit an effective harmonic potential for the dynamically sta-
bilized phase, and utilize it as a reference for thermodynamic
integration. In addition to the accurate consideration of the
full vibrational and electronic contributions, we also propose

a novel approach to include the effect of vacancies for the
dynamically stabilized phase.

Utilizing the methodological advancements, we compute
accurate thermodynamic properties of the hcp and the bcc
phases and hcp-bcc transition properties for Ti, Zr, and Hf,
and compare the DFT prediction to data from experiments
and from the CALculation of PHAse Diagrams (CALPHAD)
method. Based on the accuracy of the free-energy surface in
the high-temperature regime, we establish a new understand-
ing of the 0-K behavior for the dynamically stabilized phase.
The introduced effective energy-volume curve corresponds to
the extrapolation of the high-accuracy free-energy surface to
0 K and provides a physically consistent description of the
0-K energies. The resulting effective enthalpies resolve the
long-standing mismatch in the comparison of T = 0 K DFT
static lattice data and CALPHAD [6,31,32].

II. METHODOLOGY

We apply the direct upsampling methodology separately
to the hcp and bcc phases of Ti, Zr, and Hf, with refine-
ments mainly for the dynamically stabilized bcc phase. Within
the direct upsampling methodology, the free energy for each
phase is adiabatically decomposed as [33]

F (V, T ) = E0K(V ) + F el(V, T ) + F qh(V, T ) + F ah(V, T ).
(1)

Here, E0K(V ) represents the energy-volume (E -V ) curve at
0 K, F el(V, T ) the electronic free energy (including coupling
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to vibrations), F qh(V, T ) the quasiharmonic free energy, and
F ah(V, T ) the explicitly anharmonic contribution.

The specifics of the direct upsampling methodology and
the computational details to obtain each of the free-energy
contributions and, from F (V, T ), the thermodynamic prop-
erties, were described in detail in Refs. [4,5] (cf. also the
respective Supplementary Information). The main steps of
the methodology comprise the training of the MTPs, ther-
modynamic integration from the quasiharmonic reference to
the MTP, and a two-stage upsampling (free-energy pertur-
bation [34]) to DFT. The final DFT energy includes the
electronic contribution calculated from the finite-temperature
formalism of DFT [35]. In practice, the molecular dynamics
(MD) runs during thermodynamic integration are performed
with LAMMPS [36], and the DFT runs during upsampling
using VASP [37] within the projector augmented-wave (PAW)
method [38,39]. For the exchange-correlation functional, we
use here the generalized gradient approximation (GGA) by
Perdew, Burke, and Ernzerhof (PBE) [40]. For the hcp phase
we use a fixed c/a ratio determined at 0 K. Further computa-
tional details and parameters can be found in Ref. [19].

For systems exhibiting dynamically stabilized phases, re-
finements to the previously published procedure [4,5] are
required, as described in the following subsections. The MTPs
(Sec. II A) carry out additional tasks in the refined method-
ology, in particular, the efficient detection of the stability
regime in which the free-energy calculations should be per-
formed (Sec. II B). The fit of the effective quasiharmonic
reference, which is used to calculate F qh(V, T ) and which
serves as a reference for calculating F ah(V, T ), needs a careful
adjustment in the stability regime (Sec. II C). The conven-
tional 0-K energy-volume curve becomes meaningless for
the dynamically stabilized phase, while the high-temperature
free-energy surface leads to a better definition of an effective
0-K E -V curve (Sec. II D). Lastly, a new approach is nec-
essary to analyze and incorporate the effect of vacancies on
the bulk thermodynamics of the dynamically stabilized phase
(Sec. II E).

A. MTPs: The backbone of direct upsampling

The main ingredient that accelerates the direct upsam-
pling workflow is accurate interatomic potentials. In line
with previous works on direct upsampling [4,5,41], we use
machine-learning interatomic potentials—the moment tensor
potentials (MTPs)—also in this work. For systems exhibit-
ing dynamically stabilized phases, the MTPs serve multiple
purposes in the overall methodology. Firstly, they are vital
in identifying the stable temperature regime of the individ-
ual phases, as will be discussed in Sec. II B. Secondly, the
accuracy of the MTPs decides the efficiency of direct upsam-
pling. In Ref. [4], the number of snapshots needed for the
convergence of the perturbative upsampling was formalized
to be quadratically dependent on the energy root-mean-square
error (RMSE) of the MTP. Thirdly, the MTPs are pivotal
in the efficient computation of the vacancy contribution as
elaborated in Sec. II E. Hence, a well-trained MTP is crucial
in the overall performance of the methodology.

For each element, we train three different potentials—a
separate MTP for each individual phase, and an MTP trained

simultaneously on both phases. The training set contains 96
and 128-atom configurations in the hcp and bcc phase, respec-
tively, for a set of eight volumes at the experimental melting
point of the element which are denoted by the green dots in
Fig. 1. For the phase-specific MTPs, 720 configurations of the
target phase are chosen for the training set. For the combined
MTP, we merge both individual training sets leading to 1440
configurations in total. In each case, we train MTPs with dif-
ferent levels using the MLIP code [29,30]. The corresponding
training and test errors as a function of the level of the MTP
are plotted in Fig. S3 in Ref. [19]. For estimating the sta-
bility regime and performing thermodynamic integration, we
choose the level 24 MTPs with 913 fitting parameters (level
22 for bcc Hf), above which there is no significant improve-
ment in the accuracy of the MTPs. Further details regarding
the training set, fitting weights, and the fitting procedure are
provided in Ref. [19].

Figure 2 highlights the accuracy of the MTPs. The MTP-
RMSEs [cluster of symbols on the bottom left of Fig. 2(a)] are
contrasted with RMSEs of conventional classical potentials
[embedded atom method (EAM)/modified embedded atom
method (MEAM)] from literature for Ti, Zr, and Hf in both
of the relevant phases, hcp and bcc [42–44]. The RMSEs in
energies and forces of the MTPs are less than 2.5 meV/atom
and 0.11 eV/Å, respectively, almost an order of magnitude
better than most EAM/MEAM potentials.

In Fig. 2(b), we zoom-in on the RMSEs of the MTPs
(including, additionally, previously fitted MTPs for refractory
unaries [5]). One needs to be aware that the range of values
on the x and y axes is much smaller than in the upper plot in
Fig. 2(a). The slightly higher force RMSE for the bcc phase
comes from the higher temperature of the snapshots chosen
for the test data [the highest temperature in the (V, T ) grid].
We observe that, for all elements, the MTP trained on both
phases is almost as accurate as the MTPs trained separately
on each phase. For achieving the same target accuracy of
< 1 meV/atom in the free energy at a given (V, T ), a dif-
ference in the energy RMSE of 0.62 meV/atom (between
the Zr-hcp and Zr MTPs for instance) would require ≈ 10
additional snapshots. The single MTP fitted to hcp and bcc
(for Zr) also has a higher force error by 0.011 eV/Å than
the Zr-hcp MTP, leading to a difference of ≈ 5% in the diffu-
sion probability (red contours in Fig. 1). Likewise, the bcc-ω
transformation temperature (blue lines in Fig. 1) is lower by
50-100 K using the MTP trained on both phases, compared
to the pure bcc MTP. These differences should be consid-
ered in the prediction of the stable temperature regime of
the individual phases. However, the final free-energy surface
prediction does not get affected within the stability regime of
the individual phases.

B. Stability regimes of the hcp and bcc phases

A dense and optimized (V, T ) sampling grid, positioned
appropriately based on the stability of a particular phase, is
crucial to enable a reliable parametrization of the free-energy
surface. For the systems studied earlier in Refs. [4,5], the grid
was chosen with the temperature ranging from 0 K to above
the melting point, since these systems (e.g., Al, Mg, V, Mo)
exhibit a single stable phase across the entire temperature
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FIG. 1. Free-energy surfaces illustrating various quantities of relevance to the direct upsampling methodology: (1) the (V, T ) grids
represented by the crossings of the gray lines; (2) the probabilities for Frenkel defect formation and diffusion by the red contours; (3) the
transformation temperatures from bcc to ω by the blue lines including an uncertainty estimate as given by the blue numbers; (4) the thermal
expansion at ambient pressure by the light green lines; (5) the PBE-predicted hcp-bcc transition temperatures T hcp→bcc

PBE by the filled black
circles; (6) the experimental hcp-bcc transition temperatures T hcp→bcc

exp by the hollow black circles; (7) the volumes at T melt
exp chosen for the MTP

training by the green dots, and (8) the volumes and temperatures for the low- or intermediate-temperature effective quasiharmonic fitting by
the green crosses. The probabilities for Frenkel defect formation correspond to counts of the formation of such defects in 10 ps long MTP MD
runs (in an initially defect-free bulk cell) on a much finer (V, T ) grid than the one used for the free-energy calculations. The leftmost labels hcp
and bcc indicate hexagonal or cubic cell shapes, respectively, and the labels (ω, bcc, hcp) on the surfaces indicate the stability regimes under
the constraint of the specific cell shape.

range. Determination of the volume-temperature regime for
dynamically stabilized phases is more challenging. We ad-
dress this challenge by performing MD runs with the MTPs
to rapidly scan the relevant (V, T ) space and thereby locate
the stable regime. We execute this procedure separately for
the low-temperature hcp and the dynamically stabilized bcc
phase. The resulting (V, T ) meshes optimized for the explicit
free-energy calculations within direct upsampling are marked
by the gray grids in Fig. 1.

The hcp phase is dynamically stable at 0 K for the here
considered elements (Ti, Zr, Hf) and the temperature regime
for the free-energy calculations thus starts at 0 K. As the
highest temperature for the hcp free-energy calculations, we
choose a value that is a few hundred kelvin above the ex-
perimental hcp-bcc phase transition temperature (marked by
the hollow circles). Since the eventually computed PBE tran-
sition temperatures (filled black circles) are lower than the
experimental ones, the choice of the highest temperature for
the grid adequately covers the thermodynamic stability region
of hcp also including a decent extension into the metastable
regime. As for the volume range of the grid, we start from
slightly below the 0-K equilibrium volume and extend it well
beyond the high-temperature equilibrium volume (cf. the light
green line indicating the thermal expansion in Fig. 1). Note
that an optimized volume-temperature grid may require a

self-consistent adaption after a first estimate of the thermal
expansion has been obtained. The same applies for the density
of the grid points (which do not need to be equidistant). The
MTPs are used to efficiently implement such a self-consistent
procedure.

For comparison with the bcc phase, we extend the analysis
of the stability of the hcp phase beyond the grid, in particular
up to the experimental melting temperature (at which the
MTPs have been fitted). Close to the melting temperature
we observe the onset of Frenkel defect formation and dif-
fusion (also observed in the bcc phase as discussed below),
the probability of which is marked as red lines in Fig. 1.
Figure 3 illustrates such defect formation during an MD run at
1665 K in hcp Ti. In this particular scenario, a Frenkel defect
is formed and it migrates within the first 30 ps of the MD
run. Specifically, the accompanying self-interstitial migrates
upward and reaches a basal-octahedral configuration [45] (in-
dicated by the red ball and the red bond). The vacancy that
is left behind attracts a nearby atom that relaxes into an in-
terstitial position. During the next 5 ps of the MD run, defect
migration leads to another configuration of the self-interstitial
in a split dumbbell along the c axis [45–47]. After additional
5 ps, the self-interstitial and the vacancy reach each other and
annihilate so that the Frenkel defect vanishes. Such defects
are most commonly observed for Ti and least for Hf within
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FIG. 2. (a) Root-mean-square errors (RMSEs) in energies and
atomic forces predicted by the MTPs (level 22-24) trained in this
work with respect to ab initio values for hcp and bcc Ti, Zr, and
Hf. For comparison, the RMSEs of the following EAM/MEAM
potentials (hollow symbols) from literature are also shown: Ti [42],
hcp Zr (potential 3 in Ref. [43]), bcc Zr (potential 2 in Ref. [43]),
and Hf [44]. (b) Zoomed-in image of the MTP RMSEs from (a).
Each group IV element has a set of three MTPs—fitted separately to
the hcp and bcc phase, and a single combined MTP (labelled by the
element symbol only). For comparison, we also show the RMSEs
of previously trained MTPs for bcc refractory elements [5]. The
RMSEs are calculated on test sets that contain 96-128-atom supercell
configurations at the highest T in the corresponding (V, T ) grid, and
at the equilibrium volume.

the investigated temperature range. In all cases, however, the
grid for the hcp free-energy calculations does not overlap with
the diffusion contours, as observed in the top row of Fig. 1.

For the dynamically stabilized bcc phase, it becomes more
complicated to obtain the stable temperature window for per-
forming thermodynamic integration. There is a constraint on
both the lower and upper ends of the temperature regime,
as shown by the grids in the bottom row of Fig. 1. Below
a certain temperature, the bcc phase starts to transform into
the ω phase (for the here applied constant volume boundary
condition). The onset of the ω-phase formation is denoted by
blue lines in Fig. 1. In order to distinguish the ω phase from
the bcc phase, we use a structural descriptor that was earlier
developed and used in Refs. [9,48] (see also Ref. [19]). In
favor of our calculations, the transformation to the ω phase

FIG. 3. Frenkel defect formation and kinetics in initially defect-
free hcp Ti during an MTP MD run at 1665 K and V =
18.62 Å3/atom. (a)–(c) show MD snapshots and (d)–(f) the cor-
responding relaxed structures, viewed from the [1120] direction.
The arrows indicate displacement vectors of the atoms resulting in
migration of the defects. Self-interstitials are marked by the red balls,
while the squares indicate vacancies.

occurs at temperatures below the transition temperature to the
hcp phase, allowing us to construct a reasonable grid for the
bcc phase.

Similarly as for hcp, diffusion occurs also within the bcc
structure, however at slightly lower temperatures, in partic-
ular for Hf. Figure 4 illustrates the corresponding formation
of Frenkel defects in bcc Ti at the experimental melting
point. During the first 12 ps, one Frenkel defect is formed,
followed by another during the next 3 ps. The correspond-
ing self-interstitials form 〈110〉 dumbbell configurations with

FIG. 4. Frenkel defect formation and kinetics in initially defect-
free bcc Ti during an MTP MD run at 1943 K and V =
18.39 Å3/atom. Snapshots corresponding to MD times of (a) 12 and
(b) 15 ps are shown, viewed from the [100] direction. The arrows
indicate displacement vectors of the atoms resulting in migration
of the defects. Self-interstitials are marked by red balls, while the
squares indicate vacancies. The thermal fluctuations are reduced for
visualization by averaging the atomic positions for 0.2 ps.
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neighboring atoms and they migrate via the interstitialcy
mechanism (i.e., by pushing neighboring atoms into intersti-
tial positions). Vacancy migration along the 〈111〉 direction is
also observed. The migration of the atoms, and the formation
of diffusion channels along the 〈111〉 direction are in agree-
ment with previous works [9,49].

Unlike for hcp, the grid for the bcc free-energy calculations
overlaps with the red lines that mark the onset of Frenkel
defect formation and diffusion, as seen in the bottom panel in
Fig. 1. This renders the free-energy calculations for bcc more
challenging than for hcp. To tackle the challenge, we increase
the statistics for computing the thermal averages. Specifically,
in cases when there is an onset of diffusion, we repeat the
thermodynamic integration with different initial random seeds
until sufficient MD steps without defect formation are col-
lected for the averaging. This effectively excludes the impact
of the Frenkel defects on the free-energy values. To analyze
whether there is a potential impact of diffusion, we have
utilized the alternate temperature-integration approach [4] at
these (V, T ) points and found a small effect on the free energy
(see Ref. [19]). To further stabilize the free energy surface and
the required derivatives, in particular along the volume axis,
we extend the grid to smaller and larger volumes than what
is covered by the thermal expansion. The extension to larger
volumes has to be balanced against the increasing diffusion at
high temperatures.

With respect to the simulations at high temperatures and
volumes, it is important to note that they are likely to reside in
an overheated regime for the here employed PBE exchange-
correlation functional. Studies for other systems have revealed
a systematic underestimation of the experimental melting
temperatures by the PBE functional [50,51]. Therefore it is
expected that the PBE melting points of Ti, Zr, and Hf are also
similarly lower than the experimental melting points. This is
reflected in the highest temperature of the Ti and Hf bcc grid in
Fig. 1 being lower than the experimental melting point (green
dots). Further studies of the melting properties are required to
analyze this aspect.

C. Finite-temperature effective quasiharmonic reference

Within the direct upsampling methodology, an effective
quasiharmonic potential is used as the reference for the ther-
modynamic integration to the MTP. The purpose of utilizing a
harmonic potential as a reference is to enable the calculation
of an absolute free energy, since thermodynamic integration
and the subsequent perturbative upsampling only provide the
free-energy differences to DFT accuracy. In general, a system
can be approximated by various (quasi)harmonic references
which lead to different ways of splitting the vibrational free
energy. Nevertheless, the sum of F qh(V, T ) and F ah(V, T ) [in
Eq. (1)] always provides the same total vibrational free energy,
coming from atomic vibrations. Hence, for a particular system
at a given (V, T ) point, based on the choice of the reference,
the anharmonic part gets adjusted so that the total vibrational
free energy remains the same. For the stable phases considered
in earlier works [4,5], the effective quasiharmonic potential
was fitted to low-temperature forces, specifically at 20 K. For
the dynamically stable hcp phases of the present systems, we

continue with this approach and fit the quasiharmonic matrix
to DFT forces of MD snapshots at 20 K.

However, for the bcc phase, a low-temperature quasihar-
monic dynamical matrix exhibits imaginary phonon frequen-
cies due to the dynamical instability and thus cannot be used
as a reference for the thermodynamic integration. An apparent
solution seems to be a fit of the quasiharmonic potential to
forces within the stable temperature regime of the bcc phase.
Such a procedure inhibits imaginary phonon frequencies in
the effective dynamical matrix. However, inhibiting the imag-
inary frequencies is not sufficient to produce a physically
reasonable and numerically stable reference potential. In fact,
irrespective of the temperature chosen for fitting the effective
quasiharmonic potential within the stability regime for the bcc
phase, problems occur during the thermodynamic integration
to the MTP.

By choosing a temperature from the lower temperature
range within the stability regime—for example, the temper-
atures indicated by the green crosses in the lower panel of
Fig. 1—the resulting quasiharmonic potential is too soft as
compared to the true, fully anharmonic interactions. Such a
soft potential leads to physically incorrect short bond dis-
tances during the thermodynamic integration for coupling
constants λ close to zero. These short bonds bring the MTP
far out of its original phase space region in which it was
trained and which contains physically relevant configurations
derived from DFT. As a consequence, the integration becomes
numerically unstable.

Choosing instead a higher temperature from the stability
regime—for example, the experimental melting points indi-
cated by the green dots on the bcc free-energy surfaces in
Fig. 1—leads to an unphysical and strongly curved volume
dependence of the corresponding quasiharmonic free energy.
In consequence, the anharmonic free energy obtained in the
thermodynamic integration step has a similarly (but oppo-
sitely) curved volume dependence, which leads to numerical
convergence issues during the parametrization of the anhar-
monic free-energy surface.

For the present purpose of obtaining a starting point with
an analytical description of the free energies for the dynami-
cally stabilized phase, we provide the following solution. We
choose an effective dynamical matrix fitted to DFT forces
of MD snapshots corresponding to the experimental melting
temperature (green dots in the lower panel of Fig. 1) for the
thermodynamic integration. This leads to a matrix with stiffer
phonon frequencies as also observed experimentally [52–54].
We then switch the effective quasiharmonic and the respective
anharmonic free energies to correspond to a dynamical ma-
trix fitted to a lower temperature within the stability regime
(the green crosses in the lower panel of Fig. 1). With this
change, we ensure that the volume dependencies of both free-
energy contributions [F qh(V, T ) and F ah(V, T )] can be well
parametrized. There is no loss in numerical accuracy within
this modified procedure.

The anharmonic free energies and quasiharmonic thermo-
dynamic properties shown in the following for the bcc phases
thus correspond to the “intermediate” temperatures shown by
the green crosses on the bcc free-energy surfaces (900 K for Ti
and Zr, and 1700 K for Hf). This point should be kept in mind
when comparing thermodynamic quantities with those for the
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hcp phase which are based on a 20-K harmonic reference
(green crosses on the hcp surfaces in Fig. 1).

D. Effective 0-K E-V curve and anharmonicity in the bcc phase

Conventionally, the 0-K energy-volume curve E0K(V ) in
Eq. (1) is calculated by routine DFT calculations for an ideal
static lattice and subsequently parametrized by, for example,
the Vinet equation of state [55,56] (refer to Ref. [19]). This
procedure is well-justified for phases that are dynamically
stable at 0 K and for which the E -V curve has a well-defined
physical meaning as the starting point of the Taylor expansion
of the potential energy surface [33]. For the hcp phases studied
here, we take this conventional perspective of the 0-K energy-
volume curve.

In contrast, the 0-K static lattice E -V curve loses its mean-
ing for the high-temperature dynamically stabilized phase.
This is not directly evident from the curve itself, since it
resembles a standard E -V curve as observed for a stable
phase. The unphysical nature of the conventional calculation
becomes apparent only when atoms are displaced from their
ideal static lattice positions, leading to imaginary phonon fre-
quencies as mentioned in the previous subsection (Sec. II C).
The unphysical nature also gets reflected in the anharmonic
free energy calculations of the dynamically stabilized phase,
when referenced with respect to the static lattice E -V curve.
The anharmonic free energy in the stable bcc regime—when
extrapolated to 0 K as a function of temperature—leads to a
large negative value at 0 K. Both of the above features express
the unstable nature (absence) of the dynamically stabilized
bcc at 0 K and low temperatures.

Regardless, the standard static-lattice E0K(V ) values do
not affect the final free-energy surface in the direct upsam-
pling workflow, since the 0-K energies get counterbalanced
inside the F ah(V, T ) term. Therefore, in principle, we could
utilize the conventional 0-K energy-volume curve for direct
upsampling to obtain the full free-energy surface F (V, T )
even for the bcc phase. However, the unphysical nature of this
conventional definition of the 0-K energies has inconvenient
practical consequences. Therefore, based on the obtained
high-accuracy results within the stable temperature regime,
we provide a more consistent description of the 0-K energies
for dynamically stabilized phases. Specifically, we define an
“effective” 0-K E -V curve as the extrapolation of the high-
temperature free-energy parametrization to 0 K. Note that in
this definition, we obtain the full volume dependence of the
effective 0-K energies.

A modified definition of the E0K(V ) behavior, consistent
with the high-temperature free energies where all relevant
contributions have been taken into account, is practically more
beneficial. Firstly, it calibrates the anharmonic free energy to
be zero at 0 K in consistency with the usual stable phases.
Secondly, the definition is consistent with the CALPHAD ap-
proach which traditionally extrapolates Gibbs energies from
experimentally accessible temperature and composition re-
gions [57].

Comparison of the 0-K enthalpy difference between the
hcp and bcc phase calculated initially using the conventional
static lattice 0-K E -V curve and then with the newly defined
effective 0-K curve for the bcc phase reveals large differences

of up to 80 meV/atom (as shown below in Fig. 13). These
differences highlight the inconsistency of the conventional
definition of the 0-K energies for the dynamically stabilized
phase. With this in mind, we introduce the effective 0-K curve
into the direct upsampling methodology instead of the conven-
tional curve, and we recalculate thermodynamic and transition
properties with the more consistent definition. Although the
final free energies and thermodynamic properties remain the
same, the values at intermediate stages of the calculation
differ, and results for the bcc phase discussed in this paper
correspond to the effective 0-K energies.

Specifically, we reevaluate the anharmonic free energy in
the bcc phase with respect to the effective 0-K E -V curve.
In previous works outlining the direct upsampling method-
ology [4,5], anharmonicity was defined as the free-energy
contribution coming purely from vibrations beyond the effec-
tive quasiharmonic reference, and calculated with respect to
the conventional 0-K energy of the static lattice. As mentioned
earlier, such a calculation leads to large negative values at
0 K for the dynamically stabilized phases. Hence, for the bcc
phase, we instead use the effective 0-K energies to calibrate
F ah(V, T ). This procedure provides a more consistent and
physically meaningful comparison of anharmonicity between
the dynamically stable and stabilized phases. The reader is
referred to Ref. [19] for formulas related to the calibration of
the anharmonic free energies.

E. Vacancy contribution in the bcc phase

The direct upsampling methodology can also be utilized to
include the effect of vacancies on the bulk thermodynamics.
To accurately capture the effect of thermal, noninteracting
vacancies in the dilute limit, one needs the full DFT free-
energy surface F (V, T ) [Eq. (1)] for a sufficiently large
vacancy-containing supercell, in addition to the perfect bulk
free-energy surface. A Legendre transformation of both
surfaces gives the corresponding Gibbs energies, and the
difference between them, after accounting for the relevant
scaling factors, is the Gibbs energy of vacancy formation
G f

vac(p, T ). The contribution of the vacancies to the full ther-
modynamics including their ideal configurational entropy is
then exponentially dependent on G f

vac(p, T ), as given by

G(p, T ) = Gbulk (p, T ) − kBT exp

[
−G f

vac(p, T )

kBT

]
, (2)

where Gbulk (p, T ) is the Gibbs energy of the ideal perfect bulk
without vacancies and kB is the Boltzmann constant.

Obtaining the full free-energy surface F (V, T ) for the
vacancy-containing supercell is computationally challenging
despite the efficiency of direct upsampling. There is an onset
of diffusion and severe vacancy migration at much lower
temperatures than for the perfect bulk. As a consequence,
it becomes extremely difficult to perform stable thermo-
dynamic integration in the vacancy-containing supercell to
obtain a converged free-energy surface, and eventually cal-
culate G f

vac(p, T ). Moreover, the error in G f
vac scales with the

number of atoms in the supercell (e.g., a 1 meV/atom error
scales up to 127 meV/defect when utilizing the 127-atom bcc
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supercell with a single vacancy), adding to the complexity of
the calculation.

A practical solution which captures the main physical
mechanism of vacancy formation was introduced in liter-
ature [5]. The G f

vac(T ) was approximated by a quadratic
(non-Arrhenius) dependence on T at a given pressure p. Two
data points were used to parametrize the formula—the 0-K
vacancy formation enthalpy H f

0K, and the Gibbs energy of
vacancy formation G f

vac(p, T ′) at a single high temperature T ′.
The method was used to calculate the vacancy contribution for
different systems [5]. However, this approach is not applicable
for the dynamically stabilized phase, with problems arising in
the computation of both H f

0K and G f
vac(p, T ′). In particular,

conventional DFT calculations to obtain H f
0K are challenging

due to problems arising from the instability during relaxation.
Not only are the calculations challenging, but such an ap-
proach where one uses the static lattice DFT values at 0 K
has been rendered physically meaningless for the dynamically
stabilized phase, as elaborated in the previous section. As
for obtaining G f

vac(p, T ′), it becomes difficult to choose a
T ′ that is sufficiently high and where stable thermodynamic
integration can be performed. For example, even as low as
1400 K, the thermodynamic integration becomes unstable in
bcc Ti. Using a much lower temperature to parametrize the
quadratic formula makes the extrapolation of G f

vac to higher
temperatures inaccurate.

In the present work, we propose an alternate method
to obtain G f

vac(p, T ) also for dynamically stabilized phases.
A related approach was utilized earlier to calculate high-
temperature Helmholtz energies in vacancy-containing fcc
Ni [58], and to corroborate free energies (calculated using
conventional thermodynamic integration) in perfect bulk sys-
tems that underwent diffusion at very high temperatures [4].
In the currently proposed approach, there is no longer a de-
pendency on H f

0K. The method still involves calculation of
G f

vac(p, T ′), but the temperature T ′ can even be as low as
the smallest temperature in the grid, where it is possible to
perform stable thermodynamic integration for the perfect bulk
and the vacancy-containing supercell.

As the first step in the current approach, we calculate
G f

vac(p, T ′) at the smallest temperature in the grid Tmin (cf.
Fig. 1). Importantly, we perform a modified thermodynamic
integration, wherein, unlike conventional thermodynamic
integration, we integrate the difference (between the vacancy-
containing supercell and perfect bulk) in the total energy
differences over λ. An Einstein solid (force constant of
8.75 eV/Å2) is used as the reference to avoid potential com-
plications that could arise for an effective quasiharmonic
model for the vacancy-containing supercell. The Gibbs energy
of vacancy formation at T ′ = Tmin is thus given by

G f
vac(p, Tmin) =

∫ 1

0
�λ dλ + pV f

vac, (3)

where

�λ = 〈
EMTP

vac − EEins
vac

〉
λ
− x

〈
EMTP

bulk − EEins
bulk

〉
λ
, (4)

and where V f
vac is the MTP volume of vacancy formation at

Tmin, and λ the coupling constant between the Einstein refer-

ence and MTP. Further, in Eq. (4), EMTP
vac(bulk) and EEins

vac(bulk) are
the total energies of the MTP and the Einstein reference of
the vacancy-containing supercell (perfect bulk), respectively.
The factor x properly scales the energies to account for the
difference in the number of atoms in the bulk and the vacancy-
containing supercell.

Two separate sets of MD runs at the smallest temper-
ature in the grid and the corresponding MTP equilibrium
volume are performed to obtain the two thermodynamic av-
erages in Eq. (4) and thus �λ. The calculations are performed
on medium-sized 4 × 4 × 4 (127/128-atom) supercells. A
smaller 3 × 3 × 3 (53/54-atom) supercell is commensurate
between the bcc and the ω phase and stabilizes the ω phase up
to considerably higher temperatures [9]. The 3 × 3 × 3 super-
cell should thus be avoided in order to enable stable MD at the
lowest temperature in the grid. Since the Einstein reference is
consistently applied to both the vacancy-containing supercell
and the corresponding perfect bulk, the long-wavelength con-
tributions to the phonons (the ones that are not accounted for
in the 4 × 4 × 4 supercell) cancel each other.

We employ the modified thermodynamic integration ap-
proach in order to minimize computational errors at this
stage of the calculation. The total energy difference between
the Einstein reference and the MTP, calculated individually
for the vacancy-containing supercell and the perfect bulk, is
highly nonlinear and spans a wide range of energy values from
λ = 0 (fully Einstein forces) to λ = 1 (fully MTP forces).
Hence, it becomes difficult to fit a smooth function to accu-
rately calculate the individual integrals over λ. However, by
calculating the difference �λ [Eq. (4)], the integrand becomes
much smaller with a smoother λ dependence, thus making it
easier to parametrize. We fit a tangential function [4] to the
�λ points to obtain the integral.

An additional challenge arises during the MD run at λ

values close to 1 in the vacancy-containing supercell. There
are various instances of vacancy migration (despite utilizing
the lowest temperature of the grid) making it cumbersome
to obtain a statistically converged internal energy difference.
Hence, we fit the above-described tangential curve up to a
large enough λ value where there is no migration (λ = 0.97
in this work) and extrapolate it to λ = 1 to obtain a much
more accurate value of the integral. Nonetheless, there is still
marginal uncertainty which gets reflected in the final thermo-
dynamic properties (shown below in Fig. 8). The calculated
G f

vac(p, Tmin) values are marked by crosses in Fig. 5, and the
respective uncertainty in the value is represented by the error
bars accompanying the crosses.

The second step in the current approach enables a system-
atic calculation of the temperature dependence of G f

vac(p, T )
from the single value at Tmin up to the highest temperature
in the grid. To this end, we perform an integration of the
enthalpy of vacancy formation H f

vac over the inverse tempera-
ture according to

G f
vac(p, T )=G f

vac(p, Tmin)
T

Tmin
+ T

∫ 1/T

1/Tmin

H f
vac(p, T̃ ) d

(
1

T̃

)
,

(5)
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FIG. 5. Vacancy formation Gibbs energy for the bcc phase of
Ti (blue), Zr (red), and Hf (green) calculated with thermodynamic
integration at the lowest temperature in the grid (marked by the
crosses), followed by temperature integration of the enthalpy up to
the highest temperature in the grid. The error bars and the shaded
regions represent statistical deviation during the two stages of the
calculation.

which derives from the Gibbs-Helmholtz equation and where

H f
vac(p, T ) = Hvac(p, T ) − x Hbulk (p, T ). (6)

The enthalpy Hvac(bulk) of the vacancy-containing supercell
(perfect bulk) is calculated from the statistical averages of
the internal energy and the volume from an MD simulation
using the MTP in an NpT ensemble (constant pressure at
100 kPa). The calculation is performed separately for the
vacancy-containing supercell and the perfect bulk. Since there
is a probability that melting occurs already at lower tem-
peratures, the enthalpy is extrapolated using a second-order
polynomial up to the highest temperature point in the grid.
Additional details of the whole procedure can be found in
Ref. [19].

The G f
vac(p, T ) curves computed according to the de-

scribed procedure are shown in Fig. 5, along with the
statistical uncertainty represented by the shaded regions. The
G f

vac(p, T ) behavior is then introduced into Eq. (2) to include
the effect of vacancies on the bulk thermodynamics.

III. RESULTS AND DISCUSSION

A. Free energies of the hcp and bcc phases

The first column of Fig. 6 shows the calculated Gibbs en-
ergy at ambient pressure G(p = 100 kPa, T ) for hcp and bcc
Ti, Zr, and Hf. The Gibbs energy of the thermodynamically
stable phase is plotted in the respective temperature interval
and denoted by the strong colors. The faded colors indicate the
continuation of the Gibbs energy into the metastable regime,
i.e., to temperatures where the other phase is thermodynam-
ically stable. The vertical solid lines indicate the calculated
hcp-bcc transition temperatures (point of crossing of the full
Gibbs energies), with the relevant contributions to the free
energy included. The results are compared to CALPHAD
data shown by blue circles, and to the experimental transition
temperatures shown as vertical dotted lines.

A systematic underestimation of the full Gibbs energy
(blue curves) in comparison to CALPHAD is observed for
both phases of all three elements. The underestimation is
better visible in the insets where we plot the Gibbs energy
at higher temperatures by taking the CALPHAD data as the
reference (at each temperature value). An underestimation of
the Gibbs energy by the PBE functional is consistent with pre-
viously studied elements [4,5] except for vanadium in Ref. [5].
The PBE-predicted transition temperature is likewise under-
estimated (by −81 to −163 K; cf. Table II) in comparison to
the experimental value. The underestimation of the hcp-bcc
transition temperature is analogous to the underestimation of
the melting temperature (solid-liquid transition) predicted by
the PBE functional for other systems [50,51].

In the second column of Fig. 6, we show the free energy at
the PBE-predicted transition temperature F (V, T = T hcp→bcc

PBE )
with the various, relevant contributions resolved individually.
For all elements, the anharmonic contribution is negative in
the hcp phase, and positive in the bcc phase. The magnitude
of anharmonicity is highest in Hf, due to its higher transi-
tion temperature, at which the plot is made. The electronic
contribution (including the coupling from vibrations) is al-
ways negative, and almost equal for both phases. A closer
inspection reveals that the bcc phase has a marginally stronger
electronic contribution (by a few meV/atom), the source of
which will be analyzed and understood in Sec. III C in terms
of the electronic density of states.

The purely anharmonic free energy F ah is plotted as a
function of volume, for different temperatures in the third
column of Fig. 6. The temperatures of the effective quasi-
harmonic reference for the anharmonic calculation are given
alongside the plots. As discussed in Sec. II D, the anharmonic
free energies plotted here are calibrated with respect to the
effective 0-K energies for the bcc phase, in order to have a
physically consistent definition with the hcp phase. For all the
elements, it is observed that F ah decreases with increasing
temperature in the hcp phase, indicating a relative softening
in the structure with temperature. The effect of volume on the
hcp anharmonic free energies is small. The values are similar
in magnitude in all elements at similar absolute temperatures.
Naturally, the anharmonic free energy in Hf reaches almost
twice the magnitude (−43 meV/atom) in comparison to Ti
and Zr, owing to the higher temperature regime of the hcp
phase in Hf. The softening of the hcp phase with temper-
ature is similar in nature to the previously studied hcp Mg
system [4].

The trend is reversed in the effective F ah of the bcc phase,
where a positive increase is observed with temperature. This
indicates a relative stiffening of the bcc structure, analogous to
the anharmonic behavior of group V bcc refractory elements
(Ta and V) with temperature [5]. There is a considerable vol-
ume dependence in the anharmonic contribution in bcc Zr and
Hf, which is reflected in the thermodynamic properties to be
discussed in Sec. III B. Even though we use an intermediate-
temperature effective quasiharmonic reference, there is still
a significant anharmonic contribution in the bcc phase, as
high as 62 meV/atom in Hf near the highest temperature
point.

The strong anharmonicity and the opposite trends in hcp
and bcc at the transition temperature are explained by an
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FIG. 6. Ab initio calculated thermodynamic potentials for hcp and bcc Ti, Zr, and Hf: Gibbs energy G(T ) at ambient pressure 100 kPa,
free energy F (V ) at T hcp→bcc

PBE , and anharmonic free energy F ah(V, T ) using the PBE exchange-correlation functional. The G(T ) values are
referenced to the minimum energy of the hcp static lattice at 0 K. Calculations using the CALPHAD method [59] (aligned to the ab initio hcp
values at room temperature) are shown in blue dots for comparison. The insets contain the full ab initio Gibbs energy at high temperatures
taking the CALPHAD values as a reference at each temperature. For G(T ) and F (V ), the different excitation mechanisms are resolved, except
for thermal vacancies as their contribution is negligible on this scale. In the first column, the solid and dashed vertical lines correspond to
the PBE-predicted and experimental hcp-bcc transition temperature, respectively. In the second column, the dashed lines correspond to the
PBE-predicted volume at 0 K and the transition temperature. In the third column, the vertical lines correspond to the equilibrium volume at the
smallest and largest temperature in the grid. The temperature at which the effective quasiharmonic potential is fitted is mentioned alongside
the third column. The plotted error bars (mostly hidden by the symbols) denote the 95% confidence interval.
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TABLE II. Hcp-bcc transition properties of Ti, Zr, and Hf from ab initio calculations in comparison with experimental values: transition
temperature T hcp→bcc, enthalpy difference �Hbcc-hcp, entropy difference �Sbcc-hcp, and volume change �V bcc-hcp = V bcc − V hcp with the hcp
and bcc volumes V hcp and V bcc. All differences and the absolute volumes correspond to the respective transition temperature. The ab initio
errors are derived from the 95% confidence interval of the fitted anharmonic contribution to the free energy surface, which itself is derived
from the estimated covariance matrix of the fitting coefficients.

Ti Zr Hf

GGA-PBE Experiment GGA-PBE Experiment GGA-PBE Experiment

1155a 1139a 2016a

T hcp→bcc (K) 1013 ± 3 976 ± 6 1935 ± 6
1166 ± 10b 1135 ± 10b 2054 ± 50b

�H bcc-hcp (kJ/mol) 3.76 ± 0.02 4.17 ± 0.13b 3.39 ± 0.04 4.02 ± 0.3b 4.72 ± 0.01 5.91 ± 0.2b

(meV/atom) 38.9 ± 0.3 43.2 ± 1.3b 35.1 ± 0.4 41.6 ± 3b 48.9 ± 0.1 61.2 ± 2b

�Sbcc-hcp [J/(mol K)]c 3.71 ± 0.01 3.58 ± 0.12b 3.47 ± 0.02 3.54 ± 0.27b 2.44 ± 0.02 2.88 ± 0.12b

(kB/atom)c 0.446 ± 0.002 0.430 ± 0.014b 0.417 ± 0.002 0.426 ± 0.032b 0.293 ± 0.002 0.350 ± 0.014b

�V bcc-hcp (Å3/atom) −0.059 ± 0.001 −0.03d −0.186 ± 0.001 −0.11d −0.008 ± 0.003 −0.2d, 0.1d

Vhcp (Å3/atom) 17.780 ± 0.001 18.15e 23.842 ± 0.001 23.72g 23.577 ± 0.002 23.8i

Vbcc (Å3/atom) 17.721 ± 0.001 18.13f 23.656 ± 0.001 23.61h 23.568 ± 0.002 23.62j, 23.9k

aReference [59].
bReference [68].
c�Sbcc-hcp = �H bcc-hcp/T hcp→bcc.
dThe experimental �V bcc-hcp values are obtained from differences of the absolute hcp and bcc volumes given in the respective rows.
eThis Vhcp is calculated from the lattice constants at 28 ◦C [69] and the thermal expansion at the transition temperature [61].
fReference [70]. The same value is also obtained from the lattice constant at 28 ◦C [69] and the thermal expansion at the transition
temperature [61].
gReference [71] at 1125 K.
hReference [72].
iThe value is from an equation of state at 1960 K [73] which is linearly extrapolated to the experimental transition temperature.
jThe value corresponds to 2073 K [74].
kFigure 5 in Ref. [66].

analysis of the first nearest-neighbor distributions, cf. Fig. 7.
In the first two columns, we show the nearest-neighbor dis-
tributions in bcc Ti, Zr, and Hf projected on the (110)
plane, during a dynamics run at the corresponding transition
temperature using the MTP and the effective quasiharmonic
potential, respectively. Similar distribution plots for the hcp
phase are shown in Fig. S9 in Ref. [19]. A strong anharmonic-
ity is clearly visible from the MTP plots, as noticed by the
wall-like shape of the distribution as the two atoms approach
each other. An effective quasiharmonic potential fitted within
the stable regime of the bcc phase is unable to replicate the
physically correct distribution owing to the inherent symmet-
ric nature of the model. This inability is reflected in the large
anharmonic free energies. Such a dissimilarity in the shape of
the distribution is observed both for the hcp and bcc phases,
and is consistent with previous findings [5,18,60].

To pinpoint the difference in anharmonicity between bcc
and hcp, we subtract the distributions shown in the first two
columns in Fig. 7 for bcc and Fig. S9 for hcp (each normal-
ized with respect to the density at the static nearest-neighbor
distance) and plot the resulting difference in the third and
fourth column of Fig. 7 for bcc and hcp, respectively. The
bcc and hcp distribution-density differences are markedly
distinct. Large blue patches around the nearest neighbor in
bcc signify a negative density-distribution difference between
the MTP, which includes anharmonicity, and the effective
quasiharmonic model. This implies a smaller relative motion
of the nearest-neighbor atoms and a stiffer potential (and
positive free-energy contribution) when including anharmonic

effects. On the other hand, patches of red signify a positive
hcp density-distribution difference, implying a larger rela-
tive motion of the nearest neighbor, and hence a softening
(and negative free-energy contribution) when including an-
harmonicity. The difference in trends seen in the anharmonic
free energies in Fig. 6 (last column) can hence be directly
corroborated with the first-neighbor distribution densities in
the two phases.

B. Thermodynamic properties of the hcp and bcc phases

Figure 8 shows the entropy S, the isobaric heat capacity
Cp, the coefficient of thermal expansion α, and the adiabatic
bulk modulus BS , for all three investigated elements while
including the different contributions to the free energy. For
each quantity, the results for both the hcp and bcc phase are
plotted together on the same plot, separated by the ab initio
calculated transition temperature (represented by a vertical
solid line). The entropy and heat capacity are compared to
existing CALPHAD data represented with blue circles. The
thermal expansion and bulk modulus are compared to existing
experimental data represented with blue squares.

Overall, we find a good agreement of the final thermo-
dynamic properties (blue curves, including all contributions)
with CALPHAD and experimental data. The agreement is,
in fact, remarkable for Ti except for the bulk modulus of
the bcc phase. The S and Cp curves are in close agreement
with the CALPHAD data for all elements. Comparatively,
the deviations observed in α and BS of Zr and Hf are larger.
The overestimation of α and underestimation of BS can be
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FIG. 7. First nearest-neighbor (1NN) distributions in bcc Ti, Zr, and Hf projected on the (110) plane during an MD run at T hcp→bcc
PBE (explicit

values given alongside the plots) and at the corresponding equilibrium volume using the MTP (first column) and the effective harmonic potential
(second column). The corresponding distributions for the hcp phase are shown in Fig. S9 in Ref. [19]. The difference in the normalized 1NN
distributions during the MTP MD and the effective harmonic MD for bcc and hcp is shown in the third and fourth column, respectively.

explained by the inherent limitation of the PBE exchange-
correlation functional, as also observed in earlier works [4,5].
However, the disagreement to experiments is unusually high
in BS for the bcc phase of Zr and Hf. For bcc Zr, we com-
pare our results to two sets of experimental data—the second
data point shown by a light blue square. The first set of
experimental points are unnaturally decreasing with temper-
ature, while the second experimental data point—which is
an extrapolated value from higher pressures at a tempera-
ture below the transition temperature—is wide apart from the
other experimental data set. In bcc Hf, the single available
experimental BS measurement is untypically higher than the
corresponding values for the hcp phase, which drop with
temperature. Hence, for the bulk modulus of the bcc phase, not
only are there insufficiently few data points to make concrete
comparisons, but the abnormalities suggest potential errors
in existing experimental measurements. Based on the overall
consistency of our results, the mostly good agreement with
CALPHAD/experiment (also below for the hcp-bcc transi-
tion properties), and the validation of the direct upsampling
methodology with experiments in previous works [4,5], we
can confidently state that our current ab initio results provide
a better benchmark for future studies.

For all three systems, for both phases, the electronic and
anharmonic free-energy contributions play a crucial role in the

thermodynamic properties. One exemplary observation is the
considerable effect of the anharmonic free energy on α and BS

in bcc Zr and Hf, which arises from the volume dependence
of F ah discussed in Sec. III A (cf. third column of Fig. 6). In
certain cases (for instance BS in bcc Hf), without the anhar-
monic contribution, even the general trend with temperature
is incorrect. Vacancies on the other hand have a noticeable
effect only at the highest temperatures, in particular on Cp,
due to the exponential dependence of the Gibbs energy on the
vacancy formation energy [Eq. (2)]. The effect is strongest in
Hf, somewhat smaller in Zr, and almost negligible in Ti.

The impact of vacancies in Hf is indeed quite significant,
even when compared to earlier results for bcc refractory el-
ements with much higher melting points [5]. To understand
this, we analyze the Gibbs energy of vacancy formation for
various systems, as shown in Fig. 9. The results for Ti, Zr
and Hf are shown only in the temperature range where bcc
is the thermodynamically stable phase and the shaded regions
represent the statistical uncertainty as discussed in Sec. II E,
which subsequently propagates into the thermodynamic prop-
erties. The Gibbs energies of vacancy formation of bcc Ti, Zr,
and Hf are much smaller than for the bcc refractory elements,
and similar in magnitude to those in fcc Al, Cu [67], and
Ni [58]. Thus, the group IV elements are very susceptible to
the formation of vacancies. Among the elements with a low
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FIG. 8. Ab initio calculated entropy S(T ), isobaric heat capacity Cp(T ), coefficient of thermal expansion α(T ), and adiabatic bulk modulus
BS (T ) for hcp and bcc Ti, Zr, and Hf, in the temperature regime of their thermodynamic stability determined by the PBE transition temperature
(vertical solid lines). Results considering different excitation mechanisms [effective quasiharmonic (qh), anharmonic (ah), electronic (el),
and vacancies (vac; for bcc only)] are shown. The shaded region around the dashed-dotted lines marks the statistical uncertainty from the
vacancy calculations. The calculation results are compared to the following CALPHAD (blue circles) or experimental data (blue squares): hcp
Ti [59,61,62], bcc Ti [59,61,63], hcp Zr [59,61,64], bcc Zr [53,59,61,65], hcp Hf [59,61,64], and bcc Hf [54,59,66]. The BS value for bcc Zr
labeled “Exp. 2 for bcc” is estimated from the experimental BT of Ref. [65] and our calculated data for the difference of BS − BT = 3 GPa (see
Table S18 in Ref. [19]). The vertical dashed lines correspond to the respective experimental melting point.

vacancy formation Gibbs energy, only Hf (and Zr to some
extent) has a melting point that is high enough to really probe
the effect of vacancies, which consequentially gets reflected
in Cp (and also BS) of bcc Hf in Fig. 8.

C. Hcp-bcc transition properties

In Table II, the ab initio-calculated hcp-bcc transition tem-
peratures and other transition properties are collected. The

transition temperature of Hf is almost double that of Ti and
Zr. This higher transition temperature arises from the larger
effective 0-K energy difference between the hcp and the bcc
phases, i.e., 102 meV/atom for Hf versus ≈60 meV/atom for
Ti and Zr (see Table III). The higher transition temperature
correlates with a higher enthalpy difference and a smaller en-
tropy difference for Hf as compared to Ti and Zr (cf. Table II).
These computed relations are in good agreement with exper-
iment. With regards to the absolute transition temperatures,
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FIG. 9. Vacancy formation Gibbs energy for the bcc phase of
Ti (blue), Zr (red) and Hf (green) plotted in the temperature range
where bcc is the thermodynamically stable phase. The shaded regions
represent the 95% confidence interval from statistical uncertainty.
Vacancy formation Gibbs energies of previously studied elements
(bcc refractories Mo, Ta, V, and W [5], fcc Al and Cu [67], and fcc
Ni [58]) are plotted for comparison.

for all three systems, the PBE exchange-correlation functional
gives an underestimation as compared to the experimental val-
ues, by −81 to −163 K, as already mentioned. The enthalpy
differences are also consistently underestimated by the PBE
functional, while there is no clear picture for the entropy and
volume differences.

For a more thorough comparison, it is better to analyze
the transition properties as a function of temperature. To this
end, Fig. 10 shows the properties on a relative temperature
scale, defined as the temperature with respect to the hcp-bcc
transition temperature estimated by the respective approach
(PBE or experiment). There is a good agreement between
the ab initio values and CALPHAD data for all elements, in
particular for the differences in the thermodynamic potentials.
Similarly as observed for the thermodynamic properties of
each phase individually, the agreement in the thermodynamic
transition properties is remarkable for Ti. For Zr, we observe
a small deviation in the slope of the enthalpy �Hbcc-hcp(T )
and entropy �Sbcc-hcp(T ), while for Hf the ab initio and CAL-
PHAD data are slightly shifted with respect to each other.

In addition to the differences in the thermodynamic
potentials, we also compare the ab initio computed and
the experimental/CALPHAD temperature-dependent hcp-bcc
volume difference as shown in the last row of Fig. 10. It is

TABLE III. 0-K extrapolated Gibbs energy difference between
the bcc and hcp phases, from ab initio (this work) and CALPHAD
(solid and dashed blue curves in Fig. 13, respectively) for Ti, Zr, and
Hf.

Ti Zr Hf

�Gbcc-hcp
0K (DFT, meV/atom) 64 58 102

�Gbcc-hcp
0K (CALPHAD, meV/atom) 72 79 133

Underestimation (meV/atom) –8 –21 –31
Relative underestimation (%) –11 –26 –23

important to note that the values observed for �V bcc-hcp are
very small with respect to the absolute volumes of the phases
(< 1%). This fact leads to a large experimental uncertainty as
is most evident for Hf with two qualitatively different experi-
mental results (+0.1 and −0.2 Å3/atom; cf. Table II). Given
this experimental uncertainty, the agreement between the DFT
values and experiment (the squares) is good for Ti and Zr.
For these two elements, there is also a CALPHAD volume
parametrization available for hcp and bcc [75] that leads to
the �V bcc-hcp shown by the blue circles. For Zr, the temper-
ature dependence is remarkably close to our DFT prediction,
while there is a discrepancy for Ti at higher temperatures. The
CALPHAD parametrization, in particular the extrapolation far
above the transition temperature, suffers from the experimen-
tal scatter in the accessible, thermodynamically stable region
used for the fitting, since the errors are magnified strongly in
the extrapolated regime. We expect our �V bcc-hcp results to
be a more trustable reference, because both the hcp and the
bcc phase can be well modelled at temperatures above the
transition temperature. In general, as already discussed for the
thermodynamic properties, our current results provide a better
benchmark for comparisons in future.

The agreement achieved with experiments/CALPHAD in
the hcp-bcc transition properties is only possible by includ-
ing the electronic and in particular anharmonic contributions
to the free energy. We demonstrate this in Fig. 11 where
we compare the Gibbs energy differences with the relevant
contributions to the free energy resolved individually. The
corresponding CALPHAD data are shown as blue circles for
comparison. Using only the effective quasiharmonic approx-
imation for the high-temperature free-energy contributions
predicts a linear behavior of the Gibbs energy difference seen
by the yellow dotted lines. A linear behavior using effective
harmonic models was also observed earlier for Ti [17,76] (cf.
Fig. S8 in Ref. [19]).

The curvature of the CALPHAD Gibbs energy difference
between the hcp and the bcc phases is captured only by
including the fully anharmonic vibrational contribution as
noticed by the orange dashed lines in Fig. 11. The inclusion of
anharmonicity also significantly increases the transition tem-
perature. The shift in transition temperature can be explained
in terms of the anharmonic free energies in the third column
of Fig. 6. A positive F ah for the bcc phase, and a negative
contribution to the hcp phase (resulting in a difference of 26
to 88 meV/atom), shifts the hcp-bcc transition to a much
higher temperature. The shift in the transition temperature
for Hf is as high as 979 K and with this almost three times
higher than for Ti and Zr. The stronger impact of anhar-
monicity on the transition temperature in Hf arises from the
relatively larger anharmonic free-energy difference between
the bcc and hcp phases at the transition temperature, which
in turn is a consequence of the higher transition temperature
in Hf.

Figure 11 also reveals the effect of the electronic con-
tribution on the transition temperatures. The electronic free
energies, which are obtained from the perturbative upsam-
pling step, also include the coupling to atomic vibrations.
There is only a gradual shift in the Gibbs energy differences
caused by the electronic contribution, lowering the transition
temperature almost equally in all three elements (by 83 to
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FIG. 10. Difference in Gibbs energy �Gbcc-hcp, enthalpy �Hbcc-hcp, entropy �Sbcc-hcp, and volume �V bcc-hcp between the bcc and hcp phases
for Ti, Zr, and Hf at ambient pressure (100 kPa) from the current ab initio calculations (GGA-PBE) compared with CALPHAD data [59,75]
and experiment as referenced in Table II [61,66,69–74]. The temperature is rescaled to the GGA-PBE or experimental hcp-bcc transition
temperature, respectively.

172 K). The drop in transition temperature can be explained
by analyzing the bcc and hcp electronic density of states
(eDOS) in the three elements. Figure 12 shows the average
eDOS of forty snapshots generated at the respective transition
temperature for the hcp and bcc phases of each of the three
elements. The eDOS is calculated using DFT while including
the electronic temperature. In all elements, the value of the
eDOS at the Fermi level is higher for the bcc phase. This
indicates a marginally higher electronic free energy for bcc.
Including the electronic contribution thus stabilizes the bcc
phase, and thereby brings down the transition temperature.
Compared to the anharmonic effects, however, the effect of
the electronic contribution is much smaller, as reflected in
the corresponding free-energy difference between the two
phases. In Fig. 12, we note that the eDOS’s for both phases

are more close to one another in Hf due to the increased
vibrational smearing coming from the higher transition tem-
perature of Hf. Despite the smaller difference in eDOS for
Hf, its electronic contribution to the transition properties is
stronger than for Ti and Zr, due to the higher transition
temperature.

The vacancy contribution to the bcc Gibbs energy at the
transition temperature is negligible for Ti and Zr (well be-
low 0.01 meV/atom) and small for Hf (0.4 meV/atom) as
obtained from the MTP calculations (Sec. II E). The impact
on the transition temperature can thus be expected to be
negligible for Ti and Zr and small in Hf. To quantify this
statement further studies are needed that include the effect of
vacancies for the hcp phase and that go beyond the MTP level
of accuracy.
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FIG. 11. Difference in Gibbs energy �Gbcc-hcp between the bcc and hcp phases for Ti, Zr, and Hf at ambient pressure (100 kPa) from ab
initio calculations. Results considering different contributions [effective 0-K energy (0K) with effective quasiharmonic (qh), anharmonic (ah),
and electronic (el)] are shown. The values are compared with CALPHAD data [59] shown as blue circles. The temperature is rescaled with the
respective GGA-PBE or experimental hcp-bcc transition temperature.

FIG. 12. Electronic density of states (eDOS) for hcp and bcc Ti,
Zr, and Hf at the PBE transition temperature and at the corresponding
equilibrium volume. In each case, the darker curve indicates an
average over 40 snapshots, while the light shaded region represents
the spread of the eDOS’s. The gray lines represent the Fermi-Dirac
occupation function (ranging from 0 to 1) at the respective transition
temperature.

D. Resolving the ab initio-CALPHAD mismatch

Thermodynamic databases of multicomponent systems
critically rely on accurate descriptions of the unary end mem-
bers in their thermodynamically stable, metastable, and even
dynamically unstable regimes. Inaccuracies in the thermo-
dynamics of the constituent elements will have a cascading
effect on the multicomponent phase diagrams. Accurate phase
stabilities of end members down to low temperatures are
thus essential to guarantee reliable CALPHAD predictions, as
needed by material scientists and engineers alike.

Based on our high-accuracy free-energy surfaces obtained
within the stable regime, we are able to reformulate the defi-
nition of the 0-K energies for the dynamically stabilized bcc
phase. By doing so, we address a long-standing mismatch
in the comparison between ab initio and CALPHAD phase
stabilities. In literature [6,31,32], comparisons were made
between 0-K static-lattice ab initio results and CALPHAD
values extrapolated to 0 K. Such comparisons for systems with
a dynamically unstable 0-K phase gave a discrepancy in the
phase stabilities, sometimes by a factor of two, with the DFT
static-lattice stabilities being larger than the CALPHAD val-
ues. However, this comparison is physically not meaningful,
and the proper comparison is with the extrapolated, effective
0-K E -V energies of the dynamically stabilized phase.

In Fig. 13, we thus extrapolate the full ab initio Gibbs
energy difference between the hcp and bcc phase for all three
elements down to 0 K (solid blue curves). For the extrap-
olation, we use a second-order polynomial in temperature
which well represents the curvature of the lattice stabilities
both from our current results and CALPHAD data [59]. Since
we extrapolate Gibbs energy differences, most higher-order
CALPHAD coefficients of the bcc and hcp parametrizations
cancel out, and the resulting data points are adequately fitted
using the second-order polynomial. In fact, the second-order
fitted curves fall on top of the curve obtained from the original
parametrizations in Ref. [59] (see Fig. S4 in Ref. [19]). For the
purpose of analysis, the extrapolated values are also compared
to the unphysical 0-K static-lattice DFT values marked by
orange crosses.
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FIG. 13. Comparison of the GGA-PBE (blue solid curves) and the CALPHAD extrapolations (blue dashed curves) from the stabilized bcc
regime (blue circles, Ref. [59]), of the Gibbs energy difference �Gbcc-hcp between the bcc and hcp phase for Ti, Zr, and Hf at ambient pressure,
100 kPa. For a consistent comparison, the extrapolation for this analysis is done directly in �Gbcc-hcp(T ) using a second order polynomial
in temperature for both our current results and CALPHAD data (cf. Ref. [19]). The 0-K GGA-PBE differences of the total energies of the
static bcc and hcp lattices are indicated by the orange crosses. The temperature is rescaled to the GGA-PBE or experimental hcp-bcc transition
temperature, respectively.

For all three systems, we observe consistently that the
finite temperature ab initio extrapolation provides a much
smaller difference between hcp and bcc at 0 K than the
static-lattice DFT result. The reduction in the energy differ-
ence is indicated by the orange arrows and it amounts to
−45 meV/atom (−41%) for Ti, −26 meV/atom (−31%)
for Zr, and −80 meV/atom (−44%) for Hf. This result can
be intuited by picturing the bcc static-lattice configuration
(i.e., all atoms located on ideal bcc lattice positions) as a
singular, high-energy point in the energy landscape. Thermal
distortions of the atoms away from these ideal positions lead
to a strong energy reduction. Finite-temperature vibrations
therefore scan much lower energies as compared to the static
bcc lattice.

As an immediate consequence of the unphysical na-
ture of the static-lattice energies, it is crucial to utilize
the finite-temperature ab initio extrapolation for a consis-
tent comparison with CALPHAD. For all three systems, the
GGA-PBE extrapolation underestimates the CALPHAD ex-
trapolation (see Fig. 13 and Table III). This underestimation
can be traced back to a smaller curvature of the PBE Gibbs
energy around the transition temperature as compared to
CALPHAD. Ti shows the best agreement with CALPHAD
with an underestimation of −8 meV/atom at 0 K. For Zr
and Hf the underestimation is larger, −21 meV/atom and
−31 meV/atom, respectively. These results are in line with
our previous observation for the other thermodynamic and
transition properties, i.e., that Ti shows the best agreement
with experiment/CALPHAD, while there are larger discrep-
ancies for Zr and Hf. It is important to stress that—irrespective
of whether the CALPHAD extrapolation agrees better with
the static-lattice 0-K energies or with the finite-temperature
ab initio extrapolation—it should always be the latter that we
utilize for a consistent and practically relevant comparison.
More importantly, the extrapolated ab initio values provide a
more physically motivated basis for future unary and multi-
component phase diagram calculations, such as those under
development for third-generation CALPHAD databases [77].

IV. CONCLUSIONS AND OUTLOOK

Free-energy calculations of dynamically unstable phases
have been long beset with severe obstacles arising from
fundamental difficulties with 0 K or low-temperature approxi-
mations. Even effective quasiharmonic Hamiltonians fitted to
high temperature data fail to describe the correct temperature
dependence of the free energy, as we have demonstrated in
the present work. Worse yet, transition temperatures are off
by several hundred, up to a thousand kelvin.

Based on the developments put forth in the current article,
the above issues have been resolved, and dynamically unsta-
ble phases can now be computed as accurately as has been
possible for stable phases. The approach treats the dynami-
cally unstable phase primarily in the high-temperature regime,
where it is stabilized by anharmonic vibrations. Thereby, the
obstacles arising from the “dynamical instability” are averted
and the phase is instead treated from the finite-temperature
perspective as a “dynamically stabilized” phase. Such an ap-
proach is possible due to the high accuracy achievable with
the direct upsampling methodology in the description of the
free-energy surface within the stable temperature regime.

A crucial aspect in the refinement of the direct upsam-
pling methodology has been the efficient determination of
the stable temperature regime, in particular for the dynami-
cally stabilized phase. The mainstay behind this development
is high-accuracy machine-learning potentials, MTPs in this
work, which enable a rapid scan of the entire volume-
temperature space in search for the stability regime. The
MTPs are trained on ab initio energies and forces of configura-
tions generated at the experimental melting point of the target
material. Phase-specific MTPs (separately fitted for the low-
and high-temperature phase) and a single MTP spanning both
phases show equal accuracy, outperforming classical inter-
atomic potentials by an order in magnitude in the RMSEs. The
stability boundaries in temperature and volume can thus be
efficiently predicted using the MTPs for both conventionally
stable and dynamically stabilized phases.
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For the dynamically stabilized phase, the lower bound of
the stable temperature regime is given by the transition to
a lower-symmetry phase (hexagonal ω), which is monitored
by a structural descriptor. The upper bound is determined
by the onset of Frenkel defect formation and diffusion. Due
to the presence of low and high temperature bounds, the
regime where one can perform stable thermodynamic inte-
gration is found to be much narrower than for single-phase
systems. Therefore a very carefully adjusted, dense volume-
temperature grid for the explicit free-energy calculations is
required to guarantee converged thermodynamic properties.

The knowledge of the temperature bounds of the stable
regime also facilitates the choice of an adequate temperature
to fit a stable effective quasiharmonic reference for the dy-
namically stabilized phase. A systematic strategy is employed
where, at first, an effective quasiharmonic reference fitted
at the melting point is used for thermodynamic integration.
This is followed by a switch in the reference to an effective
quasiharmonic potential fitted at an intermediate temperature
which is at the lower end of the stable temperature regime of
the bcc phase. Such a strategy assures stable thermodynamic
integration across the entire (V, T ) grid, and simultaneously
leads to free energies that can be well parametrized.

After training the MTP, determining the stability window,
and fitting the effective quasiharmonic reference, the tradi-
tional direct upsampling methodology [4,5] to calculate the
total free energy on a dense grid within the stable regime
can be pursued for each phase separately. Thermodynamic
properties of individual phases and transition properties can
be then obtained from the free-energy surfaces. The effect of
vacancies can be added on top of the perfect bulk thermo-
dynamics, but it is challenging to do so for the dynamically
stabilized phase. To tackle this challenge, we have proposed
a novel two-step approach that involves (i) determination of
the vacancy formation Gibbs energy at a single intermediate
temperature followed by (ii) temperature-integration of the
enthalpy at the MTP level of accuracy to extend the Gibbs
energy to the highest temperature in the grid. Thus, in anal-
ogy to the perfect bulk, vacancies are treated directly and
efficiently in the relevant high temperature regime.

Utilizing the high-accuracy free-energy surface, a new defi-
nition of the 0-K E -V behavior for the dynamically stabilized
phase has been established. The effective E -V curve is ob-
tained by extending the high-temperature free-energy surface
to 0 K, and it provides a more consistent description of the
0-K energetics for the dynamically stabilized phase. With this
more meaningful description, one can disregard the conven-
tional static-lattice E -V curve of the dynamically stabilized
phase in any further analysis and comparison. Notably, the
effective 0-K enthalpy should be utilized for a consistent
comparison and integration with CALPHAD. As shown, such
an approach corrects the long-standing mismatch in the com-
parison between ab initio and CALPHAD 0-K enthalpies for
dynamically stabilized phases. Using the redefined effective
0-K behavior, the anharmonic free energy of the dynamically
stabilized phase has also been calibrated, in order to provide
a definition of anharmonicity that is consistent with conven-
tional stable phases.

We have demonstrated the above methodological advance-
ments on low-temperature hcp and high-temperature bcc

phases of the prototype group IV elements Ti, Zr, and Hf.
All three elements exhibit an opposite trend in anharmonic-
ity between the two phases, with a negative and decreasing
anharmonic free energy in the hcp phase and a positive and
increasing effective anharmonic free energy in the bcc phase
as temperature increases. For the dynamically stabilized bcc
phase, even though a high-temperature effective quasihar-
monic reference has been used, a substantial anharmonic
contribution of around 50-60 meV/atom near the melting
point is observed suggesting a strong asymmetric nature of
vibrations that cannot be captured by harmonic models. We
have illustrated this and further contrasted the anharmonic
behavior of the two phases in terms of contour difference plots
of the distribution of the first nearest neighbors.

A comparison of the ab initio prediction to experimen-
tal and CALPHAD data has revealed a good agreement for
the heat capacities for all elements, and an overall strongest
agreement for the thermodynamic properties of Ti. An-
harmonicity, electronic excitations and their coupling to
vibrations play a crucial role in the thermodynamic properties.
Vacancies have an effect at high temperatures on Cp with a
significant impact in Hf, and to a lesser degree in Zr. The
thermal expansion coefficient and bulk modulus for Zr and
Hf are systematically over- and underestimated, respectively,
coming from the PBE exchange-correlation functional, as was
observed earlier for other systems [4,5]. The hcp-bcc transi-
tion temperatures are underestimated for all three elements
(by −81 to −163 K), in line with PBE-predicted solid-liquid
transitions [50]. The hcp-bcc transition properties agree very
well with CALPHAD data on a relative temperature scale,
once again with the strongest agreement for Ti.

We have studied the effect of the different excitation
mechanisms on the hcp-bcc transition properties. Including
anharmonic free energies for both phases increases the hcp-
bcc transition temperatures, by up to one thousand kelvin for
Hf. Besides the mere shift, the anharmonic contribution is
crucial in providing the correct curvature in the temperature
dependence of the Gibbs energy difference between hcp and
bcc. The electronic free energy (including the coupling to
vibrations) has a smaller effect on the transition temperatures,
bringing them down by as much as 172 K for Hf. Accurate
thermodynamic properties are hence achievable only when
the relevant free-energy contributions are properly included,
which is possible with the direct upsampling methodology.

Lastly, we have applied the newly established concept of
the effective 0-K energy to the bcc phase of the three prototype
elements. The effective 0-K enthalpies from DFT (GGA-PBE
functional) underestimate the CALPHAD extrapolation for all
three elements, by −11% to −26%. This underestimation is in
strong contrast to the overestimation by up to 51% observed
when utilizing the physically inconsistent bcc energies from
static-lattice ab initio calculations. The physically motivated
extrapolation shows the best agreement between DFT-GGA
and CALPHAD for Ti, in consistency with the good agree-
ment for other thermodynamic and transition properties for
Ti. For Zr and Hf, a larger discrepancy of the extrapolated
CALPHAD and DFT-GGA at 0 K is seen which is, how-
ever, due to only a small discrepancy in the curvature of
the Gibbs energy difference in the stabilized temperature
window.
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The understanding achieved in this work on systems that
feature dynamically stabilized phases paves the way for
studying more complex materials in the future. For exam-
ple, low-Ta-concentration TiZrHfTa high-entropy alloys were
found to be dynamically unstable at low temperatures with a
transformation to the ω phase [78]. Based on the procedure
outlined here, such alloys can be studied up to ab initio accu-
racy across the entire temperature range. The high-accuracy
calculation of the free-energy surface of the dynamically
stabilized phase described here can also be combined with
liquid free-energy calculations in the Two-Optimized Refer-
ences Thermodynamic Integration using Langevin Dynamics
(TOR-TILD) scheme [50,51] to make accurate melting-point
estimations. In addition to perfect bulk, the newly proposed
methodology for the vacancy formation Gibbs energy also
enables such calculations on vacancy-containing supercells,
that will lead to more realistic melting-point predictions in
the future. One of the most crucial conceptions is the ef-
fective 0-K curve to describe the low temperature behavior
of the dynamically stabilized phase. The redefined effective
0-K behavior is better suited for use in future CALPHAD
databases for describing lattice stabilities of unaries and
multicomponent alloys. Such a physically more consistent
representation of dynamically stabilized phases is, in particu-
lar, of high relevance to third-generation CALPHAD database
development [77]. In addition, access to the full metastable
temperature region, as demonstrated in the present work,
offers further systematic improvement of the CALPHAD
databases.

In utilizing the present results, e.g., within CALPHAD,
one should keep in mind that the thermodynamic proper-
ties of the individual phases obtained with direct upsampling
are limited by the accuracy of the DFT exchange-correlation
functional (GGA in the present case). In order to moderate
the discrepancy arising from the GGA functional, one can
perform similar calculations also using the LDA functional.
The underbinding and overbinding nature of the functionals
can serve as an “ab initio confidence interval” for the re-
sulting thermodynamic properties [51,79]. Alternatively, one
can also resort to more advanced and accurate exchange-
correlation functionals, which can be done efficiently within
the upsampling step. Moreover, in an earlier work [5], we
have suggested a homologous temperature scale (with respect
to the corresponding melting point) for removing the dis-
crepancy arising from the exchange-correlation functional on
thermodynamic properties of individual phases. For transition
properties and lattice stabilities computed in the present work,

we have likewise performed a comparison to CALPHAD on
a relative temperature scale (with respect to the correspond-
ing transition temperature). Further studies are necessary to
elucidate the inherent limits of DFT.

In any case, the thermodynamic properties obtained in this
study for systems with dynamically stabilized phases con-
stitute an important contribution to the development of an
ab initio-based thermodynamic database, providing a substan-
tial extension beyond the previously investigated single-phase
elements [4,5].

All data supporting the findings of this study are available
within the paper, its Supplemental Material [19], and the
DaRUS Repository [80]. The repository contains the training
sets (VASP OUTCAR files), the low-MTPs and high-MTPs,
the effective quasiharmonic potentials, the Gibbs energies
of vacancy formation, and the final thermodynamic database
(properties) for hcp, bcc Ti, Zr, and Hf.
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