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In superconductors, the combination of broken time-reversal and broken inversion symmetries can result in a
critical current being dependent on the direction of current flow. This phenomenon is known as superconducting
diode effect (SDE) and has great potential for applications in future low-temperature electronics. Here, we
investigate how magnetic textures such as domain walls or skyrmions on a racetrack can be used to control
the SDE in a Josephson junction and how the SDE can be used as a low-temperature read-out of the data in
racetrack memory devices. First, we consider a two-dimensional electron gas (2DEG) with strong spin-orbit
interaction (SOI) coupled to a magnetic racetrack, which forms the weak link in a Josephson junction. In this
setup, the exchange coupling between the magnetic texture and the itinerant electrons in the 2DEG breaks
time-reversal symmetry and enables the SDE. When a magnetic texture, such as a domain wall or skyrmion
enters the Josephson junction, the local exchange field within the junction is changed and, consequently, the
strength of the SDE is altered. In particular, depending on the position and form of the magnetic texture,
moving the magnetic texture can cause the SDE coefficient to change its sign, enabling a Josephson transistor
effect with potentially fast switching frequencies. Further, we find that the SDE is enhanced if the junction
lengthscales are comparable with the lengthscale of the magnetic texture. Furthermore, we show that, under
certain circumstances, the symmetry breaking provided by particular magnetic textures, such as skyrmions, can
lead to an SDE even in the absence of Rashba SOI in the 2DEG. Our results provide a proof-of-principle for
forms of read-out in low-temperature memory devices as well as demonstrating how a Josephson transistor effect
can be achieved even in the absence of an external magnetic field and intrinsic Rashba SOI.
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I. INTRODUCTION

One of the building blocks of semiconductor technology
is the diode [1] that, due to inversion symmetry breaking, is
characterized by different values of resistances for currents
flowing in opposite directions and is the basic element re-
quired to build a transistor. A similar effect, the so-called
superconducting diode effect (SDE) appears in superconduc-
tors and hybrid superconductor-semiconductor devices with
broken time-reversal and inversion symmetry [2–25]. In par-
ticular, the SDE results in critical currents that are dependent
on the direction of current flow. As a consequence, for a range
of currents, the SDE results in a zero resistance state in one
direction, but finite Ohmic resistance in the opposite direction.

The SDE can appear both in bulk superconductors and in
Josephson junctions. Some prominent platforms that result in
the SDE are artificial superconducting superlattices that lack
an inversion symmetry center [26] and two-dimensional elec-
tron gases (2DEG) with strong spin-orbit interaction (SOI)
brought into proximity with a superconductor [27,28]. In such
setups, time-reversal symmetry is broken by an external mag-
netic field. The direction of the magnetic field is crucial and
should couple to the inversion symmetry breaking term in the
Hamiltonian [7], i.e. SOI, in order for a finite SDE to occur.

Recently very large SC diode efficiencies have been
achieved, opening the pathway to significant potential techno-
logical applications [11,29]. In addition to an element within

future low-temperature electronics, it has been proposed that
the SDE can be used as a method to detect SOI strength in
the presence of a superconductor [28,30] and as a measure of
whether a system has entered a topological phase for example
in Rashba or TI nanowires [30,31].

Another promising future technology is racetrack memory
devices [32–34]. The basic idea of a racetrack memory is to
store information using magnetic domains in a thin quasi-one-
dimensional racetrack. One advantage of racetrack memory
is that the device architecture does not rely on moving parts
unlike, for instance, a hard disk drive. In a racetrack memory
device, currents push magnetic domains along the racetrack
[35,36], which can also enable a much faster read-out of the
stored data compared to other storage devices. In a standard
racetrack setup, the magnetic domains are separated by finite-
size domain walls, within which the magnetization direction
smoothly changes. Alternatively, however, these magnetic do-
mains can be replaced by other spin textures such as magnetic
skyrmions [37–40].

The low operating temperature of quantum computers,
for instance, has recently resulted in significantly increased
interest in electronic elements, both classical and quantum,
that work at low temperatures. In particular, these low tem-
peratures enable building basic electronic devices such as
transistors and read/write components from superconductors.
The use of superconductors in low-temperature electronics
also opens up the potential for novel and potentially faster
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FIG. 1. Schematic setup of a Josephson junction sandwiching a
magnetic racetrack. (a) The superconductors, described by the order
parameters � and �eiϕ , so that the superconducting phase difference
is given by ϕ, are shown in blue, while the racetrack is shown in
white. A skyrmion (multicolored points and arrows) is embedded in
a ferromagnetic-out-of-plane background (dark blue dots). (b) The
positive [negative] critical super current Ic

+ [Ic
−] changes as a function

of time t when a magnetic texture like a domain wall or skyrmion
passes through the system. (c) If an alternating current IAC with
amplitude I0 is driven through the junction as a function of the time
t , then the change of critical currents and SDE becomes visible in
(d) the voltage response signal: The voltage drops if the alternating
current is smaller than the critical supercurrents. Here, we normal-
ized the voltage response signal by the voltage strength V0, which
is measured if IAC is larger than the critical supercurrent in a given
direction

computational devices than room temperature equivalents
[11].

In this paper, we consider the interplay of the SDE and
magnetic textures on a racetrack. In particular, we show that
the SDE can be controlled by magnetic domain walls or
skyrmions moving on a racetrack that is sandwiched by a
Josephson junction. The control of the SDE by the magnetic
texture provides the basis for new low-temperature electronic
components such as Josephson transistors as well as for new
mechanisms for low-temperature read-out of data in racetrack
memory devices. The schematic setup and functionality is
shown in Fig. 1: A magnetic racetrack (white) is sandwiched
by two superconductors (blue) placed on top of a substrate
(yellow). Many proposed magnetic racetrack materials have

itinerant electrons with strong SOI; however, if the racetrack
material is insulating, it can be further coupled to a 2DEG
with Rashba SOI to produce an SDE. In Fig. 1, the dots and
arrows on top of the racetrack indicate the local magnetiza-
tion. Here, for example, a magnetic skyrmion is embedded in
a ferromagnetic background. The critical currents associated
with the Josephson junction are altered when a domain wall
or skyrmion passes through the junction and therefore the
critical currents also vary as a function of time, as shown
schematically in Fig. 1(c). If an alternating current is driven
through the Josephson junction, see Fig. 1(b), then a finite
voltage occurs only when the magnitude of the current in a
given direction is larger than the magnitude of the critical
current in that direction, see Fig. 1(d). This change of the
voltage signal can serve as an indicator whether a magnetic
texture like a domain wall or a skyrmion passes the junction.
The fact that the SDE is strongly dependent on the position
of the texture can also enable a Josephson transistor effect.
Furthermore, we find that the lengthscales such as the ratio
between the Fermi wave length in the two-dimensional elec-
tron gas and the skyrmion size strongly influence the diode
efficiency as a function of the position of the magnetic texture.
Consequently, the magnitude of the diode efficiency, predicted
by our model, depends on many parameters and assumptions,
such that a quantitative comparison with experimental data is
not possible. Nevertheless, our model provides a qualitative
insight into the physics of such a setup.

In the second part of this paper we consider Josephson
junctions hosting racetracks with arbitrary smoothly spatially
varying magnetic textures but now in the absence of Rashba
SOI. Most proposals for the SDE in Josephson junctions rely
on the presence of Rashba SOI in the 2DEG. However, it
is known that nonuniform magnetic textures can map to a
combination of a uniform exchange coupling field and some
effective SOI [41–58]. A helical spin chain, for example, maps
to a ferromagnetic chain with Rashba SOI [41,59]. As such,
we show that an intrinsic Rashba SOI in the 2DEG is not
a necessary ingredient for the SDE or Josephson transistor
effect in our setup and spatially-varying magnetic textures
within the Josephson junction by themselves can be sufficient
to result in the SDE.

This paper is organized as follows: First, in Sec. II, we
define a simple model describing a quasi-two-dimensional
electron gas with exchange coupling to the magnetization of
a racetrack and which is sandwiched by two superconductors
forming a Josephson junction. In addition, we describe details
about how we numerically perform calculations of critical
current. Second, in Sec. III, we analyze the SDE for a fer-
romagnetic texture as a function of the chemical potential
and the exchange coupling along the junction with a focus
on sign changes of the diode efficiency. Next, in Sec. IV,
we discuss the SDE for domain walls and skyrmions moving
on the racetrack. We classify smooth magnetic textures in
Sec. V and predict which texture-class can mediate a SDE
without the need of explicit Rashba SOI in the 2DEG. Finally,
we discuss the experimental realization and implications in
Sec. VI. In Appendix A, we present details on the gauge trans-
formation used in Sec. V and, in Appendix B, we choose three
random examples from different classes of magnetic textures
and calculate the corresponding SC diode efficiencies: these
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numerical results confirm the predictions made in Sec. V.
Last, in Appendix C, we clarify notations used throughout the
paper.

II. MODEL

We utilize an effective two-dimensional (2D) tight-binding
model to describe a Josephson junction with a normal sec-
tion within which the exchange coupling to the magnetic
racetrack occurs. The kinetic contribution Hkin to the full
Hamiltonian is given by

Hkin = −
∑

〈n,m〉,ν
tc†

n,νcm,ν +
∑
n,ν

(4t − μn)c†
n,νcn,ν , (1)

where t = h̄2/(2meffa2) and μn denote the hopping am-
plitude and the position-dependent potential, respectively.
Here, meff is the effective mass of the itinerant electrons
and a is the lattice constant. Moreover, n = (nx, ny) [or m =
(mx, my)] denote the coordinate of a lattice site and ν denotes
the spin ↑,↓ along the quantization axis, so that c†

n,ν (cn,ν)
creates (annihilates) an electron with spin ν at the site n. Here,
the first sum runs over nearest-neighbor sites as indicated by
the notation 〈n, m〉. The superconducting pairing potential is
modelled via

Hsc =
∑

n

(�nc†
n,↑c†

n,↓ + �∗
ncn,↓cn,↑), (2)

where �n denotes the local superconducting pairing potential
at site n. The coupling between itinerant electrons and the
magnetization texture is described by

HJ =
∑
n,ν,ν ′

Jn[σ · Sn]ν,ν ′c†
n,νcn,ν ′ , (3)

where Jn describes the exchange coupling strength between
the spin σ of the itinerant electrons and the local magnetic
moments

Sn =
⎛
⎝cos[ϑ (n)] sin[�(n)]

sin[ϑ (n)] sin[�(n)]
cos[�(n)]

⎞
⎠, (4)

which we treat classically. Here, �(n) and ϑ (n) are the polar
and azimuthal angles, respectively, at the lattice site n. Next,
we account for Rashba SOI via

Hso = αl

∑
nx,ny

[c†
↓,nx−1,ny

c↑,nx,ny − c†
↓,nx+1,ny

c↑,nx,ny

+ i(c†
↓,nx,ny−1c↑,nx,ny − c†

↓,nx,ny+1c↑,nx,ny ) + H.c.], (5)

with αl = α/(2a) the finite-difference version of the Rashba
SOI strength α [60,61]. The full Hamiltonian is then given by

H = Hkin + Hsc + HJ + Hso. (6)

We define the parameter profiles as follows: The local
superconducting pairing potential is described by

�n = ��(NL − nx ) + �eiϕ�(nx − NR), (7)

where NL (NR) defines the position of the left (right) interface
between superconducting and normal region, so that the width
of the junction in terms of lattice sites is set by NJ = NR − NL.
The angle ϕ ∈ [0, 2π ) is the phase difference between left and

right superconductor. Here, we used the Heaviside function �

with the particular definition �(0) = 1. Second, we define

Jn = J[�(NR − nx ) − �(NL − nx )], (8)

so that the effective magnetization is only nonzero inside the
junction and with a uniform exchange coupling strength J to
the spins of the itinerant electrons. Finally, we define the local
potential

μn = μ + γ (δnx,NL + δny,NR ), (9)

where we accounted for tunnel barriers at the superconduc-
tor normal (SN) interface. The symbols μ and γ denote the
chemical potential and the barrier strength, while δn,m denotes
the Kronecker delta.

A. Magnetization profiles

Here, we define the different types of magnetization pro-
files that will be utilized throughout the paper. Namely,
various types of domains walls and skyrmions.

1. Domain walls

We will analyze three different profiles of magnetic do-
main walls. First, we consider a domain wall as described by
ϑdw,1(ny) = π

2 and

�dw,1(ny) =

⎧⎪⎨
⎪⎩

π
2 , ny � ndw,
π (ny−ndw )

λdw
+ π

2 , ndw < ny < λdw + ndw,
3π
2 , ny � λdw + ndw,

(10)

where ndw and λdw determine the y coordinate of the first
site of the domain wall and its size, respectively. This choice
of �(ny) models a magnetization out of plane at the cen-
ter, nc = ndw + λdw/2, of the domain wall and it describes
a magnetization parallel or anti-parallel to the y direction
for large distances (|ny − nc| > λdw/2) away from the do-
main wall center, see Fig. 2(a). The substitution �dw,2(ny) ⇒
�dw,1(ny) ± π/2 leads to a magnetization aligned out of plane
for large distances away from the center of the domain wall,
which is the second configuration analyzed in this paper.
Finally, we define a domain wall with �dw,3(ny) = π

2 and
ϑdw,3(ny) = �dw,1(ny) modeling an in-plane magnetization
aligned along the y direction for large distances (larger than
λdw/2) away from the domain wall center and aligned in x
direction at nc, see Fig. 2(a).

2. Skyrmions

In addition to magnetic domain walls, we consider Néel
[62] and Bloch [63] type skyrmions. The Néel skyrmion is
described by a polar angle of the form

�ns(n) =
{
π if r > λs,

πr/λs otherwise, (11)

where nu,s with u ∈ {x, y} denotes the x and y coordinate
of the center of the skyrmion and λs sets the lengthscale
of the skyrmion. Moreover, we introduced the quantity r =√

(nx − nx,s)2 + (ny − ny,s)2 measuring the distance from the
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FIG. 2. Schematic representation of the domain wall profiles. Here, S1 and S2 denote the left and right superconductor, the magnetization
is only nonzero in between the superconducting regions. In particular, the arrows and the colorbars indicate the in-plane and out-of-plane
orientation of the magnetic texture, except in panel (c), where the colorbar shows the Sy component, since the Sz component is zero. The
domain wall described by the angles (a) ϑdw,1 and �dw,1; (b) ϑdw,2 and �dw,2; (c) ϑdw,3 and �dw,3. We note that only the components pointing
in y direction contribute to the superconducting diode effect in our case. Parameters: Ly = 2Lx = 140 nm, a = 2.5 nm, and λdwa = 70 nm.

center of the skyrmion and the vector

r =
(

nx − nx,s

ny − ny,s

)
=

(
r cos[ϑns(nx, ny)]
r sin[ϑns(nx, ny)]

)
, (12)

which defines the azimuthal angle ϑns(n) measured from the
position of the skyrmion. The angle of the Bloch skyrmion is
related to the Néel skyrmion angle via ϑbs → ϑns − π

2 .

B. Calculation of the current

In this subsection, we present the details on the calculations
of the supercurrents. The computation is mainly based on the
Heisenberg equation of motion [64–66], which, in general,
supports the computation of local currents. Here, however, we
are mainly interested in the total current passing in x direction
through the system. This total current is conserved inside the
junction and therefore the total current does not depend on the
x coordinate, as long as it is located in the junction. In con-
trast, the calculation of the current inside the superconductor
requires a self-consistent calculation of the superconducting
order parameter to ensure current conservation, this, however,
is not considered here, therefore we follow the calculations
presented in Refs. [27,67–70].

The local current between two adjacent lattice sites n and
m is given by

In,m = 2
ekBT

h̄

∞∑
n=0

Im{Tr[Hn,mGm,n(iωn)

−Hm,nGn,m(iωn)]}, (13)

where kB and T denote the Boltzmann constant and the tem-
perature of the system, respectively [27,67–70]. Moreover,
Hn,m [Gn,m] is the submatrix of the Hamiltonian [Green’s
function] that connects the sites n and m. In addition, ωn =
(2n + 1)πkBT are the fermionic Matsubara frequencies and
the corresponding summation over n can be carried out
numerically due to a fast convergence, which enables a trunca-
tion of the sum when the required accuracy is reached. Next,
we define the total current Ix = ∑

n∈ϒ In,n+ex in x direction

as the sum of all local currents through a cross section in y
direction in between two adjacent columns of sites. Here, ex

denotes the unit vector in x direction. For example, the total
current would be the sum of the all local currents flowing
through the red bonds connecting the blue colored sites in
Fig. 3. Here, we denote the set of sites to the left of the cross
section as ϒ , which corresponds to the left blue colored sites
in Fig. 3.

Our numerical calculations are based on the Python pack-
age Kwant [71]. In most of the paper, we discretize the
normal region (black and blue colored sites in Fig. 3) and
attach superconducting semi-infinite leads to the left and right
(yellow colored sites in Fig. 3). These leads do not have any
exchange field, J = 0. The length of the junction Ly = Nya is
set by the number of sites along the y direction. Although the
actual width of the system with leads is infinite along the x
direction, we will refer to system width as Lx = NJa, i.e., the
number of sites describing the width of the junction. Addition-
ally, within the Kwant software, we attach virtual self-energy
leads at the blue sites next to the cross section in order to
compute the Green’s function locally on these sites. A gauge
transformation enables us to account for the superconducting

FIG. 3. Schematic illustration of the implemented tight-binding
model. The normal region is represented by the black and blue sites,
while the superconducting leads are represented by the yellow sites.
The total current in x direction is calculated by summing up the local
currents on the red bonds between the blue colored sites. We note
that the number of sites shown here does not match with the number
of sites used in the actual calculations.
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phase difference via a complex phase added to the submatrix
HLR (HRL). In order to improve the code efficiency we follow
Ref. [67]. In particular, we calculate the zero-phase Green’s
function for a given Matsubara frequency and afterwards we
exploit the Dyson series to obtain the Green’s function for
finite-phase difference ϕ. We exploit the same scheme to
obtain the local density of states (LDOS); however, this time
we calculate the retarded Green’s function G(ω) for a normal
frequency ω [instead for a Matsubara frequency G(iωn)],

ρ(ω, n) = − 1

π
Trn{Im[G(ω + iκ )]}. (14)

Here, Trn indicates that we perform a partial trace, such that
we only account for the Green’s function submatrix associ-
ated with the site n. Moreover, the parameter κ accounts for
broadening, e.g., due to temperature. In this paper, we focus
on the LDOS at the end of the cross section, in particular at
the green encircled site.

In addition to the method described above, we imple-
mented a separate tight-binding model, where we replace the
superconducting leads by finite-size superconducting regions.
We use this model to check our results for the LDOS and cur-
rent. In these finite-size systems we consider the length of the
superconducting regions to be larger than the superconduct-
ing coherence length ξ , meaning that NLa = (Nx − NR)a > ξ

holds, where Nx denotes this time the total number of sites in
x direction including the superconducting regions. The finite
size of the system enables extraction of all eigenvalues and
eigenvectors, so that we can compare the subgap eigenvalues
with the peaks found in the LDOS calculation. Moreover, we
compared selected results for the current obtained from the
Heisenberg equation of motion, as described above, with the
current obtained from the free energy, which is given by

Ix(ϕ) = − e

h̄

∑
n,En>0

tanh

(
En

2kBT

)
∂En

∂ϕ
, (15)

where En are the energies of the Hamiltonian as defined in
Eq. (6) [72].

We note that the code performance is better in case of
the first method based on the Green’s function calculated in
the infinite system compared to the second method, which
is based on the eigenvalue calculation in finite-size systems.
Therefore, most of the current calculations are based on the
first method.

Finally, we introduce the directional-dependent critical
currents Ic

+ and Ic
− that are the maxima and minima of the

current phase relation for all phases ϕ ∈ [0, 2π ). These rep-
resent the critical current for current flow to the right and left,
respectively. The corresponding diode efficiency is defined as

η = Ic
+ − |Ic

−|
(Ic+ + |Ic−|)/2

. (16)

III. SDE FOR UNIFORM FERROMAGNETIC
EXCHANGE COUPLING

A. Dependence on the chemical potential

In this section, we study the diode efficiency for a system
with a uniform ferromagnetic exchange coupling oriented in
parallel to the junction (y direction in Fig. 3). This is done in

order to find an optimal parameter range for the operation of
the SC diode.

We note that, in principle, all ingredients for Majorana
bound states (MBSs) in a planar Josephson junction are
present, namely (Rashba) SOI due to broken inversion sym-
metry and exchange coupling, which acts as a local magnetic
field, and a superconducting phase difference. Consequently,
the appearance of a topological phase is a question of the
chosen parameters [73–77]. In this paper, however, we focus
on the case of Ly � ξsc, where ξsc denotes the supercon-
ducting coherence length, so that the system does not host
well-localized MBSs. We start our analysis by the calculation
of the current as a function of the superconducting phase and
the chemical potential, see Fig. 4(a). We find that the current
reveals oscillations as a function of the chemical potential.
Additionally, the critical currents increase with growing μ,
which can be partially explained with a higher transparency
at larger μ. We estimate for the chosen parameters an average
transparency of τ = 0.77 and τ = 0.94 at μ/� = 10 in ab-
sence of the exchange coupling for the cases Eso/� = 0 and
Eso/� = 0.47, respectively. In particular, we fitted the current
phase relation (CPR) with the formula [78]

Ix(ϕ) = A sin(ϕ)√
1 − τ sin2 (ϕ/2)

, (17)

where A and τ serve as fit parameters [79].
We choose three values of the chemical potential, see the

dotted, dashed, and dotted-dashed lines in Fig. 4(a), and plot
the corresponding current phase relation in Figs. 4(f)–4(h).
The inset shows the modulus of the current, highlighting that
there is a difference of the critical currents and also that this
difference in critical currents depends on chemical potential.
Here, the diode efficiency η is quite small due to the weak
exchange coupling. This small exchange coupling was chosen
in order to reduce the phase space of the topological phase. In
general, if the transparency of the junction is reduced, then the
topological phase shrinks for fixed finite exchange couplings
[73]. However, as mentioned above, well localized Majorana
bound states cannot form in junctions where the length (y
direction of Fig. 3) is short.

We also calculated the LDOS at one site located at the
end of the junction (see e.g., the green encircled site in
Fig. 3) by attaching superconducting leads as described in
the Sec. II B. Here, we show only the positive energy range,
see Figs. 4(b)–4(d), a comparison with the energy spectrum
(yellow dashed lines) calculated in a finite-size system, in
which we discretized the superconducting regions (no super-
conducting leads), reveals a good agreement. We find that the
diode efficiency decreases when the lowest ABS is pushed
to higher energies for superconducting phases close to π . A
magnification of the low-energy region reveals in particular
that the lowest ABS energy is almost a linear function of ϕ

close to ϕ = π for systems with sizable diode efficiency, indi-
cating a high transparency mode [19]. In contrast, if the diode
efficiency is almost zero, then the derivative of the lowest
ABS energy vanishes close to ϕ = π . Finally, we calculated
the diode efficiency and the critical currents as a function
of the chemical potential, see Fig. 4(e). Notably, the diode
efficiency changes its sign multiple times, we attribute this
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FIG. 4. SDE as a function of the chemical potential in case of an in-plane ferromagnetic texture. (a) Supercurrent Ix as a function of
the chemical potential μ and of the superconducting phase difference ϕ. [(b)–(d)] The LDOS ρ as a function of the superconducting phase
difference ϕ. The values chosen for the chemical potentials are indicated by the (b) dotted, (c) dashed, and (d) dashed-dotted lines in panel
(a). We compare the LDOS calculated at a single site at the end of the junction (with the position of the site chosen similar to the green
encircled site in Fig. 3) found via Green’s function method in the infinite system (with leads) with the low-energy spectrum (yellow dashed
lines) obtained for a finite-size system in which the superconducting regions are longer than the coherence length (no superconducting leads).
If the lowest-energy state crosses zero energy, then the diode efficiency is nonzero, see panels (b) and (c). In contrast, if the lowest state does
not cross zero energy, then the diode efficiency approaches almost zero, see panel (d). (e) Left [right] y axis: diode efficiency [critical currents]
as a function of the chemical potential. Here, the diode efficiency changes its sign, meaning that the diode can switch its polarity as a function
of the chemical potential. [(f)–(h)] CPR for the position of the chemical potentials shown as in panels (b)–(d). The inset shows the modulus of
the current and it reveals the diode polarity, which can hardly be read off from the bare CPR. Parameters: Ly = 2Lx = 140 nm, meff = 0.023me,
a = 2.5 nm, � = 0.8 meV, J = 0.05 meV, α = 0.05 eV nm, and γ = 32 meV.

behavior partially to the behavior of the lowest ABS, which is
strongly influenced by the choice of the chemical potential. In
principle, such a gate tunable SDE can be used as a Josephson
transistor [16], below we will show that this is also possible
simply by moving a magnetic texture along the racetrack.

B. Dependence on the exchange coupling J

Next, we study the current as a function of the exchange
coupling strength J for the same ferromagnetic texture, i.e.,
pointing in y direction, see Fig. 5. The critical currents de-
crease with growing exchange coupling strength. However, in
general, the overall behavior of the current is quite compli-
cated due to the low energy sub-gap states, which we analyze
in Figs. 5(b)–5(d) for three different values of J as indicated
by the dotted, dashed and dashed-dotted line in panel Fig. 5(a).
If an ABS crosses zero energy, then the (central) derivative
of the ABS energy with respect to the superconducting phase
difference is not well defined since only the negative eigenval-
ues contribute to the ground state and therefore to the current
phase relation. A different sign of left and right derivative can
lead to jumps in the CPRs, see Eq. (15) and Figs. 5(f)–5(h).
These jumps, in turn, lead to strong changes in the diode
efficiency including sign changes, as can be read out from
the insets, which show the absolute value of the currents.
The overall behavior of the diode efficiency as a function
of the exchange coupling is shown in Fig. 5(e). For small
values of J , the diode efficiency η increases approximately
linearly with exchange coupling strength. In contrast, for large
exchange coupling strengths, the diode efficiency deviates
from the linear behavior and can even change its sign. In
the linear regime, the lowest state crosses zero energy close
to ϕ = π . At the exchange coupling associated with the sign

change of the diode efficiency, the zero-energy crossing of the
lowest state is pushed away from ϕ = π . Finally, we note that
the SDE generally increases substantially for larger exchange
couplings, in part due to the smaller critical currents, as long
as the system is not fine-tuned to a chemical potential where
the SDE vanishes completely.

C. Local supercurrents

So far, we have only considered the total supercurrent
flowing in x direction through the junction. Here, in contrast,
we analyze the local supercurrents in x direction as a function
of the y coordinate. With respect to Fig. 3, this means that
we study the current on individual red bonds. In order to
simplify the analysis, we set the exchange coupling J and the
Rashba SOI α to zero, such that there is no SDE. It turns
out that the current strength oscillates along the y direction
with an approximate period λF /2 set by the Fermi wavelength
λF ≡ 2π/kF , where kF is the Fermi momentum. In Fig. 6(a)
we analyze these current oscillation for two different values
of the chemical potential.

To connect the LDOS to the current, we note that Eq. (13)
can be rewritten in terms of the eigenenergies and wavefunc-
tions. This explains the oscillatory behavior of the current
with respect to chemical potential, since the wave functions
of the ABSs exhibit oscillations in y direction set by the
Fermi wavelength. In order to quantify the direct correlation
between oscillations of the wave functions and of the current,
we integrate the LDOS over energy window inside the super-
conducting gap,

�(n) =
∫ �

0
ρ(ω, n)dω, (18)
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FIG. 5. SDE as a function of the exchange coupling strength in case of an in-plane ferromagnetic texture. (a) Supercurrent Ix as a function
of the exchange coupling J and of the superconducting phase difference ϕ. [(b)–(d)] The LDOS ρ as a function of the superconducting phase
difference ϕ. The values chosen for the exchange coupling are indicated by the (b) dotted, (c) dashed, and (d) dashed-dotted lines in panel
(a). We compare the LDOS at a single site at the end of the junction (with the position of the site chosen similar to the green encircled site in
Fig. 3), calculated by using Green’s function method in the infinite system (with leads) with the low-energy spectrum (yellow dashed lines) of
a finite-size system in which the superconducting regions are longer than the coherence length (no superconducting leads). The zero-energy
crossing of the lowest-energy state can lead to kinks in the CPR. (d) Left [right] y axis: diode efficiency [critical currents] as a function of
the exchange coupling. The diode can change its polarity. [(f)–(h)] The CPR for the exchange couplings as in panels (b)–(d). Parameters:
Ly = 2Lx = 140 nm, meff = 0.023me, a = 2.5 nm, � = 0.8 meV, α = 0.05 eV nm, μ = 8.16 meV, and γ = 32 meV.

which also captures the dependence on the superconducting
phase difference. In terms of the schematic picture shown
in Fig. 3, this means that we consider the LDOS along the
left column of blue sites. The integrated LDOS, which takes
all sub gap states into account, reveals a similar oscillation
pattern as in the current, see Fig. 6(b).

Finally, we note that the oscillations of the current as a
function of position can affect the critical currents in sys-
tems with finite-size magnetic texture like domain walls or
skyrmions. In fact, the ratio between the Fermi wavelength
and the spatial extent of the magnetic defect, in our case λsa

FIG. 6. Spatial oscillations in the distribution of local supercur-
rents. (a) Local currents as a function of the y coordinate ny. The red
and blue curve correspond to systems with different chemical po-
tential and therefore different Fermi momenta, which determine the
oscillation period P (in units of a). We find that the spatial separation
of the peaks agrees well with the analytic prediction of the oscillation
period set by the Fermi wavelength. (b) Energy-integrated LDOS
[see Eq. (18)] along a column of sites to the left of the cross sec-
tion through which we calculated the current. The oscillation profile
of LDOS matches quite well with the profile of the local supercur-
rents. Parameters: Ly = 2Lx = 140 nm, meff = 0.023me, a = 2.5 nm,
� = 0.8 meV, J = 0 meV, α = 0 eV nm, γ = 0 meV, and μ = 15
(μ = 6) meV for the red (blue) graph.

or λdwa, plays a central role. For example, if λsa � λF , then
the effect of the spatial oscillation gets averaged out and have
less impact on the diode efficiency as a function of position of
the magnetic texture.

IV. SDE FOR A TEXTURE MOVING ON A RACETRACK

We now consider what happens to the SDE when a given
magnetic texture moves along the portion of the racetrack that
forms the normal section of the Josephson junction. We will
see that the nature of the magnetic texture and its position
within the junction can significantly modify the diode effi-
ciency, η, and even change its sign. As a result, the magnetic
texture can be detected by these modifications in the SDE as it
moves through the junction or, conversely, moving a magnetic
texture through the junction can be used to change the sign of
the diode efficiency and therefore create a Josephson transistor
effect.

A. Domain walls

We first study the SDE due to a magnetic domain wall
moving through the Josephson junction. First, we consider a
magnetic texture as defined by the angle profiles �dw,1 and
�dw,1 and calculate the current as a function of the supercon-
ducting phase difference and of the position of the domain
wall, see Fig. 7(a). The phases associated with the positive
and negative critical currents as well as the phase associated
with zero current change as a function of the position of the
domain wall. More importantly, the direction of the exchange
field of the magnetic texture reverses when the domain wall
passes through the junction and, consequently, the direction
of the SDE also inverts, resulting in a Josephson transistor
effect. This behavior manifests itself in a diode efficiency that
changes its sign when the domain wall passes through the
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FIG. 7. The CPR and diode efficiency as a function of the po-
sition of the domain wall. (a) Supercurrent as a function of phase
difference ϕ and the position of the domain wall ndw . Panels (a) and
(b) correspond to the domain wall profile �dw,1, while panels (c) and
(d) correspond to the profiles �dw,2 and �dw,3, respectively. [(b)–(d)]
Critical currents Ic

± and diode efficiency η as a function of ndw .
The diode changes its sign for the magnetic textures considered
in (a), (b), and (d). In contrast, when the magnetization is out of
plane far away from the domain wall (c), then the SDE appears
only when the domain wall enters the junction and we observe
additional oscillations of the diode efficiency when the domain wall
moves through the system. Parameters: Ly = 2Lx = 140 nm, meff =
0.023me, μ = 8.16 meV, a = 2.5 nm, � = 0.8 meV, J = 0.05 meV,
α = 0.05 eV nm, γ = 32 meV, and λdwa = 70 nm.

center of the system (≈ Ny/2), see Fig. 7(b). The sign change
and the value η = 0 for a system with the domain wall in the
middle is enforced by symmetry. Moreover, we note that as
the domain wall moves through the system, the magnitude of
the critical currents change significantly.

In general, the physics of the system are strongly deter-
mined by the magnetization direction: Repeating the same
calculation with an out-of-plane magnetization far away from
the domain wall, as defined by �dw,2 and �dw,2, reveals a
different behavior, see Fig. 7(c). In particular, if the domain
wall is far away from the junction, then the out-of-plane mag-
netization does not result in a diode effect and consequently
the diode efficiency is zero.

The overall behavior of the diode efficiency as a function
of the domain wall position exhibits several sign changes. In
a simple picture, one might expect that the diode efficiency
first increases when the domain wall moves into the junction
until the whole domain wall entered the system. The efficiency
would be constant until the domain wall starts to leave the
junction. However, the calculated diode effect exhibits a more
complex behavior, see Fig. 7(c). The diode efficiency does
at first grow and is almost constant when the domain wall is
located in the middle of the junction, due to the symmetry of
the system. However, η exhibits in total four sign changes as
the domain wall moves through the junction. We attribute this
behavior to the wavefunctions of the ABSs in the junction.
As discussed above, the ABSs in the junction exhibit spa-
tially dependent oscillations along the y direction, resulting
in both a probability density and current changes that depends
locally on the y coordinate. Consequently, the diode efficiency
can change, including sign changes and associated Josephson
transistor effect, if the spatial extent of the domain wall λdwa
is of the same order as the Fermi wavelength λF . Although

FIG. 8. Diode efficiency as a function of the position of the
skyrmion. Critical currents Ic

± and diode efficiency η as a function
of ny,s for (a) [(b)]: Néel [Bloch] skyrmion. The diode efficiency
strongly depends on the position of the Néel or Bloch skyrmion and
there are certain positions, depending on the system configurations,
where |η| is maximized. If there is no skyrmion inside the junction,
then there is no SDE (η = 0) since the background magnetization
is out of plane. Parameters: Ly = 2Lx = 140 nm, meff = 0.023me,
μ = 8.16 meV, a = 2.5 nm, � = 0.8 meV, J = −0.2 meV, α =
0.05 eV nm, and γ = 32 meV, and λsa = 35 nm.

for numerical ease we utilized a low chemical potential with
large λF , in practice, many proposed racetrack materials are
good metals [33,34] such that λF � λdwa and these multiple
sign changes would not be expected.

Next, we note that the magnitude of the diode efficiency,
η, for the particular choice of magnetization set by �dw,2 and
�dw,2, strongly depends on the ratio between the length of the
domain wall and the length of the junction, which are set by
λdw and Ny, respectively. In particular, the longer the junction
compared to the domain wall the smaller the superconducting
diode efficiency of the whole junction. This is why we chose
junctions, which are just a few times longer than λdw and
avoid the regime Ny � λdw.

Finally, we studied a junction with a magnetization as de-
fined via �dw,3 and �dw,3, see Fig. 7(d). This junction behaves
similar to the first considered set-up with �dw,1 and �dw,1.
In particular, |η| is constant until the domain wall enters the
junction, then it decreases until the domain wall reaches the
center of the junction at which point a sign change in η occurs
and |η| increases until the domain wall exits the junction.

B. Skyrmions

We now repeat a similar analysis for the domain wall setups
studied above but instead for racetracks hosting skyrmions.
First, we note that we only consider skyrmions with a fer-
romagnetic background aligned in z direction (out of plane).
Therefore, there is no diode effect if a skyrmion is not in
the junction (ny,s � −λs/2), see Fig. 8. Considering first Néel
skyrmions moving on a racetrack, when the skyrmion enters
the junction the tilted magnetization close to the skyrmion
core leads to a finite SDE, see Fig. 8(a). The strength of this
effect strongly depends on the ratio between λs and Ny, as in
the case of the second domain wall configurations with �dw,2

and �dw,2 studied above. As above, these spatial oscillations
of η are set by the Fermi wavelength and result in a compli-
cated behavior that can exhibit several sign changes of η, see
Fig. 8(a).

Finally, we consider a Bloch skyrmion with a magneti-
zation as defined in Sec. II A 2, see Fig. 8(b). The general
behavior is quite similar to the Néel skyrmion and in general
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we do not find a substantial difference in the diode efficiency
response caused by the two types of skyrmionic texture.

V. SDE IN JOSEPHSON JUNCTIONS
WITHOUT RASHBA SOI

So far we have explicitly incorporated Rashba SOI in our
model via Eq. (5). Here, instead, we remove the Rashba SOI
and investigate which type of magnetic texture can support
a SDE by itself. In order to answer this question, we first
consider the continuum Hamiltonian

H =
∫

dx dy �†(r)H(r)�(r), (19)

where �†(r) = (�†
r,↑, �

†
r,↓, �r,↓,−�r,↑) is a vector com-

posed of the field operators �
†
r,↑ (�r,↑) and �

†
r,↓ (�r,↓), which

create (annihilate) a particle at the position r = (x, y) with
spin up or down, respectively. The Hamiltonian density is
given by

H(r; ϕr) = − h̄2

2m

(∇2
x + ∇2

y

)
τz

+ �r(τx cos ϕr + τy sin ϕr) + Jτ0Sr(�r, ϑr) · σ,

(20)

where σ j and τ j are Pauli matrices acting in spin space
and particle hole space respectively, and �r is real. As
in Eq. (4), the spin texture is finite only within the
normal section and using spherical coordinates such that
Sr(�r, ϑr) = [cos(ϑr) sin(�r), sin(ϑr) sin(�r), cos(�r)] and
σ = (σx, σy, σz ) the vector of Pauli matrices. Both the angles
�r and ϑr as well as the superconducting phase difference
ϕr can depend on position r = (x, y) of a given spin of the
texture.

Although we are interested in cases where an SDE does
occur in the absence of Rashba SOI, we first point out that
there are several spin textures where symmetries still do not
allow the system to support an SDE. For instance, if the angles
ϑr and �r are constant then all spins are parallel, so the system
breaks only time-reversal symmetry. The absence of Rashba
SOI in the 2DEG means that there is no coupling between spin
space and real space, allowing for arbitrary rotations in spin
space. As a consequence, the combination of time-reversal
symmetry, T = iσyτ0K, where K is complex conjugation,
with a rotation in spin-space by π around an axis in the plane
perpendicular to the direction of the spins Rπ results in the
identity RπT H(r; ϕr)(RπT )† = H(r; −ϕr). This implies that
all eigenenergies satisfy En(ϕ) = En(−ϕ); however, since the
current is given by the derivative of eigenenergies with respect
to the phase difference, see Eq. (15), this identity means that
the current must satisfy I (ϕ) = −I (−ϕ) and therefore no SDE
can occur since Ic

+ = |Ic
−|.

In fact, more generally, if all spins lie in a plane, then
the combination of a π rotation around the axis defining
the plane and time-reversal symmetry will result in the same
identity and the absence of an SDE. For instance, if all spins
lie in the xz plane then a rotation in spin-space about the
y axis, such that Rπ = σy, will also result in the identity
RπT H(r; ϕr)(RπT )† = H(r; −ϕr), which ensures the ab-
sence of an SDE. As such, in the absence of Rashba SOI, a

simple domain wall will not result in an SDE since it only
rotates in a single plane.

Additionally, we note that spatial symmetries can also re-
sult in a similar identity that will forbid an SDE. Namely, for
our setup we are interested in currents in the x direction, i.e.,
across the junction. If the spin texture Sr(�r, ϑr) only depends
on the y coordinate then the transformation r = (x, y) → r′ =
(−x, y) gives again H (r′; ϕr′ ) = H (r; −ϕr), where we used the
fact the phase ϕr only varies in the x direction and that, without
loss of generality, the phase can be taken to be of opposite
in sign in the left and right superconducting sections of the
junction.

We now demonstrate that an SDE is allowed in the ab-
sence of Rashba SOI. First, since the superconducting terms
are unaffected by the following transformations and for the
ease of discussion, we set �r = 0 everywhere in the BdG
Hamiltonian presented in Eq. (20). Next, apply the gauge
transformation U1 = e−i(ϑr/2−π/4)σz via H̃ = U †

1 HU1. This
transformation rotates the magnetic texture around the z axis
into the yz plane. Subsequently, we apply the second gauge
transformation U2 = ei(�/2−π/4)σx as H′ = U †

2 H̃U2 and obtain

H′ = −h̄2

2m

∑
x j∈{x,y}

[(
∂2

∂x2
j

− 1

4

{
∂ϑ

∂x j

}2

− 1

4

{
∂�

∂x j

}2)
σ0

− i

{
∂

∂x j
�x j (x, y) + �x j (x, y)

∂

∂x j

}]
+ Jσy, (21)

where

�x j (x, y) = 1

2
[cos(�)σy + sin(�)σz]

∂ϑ

∂x j
− 1

2

∂�

∂x j
σx, (22)

see Appendix A for a detailed derivation. In this new ba-
sis, after the unitary transformation has been applied, the
exchange coupling term, namely the term proportional to J ,
is ferromagnetic. This modification of the exchange coupling
field, however, results in new effective SOI term and a nonuni-
form chemical potential [41–46,59]. As discussed extensively
above, SOI and a ferromagnetic background coupling to the
direction of that SOI is the key ingredient that can enable
an SDE. Given that a sufficiently complex spin-texture trans-
forms to an effective SOI with ferromagnetic background, it
is clear that this can result in an SDE, as long as it is not
symmetry forbidden. In Table I we give all possible forms of
spin textures and indicate whether or not an SDE is allowed
in the absence of Rashba SOI as well as whether or not
the symmetries discussed above are present. We note, even
if allowed by the general symmetries discussed above, fine
tuning of the position of magnetic textures can result in the
absence of an SDE due to, e.g., spatial rotational symmetries.

To provide a concrete example of a spin texture where an
SDE is allowed, we consider skyrmionic textures. In this case
both the angles ϑr and �r are a function of x and y coordinates
and therefore the texture can in principle support a SDE, see
Fig. 9 where we consider a Néel skyrmion. However, the
position of the skyrmion plays a crucial role and the SDE
can vanish at certain symmetry points, for example, if the
skyrmion is placed exactly in the middle of the junction, see
Fig. 9(a). Comparing the Néel and Bloch type skyrmion we
find that the polar angle � agrees for both textures and the
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TABLE I. SDE resulting from magnetic textures in a model
lacking explicit Rashba SOI. We classify different textures via their
angles � and ϑ and check which symmetries are present in the corre-
sponding class to predict whether a SDE is possible. If the spins lie in
a plane, then the symmetry RπT forbids a SDE. Similar if the texture
is not a function of the x coordinate, then the SDE is suppressed in x
direction. Both symmetries have to be broken to allow a SDE. Here,
we indicate the presence [absence] of the symmetries and the SDE
with a checkmark [cross]. We note that fine-tuned symmetries, e.g.,
spatial rotational symmetry, can also result in the absence of an SDE
and that, even when symmetry allowed, the magnitude of the SDE is
not guaranteed to be large.

� ϑ RπT x → −x SDE[Ix]

� = π

2 ϑ = const. � � ×
� = π

2 ϑ = ϑ (x) � × ×
� = π

2 ϑ = ϑ (y) � � ×
� = π

2 ϑ = ϑ (x, y) � × ×
0 �= � = const. �= π

2 ϑ = const. � � ×
0 �= � = const. �= π

2 ϑ = ϑ (x) × × �
0 �= � = const. �= π

2 ϑ = ϑ (y) × � ×
0 �= � = const. �= π

2 ϑ = ϑ (x, y) × × �
� = �(x) ϑ = const. � × ×
� = �(x) ϑ = ϑ (x) × × �
� = �(x) ϑ = ϑ (y) × × �
� = �(x) ϑ = ϑ (x, y) × × �
� = �(y) ϑ = const. � � ×
� = �(y) ϑ = ϑ (x) × × �
� = �(y) ϑ = ϑ (y) × � ×
� = �(y) ϑ = ϑ (x, y) × × �
� = �(x, y) ϑ = const. � × ×
� = �(x, y) ϑ = ϑ (x) × × �
� = �(x, y) ϑ = ϑ (y) × × �
� = �(x, y) ϑ = ϑ (x, y) × × �

azimuthal angle ϑ can be mapped from the Néel skyrmion to
the Bloch skyrmion via the shift ϑ → ϑ − π/2. The effective
SOI, in Eq. (21), however, depends only on the derivative of
ϑ , but not on the actual value. Consequently, the effective SOI
is the same for both configurations, which we also checked

FIG. 9. Diode efficiency as a function of the position of the Néel
skyrmion in a system without Rashba SOI. (a) Diode efficiency η

as a function of the position of the skyrmion ndw . (b) The CPR and
the modulus of the current (shown in the inset) indicate the different
critical currents. The CPR is calculated for the skyrmion position
as indicated in panel (a). In the inset we plot the data points and
do not connect them to show that the resolution of the supercon-
ducting phase is indeed high enough to resolve the difference in the
critical currents. Parameters: Ly = 2Lx = 140 nm, meff = 0.023me,
μ = 5 meV, a = 2.5 nm, � = 1 meV, J = 1 meV, α = 0 eV nm,
γ = 32 meV, and λsa = 35 nm.

numerically. This is also evident from unitary spin rotations
around the z axis of the original Hamiltonian H presented in
Eq. (20), which leave the energy spectrum unchanged. If we
add Rashba SOI to the system, then the gauge transformation
acting on this additional Rashba term yields an explicit depen-
dence of the transformed Hamiltonian on the angle ϑ , not only
on its derivative, therefore the SDE effect differs for the two
types of skyrmions if Rashba SOI is present, as was shown in
Fig. 8.

Finally we note that the transformation we utilize to map a
varying magnetic texture to an effective SOI is quite general;
however, we require that the derivatives of the angles are well
defined, such that the angles should be smooth functions of the
coordinates x and y. Therefore, we explicitly do not consider
certain classes of magnetic textures such as domain walls with
λdw → 0 or antiferromagnetic structures.

VI. DISCUSSION

We have shown how a highly controllable SDE can be
achieved in a Josephson junction where the normal section is
a racetrack hosting magnetic textures, such as domain walls or
skyrmions. In particular, the positions of the magnetic texture
alters the efficiency of the SDE and can even change its sign,
enabling a Josephson transistor effect. First, we showed that a
system containing Rashba-like spin-orbit interaction enables
a high degree of control that can be exerted on the SDE,
depending on the location of the magnetic textures. The ratio
between the size of a magnetic texture and the dimensions of
the Josephson junction plays an important role in determining
the maximal strength of the SDE. We also showed that certain
textures, such as skyrmions, can enable an SDE even in the
absence of Rashba SOI in the itinerant charge carrier material
and classified some magnetic textures where this is possible.
In general, we find that many quantities affect the SDE and,
as such, our model does not predict the precise magnitude of
the diode efficiency for any specific experiments. Nonetheless,
our study provides a proof-of-principle that demonstrates the
qualitative behavior of the SDE due to magnetic texture on a
racetrack.

Our results show that the interplay between magnetic
textures and the SDE is an exciting playground for future
low-temperature electronics. For instance, this effect could be
used to create a superconducting transistor that is controlled
by magnetic textures rather than gates. Furthermore, the ef-
fects discussed here could be the basis for a low-temperature
readout scheme of racetrack memory devices that can be used
as components in cryogenic or quantum computers.

Note added. Recently, Ref. [25] appeared on arXiv also
proposing the idea that complex magnetic textures in the
absence of an explicit Rashba SOI can be sufficient to mediate
an SDE.
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APPENDIX A: GAUGE TRANSFORMATION

1. Derivation of the rotated Hamiltonian

In this Appendix, we present the detailed derivation of the
Hamiltonian in Eq. (21). Starting point is the Hamiltonian
from Eq. (20), which we split into the kinetic term

H0 = − h̄2

2m

(∇2
x + ∇2

y

)
σ0 (A1)

and the exchange term

HEx = J{sin(�)[cos(ϑ )σx + sin(ϑ )σy] + cos(�)σz}. (A2)

These terms transform under the unitary gauge transformation
U1 = e−i(ϑ/2−π/4)σz as

U †
1 HExU1 = J[sin(�)σy + cos(�)σz], (A3)

and

U †
1 [∇2

x j
σ0]U1 =

[
∇2

x j
− 1

4

(
∂ϑ

∂x j

)2
]
σ0

− i

[
∂ϑ

∂x j
∇x j + 1

2

∂2ϑ

∂x2
j

]
σz, (A4)

where x j ∈ {x, y}, respectively. Combining the results yields

U †
1 HU1 = J[sin(�)σy + cos(�)σz]

− h̄2

2m

∑
x j∈{x,y}

{[
∇2

x j
− 1

4

(
∂ϑ

∂x j

)2
]
σ0

− i

[
∂ϑ

∂x j
∇x j + 1

2

∂2ϑ

∂x2
j

]
σz

}
. (A5)

Next, we apply the second gauge transformation U2 =
ei(�/2−π/4)σx on the exchange coupling term like

U †
2 [sin(ϑ )σy + cos(ϑ )σz]U2 = σy (A6)

to map the system on a ferromagnet with a magnetization in y
direction. The last term in Eq. (A5) transforms as

U †
2 σzU2 = sin(�)σz + cos(�)σy, (A7)

while the first derivative term takes the form

U †
2 ∇xσzU2 = 1

2

∂�

∂x
[cos(�)σz − sin(�)σy]

+ [sin(�)σz + cos(�)σy]∇x. (A8)

The combination of the results presented in Eqs. (A7) and
(A8) allows us to rewrite those terms as a position-dependent
SOI; please note the symmetrized form which ensures the
Hermiticity of the term [80]

∂ϑ

∂x j
[U †

2 σz(∇x jU2) + U †
2 σzU2∇x j ] + 1

2

∂2ϑ

∂x2
j

U †
2 σzU2

= ∇x j

[
1

2

∂ϑ

∂x j
(sin(�)σz + cos(�)σy)

]

+
[

1

2

∂ϑ

∂x j
(sin(�)σz + cos(�)σy)

]
∇x j . (A9)

The second derivative takes the form

U †
2 ∇2

x j
σ0U2 = ∇2

x j
− 1

4

[
∂�

∂x j

]2

+ i
1

2

(
∇x j

∂�

∂x j
+ ∂�

∂x j
∇x j

)
σx.

(A10)

Finally, the Hamiltonian is given by

U †
2 U †

1 HU1U2

= − h̄2

2m

∑
x j∈{x,y}

{(
∂2

∂x2
j

− 1

4

[
∂�

∂x j

]2

− 1

4

[
∂ϑ

∂x j

]2
)

σ0

− i

[
∂

∂x j
�x j (x, y) + �x j (x, y)

∂

∂x j

]}
+ Jσy (A11)

with

�x j (x, y) = 1

2

∂ϑ

∂x j
[sin(�)σz + cos(�)σy] − 1

2

∂�

∂x j
σx.

(A12)

Last, we note that the strength of the appearing SOI term does
not depend on the strength of the exchange coupling, instead
it is only a function of the angles ϑ and � or their derivatives
with respect to the x or y coordinate.

APPENDIX B: MAGNETIC TEXTURES AND THE SDE

In Sec. V, we discuss which magnetic textures support a
SDE, here we numerically study the underlying conditions
and confirm the analytic results. First, we consider a texture
that changes in x direction since the angle ϑ = g(nx ) depends
explicitly on the x coordinate. Here, the function g(nxj ) =
nxj π/λm with nxj = nx or nxj = ny is linear for simplicity
and the length-scale λm, measured in lattice sites, sets the
rotation-period of the magnetic texture. Our choice � = π

3
forces the spins into a conical rotation, so that the texture
is not confined to a plane. From our analytic analysis we
expect a SDE is in principle possible for this case. Indeed,
the current-phase relation and in particular the absolute value
of the current reveals a finite SDE in x direction, see Fig. 10.
In contrast, if ϑ (ny) = g(ny) varies instead in y direction, then
the SDE is suppressed, since the current does not experience
any nonuniformity in x direction. Last, we prepare a texture
lying in a plane, with � = g(nx ) and ϑ = π

3 , see the last col-
umn in Fig. 10, the corresponding current is odd-symmetric
with respect to ϕ and does therefore not support a SDE as
predicted.

APPENDIX C: POSITION OF DOMAIN WALLS
AND SKYRMIONS

In this section, we clarify the meaning of negative values of
the domain wall or skyrmion center position, see for example,
Fig. 7. We emphasize that the junction has only Ny sites in
y direction but we move the domain wall or skyrmion so
that only a finite part of it enters the junction, as illustrated
in Fig. 11, which shows the in-plane magnetization of three
system configurations hosting skyrmions: In the first config-
uration we chose ny,s = −λs/2 so that only a small part of
the skyrmion is inside the junction. For ny,s = 0, only the
half of a skyrmion has entered the junction. Last, the case
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FIG. 10. Magnetic textures and the SDE without Rashba SOI. First row: magnetic textures (a) [b] conical rotation parallel [perpendicular]
to the direction of current flow and (c) magnetic texture confined to a plane. (Second row) Current phase relations corresponding to the magnetic
textures. (Third row) Absolute value of the current as function of the superconducting phase and associated diode efficiency. The first texture
yields a SDE, while the others do not, this is in agreement with our analytic analysis. Parameters: (Lx, Ly ) = (70, 80) nm, meff = 0.023me,
μ = 5 meV, a = 2.5 nm, � = 1 meV, J = 1 meV, α = 0, λma = 20 nm, and γ = 32 meV.

ny,s = λs describes the scenario in which the whole skyrmion
just entered the junction. Finally we note that the same logic
applies also to the case ndw > Ny [ny,s > Ny]. We note that the
definitions of the position of the domain wall and the skyrmion

are different: While the skyrmion position ny,s is measured
from the center of the skyrmion, the domain wall position
is measured from the beginning of the domain wall, see the
definitions in Eqs. (10) and (11).

FIG. 11. Different positions of a Néel skyrmion. (a) The skyrmion moved partially into the junction. (b) Half of the skyrmion entered the
junction. (c) The whole skyrmion is fully in the junction. The arrows indicate the in-plane direction of the magnetic moments, while the color
code illustrates the local out of plane magnetization. The superconducting regions S1 and S2 have with potentially different superconducting
phases. The black lines serve as guide lines for the eye to distinguish the normal and superconducting regions and to highlight the system
boundaries. Parameters: Ly = 2Lx = 140 nm, a = 2.5 nm, and λsa = 35 nm.
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