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The old problem of the supercurrent in a long ballistic SNS Josephson junction is interpreted using a simple
picture of the fermion energy levels in the normal and superconducting regions. We argue that a recent paper on
the topic by Sonin contains erroneous results.
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In a recent paper Sonin reports new results for the one-
dimensional ballistic SNS Josephson junction [1]. This paper
has rather limited experimental applicability since it neglects
all scattering mechanisms besides Andreev scattering. How-
ever, the paper discusses the important theoretical problem of
how to calculate the current in a degenerate Fermi system.
Therefore we feel that it is important to point out that the main
results of the paper are incorrect. Besides this, our central
purpose is to explain the correct results dating from the 1970s
in a new way, which hopefully leads to better understanding
of the physics.

One argument against Sonin’s results is that they are con-
trary to a vast literature on the topic. In particular, the ballistic
SNS junction in equilibrium has been studied in Refs. [2–10].
For completeness, we include one more calculation in the
Appendix. In addition, there is extensive literature on various
generalizations to include normal scattering, dynamics, and
different types of superconductors and geometries. Note also
that the papers by Svidzinskii et al. especially warn about the
method of summing separately the discrete and continuum
part of the spectrum—the method used in Sonin’s paper and
in the original work by Kulik [11].

A reliable method to solve many problems in supercon-
ductivity and superfluidity is to use the quasiclassical Green’s
function formalism. This theory is thoroughly discussed by
Serene and Rainer [12] in connection with superfluid 3He.
This theory gives a straightforward procedure to solve various
problems in superconductivity, some of which are discussed
in Ref. [13]. In this Comment we try to interpret the basic
ideas and results in a simple way, in line with our earlier work
[14,15]. The mathematical interpretation is explained in the
Appendix.

For simplicity of presentation, we make the same as-
sumptions about the SNS junction as in Ref. [1]. The order
parameter �(x) vanishes in the normal region of length L,
which is long compared to the superconductor coherence
length. The order parameter has constant values �e±iφ/2 in
the two superconducting regions, where φ is the phase dif-
ference over the junction. Ordinary scattering in the normal
and superconducting regions as well at the NS interfaces is
neglected. In addition, we assume zero temperature, T = 0,
and phase difference not exceeding the critical one, |φ| < π .
Not all assumptions are necessary for the main conclusions,
and some generalizations are discussion below.

Figure 1(a) represents the equilibrium energy spectrum of
the normal and superconductor parts of a ballistic SNS junc-
tion. The Fermi level is selected as zero of energy, and we only
consider levels within the energy range from −Ec to +Ec. The
constant Ec is arbitrary except that it is assumed to be much
larger than the temperature or the energy gap (Ec � kBT ,
�), but much smaller than the Fermi energy (Ec � EF ). We
consider a single quantum channel in the conductor, where
the momentum is approximately p = ±pF , where pF is the
channel-dependent Fermi momentum. In a superconductor
there are no energy levels within the gap (|E | < �) as they are
pushed to energies |E | > �, and cause the characteristic BCS
density of levels [16]. In the normal part the levels within the
gap have discrete energies due to repeated Andreev reflection
at the NS interfaces [11]. At low energies the level spacing
δ = hvF /2L, where vF is the Fermi velocity. The current
carried by a single bound level is equal to the current-carrying
capacity of the normal-state continuum levels in the energy
interval equal to the level spacing. When no phase difference
is applied, the levels corresponding to the opposite momentum
directions are degenerate. With equilibrium occupations, there
is thus no current.

The “semiconductor picture” shown in Fig. 1 is a double
representation in the sense that the occupations n(p, E ) of the
levels obey the symmetry relation n(p, E ) = 1 − n(−p,−E ).
This means that only half of the levels shown are independent.
We claim that keeping the double representation in general
leads to a simpler picture than artificially removing half of the
levels. In particular, keeping the negative energy levels allows
a simple interpretation of the supercurrent as filled negative
energy levels.

Figure 1(b) illustrates a current-carrying state in a uniform-
thickness SNS wire, where the number of channels in the
normal region and in the leads is the same. Here the supercur-
rent corresponds to the difference in the area of the two blue
regions in the right panel. We see that large parts of the areas
cancel each other, but there are more levels with momentum
to the right, which gives net supercurrent to the right. The
difference is easiest to evaluate from the dashed rectangle,
where the density of levels is the same as in the normal state.

In the normal region both the continuum and discrete
levels contribute to the current. In the case of the uniform-
thickness wire [Fig. 1(b)], the levels in the normal region are
shifted similarly as in the superconducting region. When the
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FIG. 1. The fermion energy spectra of normal (left) and superconducting (right) regions in a long ballistic SNS junction. The panels
(a) represent equilibrium with zero phase difference, φ = 0, where the energy levels with momentum p to the right (right arrow) and to the
left (left arrow) have equal energies. The lower panels, (b) and (c), represent the situation with a constant positive phase difference: (b) the
case of a uniform-thickness wire and (c) the case of a normal wire between two wider superconducting leads. The levels forming a continuum
are shown with blue and yellow shading. The width of the continuum levels in the superconducting region indicates the standard BCS density
of levels. The discrete levels, which appear in the normal region, are denoted by horizontal lines. At T = 0, levels with negative energy are
filled and with positive energy are empty. The current arises from the imbalance of the left and right momentum levels. The supercurrent
corresponds to the net momentum imbalance indicated by the dashed rectangle in the right panel (b). With wide leads (c) the asymmetry in the
superconducting region is negligible. For more explanation see the main text and for mathematical formulation the Appendix.
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occupations of the levels are not changed, the current in
the normal region corresponds to the dashed rectangle. This
current is called the condensate current according to the defi-
nition on the first page of Ref. [1]. The currents in the dashed
rectangles in the normal and superconducting sides are equal,
and thus the current is conserved.

A slightly different case is shown in Fig. 1(c), where we
consider an identical normal wire but connected to wider
superconducting leads. The current in the leads is divided into
many more conducting channels than in the normal region.
Therefore the phase gradient and the shift of the spectrum
in the leads are negligible. In the normal region there is re-
arrangement of the levels, as the bound levels have moved
relative to the φ = 0 case [11], but the gap edges remain
unchanged. Thus the levels are shifted relative to the gap edge,
and some new discrete levels may appear and some others
disappear. The current with T = 0 occupations in the normal
layer is called the vacuum current. Also this definition is in
accordance with the one on the first page of Sonin’s paper
[1], where the vacuum current is defined as the current in
the normal wire with vanishing phase gradient in the leads.
The wider leads introduced here are a trick to realize the
vacuum current as the only contribution to the current, which
is impossible in a uniform-thickness wire.

We now claim that the vacuum current [Fig. 1(c)] is iden-
tical to the condensate current [Fig. 1(b)]. A simple principle
that would give this result is that the current is fully deter-
mined by level energies and their occupations near the the
Fermi surface, |E | � �. The justification for this could be
that leaving some unoccupied momentum levels deeper inside
the Fermi surface would not lead to a state with low energy,
and the full occupation of these levels leads to cancellation of
the contribution to the current. Since the bound levels near the
Fermi energy in the two cases corresponding to Figs. 1(b) and
1(c) are identical at the same phase difference φ [4,11], this
principle leads to equal currents in the two cases.

Alternatively, the identity of the two currents can be shown
by direct calculation. The condensate current can be ob-
tained by simple Galilean invariance argument, as discussed
by Bardeen and Johnson [4]. The vacuum current was first
calculated by Ishii [2]. We comment on several aspects of his
calculation. First, he considered an unshifted superconducting
gap, which means that his calculation directly addresses the
vacuum current rather than the condensate current. Second,
he considers a normal wire with many conducting channels,
which appears as integration over transverse momentum. This
is not a limitation since his results can trivially be generalized
to an arbitrary number of conducting channels by replacing
the integral with a summation over channels with a proper
coefficient [9]. An important result Ishii gets is the expres-
sion (3.5), which gives the current expressed as sum over
the imaginary (Matsubara) frequencies. The same result in
different forms has since been derived using different meth-
ods in Refs. [3,6–10]. One more derivation is given in the
Appendix. It is also worth pointing out that this result is valid
for any temperature and for any length L of the normal region.
Evaluation of the expression at T = 0 for a long junction gives
the vacuum current that is linear in φ in the range |φ| < π and
agrees also in magnitude with the condensate current.

Ishii further makes an analytic continuation from the imag-
inary frequencies to real frequencies in his expression for
the vacuum current. Represented as an integral over real
frequencies, the current is seen to arise from two different
contributions. One comes from the bound levels and the other
from the continuum.

The problem in Ref. [1] is that the vacuum current has a
different form from the condensate current. To see this, com-
pare Figs. 2(a)–2(c) as function of θ0 with Eq. (52) as function
of θs. At least one source for this error is that the contribution
to the vacuum current from the continuum levels is found to
vanish in Ref. [1]. As a consequence, the prediction of Ref. [1]
on the shifted current-phase relation (π or θ junction), as well
as on the current that vanishes slowly with temperature, is
incorrect.

Because of the same form of the condensate and vacuum
currents, there is no need to consider them separately. Thus
the division of the phase difference φ into the two contri-
butions in Ref. [1] is not needed. The simplest procedure
is to calculate the current of the Andreev levels for a given
phase difference. This then determines the current, which
then determines the phase gradient in the superconducting
leads. In order to properly treat the current conversion at
the N-S interfaces, a simple step potential model has to be
replaced by self-consistent calculation of the order parameter
profile, as for example in Ref. [17]. The conclusion is that this
has only a minor effect on the low-energy levels discussed
above.

I thank V. Geshkenbein, A. Shelankov, and E. Sonin for
commenting on the manuscript.

APPENDIX

This Appendix includes derivation of Ishii’s result (3.5)
[2] based on Eilenberger equation and mathematical basis of
Fig. 1. The notation is close to that of Ref. [12]. For simplicity
we neglect the effects of Fermi-liquid interactions. It would be
possible to take them into account at the expense of slightly
more complicated equations.

The Eilenberger equation for the 2 × 2 matrix quasiclassi-
cal propagator ĝ is

[iεnτ̂3 − �̂(R), ĝ( p̂, R; εn)] + ih̄vF p̂ · ∇Rĝ( p̂, R; εn) = 0
(A1)

and the normalization condition

ĝ( p̂, R; εn )̂g( p̂, R; εn) = −π2. (A2)

Here R is the location, p̂ is the momentum direction, εn =
πT (2n + 1) are the Matsubara energies at temperature T with
integer n, vF is the Fermi velocity, [̂a, b̂] = â̂b − b̂̂a, and τ̂1, τ̂2,
and τ̂3 are the Pauli matrices. The gap matrix �̂ = i(�îτ1 +
�r τ̂2), where �r and �i are the real and imaginary parts of
the complex gap � = �r + i�i.

The homogeneous solution of (A1) and (A2) is

ĝb(εn) = π√
ε2

n + |�|2
(−iεn �

−�∗ iεn

)
. (A3)
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The solution in the presence of phase gradient �(R) = �0eiq·R is

ĝ( p̂, R; εn) = π√
(εn + ia)2 + |�|2

(−i(εn + ia) �(R)
−�∗(R) i(εn + ia)

)
(A4)

with a = mvF p̂ · vs, where the superfluid velocity vs = (h̄/2m)q and m is the particle mass.
The Eilenberger equation (A1) is a set of first-order differential equations along trajectories, which are lines parallel to p̂. For

a constant � it has two exponential solutions (A1),

ĝ± =
(

i|�|2 �
(∓√

ε2
n + |�|2 + εn

)
�∗(∓√

ε2
n + |�|2 − εn

) −i|�|2
)

exp

(
±2

√
ε2

n + |�|2u

h̄vF

)
, (A5)

where u is the parameter along a trajectory, R(u) = R(0) + p̂u.
For the SNS junction consider a trajectory where � = �0e−iφ/2 for u < −L/2, � = 0 for |u| < L/2, and � = �0eiφ/2 for

u > L/2. To simplify the formulas we take �0 real and use α =
√

ε2
n + �2

0. In region u < −L/2 the propagator is a linear
combination of the bulk and growing solution,

ĝ(u < −L/2)

π
= 1

α

(
−iεn �0e−iφ/2

−�0eiφ/2 iεn

)
+ A

(
i�0 (−α + εn)e−iφ/2

(−α − εn)eiφ/2 −i�0

)
exp

(
2αu

h̄vF

)
. (A6)

In region u > L/2 the propagator is a linear combination of the bulk and decaying solution,

ĝ(u > L/2)

π
= 1

α

(
−iεn �0eiφ/2

−�0e−iφ/2 iεn

)
+ B

(
i�0 (α + εn)eiφ/2

(α − εn)e−iφ/2 −i�0

)
exp

(
−2αu

h̄vF

)
. (A7)

In the middle region it is most convenient to look for the propagator in the form

ĝ(|u| < L/2)

π
= C

(
1 0
0 −1

)
+ D

(
0 0
1 0

)
exp

(
2εnu

h̄vF

)
+ E

(
0 1
0 0

)
exp

(
−2εnu

h̄vF

)
. (A8)

We should now require the continuity of ĝ at u = −L/2 and u = L/2. This fixes the coefficients A, B, C, D, and E . We get in the
middle region the propagator

ĝ(|u| < L/2)

π
= 1

(α + εn)ez + (α − εn)e−z

(
−i[(α + εn)ez − (α − εn)e−z] 2�0 exp(−2εnu/h̄vF)

−2�0 exp(2εnu/h̄vF) i[(α + εn)ez − (α − εn)e−z]

)
, (A9)

where z = εnL/h̄vF + iφ/2. The obtained ĝ obeys the general symmetry relations, e.g., g11( p̂, R; −εn) = g∗
11( p̂, R; εn) and

g11(−p̂, R; −εn) = g22( p̂, R; εn) = −g11( p̂, R; εn).
The equilibrium current density j in bulk can be calculated using

j(R) = 2evF N (0)T
∞∑

n=−∞

∫
d
p

4π
p̂ g11( p̂, R, εn), (A10)

where
∫

d
p = ∫ 2π

0 dφp
∫ π

0 dθp sin θp is the integral over the solid angle formed by all p̂ = (x̂ cos φp + ŷ sin φp) sin θp +
ẑ cos θp, 2N (0) = mpF/π

2h̄3 is the density of levels at the Fermi surface, and e is the electron charge. In order to calculate
the current in a channel, this formula can be transformed to the form

J = e

π h̄
T

∞∑
n=−∞

M∑
i=1

[g11(i, p̂z > 0; εn) − g11(i, p̂z < 0; εn)]. (A11)

Here i is the index labeling the M open channels and p̂z is the component of momentum direction along the channel. Using this
and (A9) we get

J = 2e

h̄
T

∞∑
n=−∞

M∑
i=1

�2 sin φ(
2ε2

n + �2
)

cosh(2εnL/vFi ) + 2εn

√
ε2

n + �2 sinh(2εnL/vFi ) + �2 cos φ
. (A12)

This result is equivalent to Ishii’s formula (3.5) [2], and has also been obtained in Refs. [3,6–10]. Based on this, Ishii derived for
a long junction at T = 0 the current

J =
M∑

i=1

evFi

πL
φ for |φ| < π (A13)
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and repeated periodically with period 2π . (Note the correction
to Ref. [2] pointed out in Ref. [5].) At general temperature the
current can be evaluated numerically. The special case of an
SS point contact is obtained in the case of L = 0. The current
in this case can be solved analytically at all temperatures [18].

The Matsubara technique is a highly convenient tool to
calculate the equilibrium currents in superconductors. The
problem is that it is a rather abstract theory. In order to gain
physical understanding, one has to do analytic continuation
from ε = iεn to the real axis in the complex ε plane [19]. As an
example, consider the real-frequency form of the current for-
mula (A10) when applied to a bulk superconductor described
by the propagator (A4),

j(R, t ) = evF N (0)
∫

d
p

4π
p̂
∫ Ec

−Ec

dε
|ε̃|√

ε̃2 − |�|2
× θ (ε̃2 − |�|2)[φB1( p̂, R; ε, t ) + φB2( p̂, R; ε, t )].

(A14)

Here ε̃ = ε − a, θ (x) is the Heaviside step function, and
φB1 and φB2 are the symmetrized distribution functions
for particle and hole type excitations. The analytic con-
tinuation from (A10) gives that the distributions are equal
to the symmetrized Fermi functions, φB1(ε) = φB2(ε) =
− 1

2 tanh(ε/2T ) = 1/(eε/T + 1) − 1
2 , but a more general

derivation (Sec. 7 of Ref. [12]) shows that formula (A14) is
valid also for nonequilibrium quasiparticle distributions. By
definition, for particle-type excitations the propagation direc-
tion is the same as the momentum direction, but for hole-type
excitations the two directions are opposite to each other.

Equation (A14) now allows a simple interpretation of the
current in a superconductor, as explained in the main text and
in the right-hand panels of Fig. 1. The factor θ (ε̃2 − |�|2)
indicates that there are no levels within the gap. The factor
|ε̃|/

√
ε̃2 − |�|2 gives the BCS density of levels. The current

at T = 0 arises from imbalance of opposite momentum direc-
tions of the filled negative energy levels. For a = 0, there is
no imbalance and the current vanishes [Fig. 1(a)]. For a �= 0,
there is imbalance and nonvanishing current [Fig. 1(b)]. Since
the difference between particle and hole type excitations is not
important for electric current, they are not shown separately in
Fig. 1.

In order to obtain a similar understanding of the SNS
junction, one has to continue (A12) to the real ε axis. The
zeros of the denominator give the energies of the bound levels
[11]. In general, the current can be interpreted to arise from
imbalance of both the bound and the continuum levels [2].
For an SS point contact (L = 0) the bound-state energies are
ε = ±�0 cos(φ/2) and they are solely responsible for the
current [14,18].
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