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Nonthermal superconductivity in photodoped multiorbital Hubbard systems

Sujay Ray,1 Yuta Murakami ,2 and Philipp Werner 1

1Department of Physics, University of Fribourg, Fribourg-1700, Switzerland
2Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan

(Received 10 May 2023; revised 12 October 2023; accepted 25 October 2023; published 27 November 2023)

Superconductivity in laser-excited correlated electron systems has attracted considerable interest due to reports
of light-induced superconductinglike states. Here we explore the possibility of nonthermal superconducting order
in strongly interacting multiorbital Hubbard systems, using nonequilibrium dynamical mean field theory. We find
that a staggered η-type superconducting phase can be realized on a bipartite lattice in the high photodoping
regime, if the effective temperature of the photocarriers is sufficiently low. The η superconducting state is
stabilized by Hund coupling—a positive Hund coupling favors orbital-singlet spin-triplet η pairing, whereas
a negative Hund coupling stabilizes spin-singlet orbital-triplet η pairing.
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I. INTRODUCTION

The study of nonequilibrium quantum systems has become
a frontier topic of research in condensed matter physics and
quantum field theory [1–4]. A particularly interesting topic
is the exploration of hidden phases of matter [5,6], that is,
long-lived metastable states which can only be accessed via a
nonthermal pathway. In strongly correlated electron systems,
which are often characterized by competing low-energy states
[7], nonequilibrium protocols offer the intriguing opportunity
to manipulate material properties [5,6,8–13] and to create
novel states with nonthermal electronic orders [1,14–26]. A
promising route for realizing such nonequilibrium states is
laser driving. This allows one to create Floquet states [27,28]
or photodoped states [29], which under suitable circum-
stances can favor electron pairing and superconductivity. In
photodoped large-gap Mott insulators, the charge excitations
survive for a long time [30–33]. Rather than relaxing back to
a (heated) equilibrium state, the charge excitations thermalize
within the Hubbard bands, resulting in the formation of a
metastable nonthermal state which can be characterized by
effective temperatures of the charge carriers.

A broad range of theoretical tools has been employed to
simulate photoinduced nonequilibrium states [34–44]. One
of the challenges in laser-driven systems is the heating ef-
fect, which tends to suppress the emergence of electronic
orders. Sophisticated protocols have been developed to realize
effectively cold metastable systems. Entropy cooling tech-
niques [19,45] have proven useful in overcoming relaxation
bottlenecks and enabled the preparation of effectively cold
nonequilibrium states of photodoped Mott systems. Alterna-
tively, such states can be realized by the coupling to suitable
fermionic [46] or bosonic baths [38]. Both techniques have
been successfully used to simulate nonthermal superconduct-
ing (SC) states in the single-band repulsive Hubbard model
[19,21,47]. SC states with staggered order parameter can be
stabilized over a wide photodoping region on bipartite lattices
[21], while chiral SC order with a 120◦ phase twist has been
induced on a triangular lattice [47]. Here, we extend these

studies to multiorbital Hubbard systems—more specifically
the two-orbital model with strong repulsive interactions.

Nonthermal orders in the two-orbital repulsive Hubbard
model have been previously studied. These investigations in-
clude nonthermal spin and orbital orders in the three-quarter
filled (Kugel-Khomskii) model [16,48,49] and excitonic
orders in the model with crystal field splitting [17]. A photoin-
duced enhancement of a spin-triplet pairing susceptibility has
also been reported [50], but due to computational limitations,
this study could not reach a cold enough state for symmetry
breaking and it did not consider the staggered order that we
will identify below as the dominant nonthermal phase.

Here, we employ the recently developed nonequilibrium
steady state (NESS) technique [46] to explore the photodoped
two-orbital repulsive Hubbard model. Such a photodoped
steady state exhibits a nonthermal distribution of charge car-
riers, which is produced, for example, by a laser excitation.
In a large-gap Mott insulator, the relaxation of photoexcited
charge carriers across the gap can take a very long time. As a
result, the system approaches a photodoped quasisteady state
with thermal-like distributions within the Hubbard bands.
Explicit real-time simulations of photodoped Mott states con-
firmed that, in the presence of a dissipation mechanism, the
photodoped system indeed relaxes to such a steady state with
well-defined effective temperatures of the charge carriers [51].
The NESS technique allows us to directly realize (stabilize)
such a steady state and to systematically explore a large
parameter space in terms of the doping level and effective
temperature. Using this technique, we will demonstrate the
emergence of nonthermal SC states which are specific to
multiorbital systems.

The paper is structured as follows. In Sec. II, we define
the model and the NESS setup. In Sec. III, we compute the
susceptibility for uniform and staggered orbital-singlet/spin-
triplet and orbital-triplet/spin-singlet pairing and map out
nonequilibrium phase diagrams, while Sec. IV contains
a conclusion. Technical aspects related to the mean-field
and dynamical-mean-field calculations are discussed in the
Appendices.
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II. MODEL AND METHOD

We consider the two-orbital Hubbard model with Hamilto-
nian

H = − thop

∑
〈i j〉,σ

∑
α=1,2

c†
i,ασ c j,ασ + U

∑
i

∑
α=1,2

ni,α↑ni,α↓

− μ
∑

i

∑
α=1,2

(ni,α↑ + ni,α↓) + (U − 2J )
∑
i,σ

ni,1σ ni,2σ̄

+ (U − 3J )
∑
i,σ

ni,1σ ni,2σ (1)

on a bipartite lattice. Here, α and σ denote the orbital and
spin indices, respectively, thop is the nearest neighbor hopping
amplitude between sites i and j, U is the intraorbital Hubbard
repulsion, J is the Hund coupling, and μ is the chemical
potential. The equilibrium ground state of the half filled model
at large U is a Mott insulator with antiferro spin (J > 0)
or orbital (J < 0) order. Away from half filling, for J > 0,
orbital-singlet spin-triplet superconductivity appears over a
wide range of dopings between quarter filling (n = 1/4) and
three-quarter filling (n = 3/4) [50,52,53] and it is interesting
to ask if a nonthermal manifestation of this order exists.

To create an effectively cold photodoped state, we employ
the NESS formalism [21,46], where the system is weakly
coupled to cold fermion baths at each site. By choosing the
densities of states (DOS) ρb(ω) and chemical potentials μb

of these baths appropriately, we can inject (remove) electrons
into (from) the upper (lower) Hubbard band and stabilize a
photodoped state. Here, we use fermion baths with a semiel-
liptic DOS with a coupling strength g. The hybridization
function Db(ω) of these baths is given by Db(ω) = g2ρb(ω) =
�

√
W 2

b − (ω − ωb)2 , where Wb denotes the half bandwidth,
ωb indicates the center of the energy spectrum of the bath
and � = g2/W 2

b is a dimensionless coupling parameter. We
use four fermion baths with ωb = ±U/2,±3U/2 and the
same Wb and � for all fermion baths. The two baths with
ωb = ±U/2 are chosen to coincide with the lower and upper
Hubbard bands to create a large population of triply occu-
pied sites (triplons) and singly occupied sites (singlons). The
other two baths, a completely empty one with ωb = 3U/2
and a completely filled one at ωb = −3U/2, are added to
prevent the production of high-energy fully occupied (quadru-
plon) and empty (holon) states; see Fig. 1(a). (Partially filled
subbands at ω ≈ ±3U/2 would correspond to some popu-
lation of quadruplons and holons.) In this setup, by tuning
three parameters—the chemical potential of the bath μb, tem-
perature of the bath Tb, and coupling �—we can prepare
a half-filled nonequilibrium state with a desired density of
triplons and singlons and an effectively cold temperature.
The parameter μb mainly controls the photodoping (density
of charge excitations—here triplons and singlons), while the
other two parameters � and Tb mainly control the effective
temperature of the photodoped charge carriers. In all our cal-
culations, Tb = 0.01 unless otherwise mentioned.

The NESS solution of the two-orbital Hubbard model
is obtained on an infinitely connected Bethe lattice using
nonequilibrium dynamical-mean-field theory (DMFT) [54]
and a noncrossing approximation (NCA) impurity solver [55].
To study uniform or staggered SC orders, we use the Nambu-

FIG. 1. Spectra of the photodoped two-orbital model with η

superconducting order and with parameters (a) U = 20, J = 0,
(b) U = 20, J = −1, and (c) U = 20, J = 1. The occupied DOS
is indicated by the filled area. The four fermion baths and their
occupations are indicated below the spectra in (a) by the gray dashed
lines and filled blue areas, respectively. The insets in panel (a) show
a zoom of the region indicated by the gray box and a fit to the Fermi
distribution function with βeff = 67.0 (black dashed line).

Keldysh formalism to write the DMFT self-consistency
condition as 	(t, t ′) = t2

0 γ G(t, t ′)γ + D(t, t ′). Here, t0 =
W/4 is the quarter-bandwidth of the Bethe-lattice DOS, which
is used as the unit of energy. The hybridization function 	,
impurity Green’s function G, and hybridization function of
the fermion baths D = ∑

b Db can be represented by matrices
in the Nambu basis (see Appendix D), while the choice of
the γ matrix determines whether the solution corresponds to
staggered or uniform pairing [19].

In the calculations, we use U = 20, J = ±1, � =
0.016–0.032, and Wb = 5. The triplon density is measured
as 〈n1↑n1↓n2 + n1n2↑n2↓ − 4n1↑n1↓n2↑n2↓〉, with nα = nα↑ +
nα↓ the occupation of orbital α. A typical spectral function
A(ω) for a photodoped system with triplon density = 0.474
is shown in Fig. 1(a). The occupied density of states A<(ω)
is indicated by the filled area. An effective temperature Teff of
the system can be defined by comparing the ratio A<(ω)/A(ω)
to a (shifted) Fermi distribution function fβ (ω) for inverse
temperature β. The inset of Fig. 1(a) shows that A<(ω)/A(ω)
can be very well fitted with fβ=67.0(ω), which indicates that
the triplons (and singlons) in the nonequilibrium state have
a well-defined and low effective temperature. We also see
sharp quasiparticle peaks at the edges of the Hubbard bands,
which are associated with the remaining doublon states. In
equilibrium, at low temperature, a single doublon state domi-
nates and the energy separation between the upper and lower
Hubbard bands is roughly U + J (J > 0) or U − 5J (J < 0).
In a photodoped system, all doublon states contribute to the
spectrum, which exhibits peaks with a separation between
U − 5J and U + J . Hence, for J > 0 (J < 0), the separa-
tion between the Hubbard bands decreases (increases); see
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Figs. 1(b), 1(c) and 7. A large enough gap ensures a slow
relaxation across the gap [30,31] and is necessary for the sta-
bility of the photodoped state, which sets limits to the values
of J .

III. RESULTS

In the two-orbital model we can define six types of SC
orders, depending on the spin and orbital symmetry. The three
orbital-singlet spin-triplet orders are measured by [52]

pi,sν = 1

4

∑
ασα′σ ′

c†
i,ασ εαα′ (σ νε)σσ ′c†

i,α′σ ′ (2)

and the three spin-singlet orbital-triplet orders by

pi,oν = 1

4

∑
ασα′σ ′

c†
i,ασ (σ νε)αα′εσσ ′c†

i,α′σ ′, (3)

where σ ν denotes the three Pauli matrices with ν = x, y, z and
the antisymmetric tensor is defined as ε = iσ y. In analogy
to antiferromagnetic order in magnetically ordered systems, a
staggered SC order (η order) can be defined, where pi,α (α =
sx, sy, sz, ox, oy, oz) has opposite signs on the two sublattices
A and B, such that

η+
i,α = δ

A/B
i pi,α, (4)

with δ
A(B)
i = 1(−1) for i on the A(B) sublattice.

Without Hund coupling, the local Hamiltonian is four-
fold degenerate (spin degeneracy and orbital degeneracy) and
at half filling, for sufficiently large U , each site is doubly
occupied in the ground state. The photoexcitation creates
singlon-triplon pairs. In the extreme photodoping limit, all
doubly occupied sites are converted to singlons and triplons
and, if the fluctuations between these states become large,
we may expect the emergence of superconductivity with or-
der parameters given by Eqs. (2) or (3), similar to the η

pairing states in the photodoped single-band Hubbard model
[19,21,23,25]. An important distinction however is that the
triplons and singlons in the two-orbital model have spin and
orbital degrees of freedom. The Hund coupling J lifts the
degeneracy between the SC orders in the half filled system
and favors a spin (J > 0) or orbital (J < 0) moment at each
site. It also stabilizes the SC pairing, so that an η SC order can
be realized at sufficiently large photodoping.

A. Effective model

Physical properties of photodoped states can be well cap-
tured by an effective model derived from the Schrieffer-Wolff
transformation (SWT) or second order perturbation theory
[21]. For J = 0 and half filling, the effective model for com-
plete doping, where only tripons and singlons exist, can be
derived by projecting the transformed Hamiltonian onto the
singlon and triplon subspace as shown in Appendix A [56],

Heff = Hst
t2
hop/U + Htt

t2
hop/U + Hss

t2
hop/U , (5)

where the low-energy effective interaction between triplons
and singlons is divided into three terms representing
the singlon-triplon, triplon-triplon, and singlon-singlon

interaction. Each term can be expressed in terms of spin,
orbital, and η-spin operators as

Hst
t2
hop/U = −4t2

hop

U

∑
〈i j〉,α

(η+
iαη−

jα + η−
iαη+

jα )

− 4t2
hop

3U

∑
〈i j〉

(
1

2
+ 2si · s j

)(
1

2
+ 2τi · τ j

)
, (6)

Hss(tt )
t2
hop/U

= 2t2
hop

U

∑
〈i j〉

(
1

2
+ 2si · s j

)(
1

2
+ 2τi · τ j

)
, (7)

where η+
iα is defined in Eq. (4), η−

iα is the Hermitian conju-
gate (η+

iα )†, si = 1
2

∑
α c†

i,ασ σσσ ′ci,ασ ′ is the spin moment, and

τ i = 1
2

∑
σ c†

i,ασ σαα′ci,α′σ is the orbital moment. As can be
seen from Eqs. (6) and (7), in addition to η-spin interaction
terms, there are also spin interactions, orbital interactions, and
spin-orbital composite terms. The temperature scales for all
types of η orders are set by the coefficients which are ∼t2

hop/U .
Nonzero Hund coupling lifts the degeneracy between these η

orders, because it affects the energies of the doublon states
involved in the second order hopping processes. The exchange
coupling for the η pairing channels α [the first term in Eq. (6)]
is modified as t2

hop/U → t2
hop/Ũα , where Ũα is a function of U

and J . J > 0 favors ηsx-type orbital-singlet spin-triplet order,
while J < 0 favors ηox-type orbital-triplet spin-singlet order
(see Appendix A for a detailed discussion).

A mean-field (MF) decoupling may be applied to the ef-
fective model to obtain a MF Hamiltonian (see Appendix C).
This MF calculation suggests that an η SC state can be
achieved at low Teff and that the Hund coupling enhances spin-
triplet or orbital-triplet superconductivity, depending on J .

B. DMFT results

To detect a SC state, we apply a small seed field Pseed and
couple it to the SC order we are interested in. For example,
if we look for the psx SC order, we add the term Hpair =
Pseed

∑
i(pi,sx + H.c.) to the Hamiltonian (1) and measure the

order parameter 〈(psx + H.c.)〉. For a η SC state, we use a
staggered local seed field with opposite signs on the two
sublattices and measure the SC order parameter 〈ηx

α〉 and SC
susceptibility χSC as

〈
ηx

α

〉 = Re[〈η+
α 〉] = 〈η+

α + η−
α 〉

2
, χSC =

〈
ηx

α

〉
Pseed

. (8)

This estimate works in the disordered state, not too close to
the transition. In the symmetry-broken phase there is no linear
relation between the order parameter and the applied seed
field. In practice, however, a large value of the above ratio
indicates an instability towards the superconducting phase.
The effective temperature and band filling can be controlled
by tuning the temperature and chemical potentials of the
fermion baths, which allows us to map out the phase diagram
of the nonequilibrium photodoped state in the space of triplon
density and Teff. For J = 0, all η pairing phases are degen-
erate and the highest transition temperature is Teff = 1/62.6.
A nonzero positive (negative) Hund coupling favors the spin
triplet (orbital triplet) η phases and the corresponding transi-
tion temperatures increase.
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FIG. 2. SC order parameter ηx
sx , ηx

ox and inverse susceptibility
1/χSC as a function of the triplon density for U = 20, J = 1, and
Pseed = 10−6. While χSC for η pairing is as high as 105 for large
triplon densities, it remains of order 1 for uniform pairing. The
effective temperature of the system is kept at βeff ≈ 60.0 by choosing
Tb = 0.01 and � = 0.02.

Figure 2 plots the SC susceptibility χSC and order param-
eter 〈ηx

sx〉 as a function of the triplon density for U = 20 and
J = 1. The η SC state appears at high triplon density (�0.46).
When this long range order develops, the value of the order
parameter becomes insensitive to the (small) seed field. On the
other hand, χSC defined in Eq. (8) takes a large value, which
scales ∝1/Pseed. We observe an order parameter of the order
of 10−1, which for Pseed = 10−6 corresponds to χSC ∼ 105.
Importantly, this order parameter is almost unchanged if the
seed is changed, which demonstrates that the order is due
to a spontaneous symmetry breaking (see Appendix D). For
comparison, we also plot in Fig. 2 the susceptibility for the
uniform order psx, which remains small.

The βeff vs triplon density phase diagram for the same in-
teraction parameters is shown in Fig. 3. At half filling, without
any photodoping, we have an antiferromagnetic (AFM) state,
which is quickly suppressed with increasing triplon density.
Over a wide region of intermediate photodopings, the system
is in a normal paramagnetic state. As we approach the ex-
treme doping limit, an η spin-triplet SC state is realized below
a sufficiently low effective temperature (βeff � 52.0). Com-
pared to the nonequilibrium DMFT results, the MF solution
overestimates the SC transition temperature (red triangle in
Fig. 3). This is because MF neglects temporal fluctuations.
Moreover, the effective model Heff, for which the MF solution
is calculated, is valid only in the large-U limit, while the
DMFT solution is affected by the bath couplings.

As mentioned earlier, in the two-orbital system there can be
various SC orders with different spin and orbital symmetries.
Thus, in Fig. 4, we also show the phase diagram for fixed
U = 20 and βeff = 60 in the space spanned by the triplon den-
sity and Hund coupling. The data for the orbital-triplet order
ηx

ox and spin-triplet order ηx
sx, on which this phase diagram is

based, are shown in the Fig. 9. Increasing |J| favors the η SC
order in both cases with a dominant ηx

sx pairing for positive
J . Insights into the J < 0 case can be obtained by noting that

FIG. 3. Phase diagram of the two-orbital model with U = 20,
J = 1, and � = 0.02 in the space of βeff and triplon density. The
AFM phase appears in the undoped and weakly photodoped region,
while the η SC state is stabilized in the high photodoping region. The
red triangle marks the MF transition temperature at triplon density
0.5. The right panel shows the color map of the order parameter
Re[η+

sx] in the high photodoping region. Here, Tb and μb are varied to
achieve different βeff.

the J > 0 model can be mapped (qualitatively) to the J < 0
model by the transformations ci,1↓ → ci,2↑ and ci,2↑ → ci,1↓
[53]. This exchanges the roles of spin and orbital and it is thus
natural that ηx

ox pairing becomes dominant for negative J . The
smaller region of ηx

ox pairing compared to ηx
sx is due to the

fact that the relevant interaction Ũα is larger for J < 0 than
for J > 0, which reduces the critical temperature (∝ t2

hop/Ũα)
for J < 0.

C. Optical conductivity

We finally calculate the optical conductivity and study how
the optical response changes as we approach the SC phase
from the normal phase. The steady state optical conductivity
σ (ω) is calculated for the Bethe lattice from the local Green’s
function, following Ref. [21].

FIG. 4. Nonequilibrium phase diagram in the space of triplon
density and Hund coupling J , for U = 20 and βeff = 60.
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FIG. 5. Optical conductivity results for U = 20, J = 1 and for
triplon density 0.473. (a) Order parameter ηx

sx as a function of ef-
fective temperature Teff. (b) Imaginary part and (c) real part of the
optical conductivity as a function of ω. The different colors in (b) and
(c) correspond to the corresponding data points in (a). The inset of
(b) shows the log-log plot of (shifted) Im[σ (ω)]. (d) Square root of
the SC phase stiffness D as a function of the order parameter ηx

sx .

Figure 5(a) shows the order parameter ηx
sx as a function

of Teff for the triplon density 0.473, U = 20, and J = 1. The
SC transition temperature is Tc ∼ 0.019. In both the normal
and SC state, in addition to a narrow Drude peak, which we
associate with the doublon population, the real part of σ (ω)
shows a range of negative spectral weight around ω ∼ 15
[panel (c)]. The latter comes from triplon-singlon recombi-
nation processes in the population inverted nonequilibrium
system, which are associated with local energy changes in the
range from U − 5J to U + J . The imaginary part, however,
shows a distinct low-frequency behavior in the SC and non-SC
states [panel (b)]. In the non-SC state (blue), Im[σ (ω)] de-
creases to 0 as ω → 0. The onset of superconductivity [green
dot in panel (a)] is marked by a diverging Im[σ (ω)] as ω → 0,
as shown by the green curve in panel (b). All the states which
have a lower Teff than this state, and hence are superconduct-
ing, exhibit a 1/ω divergence at low ω. The inset of Fig. 5(b)
shows the log-log plot of appropriately shifted Im[σ (ω)] and
we can clearly observe the 1/ω behavior below ω ≈ 10−1 for
the SC states (red and yellow). As Teff increases, the energy
region over which the 1/ω scaling can be observed decreases
and eventually disappears in the non-SC state (blue). We note
that all the curves in Fig. 5(b) show an approximate power-law
decay for ω > 10−1. However, the normal state behavior is
different from a 1/ω decay, as can be seen from the inset. The
1/ω scaling at low frequencies thus provides evidence for the
realization of a nonthermal SC state.

The 1/ω divergence of Im[σ (ω)] allows us to define the
SC phase stiffness D from the relation

lim
ω→0

Im[σ (ω)] = D

ω
.

In Fig. 5(d) we plot
√

D as a function of the order parameter
ηx

sx for fixed U = 20, J = 1 and observe a linear scaling. This
D ∝ |η|2/U scaling is reminiscent of the two-fluid model for
photodoped one-band Hubbard systems and holds in the entire
SC region [21].

IV. CONCLUSIONS

We demonstrated that, upon photodoping, staggered η SC
states can be realized in a small region near triplon density 0.5
in the half filled two-orbital repulsive Hubbard model. Unlike
in the single-band model, the relevant local states have spin
and orbital degrees of freedom, which potentially allows to
realize different SC states. We showed that a positive Hund
coupling enhances orbital-singlet spin-triplet η SC pairing,
whereas a negative Hund coupling favors orbital-triplet spin-
singlet η pairing. Due to the large U needed to stabilize the
nonequilibrium states, the highest Teff for realizing multior-
bital η pairing states are about an order of magnitude lower
than in the single-band case [21]. However, in the realistic
case where the energy unit is ∼0.5 eV, the SC state can still
be realized up to high effective temperatures of about 100 K.
A possible material to search for orbital-singlet spin-triplet η

pairing states is NiO, which is a Mott insulator with J > 0
that is often described by a half filled two-orbital Hubbard
model. It will also be interesting to explore if similar η pairing
states exist in photodoped three- or five-orbital systems and to
check if SC states coexisting with spin or orbital orders can be
realized.
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APPENDIX A: SCHRIEFFER-WOLFF TRANSFORMATION

Here we sketch the derivation of the effective Hamiltonian
used in the main manuscript for the photodoped two orbital
repulsive Hubbard model. We focus on the effective Hamil-
tonian projected onto the triplon (triply occupied sites) and
singlon (singly occupied sites) subspaces. A detailed deriva-
tion and more general analysis can be found in Ref. [56]. We
start with the two-orbital Hubbard model with Hund coupling
given in Eq. (1). Our main objective is to get an effective low-
energy Hamiltonian for high U (strong coupling limit) and
to project the effective Hamiltonian to different occupation
number sectors for nearest neighbor sites i and j.

First, we consider the case without Hund coupling (J = 0)
and perform a generalized Schrieffer-Wolff transformation
(SWT) using a rotating-frame time evolution [56]. We define
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the projected operators (or Hubbard operators) from the cre-
ation and annihilation operators as

c†
i,ασ =

4∑
n=1

Pi,nc†
i,ασ =

4∑
n=1

c̃†
i,ασ,n, (A1)

ci,ασ =
4∑

n=1

ci,ασ Pi,n =
4∑

n=1

c̃i,ασ,n, (A2)

where Pi,n is the projector to the states at site i with n particles.
Hence c̃†

i,ασ,n creates a particle in orbital α and with spin σ at
site i, resulting in a state with n particles at site i. Similarly,
c̃i,ασ,n annihilates a particle at site i in a state that has n
particles. Alternatively, these operators can also be written
as c̃†

i,ασ,n = c†
i,ασ Pi,n−1 and c̃i,ασ,n = Pi,n−1ci,ασ . With the in-

troduction of these projected operators, the kinetic (hopping)
term can be written as

Hthop =
∑
n,n′

Hthop,nn′ , (A3)

where Hthop,nn′ is given by

Hthop,nn′ = −thop

∑
〈i j〉

∑
ασ

c̃†
i,ασ,nc̃ j,ασ,n′

= −thop

∑
〈i j〉

∑
ασ

c†
i,ασ c j,ασ Pi,n−1Pj,n′ . (A4)

It can be seen from Eqs. (A3) and (A4) that the kinetic term
is divided into different sectors with fixed particle numbers at
sites i and j. With this notation we can proceed to perform
a rotating-frame transformation generated by the term of the
Hubbard Hamiltonian with the largest energy scale, HU . We
thus arrive at the rotating frame Hamiltonian Hrot given by

Hrot = −HU + eiHU t H e−iHU t . (A5)

The last term in the above expression can be expanded us-
ing the Baker-Campbell-Hausdorff (BCH) formula, which
requires the evaluation of [HU , H]. Since HU commutes with
all the other terms except Hthop , the commutator can be reduced
to [HU , Hthop ], which evaluates to

[
HU , Hthop

] =
∑
n,n′

[
HU , Hthop,nn′

]

=
∑
n,n′

(n − n′)UHthop,nn′ . (A6)

We can further simplify the notation by introducing a
new index m = n − n′, with which the commutator can be
written as

[
HU , Hthop

] =
∑

m

mU

(∑
n

Hthop,n n−m

)

≡
∑

m

mUHthop,m, (A7)

where m can take values from −3 to 3 with the constraint
4 > n − m � 0 and m �= 0. With these results, one can derive

the following expression for Hrot:

Hrot = Hμ +
∑

m

Hthop,meimUt . (A8)

This is a time-periodic Hamiltonian with frequency U . By
averaging out the high-frequency dynamics, we obtain the
low-energy effective Hamiltonian describing the nonstrobo-
scopic dynamics, which is given by

Heff = Hμ + Hthop,0 + Ht2
hop/U + O

(
t3
hop/U

)
, (A9)

Hthop,0 = −thop

∑
〈i j〉n

∑
ασ

c†
i,ασ c j,ασ Pi,n−1Pj,n + (i ↔ j),

(A10)

Ht2
hop/U =

∑
m �=0

Hthop,mHthop,−m

mU
. (A11)

By inserting the expressions for Hthop,m and neglecting three-
site terms, we arrive at

Ht2
hop/U = t2

hop

U

∑
〈i j〉

∑
n

⎛
⎜⎜⎝∑

α,α′
σ,σ ′

∑
ασ �=α′σ ′

c†
i,ασ c†

i,α′σ ′c j,α′σ ′c j,ασ

⎞
⎟⎟⎠

× Pi,n−2Pj,n

+ t2
hop

U

∑
〈i j〉

∑
n,m

1

m

⎛
⎜⎜⎝ni −

∑
α,α′
σ,σ ′

c†
i,ασ ci,α′σ ′c†

j,α′σ ′c j,ασ

⎞
⎟⎟⎠

× Pi,nPj,n−m−1 + (i ↔ j). (A12)

In the completely photodoped two-orbital system, each site
is either triply occupied (triplons) or singly occupied (sin-
glons). Therefore, we project the effective Hamiltonian to the
triplon-singlon subspace by choosing appropriate values for
n and m to obtain the projection operators Pi,1 (Pj,1) and Pi,3

(Pj,3). Then the projected Hamiltonian Ht2
hop/U can be divided

into three parts—the triplon-triplon part Htt
t2
hop/U

(Pi,3Pj,3),

singlon-singlon part Hss
t2
hop/U

(Pi,1Pj,1), and singlon-triplon part

Hst
t2
hop/U

(Pi,1Pj,3). Note that the three-site terms do not con-

tribute (within the triplon-singlon subspace) in a completely
photodoped system. The first term on the right hand side of
Eq. (A12) can be written in terms of η+ and η−, whereas
the second term can be decomposed into Kugel-Khomskii
spin-orbital terms [48]. To achieve the Kugel-Khomskii de-
composition we write the operator c†

iασ ciα′σ ′ as the product τ s
(where τ is the orbital-pseudospin and s is the spin operator)
with the following rule:

(α, α′) = (1, 1) → 1
2 + τ z, (2, 2) → 1

2 − τ z,

(1, 2) → τ+, (2, 1) → τ−,

(σ, σ ′) = (↑,↑) → 1
2 + sz, (↓,↓) → 1

2 − sz,

(↑,↓) → s+, (↓,↑) → s−. (A13)
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FIG. 6. Various second order hopping processes contributing to ηsx and ηox pairing. (a) c†
1↑c†

2↑ spin-triplet hopping and (b) c†
1↑c†

1↓ spin-
singlet hopping. (c) MF and DMFT ηx

sx superconducting order for U = 20 and for Hund coupling J = 0 and 1. Both MF (for triplon density
0.474) and DMFT (for triplon density 0.5) show an enhancement of the ηx

sx order upon inclusion of a Hund coupling J > 0.

This leads us to the expression for the effective Hamiltonian
for J = 0, which is shown in Eqs. (6) and (7) of the main
manuscript:

Hst
t2
hop/U = −4t2

hop

U

∑
〈i j〉,α

(η+
iαη−

jα + η−
iαη+

jα )

− 4t2
hop

3U

∑
〈i j〉

(
1

2
+ 2si · s j

)(
1

2
+ 2τi · τ j

)
, (A14)

Hss(tt )
t2
hop/U

= 2t2
hop

U

∑
〈i j〉

(
1

2
+ 2si · s j

)(
1

2
+ 2τi · τ j

)
. (A15)

The J �= 0 case can be analyzed by noting that in Eq. (A14)
the η terms come from second order hopping processes, where
the energy difference between the initial state and the inter-
mediate state depends on J . In the absence of Hund coupling
(J = 0), all the η superconducting pairings are degenerate,
since all the intermediate states differ by the same local energy
	E = U from the initial and final state. The inclusion of
Hund coupling lifts this degeneracy, as the intermediate dou-
blon states are no longer degenerate. As shown in Fig. 6(a),
for J > 0 the spin-triplet orbital-singlet ηsx pairing has in-
termediate doublon states which differ by the local energy
	E = U − 2J,U − 3J,U − 5J from the initial state (con-
sisting of a singlon-triplon pair with local energy 3U − 5J). In
Fig. 6(a), we only show the intermediate state for the hopping
process c†

1↑c†
2↑. It can be easily seen that all the other processes

involved in ηsx pairing have the same energy configurations.
Taking into account all the intermediate states in second order
perturbation theory, the effective Ũsx for spin-triplet ηsx pair-
ing can be calculated as

1

Ũsx
= 1

4

(
1

U − J
+ 2

U − 3J
+ 1

U − 5J

)
. (A16)

On the other hand, orbital-triplet spin-singlet ηox pairing has
intermediate doublon states with local energy differences
	E = U − J,U,U + J [see Fig. 6(b)] and thus the effective

Ũox is given by

1

Ũox
= 1

4

(
1

U − J
+ 2

U
+ 1

U + J

)
. (A17)

It follows from these expressions that J > 0 favors spin-triplet
ηsx pairing, because the lower Ũ results in a larger exchange
coupling. Similarly, J < 0 favors orbital-triplet ηox pairing.

APPENDIX B: NONEQUILIBRIUM SPECTRAL FUNCTION

The nonequilibrium single-particle spectra of multiorbital
systems with Hund coupling can be very different from the
equilibrium counterpart. In equilibrium, the half filled system
without Hund coupling (J = 0) has a band gap of U between
the lower and upper Hubbard band. Near the atomic limit
(U � thop), for J > 0, the two dominant Hubbard subbands
are separated by U + J , while for J < 0 the band gap is
U + 5|J|. In nonequilibrium photodoped systems, the triplon
sites have a local energy 3U − 5J and the removal of an elec-
tron from a triplon site can produce doublons with interaction
energy U , U − 2J , or U − 3J . Similarly, taking into account
the chemical potential term, a singlon can gain local energy
by the addition of an electron. Thus in the nonequilibrium
system, the splitting between the Hubbard bands, estimated as
EN=3

loc + EN=1
loc − 2EN=2

loc , is expected to cover the energy range
from approximately U − 5J to U + J .

Consistent with this expectation, in Figs. 1(b) and 1(c),
we see a smaller separation between the Hubbard bands for
J = 1 than for J = −1. Here, the substructures associated
with different doublon states are broadened due to the kinetic
term. By reducing the hopping thop, the corresponding peaks
can be made sharp. In Fig. 7(a), we plot the spectra for U =
20, J = 1, thop = 0.3. One can now clearly identify the fea-
tures produced by the different doublon states upon removal
of an electron from a triplon (upper Hubbard band) or addition
of an electron to a singlon (lower Hubbard band). As a result
of these peaks, the gap shrinks, compared to J = 0. Similarly,
Fig. 7(b) shows that, for J = −1, the additional peaks induced
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FIG. 7. Nonequilibrium spectra for (a) U = 20, J = 1 and
(b) U = 20, J = −1. Both spectra are obtained for a reduced thop =
0.3 and are compared with the undoped equilibrium spectrum for
U = 20, J = 0 (green). For J > 0 [panel (a)], additional peaks ap-
pear with an energy separation of approximately U − 5J and U −
3J , resulting in a smaller gap. In panel (b), for J < 0, a prominent
feature with an energy separation of approximately U + 5|J| ap-
pears, resulting in an overall larger separation of the Hubbard bands.

by photodoping lead to a broadening and enhanced splitting of
the Hubbard bands.

APPENDIX C: MEAN-FIELD DECOUPLING

We perform the mean-field (MF) decoupling on the effec-
tive model given by Eqs. (A14) and (A15), which (neglecting
a constant term) yields

Hts,MF
t2
hop/U

= −4t2
hop

U

∑
〈i j〉

[ ∑
α

(〈η+
iα〉η−

jα + 〈η−
iα〉η+

jα )

− 1

3
(〈si〉 · s j + 〈τi〉 · τ j + 4〈siτi〉s jτ j )

]
+(i→ j),

Hss(tt ),MF
t2
hop/U

= 2t2
hop

U

∑
〈i j〉

[〈si〉 · s j + 〈τi〉 · τ j + 4〈siτi〉s jτ j]

+ (i → j), (C1)

where the spin-orbital composite order siτ i can be defined
as a tensor (siτi )μν = ∑

ασ

∑
α′σ ′ c†

i,ασ σ
μ

σσ ′τ
ν
αα′ci,α′σ ′ . This MF

Hamiltonian can be solved self-consistently for η order. We
calculate the MF η order for the extremely photodoped
(triplon density 0.5) system. As mentioned earlier, in this
limit, each site is either a triplon or a singlon. So, all the
operators used in the MF Hamiltonian can be written in the
triplon-singlon basis. First, we note that there are four triplons
and four singlons denoted by

|t1↑〉i = t†
i,1↑|0〉i = c†

i,1↑c†
i,2↑c†

i,2↓|0〉i,

|t1↓〉i = t†
i,1↓|0〉i = c†

i,1↓c†
i,2↑c†

i,2↓|0〉i,

|t2↑〉i = t†
i,2↑|0〉i = c†

i,1↑c†
i,1↓c†

i,2↑|0〉i,

|t2↓〉i = t†
i,2↓|0〉i = c†

i,1↓c†
i,1↓c†

i,2↓|0〉i, (C2)

|s1↑〉i = s†
i,1↑|0〉i = c†

i,1↑|0〉i,

|s1↓〉i = s†
i,1↓|0〉i = c†

i,1↓|0〉i,

|s2↑〉i = s†
i,2↑|0〉i = c†

i,2↑|0〉i,

|s2↓〉i = s†
i,2↓|0〉i = c†

i,2↓|0〉i, (C3)

where |tασ 〉i denotes the triplon state, |sασ 〉i denotes the sin-
glon state, and |0〉i is the vacuum state at site i. Now, we
can define the triplon basis as T † = (t†

1↑, t†
1↓, t†

2↑, t†
2↓) and

the singlon basis as S† = (s†
1↑, s†

1↓, s†
2↑, s†

2↓). The triplon-
singlon basis is then written as ψ† = (T †, S†), which we
use to write the MF operators. For example, the η operator
takes a singlon and converts it into a triplon and vice versa.
So, η operators correspond to off-diagonal block matrices. On
the other hand, all the spin and orbital operators are block
diagonal in this basis.

Figure 6(c) shows the MF results for the order parameter
ηx

sx = Re[η+
sx] as a function of temperature T for U = 20

and triplon density 0.5. In the absence of Hund coupling
(J = 0), the MF SC transition temperature is T MF

c ∼ 0.026
(red dashed line), whereas the DMFT calculation shows a SC
transition temperature T DMFT

c ∼ 0.018 (red line) for triplon
density 0.474. This overestimation may be due to the fact that
we cannot reach the extreme doping (triplon density 0.5) limit
in DMFT and also because the MF calculation is based on an
effective model which is valid in the U � t limit. The MF
treatment also neglects temporal fluctuations and the coupling
to fermion baths, which may contribute to the comparatively
lower Tc in the DMFT calculations. However, consistent with
the DMFT results, we observe that the inclusion of a J > 0
Hund coupling term favors the spin-triplet orbital-singlet η

order, as shown in Fig. 6(c), where T MF
c is enhanced (blue

dashed line). The DMFT calculation shows the same trend
(solid blue line).

APPENDIX D: DMFT CALCULATIONS

As mentioned in the main text, in the DMFT calculations
the Green’s function G(t, t ′) and the hybridization function
	(t, t ′) are expressed in the Nambu basis. In order to mea-
sure the spin-triplet superconducting order, we introduce the
spinor ψ† = (c†

1↑, c2↑, c†
1↓, c2↓) so that the hybridization

function and the Green’s function can be written in this basis
as 4 × 4 matrices

	(t, t ′) =

⎡
⎢⎢⎢⎢⎢⎢⎣

	c†c
1↑1↑ 	c†c†

1↑2↑ 0 	c†c†

1↑2↓

	cc
2↑1↑ 	cc†

2↑2↑ 	cc
2↑1↓ 0

0 	c†c†

1↓2↑ 	c†c
1↓1↓ 	c†c†

1↓2↓

	cc
2↓1↑ 0 	cc

2↓1↓ 	cc†

2↓2↓

⎤
⎥⎥⎥⎥⎥⎥⎦

,

G(t, t ′) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Gcc†

1↑1↑ Gcc
1↑2↑ 0 Gcc

1↑2↓

Gc†c†

2↑1↑ Gc†c
2↑2↑ Gc†c†

2↑1↓ 0

0 Gcc
1↓2↑ Gcc†

1↓1↓ Gcc
1↓2↓

Gc†c†

2↓1↑ 0 Gc†c†

2↓1↓ Gc†c
2↓2↓

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The DMFT self-consistency equations in this Nambu basis
can be written as 	(t, t ′) = t2

0 γ G(t, t ′)γ . For uniform su-
perconducting order γ is a diagonal matrix given by γ =
diag(1, −1, 1, −1) and for staggered η superconducting
order γ is a unity matrix γ = diag(1, 1, 1, 1). Please
note that to measure the spin-triplet order we assume there
is no intraorbital superconducting order like c†

α↑c†
α↓. In a
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FIG. 8. (a) Spin-triplet orbital-singlet superconducting order ηx
sx as a function of triplon density for different seed fields Pseed for U = 20,

J = 1, � = 0.02, and βeff = 60. In the superconducting state (triplon density above 0.463) the values of the order parameter become essentially
independent of the seed field, which indicates a spontaneous symmetry breaking. Panels (b) and (c) show the phase diagrams in the βeff and
triplon density space for U = 20 and J = 1. The effective temperature βeff is controlled by tuning two different parameters—the coupling to
the fermion bath (� = 0.01 to 0.03) in (b) and the temperature of the fermion bath (keeping the coupling constant at � = 0.02) in (c), whereas
the triplon density is mainly controlled by the chemical potential of the fermion baths μb. The color map indicates the order parameter.

similar manner, for measuring the spin-singlet order, we
assume no interorbital pairing and write the hybridization
function and Green’s function in the spinor basis ψ† =
(c†

1↑, c1↓, c†
2↑, c2↓). For the derivation of these DMFT

equations, one can follow Ref. [50].
To measure a specific superconducting order, we apply a

small seed field Pseed and couple it to the superconducting
order and keep it on during the self-consistent calculation
DMFT calculation. In a symmetry-broken state, except close
to the phase transition point, the order parameter should not
strongly depend on the seed field. We demonstrate this in
Fig. 8(a), where seed fields of different orders of magnitude
(10−4, 10−5, 10−6) were applied to measure ηx

sx for U = 20
and J = 1. The value of the order parameter ηx

sx is essentially
independent of the seed field above triplon density 0.463,
which indicates the existence of a symmetry-broken state.
We have also checked that the value of the order parame-
ter remains fixed even if we switch off the seed field after
a certain number of DMFT iterations. For triplon densities
below 0.463, the order parameter is reduced if the seed field is
reduced, suggestive of a normal state. Our data indicate a dis-
continuous transition from the normal to the superconducting
phase at the given effective temperature (Teff = 1/60).

The nonequilibrium steady state corresponds to a partially
thermalized photodoped state, where the electrons are ther-
malized within each Hubbard band. Such a state should be
described by a well-defined effective temperature which we
can find by comparing the distribution function of the elec-
trons in each Hubbard band to an appropriately shifted Fermi
distribution function. In order to demonstrate that the nonequi-
librium state is indeed described by an effective temperature
Teff = 1/βeff, we cool the system by varying different param-
eters. Our calculation shows that the steady state is described
by the same order parameter at a fixed βeff and it does not
depend on how this temperature is achieved. Figures 8(b) and
8(c) show the phase diagram of photodoped systems with
U = 20 and J = 1, obtained by tuning the coupling to the
fermion bath [Fig. 8(b)] and by tuning the temperature of the
fermion bath [Fig. 8(c)]. It can be seen that the phase diagram

is essentially independent of the tuning parameter used to cool
down the system.

Finally, we show in Fig. 9 the phase diagram for a
photodoped system with U = 20 and βeff = 60 in the space
spanned by the Hund coupling J and triplon density. Our cal-
culation shows that indeed η pairing is favored as we increase
the Hund coupling J , which is qualitatively consistent with the
MF result. In Fig. 9 we plot both the spin-singlet orbital-triplet
order ηx

ox [Fig. 9(a)] and the spin-triplet orbital-singlet order
ηx

sx [Fig. 9(b)]. We observe that both superconducting orders
are stabilized in the presence of a nonzero J . But the ηx

sx order
has higher values for J > 0. This suggests that, for positive
values of J , the dominant superconducting order is given by
ηsx, whereas for negative J the orbital-triplet order ηox is the
dominant order. The resulting phase diagram is consistent
with the fact that the J < 0 model can be mapped qualitatively
to the J > 0 model by flipping the spin and orbital degrees
of freedom as ci,1↓ → ci,2↑ and ci,2↑ → ci,1↓ [53]. After this
transformation the density-density interaction terms of the
Hamiltonian become

HU = Ũ

2

∑
i

∑
α=1,2

∑
σσ ′

ni,ασ ni,ασ ′ , (D1)

HJ = −J
∑
i,σ

ni,1σ ni,2σ̄ − 3J
∑
i,σ

ni,1σ ni,2σ

= |J|
∑
i,σ

ni,1σ ni,2σ̄ + 3|J|
∑
i,σ

ni,1σ ni,2σ . (D2)

Defining Ũ = U − 3J = U + 3|J|, the intraorbital repulsion
for negative J becomes Ũ = U + 3|J|, the interorbital re-
pulsion for same spins Ũ − 3|J| = U , and the interorbital
repulsion for opposite spins Ũ − |J| = U + 2|J|. Moreover,
since the spin and orbital degrees of freedom are exchanged
in this transformation, the superconducting order parameter
changes as

(c†
1↑c†

2↑ − c†
1↓c†

2↓) → (c†
1↑c†

1↓ − c†
2↑c†

2↓). (D3)
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FIG. 9. Nonequilibrium phase diagrams for η superconductivity in the space of triplon density and Hund coupling. The orbital-triplet order
ηx

ox is plotted in (a) and spin-triplet order ηx
sx is plotted in (b), with the color map indicating the order parameter (O.P.). ηx

sx dominates the J > 0
region, while ηx

ox dominates the J < 0 region. The qualitative equivalence of the J > 0 and J < 0 models is shown in panel (c) by plotting ηx
sx

for U = 20, J = 1 and ηx
ox for Ũ = U + 3|J| = 20, J = −1 as a function of the triplon density at βeff = 60.

Thus we expect an orbital-triplet η order for J < 0. The
higher effective Ũ explains the smaller superconducting
region in the phase diagram for negative J . This qualita-
tive equivalence of the J > 0 and J < 0 models is further
verified in Fig. 9(c), where we compare the ηsx order for

the U = 20, J = 1 model to the ηox order for the U =
17, J = −1 (Ũ = 20) model as a function of triplon den-
sity at βeff = 60. Both curves (red and blue) almost fall on
top of each other, which demonstrates the validity of the
mapping.
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