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Universal defect density scaling in an oscillating dynamic phase transition
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Universal scaling laws govern the density of topological defects generated while crossing an equilibrium
continuous phase transition. The Kibble-Zurek mechanism (KZM) predicts the dependence on the quench time
for slow quenches. By contrast, for fast quenches, the defect density scales universally with the amplitude of the
quench. We show that universal scaling laws apply to dynamic phase transitions driven by an oscillating external
field. The difference in the energy response of the system to a periodic potential field leads to energy absorption,
spontaneous breaking of symmetry, and its restoration. We verify the associated universal scaling laws, providing
evidence that the critical behavior of nonequilibrium phase transitions can be described by time-average critical
exponents combined with the KZM. Our results demonstrate that the universality of critical dynamics extends
beyond equilibrium criticality, facilitating the understanding of complex nonequilibrium systems.
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I. INTRODUCTION

The Kibble-Zurek Mechanism (KZM) provides a uni-
versal paradigm for the description of critical phenomena
exhibited by complex systems during spontaneous symmetry
breaking [1–3]. This mechanism describes the formation of
long-lived topological defects when a system undergoes a
continuous or quantum phase transition across a critical point
at a finite rate. While in its genesis it aimed at describing
structure formation in a cosmology [1], the KZM has been
generalized to include condensed matter system and various
other scenarios [2–10]. Its broad applicability has made it
an invaluable tool for studying phase transitions and under-
standing the dynamics of critical phenomena in classical and
quantum systems.

Consider a system with a continuous phase transition at the
critical point λc. In terms of the control parameter λ, we define
a reduced distance parameter ε = 1 − λ/λc that then governs
the divergence of the equilibrium correlation length ξ and the
equilibrium relaxation time τ,

ξ = ξ0

|ε|ν , τ = τ0

|ε|zν , (1)

where ν and z are the correlation length and dynamic crit-
ical exponent, respectively. Both ν and z depend on the
dimensionality and symmetry of the order parameter and are
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universal, i.e., independent of the microscopic details of the
system [11].

When the control parameter is driven in time, near the
critical point λc, critical slowing down prevents the system
from adapting to the instantaneous equilibrium configuration
for λ(t ), effectively freezing the system. KZM characterizes
the nonequilibrium state resulting from a linearized quench
with λ(t ) = λc[1 − ε(t )] and ε(t ) = t/τQ. It makes use of the
freeze-out time t̂ , estimated by comparing the relaxation time
with the time gone by after crossing the critical point t̂ =
τ (t̂ ) = τ0/|ε(t̂ )|zν , which yields t̂ ∼ τ0(τQ/τ0)zν/(1+zν). KZM
predicts that domains form with an average size set by the
equilibrium correlation length at the freeze-out time, ξ̂ =
ξ [ε̂] = ξ0(τQ/τ0)ν/(1+zν). As a result, the average number of
pointlike topological defects in a d-dimensional system scales
as

n ∼ 1

ξ̂ d
∼ τ

− dν
1+zν

Q . (2)

This universal scaling law predicts the relationship be-
tween the topological defects and the quench rate in systems
across vastly different scales, from cosmological scenarios
to quantum phase transitions. Supporting evidence has been
found in many experiments [3] using liquid crystals [4,12],
superfluid helium [13–15], ultracold gases [8,16,17], and pro-
grammable quantum devices [18–22]. While many of these
experiments concern pointlike defects, the KZM has also been
verified in the formation of Ising domains [23].

KZM was conceived to describe the dynamics across an
equilibrium phase transition, combining equilibrium scaling
relations with the driving of the control parameter. However,
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FIG. 1. Universal breakdown of KZM in a fast nonequilibrium
phase transition. The effective relaxation time τ̃ (λ(t )) should be the
time average of the real relaxation time τ (λ(t )) (red line). The freeze-
out time determined by equating the time elapsed after crossing the
phase transition to average relaxation time (large black dot). In fast
quench regions with finite depth λ f , the quench is saturated at a fixed
equilibrium relaxation time τ̃ (λ f ), which we will explain later.

numerical simulations and experiments have recently demon-
strated that KZM can be applied to some nonequilibrium
phase transitions involving steady states [24–29]. Such sce-
narios are characterized by nonconservation of energy and
particle number, and arise, for instance, in exciton-polariton
systems [30] and directed percolation [31,32]. These results
thus extend the universality of KZM to nonequilibrium sys-
tems in the limit of slow quenches.

Here, we consider universal scaling laws with arbi-
trary quench rates in another large class of nonequilibrium
phase transitions: the periodic field-oscillatory dynamic phase
transitions, which have been studied in a wide range of
systems [33–37]. The unique property of this kind of nonequi-
librium phase transition is that the periodic field phase
transition requires a continuous input of energy from the ex-
ternal field to maintain the phase transition state. In this phase
transition, all the quantities change periodically. For example,
the relaxation time varies according to τ = τ0

|1−λ| cos(�t )|/λc|zν .
Although detailed balance is not satisfied, it is believed that
an average critical exponent can represent the phase transition
behavior [38]. Even if the relaxation time oscillates contin-
uously, the freezing of the system can be determined by the
average relaxation time τ̃ , making it possible to verify the
universal scaling laws with these average critical exponents,
see Fig. 1. An analysis of the the quasinormal modes (QNMs)
can provide the real relaxation time with periodic oscillation.
However, whether the critical behavior of periodically driven
phase transitions can be described by mean critical exponents
is controversial. In this nonequilibrium system, we investigate
whether KZM is satisfied for slow quenches and whether the
number of defects under fast quenches exhibits a universal
scaling behavior with the quench rate or the final value of the

control parameter. We establish the validity of the nonequilib-
rium scaling relations with the average critical exponents.

We focus on the response of a superconductor or super-
fluid to an applied periodic field that is governed by the
proximity of the applied field to the critical magnetic field
of the superconductor or the critical velocity of the super-
fluid [39,40]. The response is bidirectional in the periodic
field system. Only when the suppression rate of the increas-
ing field is the same as the recovery rate of the decreasing
field, the system reaches an nonequilibrium steady state. To
investigate the significant response of this order parameter
to the external field [41–43], we use a holographic setting,
the so-called AdS/CFT duality, for numerical experiments.
This duality arises from Maldacena’s celebrated conjecture
in string theory [44] and establishes a surprising equivalence
relationship between the high dimensional classical gravita-
tional field and the low dimensional strongly coupled quantum
field without gravity [45,46]. Holographic duality offers a
novel first-principles perspective in condensed matter physics
and finds extensive applications in the exploration of quantum
many-body systems exhibiting superfluidity, superconductiv-
ity, and supersolid behavior [47–50].

II. HOLOGRAPHIC SETUP AND NUMERICAL METHOD

Holographic duality has been extensively employed in
studying KZM in equilibrium phase transitions [51–54]. In
particular, recent research using holographic models has un-
covered a new universal scaling behavior in the fast quenching
regime beyond KZM [55]. This behavior has been simul-
taneously validated in both the φ4 model and the quantum
Ising chain model [53], further highlighting the significant
importance of holographic models in providing a deeper un-
derstanding of condensed matter physics and emphasizing
their relevance in explaining complex phenomena.

We employ a bottom-up holographic model, in which (2 +
1)-dimensional superconductivity/superfluidity is described
by an Abelian-Higgs model living in a (3 + 1)-dimensional
asymptotically anti-de Sitter (AdS) black hole spacetime. In
this model, the AdS black hole couples with a charged scalar
field and a U(1) gauge field. Consequently, the action can be
written as

S =
∫

d4x
√−g

[
− 1

4
FμνFμν − |∂μ
 − iqAμ
|2 − m2|
|2

]
.

(3)

Here, Fμν = ∂μAν − ∂νAμ is the Maxwell field strength with
vector potential Aμ, which is coupled minimally to the scalar
involving the charge q. 
 is the complex scalar field with
mass m2 = −2. The background metric in the Eddington
coordinate is ds2 = L

z2 [− f (z)dt2 − 2dtdz + dx2 + dy2], with
f (z) = 1 − (z/zh)3, and the Hawking temperature can be ex-
pressed as T = 3/(4πzh). We set a square boundary with
periodic boundary conditions, where x and y are the spatial
coordinates, and z is the extra radial dimension of the bulk.
From the static holographic superconductor [48], the temper-
ature can be controlled by the only dimensional parameter,
the chemical potential μ, that satisfies T/Tc = μc/μ. As
the chemical potential grows beyond a critical value μc =
4.07, which means the temperature falls below the critical
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temperature, the dual scalar field at the boundary exhibits a
finite expectation value, i.e., the superconductor/superfluid
order parameter 〈O〉. In this work, we fix the background
temperature T = 0.77Tc, so we have a finite order parameter
in the initial state without an external field.

Dynamic simulations can be conducted through numerical
solutions of the equations of motion (EOM). These equa-
tions govern the behavior of bulk gauge and scalar fields,
describing the equilibrium geometry within the bulk. They can
be succinctly expressed as follows:

dνFμν = Jμ = iq(
∗Dμ
 − 
Dμ
∗), (4)

(−D2 + m2)
 = 0. (5)

By imposing holographic periodic boundary conditions, we
numerically solved these equations of motion. Specifically,
we use high-order Runge-Kutta methods for accuracy and
efficiency. Furthermore, in the z direction, we utilize the
Chebyshev method, while in the x and y directions, the Fourier
method was applied to address boundary conditions. For a
40 × 40 size system, we used a sufficiently accurate grid point
of 300 × 300.

III. KIBBLE-ZUREK MECHANISM IN OSCILLATING
DYNAMIC PHASE TRANSITION

A. Oscillating dynamic phase transition

We turn on the spatial gauge field component Ax,y to induce
the external driving force into the system. We take a sinusoidal
form of the boundary conditions at z = 0,

Ax(t, z = 0) = E sin(�t )

�
. (6)

The oscillating field along the x direction can be represented
by the time derivative of the gauge field

Ex(t ) = ∂t Ax = E cos(�t ). (7)

Here, E is the amplitude, and � is the frequency of the applied
field. With the fixed frequency � = 0.3µc, the finite amplitude
E causes the system to enter a nonequilibrium oscillatory
state, and the average order parameter decreases relative to
the stable equilibrium state. This is an inevitable consequence
of the equation of motion [56].

As shown in the upper panel in Fig. 2, when an oscillating
field is added to the initial statically stable solution, the order
parameters begin to oscillate, and the average value decreases
gradually. Eventually, according to the amplitude of the field,
a nonequilibrium steady state with a different mean value
is reached. Our result shows that the critical value of the
amplitude is Ec = 0.705µc. The decay of the order parameters
is related to the system’s response to the external field.

The bottom left panel shows, separately, the increasing
and decreasing velocities of the order parameters, defined as
|�〈O〉±|, with the rates defined as v± = ∂t |�〈O〉±|. Since the
decrease of the order parameter is accompanied by energy
absorption, we refer to v− as the absorption rate and v+ as
the release rate. At the beginning, when the order parameter is
large enough, the system’s response to the large field is signifi-
cant, so the absorption rate is much larger than the release rate.
With the decrease of the order parameter, the absorption rate
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FIG. 2. (a) Evolution of order parameters in an external oscil-
lating field. With the addition of the oscillating field, the order
parameters gradually decrease and finally reach a nonequilibrium
steady state. The red line has an amplitude lower than the critical
field E/Ec = 0.83 and corresponds to an oscillatory steady state. The
black line has an amplitude equal to the critical field E/Ec = 1 and
shows the decay of the order parameter in the steady state. (b) In
the case of E/Ec = 0.83, the red line represents the rate at which the
order parameters fall in response to a large electric field, while the
black line represents the rate at which the small electric field order
parameters recover to rise. (c) Phase diagram of the final average
order parameter as a function of the amplitude of the field. When the
amplitude of the field is greater than the critical value, the system is
completely disordered and enters the normal state.

gradually declines and finally becomes equal to the release
rate. At this time, the total reduction of the order param-
eter can be obtained from the integral difference between
the two rates. The bottom right panel shows the complete
phase diagram for this fixed temperature and frequency. The
corresponding value of each field intensity is the long-time
average value of the order parameter at the nonequilibrium
steady state. Therefore, although detailed balance cannot be
satisfied, the critical behavior of this nonequilibrium phase
transition can be expressed in terms of the average critical
exponent.

B. Quenching process

To linearly traverse the critical point and establish the
universal scaling behavior in the critcial dynamics, we first
prepare an initial state where the electric field is slightly
larger than the critical value Ei = Ec + dEc, and then linearly
quench to an ordered phase with an electric field of E f < Ec

in a finite quench time τQ. In doing so, E (t ) = Ec[1 − ε(t )]
and ε(t ) = t/τQ. To dynamically break system symmetry,
we introduce the noise into the scalar field’s evolution pro-
cess within the bulk by satisfying the statistical distributions
〈s(t, xi )〉 = 0 and 〈s(t, xi )s(t ′, x j )〉 = hδ(t − t ′)δ(xi − x j ) for
every 100 time steps, with the amplitude h = 103 [51,57].
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FIG. 3. Dynamic evolution of the nonequilibrium system with
topological defects generated after a finite time quench with an os-
cillating field. The solid black line shows the number of topological
defects with noise. The red line shows the evolution of the order
parameter. The insets show the profile of order parameters before
and after the freeze-out time, manifesting a distribution of vortices in
the latter stage.

With the linear decrease of the amplitude of the electric field
E , after crossing the frozen stage in the KZM description set
by the freeze-out time, the system responds in the opposite
direction to the previous description in Fig. 2, resulting in
nonequilibrium symmetry breaking, and the order parame-
ters gradually increase. As shown in Fig. 3, where we set
τQ = 120, the order parameters grow in an oscillatory fashion.
At the same time, stable topological defects begin to appear.
The distribution of topological defects can be identified in the
built-in diagram at the lower right panel. We calculate the
number of vortices by computing the phase winding numbers
N = 1

2π

∮ ∇θ · dr, where θ is the phase of the wave function
which is defined as 〈O〉 = ψ = |ψ |eiθ . To rule out contribu-
tions dominated by noise, the number of topological defects is
determined after the order parameter starts to grow, acquiring
a finite value. For each τQ, we fix the specific value 〈O〉 =
0.1 and count the number of topological defects when this
value of the order parameter is first reached Nt f = N〈O〉=0.1.
The complete evolution process is shown in the movie in the
Supplemental Material [58].

C. Kibble-Zurek mechanism in slow and fast region

According to our numerical results, in the slow quench
region τQ > τ c

Q, the number of vortices and quench rate satisfy

the scaling N ∼ τ
−1/2
Q ; see Fig. 4. The average critical ex-

ponents characterizing the order parameters in the oscillating
field can be obtained by analyzing the quasinormal modes
(QNMs) [38]. The specific method is to use the perturbation
equation and correlation function of the system to get the re-
lationship between the correlation length and relaxation time
and the external field, and average the results under the steady
state condition, so as to get the average critical exponents.
According to the calculation, the average correlation-length
critical exponent is ν = 1/2 and the average dynamic critical
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FIG. 4. The number of vortices Nvortices as a function of the
quench time τQ in which the the electric field decays. For each
τQ point, the number of topological defects is averaged over 100
trajectories. For slow quenches with τQ > 200, the vortex number
is consistent with the KZM scaling N ∼ τ−0.4832±0.0182

Q . For fast
quenches with τQ < 200, the KZM is no longer satisfied, and the
number of vortices does not vary with the quench rate. However,
the value at the plateau scales universally with the amplitude of
the quench, as shown from top to bottom, for the values of Ef =
0Ec, 0.4Ec, 0.7Ec, with the symbols ©,♦,�, respectively.

exponent z = 2. Therefore, according to KZM, the topolog-
ical defect density should follow a power law with exponent
− dν

1+zν = −1/2. The validity of this prediction is confirmed by
our results in the oscillating nonequilibrium phase transition.
The nonequilibrium KZM result we obtain does not depend
on the time average, which means that the mean critical expo-
nent can indeed describe the nonequilibrium phase transition
driven by the periodic field.

However, in the fast quench region where τQ < τ c
Q, the

KZM power-law scaling is no longer satisfied, and the num-
ber of vortices remains constant, saturating at the value of
the instantaneous quench scenario. Recently, it has been ob-
served that in specific systems, even in this fast quench region
where the KZM breaks down, a universal scaling behavior
still holds [52,53,55]. This theory relies on the fact that any
realistic quench terminates at a finite value of E f , which
determines the lower limit of the relaxation time in the ordered
phase. Accordingly, the freeze-out time should be set by t̂ ∼
max{τ [E (t̂ ), τ (E f )]}, see Fig. 1. Then, for fast quenches with
τ (E f ) > τ [E (t̂ )], one finds a constant value of the freeze-out
time, independent of τQ,

t̂ ∼ τ (E f ) ∼ ε−zν
f = ε−1

f . (8)

This explains the KZM breakdown and that the topological
defect density saturates at a constant value which exhibits a
distinct fast-quench universality. As shown in the right panel
of Fig. 5(a), the freeze-out time in the oscillating system
agrees with the prediction t f ∼ ε−1

f . The relationship between
the vortex density and the final field value can be derived
from this scaling. The average correlation length becomes
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FIG. 5. Universal dynamics beyond KZM after a fast quench of the electric field with an oscillating dynamic phase transition. Panel
(a) shows the linear scaling of the vortex number as a function of the final field intensity, i.e., N ∼ ε1.003±0.0351

f . Panel (b) shows the dependence
of the freeze-out time on ε f , with data fitted to t̂ ∼ ε−1.042±0.014

f . Panel (c) shows the dependence of the critical quench time on ε f , with data

fitted to τ c
Q ∼ ε−1.985±0.031

f .

ξ̂ = ξ (E f ) and sets the average length scale of the domain.
The fast-quench vortex density scales universally as

n ∼ 1

ξ (E f )d
∼ εdν

f = ε1
f . (9)

Figure 5(b) validates this result, showing that the universal
scaling beyond the KZM holds for the nonequilibrium phase
transitions. The nonequilibrium relaxation time does not af-
fect the distribution of freeze-out time. The critical quench
rate can be defined by equating the time at which the quench
ends at E f , t f = τ c

Q(Ec − E f )/Ec. Then, τ c
Q ∼ ε−(zν+1) = ε−2,

as verified in Fig. 5(c).

IV. SUMMARY AND DISCUSSION

Our study contributes to understanding nonequilibrium
phase transitions driven by a periodic oscillatory field. We
shed light on the rich dynamics inherent in these transi-
tions by validating the Kibble-Zurek mechanism for slow
quenches and uncovering the universality of rapid quenches
in the oscillating dynamic phase transition. Moreover, we
demonstrate the validity of the time-average critical expo-
nent in periodic dynamic phase transitions by establishing
nonequilibrium KZM scaling laws independent of the time
average. The exploration of these phenomena not only deep-
ens our understanding of fundamental nonequilibrium physics
but also paves the way for potential applications in areas
such as materials science, quantum computing, and energy

technologies. Our findings have significant implications for
the applications of oscillating field-induced phase transitions
in domains such as superconductivity, magnetism, and electric
transport. The validation of the Kibble-Zurek mechanism and
the discovery of rapid-quench universality provide insights
into the dynamics of these transitions, which can be leveraged
to design and optimize materials with desired properties. By
tailoring the oscillatory field parameters and understanding
the mechanisms driving the unconventional dynamics, we
may achieve enhanced control over phase transitions, enabling
advancements in superconducting technologies, magnetic de-
vices, and systems for efficient electric and energy transport.
In addition, by varying the parameters of the oscillatory fields,
such as frequency, amplitude, or wave form, it may be possi-
ble to manipulate the formation and evolution of topological
defects, leading to intriguing possibilities for controlling and
engineering novel materials and functionalities.
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