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Enhanced chiral edge currents and orbital magnetic moment in chiral d-wave
superconductors from mesoscopic finite-size effects
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Chiral superconductors spontaneously break time-reversal symmetry and host topologically protected edge
modes, supposedly generating chiral edge currents which are typically taken as a characteristic fingerprint of
chiral superconductivity. However, recent studies have shown that the total edge current in two dimensions
(2D) often vanishes for all chiral superconductors except for chiral p-wave, especially at low temperatures,
thus severely impeding potential experimental verification and characterization of these superconductors. In this
work, we use the quasiclassical theory of superconductivity to study mesoscopic disk-schaped chiral d-wave
superconductors. We find that mesoscopic finite-size effects cause a dramatic enhancement of the total charge
current and orbital magnetic moment (OMM), even at low temperatures. We study how these quantities scale
with temperature, spontaneous Meissner screening, and system radius R ∈ [5, 200]ξ0 with superconducting
coherence length ξ0. We find a general 1/R scaling in the total charge current and OMM for sufficiently large
systems, but this breaks down in small systems, instead producing a local maximum at R ≈ 10–20ξ0 due to
mesoscopic finite-size effects. These effects also cause a spontaneous charge-current reversal opposite to the
chirality below R < 10ξ0. Our work highlights mesoscopic systems as a route to experimentally verify chiral
d-wave superconductivity, measurable with magnetometry.

DOI: 10.1103/PhysRevB.108.174505

I. INTRODUCTION

Chiral superconductors have recently sparked great inter-
est [1–4], as they are topologically nontrivial and have been
suggested as a platform to realize topological quantum com-
puting [5–10]. Chiral superconductivity, and more generally
superfluidity [11–13], is characterized by a multi-component
and complex-valued order parameter �(R, pF) with a ground
state which breaks time-reversal symmetry in the bulk [14],
�(R, pF) = �1(pF) ± i�2(pF) = |�|eiχe±i|M|θF , where R is
the center-of-mass coordinate, pF = pF(cos θF, sin θF) is the
Fermi momentum on the Fermi surface (FS), |�| is the
maximum gap in the quasiparticle spectrum, and χ is
the superconducting phase. Here, M = ±|M| is the Chern
number of the two degenerate ground states of opposite chiral-
ities and related to the winding of the order parameter on the
FS. Even (odd) M correspond to spin-singlet (spin-triplet) su-
perconductivity, where |M| = 1, 2, 3 in two dimensions (2D)
generate chiral p, d, f -wave, respectively. Early studies have
primarily focused on spin-triplet chiral p-wave or f -wave
superconductivity [1,2,15–19]. Interestingly, recent studies
have also proposed spin-singlet chiral d-wave superconduc-
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tivity in many materials, including twisted bilayer cuprates
[20,21], SrPtAs [22–25], Sn/Si(111) [26], twisted bilayer
graphene [27–35], Bi/Ni bilayers [36,37], URu2Si2 [38–41],
and LaPt3P [42].

The topologically nontrivial bulk order parameter of chiral
superconductors leads to topologically protected chiral edge
modes through the bulk-boundary correspondence [43–49].
The chiral edge modes in turn should presumably gener-
ate chiral edge currents and the condensate pairs also carry
a relative orbital angular momentum (OAM) lz = Mh̄ with
reduced Planck constant h̄ [50–66]. However, while chiral
superconductors more generally belong to the class of inte-
ger quantum Hall systems [67–69], the chiral currents (and
OAM) are actually not topologically protected [67,70], unlike
in, e.g., Chern insulators. Specifically, charge is not a con-
served quantity in superconductors, making all charge-related
quantities unprotected, and chiral superconductors also lack
a proper Chern-Simons action related to a current-current
correlation but instead correspond to a current-density cor-
relation [62,63]. As a result, the overall contribution of the
edge modes to the OAM and chiral current, i.e., both charge
and mass currents, have been shown to be highly variable
and nonintrinsic, depending on, e.g., boundary conditions,
impurities, gap anisotropy, pairing symmetry, and band effects
[65,71–86]. Several of these studies have shown that both the
OAM and the total current (i.e., integrated current density)
are typically much smaller in chiral d-wave superconductors
compared to in chiral p-wave superconductors. In fact, it was
shown that with a sharp confining potential in 2D, the OAM
and total current even vanish at low temperature in the BCS
limit (|�| � EF with Fermi energy EF) for all chiral states,
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except the isotropic chiral p-wave state [73,75]. A vanishing
current has also been found in certain chiral p-wave systems
[76] and in the microscopic limit on, e.g., a square lattice
[73], although chiral d-wave superconductivity on the honey-
comb lattice still generate finite edge charge currents [70]. For
more details, see Ref. [84] and references therein. This severe
or even complete suppression of the edge currents, hampers
experimental verification and characterization of proposed
chiral d-wave superconductors, since the chiral currents are
typically taken as a fingerprint of chiral superconductivity.
It therefore becomes important to identify situations where
the currents can be generally enhanced, or to find alternative
fingerprints [87,88]. In this work, we focus on the former
scenario, showing that the chiral charge currents and orbital
magnetic moment (OMM) (i.e., the charged analog of the
OAM) can in fact be enhanced and even have a maximum
at low temperatures in the BCS limit, due to mesoscopic
finite-size effects. Moreover, with these quantities being di-
rectly related to electric charge and magnetism, they offer
straightforward possibilities for experimental detection.

In particular, in this work, we study how the chiral charge
currents and OMM depend on the system radius R, tempera-
ture T , and spontaneous Meissner screening (self-screening)
in mesoscopic chiral d-wave superconductors. We find two
size regimes dominated by completely different physical be-
havior. For large system sizes, R > 20ξ0, we find a 1/R
scaling for the total charge current and OMM, thus repro-
ducing previous results of vanishing current in semi-infinite
systems (i.e., as R → ∞) [84]. Here, our natural length unit
is ξ0 ≡ h̄vF/2πkBTc, which is the effective superconducting
coherence length [89] over which superconducting phenom-
ena typically vary, with Fermi velocity vF(pF) = |vF(pF)| on
the FS and Boltzmann’s constant kB. However, in smaller
systems R < 20ξ0, we find that the spectrum is highly mod-
ified by hybridization between different portions of the disk
edge and current conservation enforcing a faster suppression
of the current density as function of distance from the edge.
The combination of these effects even produce a sign reversal
of the total charge current below R < 10ξ0. The existence
of these two distinct finite-size regimes lead to a strongly
enhanced charge current and OMM with local maxima at
R ≈ 20ξ0 and R ≈ 10ξ0, respectively, and also notably with
a maximum at low temperatures, which is in stark contrast
to the vanishing current previously reported at the lowest
temperatures for larger systems [81]. Specifically, while the
vanishing current in the semi-infinite scenario has previously
been explained in terms of canceling positive versus neg-
ative contributions from the multiple edge modes [81], we
demonstrate that finite-size effects tip this balance by favoring
the positive (negative) contribution above (below) R ≈ 10ξ0.
We attribute this emergent length scale to the complicated
spatial dependence of the propagators that is averaged over
multiple confinement scales. We further find that extremely
strong self-screening causes a suppression of the charge
current and OMM, but also a strong enhancement of the
local induced magnetic-flux density which can be measured
with magnetometry techniques, e.g., via a superconducting
quantum interference device (SQUID) [90–105]. Our results
thus demonstrate generically finite charge currents and OMM
in chiral d-wave superconductors enhanced by mesoscopic

finite-size effects, specifically edge-edge hybridization, and
effects of current conservation. As a consequence, mesoscopic
superconductors may be a viable route to experimental verifi-
cation of chiral superconductivity.

The rest of this work is outlined as follows. We present
our theoretical model and methods in Sec. II. Section III
gives a background with general properties of chiral d-wave
superconductivity and its order parameter. Section IV gives a
general background of chiral edge modes and compares them
with flat bands of Andreev bound states (ABS), followed by a
study of edge-edge hybridization in finite systems. Section V
presents our main results, consisting of the system-size de-
pendence and temperature dependence of the charge-current
density, total charge current, and OMM. Section VI studies
the effects of self-screening on these quantities for different
system sizes. The work is concluded in Sec. VII. Appendices
contain further details on our theoretical formalism, analytic
calculations in bulk and at interfaces, and additional numerical
results.

II. MODEL AND METHODS

Chiral d-wave superconductivity has been proposed in a
number of materials, with widely different atomic structures
and properties [20–42,49,106–110]. In this work, we aim to
study properties that are naturally emergent from the chiral
d-wave pairing symmetry. This section describes our model
and theoretical framework.

A. Model

We are primarily interested in the combined influence
of mesoscopic finite-size effects, temperature, and sponta-
neous Meissner screening on the steady-state charge current
and its signature in spin-singlet chiral d-wave supercon-
ductors. We therefore appropriately assume equilibrium and
spin degeneracy without additional spin-orbit interactions, in-
stead leaving such effects as an interesting outlook. Since
many proposed chiral d-wave superconductors are layered
materials [20–37] and some of these are weakly coupled,
we consider weak-coupling superconductivity in 2D aligned
with the xy-plane in our coordinate system, further modeling
a cylindrically symmetric FS such that there is translational
invariance along ẑ [111]. For clarity, we further assume clean
systems with specular surfaces (i.e., perfect specular reflection
boundary conditions that conserve the surface-parallel mo-
mentum [112]), but effects of diffuse scattering are also briefly
discussed. We do not consider the possibility of boundary-
enhanced superconductivity as studied in Refs. [113–117]
which is primarily relevant for temperatures T close to the
critical temperature Tc, while the most interesting effects we
find happen sufficiently below Tc. We consider effects of
spontaneous Meissner screening of the chiral currents, due
to a finite London-penetration depth λ0 ≡

√
c2/(4πe2v2

FNF)
setting the effective length-scale of magnetic screening and
induction, where c is the speed of light, e = −|e| the ele-
mentary charge, and NF the normal-state density of states
(per spin) at the Fermi level. We assume type-II supercon-
ductivity, appropriate for layered materials, thin films, nonele-
mental materials or most unconventional superconductors.
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Type-II superconductivity is typically quantified via the
Ginzburg-Landau parameter κ ≡ λ0/ξ0 > 1/

√
2 (or more ap-

propriately via the critical fields) [118–121].

B. Quasiclassical theory: separation of scales

We focus our attention on the low-energy physics close
to the FS, where superconductivity is most important, and
note that there is typically a separation in the relevant length-
and energy-scales in many superconductors. In particular, the
superconducting gap |�| is usually much smaller than the
Fermi energy EF, while the superconducting coherence length
ξ0 is often much larger than both the Fermi wavelength h̄/pF

and the atomic length scale a0. In such superconductors,
the low-energy (long-wavelength) physics can be separated
from the high-energy (short-wavelength) contributions. The
quasiclassical theory of superconductivity [112,122–131] is a
controlled expansion in the resulting small parameters, e.g.
|�|/EF and h̄/(pFξ0), and where the leading-order terms are
obtained from the low-energy bands close to the FS. Higher-
energy contributions can still be inserted into the theory, e.g.
through microscopic boundary conditions [132–139].

In quasiclassical theory, spatial variations typically occur
on the mesoscopic length scales set by ξ0 and λ0. In particular,
the propagation of quasiparticles and superconducting pairs
are captured by the quasiclassical propagators g(pF, R; z)
and f (pF, R; z), respectively. Here, z is the complex-valued
energy of the corresponding propagator. In this work, the re-
tarded propagator gR(pF, R; ε) with zR ≡ ε + iδ (real energy
ε and small positive broadening δ) is used to calculate the
local density of states (LDOS)

N (R; ε) = −2NF

π
〈Im[gR(pF, R; ε)]〉pF , (1)

with total density of states (DOS) N (ε) = ∫
A d2RN (R, ε) in-

tegrated over the system area A, and where the angle brackets
denote the FS average [111]

〈. . . 〉pF
= 1

NF

∮
FS

dpF

(2π h̄)2|vF(pF)| (. . . ), (2)

which is a line integral in 2D averaging over the Fermi-
momentum direction. Similarly, the normal-state density of
states (per spin) can further be expressed as

NF =
∮

FS

dpF

(2π h̄)2|vF(pF)| , (3)

and the Fermi velocity is parametrized via the FS according
to vF(pF) = ∇pε(p)|p=pF , with dispersion ε(p). Matsubara
propagators gM(pF, R; εn) and f M(pF, R; εn) are used for all
other quantities as described in the following, evaluated on
the imaginary axis via the Matsubara energies zM ≡ iεn =
iπkBT (2n + 1) with temperature T and integer n. In Nambu
(particle-hole) space, we construct

ĝ(pF, R; z) =
(

g(pF, R; z) f (pF, R; z)
− f̃ (pF, R; z) g̃(pF, R; z)

)
, (4)

where “tilde” denotes particle-hole conjugation α̃(pF, R; z) =
α∗(−pF, R; −z∗). We briefly drop the arguments (pF, R; z) for
a more compact notation and follow the Eilenberger formula-

tion where ĝ is solved from the Eilenberger equation [122]

ih̄vF · ∇ĝ + [zτ̂3 − ĥ, ĝx] = 0, (5)

with the normalization condition ĝ2 = −π2τ̂0. Here, τ̂i are the
4×4 Pauli-spin matrices in Nambu space with identity matrix
τ̂0, while ĥ are the self-energies, which we divide into diagonal
(̂) and off-diagonal (�̂) parts,

ĥ = ̂ + �̂ =
(

 �

�̃ ̃

)
. (6)

Here, � is the mean-field superconducting order parameter as
described in Sec. II C, while  generally includes different
interactions and other diagonal self-energies. In this work, 

captures the electrodynamics, see Sec. II D.

C. Superconductivity

Assuming an even-parity spin-singlet superconductor, the
effective pairing interaction V (pF, p′

F) is decomposed into
the symmetry channels of the corresponding crystallographic
point group [140],

V (pF, p′
F) =

∑
�

V�η� (pF)η†
� (p′

F). (7)

Here, � labels the even-parity spin-singlet irreducible repre-
sentations, V� the pairing strength of the respective symmetry
channel, and η� (pF) is the basis function encoding the pair-
ing symmetry on the FS. Similarly, the total superconducting
order parameter �(pF, R) is written as

�(pF, R) =
∑

�

�� (pF, R) =
∑

�

|�� (R)|eiχ� (R)η� (pF),

(8)

where each symmetry channel is associated with an order
parameter component �� (pF, R) with amplitude |�� (R)| and
phase χ� (R). We use the efficient “Ozaki summation” [141]
based on the Matsubara technique [142–146] to solve the
order parameter self-consistently from the superconducting
gap equation

�(pF, R) = NFkBT
|εn|<�c∑

n

〈
V (pF, p′

F) f (p′
F, R; εn)

〉
p′

F
, (9)

where the cutoff �c is effectively the bandwidth of the pairing
interaction [131].

In this work, we study chiral d-wave superconductiv-
ity, requiring finite pairing channels � ∈ {dx2−y2 , dxy} with
ηdx2−y2 (pF) = √

2 cos(2θF) and ηdxy (pF) = √
2 sin(2θF), where

additional pair correlations of other symmetries are automati-
cally included in the theory (e.g., s-wave), while the influence
of other attractive pairing channels [147] is left as an outlook.
We assume a degenerate pairing with equal V� in both d-wave
channels which is enforced by symmetry in any material with
a three- or sixfold rotationally symmetric lattice [49], thus
relevant for many of the recently proposed chiral d-wave
superconductors [22–35]. We thus consider a total order pa-
rameter of the form

�(pF, R) = �dx2−y2 (pF, R) + �dxy (pF, R). (10)
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To better highlight the chiral properties, it is useful to rewrite
the superconducting order parameter from Eq. (10) in the
eigenbasis η±(pF) of the orbital (orb) angular-momentum op-
erator, L̂orb

z ≡ (h̄/i)∂θF , via the linear combination

�(pF, R) = �+(pF, R) + �−(pF, R), (11)

�±(pF, R) ≡ |�±(R)|eiχ±(R)η±(pF), (12)

η±(pF) ≡
ηdx2−y2 (pF) ± iηdxy (pF)

√
2

= e±i2θF . (13)

We see that �± corresponds to a relative phase shift ±π/2
between the components �dx2−y2 and �dxy . There is no loss in
generality in this basis change (it is valid even in the nonchiral
state, see Sec. III for definition of chiral state). Equating
Eq. (10) with Eq. (11) yields the transformation between the
two parametrizations

|�±(R)|eiχ±(R) = 1√
2

(|�dx2−y2 (R)|eiχd
x2−y2 (R)

∓ i|�dxy (R)|eiχdxy (R) ). (14)

For comparison, we can generalize Eq. (12) for a super-
fluid of angular order M (often referred to as the chiral
order), i.e., the Chern number [43–49], where in 2D even and
odd M correspond to spin-singlet and spin-triplet (e.g., M =
±1,±2,±3 for p, d, f -wave respectively), �±(pF, R) =
|�±(R)|eiχ±(R)eiMθF . Indeed, this state is an eigenstate of
L̂orb

z �±(pF, R) = lorb�±(pF, R) with eigenvalue lorb = h̄M
This corresponds to a condensate which carries an OAM
along the ±ẑ axis [58]. In contrast, a nonchiral state, like a
nodal or nematic d-wave state [148], is not an eigenstate of
L̂orb

z . We from here on refer to �dx2−y2 and �dxy as the nodal
components, and �± as the chiral components.

Finally, note that apart from applying a start guess to the
order parameter, we do not constrain the order parameter
components �� or their phases χ� in any way. Instead, we let
them evolve completely independently in the self-consistency.
This in principle allows the system to find a nonchiral state,
but we always find the chiral state to be stable.

D. Self-consistent electrodynamics

Electrodynamical interactions coupling to the orbital de-
grees of freedom which are either caused by external magnetic
fields (ext) or magnetic induction (ind) enter the diagonal
self-energies ̂ via

̂ = −e

c
vF(pF) · A(R)τ̂3, (15)

where A(R) = Aext (R) + Aind(R) is the electromagnetic
gauge field. The magnetic flux-density, B(R) = Bext (R) +
Bind(R), is related to the vector potential via B(R) = ∇ ×
A(R). We do not consider external flux in this work, such that
Bext = 0 and Aext = 0. Still, Aind is an induced vector potential
due to spontaneous charge currents in the system, related via
Ampère’s law

∇ × Bind(R) = ∇ × ∇ × Aind(R) = 4π

c
j(R). (16)

The charge-current density is in turn given by

j(R) = 2eNFkBT
|εn|<�c∑

n

〈vF(pF) g(pF, R; εn)〉pF
, (17)

which we express in units of j0 ≡ h̄|e|v2
FNF/ξ0 =

2π |e|kBTcNFvF. Here j(R) is the total charge-current
density with contributions from both quasiparticles
and superconducting pairs (hence j is conserved with
∇ · j = 0). The induction gives rise to an additional
self-consistency equation, Eq. (16), to be solved together
with the self-consistent superconducting gap equation,
Eq. (9). We note that the induction is effectively weighted by
a factor (λ0/ξ0)−2 � 1 [149], which for extreme type-II
superconductors (λ0 � ξ0) often makes the induction
negligible when λ0 � R. Still, we always solve both �

and A fully self-consistently when λ0 is finite, using Eqs. (9)
and (16).

The orbital magnetic moment (OMM) m = mz ẑ (per 2D
layer with area A) is computed from the charge-current den-
sity via [112]

m
m0

≡ 1

2

∫
A

d2R
A

R
ξ0

× j(R)

j0
, (18)

with natural units m0 = Nh̄|e|/m∗ = 2µBN , Bohr magneton
µB = h̄|e|/2m∗, particle number N , and effective quasipar-
ticle mass m∗ defined via pF = m∗vF. We note the analog
between the OMM in Eq. (18) and the orbital angular momen-
tum (OAM) Lorb = ∫

A d2R R × jm(R), typically expressed in
units L0 = Nh̄/2, with mass-current density jm [65].

Finally, we introduce the area-averaged induced flux den-
sity (or equivalently total induced flux)

�ind =
∫
A

d2RBind(R), (19)

with flux quantum �0 ≡ hc/2|e| and Planck constant h.

E. Calculations details

We use the Riccati formalism
[125,126,128,129,131,135,139] described in Appendix A
to solve the Eilenberger equation, Eq. (5), numerically,
specifically using the open-source framework SuperConga
[112] which is free to download from its Gitlab repository
[150] with extensive documentation [151]. See Ref. [112]
for extensive implementation details. Equations (5), (9),
and (16) are solved self-consistently in an iterative
process by starting from an appropriate start guess, and
proceeding until the global error εG of quantity Oi at
iteration number i is εG = ‖Oi − Oi−1‖2/‖Oi−1‖2 < εtol for
O ∈ {�(pF, R), A(R), j(R),�} and tolerance εtol. In the
present work, we set the tolerance to εtol = 10−7, use a spatial
resolution of 20 discrete points per coherence length, and
use an energy cutoff �c � 100kBTc. We parametrize the FS
with 256 discrete points, except at low temperature or when
computing the LDOS, in which cases we use 512 and 720
discrete points, respectively. We find these values sufficient,
as we do not notice any difference with finer resolution.

In order to investigate the influence of finite geometry, we
simulate discs with radii R ∈ [5, 200]ξ0, temperatures T ∈
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[0.01, 0.99]Tc, and penetration depths λ0 via κ ≡ λ0/ξ0 ∈
[1,∞). We keep the same spatial resolution when chang-
ing R, and keep all parameters fixed during the process of
converging towards the self-consistent solution. In order to
avoid divergences in the LDOS calculation, we use a small,
phenomenological, energy broadening δ ∼ 0.03kBTc in all the
LDOS calculations.

In order to improve the understanding and interpretation of
our numerical results, we provide supplementary analytic cal-
culations in Appendices B and C for bulk and edge scenarios,
respectively.

III. BACKGROUND: CHIRAL d-WAVE
SUPERCONDUCTIVITY

To set the stage for our studies of the chiral edge modes and
charge currents in the subsequent sections, we here review the
basic properties of a chiral d-wave order parameter in a finite
system.

A chiral d-wave superconductor is characterized by the
existence of two degenerate ground states of opposite chi-
ralities, here denoted �+(pF, R) and �−(pF, R) defined in
Eqs. (11)–(13). At the onset of chiral superconductivity, the
bulk superconductor spontaneously chooses one of the two
chiral states (�±) as the dominant order, while the other
state (�∓) becomes subdominant and vanishes asymptotically
[152]. Hence, the order parameter takes the approximate form
�(pF, R) ≈ �±(pF, R) in these domains, which leads to a
fully gapped state [1–4]. Since the two states �+ and �− are
related via time reversal symmetry, the appearance of a dom-
inant chirality leads to spontaneous time-reversal symmetry
breaking [43,153]. The overall global features of the super-
conductor is determined by this dominant component. The
subdominant component can still carry additional information
about local features as it is induced within a few coherence
lengths close to spatial inhomogeneities, such as interfaces,
defects and vortices [154,155]. Hence, in the presence of
such inhomogeneities, the order parameter is not in a pure
chiral state, and takes the more general form �(pF, R) =
�+(pF, R) + �−(pF, R) from Eq. (11). In Fig. 1, we demon-
strate the behavior of the chiral d-wave order parameter solved
self-consistently as described in Sec. II, in a mesoscopic sys-
tem shaped like a disk with dominant component �−, but
where the subdominant component �+ arises close to the
edge. For comparison, we show results with both parametriza-
tions [(a) and (b)] � = �dx2−y2 + �dxy and [(c) and (d)] � =
�+ + �−, while (e) and (f) show the spatial dependence
of the order parameter amplitudes at different temperatures,
starting at the edge (y = 0) where we find |�+| = |�−|. This
degeneracy is related to the surface suppression of one of the
nodal components (�dxy at a [100] interface) due to its sign
change, leading to surface bound states that locally enhances
the other nodal component (�dx2−y2 ) [65]. We study edge states
in detail in Sec. IV.

We note that bulk chiral superconductivity recovers over a
characteristic and effective length scale r0 ≈ 6–10ξ0 (depend-
ing on, e.g., temperature), typical for many inhomogeneous
superconducting phenomena in clean and mesoscopic sys-
tems [149,156–158]. We trace the length scale r0 as naturally
emerging from the typical spatial dependence for the ballis-
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FIG. 1. Ground-state order parameter of a chiral d-wave super-
conductor with disk radius R = 25ξ0, dominant chirality �−, T =
0.1Tc, λ0 = ∞. [(a) and (b)] Amplitudes of nodal components, and
(c,d) chiral components. [(e) and (f)] Temperature dependence of the
order parameter amplitudes, as a function of the distance from a [100]
edge, along the dashed line (x = 25ξ0) in (a). Temperatures vary from
T = 0.1Tc (blue) to T = 0.9Tc (red), in steps of �T = 0.1Tc.

tic propagators in nonuniform environments. For example,
at a [100] interface with translational invariance along x (or
equivalently large radius of curvature compared to ξ0), this
spatial dependence is captured by the appearance of fac-
tors exp(−y/ξy) in the quasiparticle propagators and pair
propagators. Here, ξy denotes the effective “nonconstant
coherence length” [157], which we derive analytically in
Appendix C 1 as

ξy(pF; εn; T ) = h̄
∣∣vF,y(pF)

∣∣
2
√|�(pF; T )|2 + ε2

n (T )
, (20)

where vF,y(pF) is the y component (i.e., perpendicular to the
surface) of the Fermi velocity vF(pF). To compute most quan-
tities, the propagators are averaged over the FS (as described
in Sec. II), which means that the factor exp(−y/ξy) essentially
capture multiple confinement scales ξy(pF; εn; T ) [65], and
illustrates how the boundaries couple the real-space ballistic
trajectories to the momentum-space dependence on the FS, as
well as the temperature and energy dependence. In averaging
the propagators over the FS and summing over Matsubara en-
ergies, the temperature-dependent decay length r0 over which
bulk superconductivity recovers emerges through the expo-
nential factors. However, due to the nontrivial averages and
sums, a direct relation between r0 and ξy seems intractable,
and we therefore treat r0 as an emergent length scale which
ultimately depends on the superconducting coherence length
via ξy. Finally, we note that as the system radius R becomes
comparable to r0, there is a strong wave function overlap
between different pairbreaking portions of the edge, conse-
quently causing significant reduction of both nodal d-wave
components in the entire system, see Appendix D 1 where
we include additional results explicitly showing how the order
parameter changes with R. In Sec. IV, we show that this over-
lap is also associated with an edge-edge hybridization of the
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FIG. 2. (a) Subgap spectrum N (pF; ε < |�|) at the edge (y = 0)
of a semi-infinite chiral d-wave superconductor, with surface-
parallel momentum p‖ = pF,x = pF cos(θF ). (b) Self-consistent
LDOS N (R; ε) at the center (solid) and edge (dashed) of a disk
with radius R = 30ξ0, λ0 = ∞. Colors denote temperature from
T = 0.1Tc (blue) to T = 0.9Tc (red). In contrast, dash-dotted line
are the flat-band ABS at a [110] interface in a nodal dx2−y2 -wave
superconductor. (c) Zoom of the edge LDOS in (b). (d) Spatial
dependence of the chiral edge modes at zero energy.

spectrum and the chiral edge modes. Thus these are meso-
scopic finite-size effects that strongly influence the physics
in mesoscopically sized superconductors, as we illustrate
throughout this work.

IV. CHIRAL EDGE MODES

Chiral superfluids are known to host chiral edge modes
(Weyl fermions [13,68]) which are related to the bulk Chern
number via the bulk-boundary correspondence [3,4,11]. To
provide further background for the mesoscopic finite-size ef-
fects on the chiral currents, we begin this section by revisiting
the well-studied problem of the chiral spectrum and explore
the edge modes in a chiral d-wave superconductor. Specifi-
cally, we focus on the temperature dependence of the LDOS
and point out clear differences against surface-bound states
in a regular d-wave superconductor. Finally, we compute the
LDOS for different system sizes and illustrate how the edge
modes are influenced by mesoscopic finite-size effects, specif-
ically edge-edge hybridization.

A. Edge modes and bulk LDOS

A chiral superfluid with Chern number M has |M| topolog-
ically protected edge modes [43–49]. In Fig. 2(a), we show the

subgap spectrum at a semi-infinite surface of a chiral d-wave
superconductor (derived analytically without self-consistency
in Appendix C 2, while all subsequent results in the main
text are numeric and fully self-consistent). There are |M| = 2
chiral branches with dispersion ε(p‖) as a function of the
surface-parallel momentum p‖ [70]. The broken time-reversal
symmetry of the chiral state is explicitly seen, since for each
occupied state ε(p‖), there is no time-reversed partner at
ε(−p‖) [43,153]. Figure 2(b) shows the fully self-consistent
LDOS at the center (x, y) = (R,R) and edge (x, y) = (R, 0)
in a disk with radius R = 30ξ0, at different temperatures. In
the center, a bulklike state �(pF, R) ≈ �−(pF, R) is estab-
lished. The bulk state is fully gapped, see also Appendix B
for analytic derivation of the bulk gap. At the edge, the chiral
edge modes generate a nearly constant subgap LDOS, see also
the zoom of the edge LDOS in Fig. 2(c). Finally, in Fig. 2(d),
we show that at zero energy, the edge modes decay into the
bulk over the same characteristic distance r0 ∼ 6–10ξ0 as the
order parameter variations in Sec. III. Note that at higher
temperatures, the superconducting gap is suppressed due to
thermal excitations, both at the edge and in the bulk. This
leads to a larger effective coherence length, Eq. (20), and the
edge modes consequently reach further into the bulk at higher
temperatures.

B. Comparison with nodal d-wave state

In contrast to the full gap of the bulk chiral d-wave state, a
regular d-wave superconductor has a gapless nodal spectrum
and can host surface ABS [156,159–161], the latter we also
include in Fig. 2(b) for comparison (gray dash-dotted line).
There are several important differences between the ABS in
a nodal d-wave superconductor, and the chiral edge modes
in a chiral d-wave superconductor. First, the ABS correspond
to a flat band (in k-space) [162], while the chiral edge modes
are dispersive [70]. Second, the ABS peak typically appears as
a Lorentzian function centered around the Fermi level and
with a width influenced by e.g. boundary conditions and
typical energy-broadening effects [156,163–165], while the
chiral edge mode has a nearly constant subgap LDOS. Third,
we find that the zero-energy LDOS of the ABS is roughly
two orders of magnitude larger than the chiral edge mode
LDOS in Fig. 2(b). Fourth, the chiral LDOS is largely in-
dependent of the surface orientation, while the ABS in a
dx2−y2 -wave superconductor appear mainly at the pairbreak-
ing [110]-interfaces but are absent at [100] interfaces [156].
Fifth, the ABS are highly degenerate and thermodynamically
unstable towards spontaneous symmetry breaking [166–175],
possibly triggering a phase transition into a state known
as a “phase crystal” [176] at a relatively high temperature
T ∗ ∼ 0.2–0.5Tc [176–183]. We find that the low spectral
weight in the chiral d-wave system in Fig. 2(b) does not
facilitate such a thermodynamic instability. Finally, we point
out that the ABS have a significant paramagnetic response
[86,184–188], which we find can be very different from the
response of the chiral edge modes (not shown).

C. Mesoscopic finite-size effects: hybridization

Next, we investigate how the finite size influences the sub-
gap LDOS, and in particular the chiral edge modes. Figure 3
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FIG. 3. First row: subgap LDOS versus energy ε and coordinate y across the disk diameter at T = 0.1Tc, λ0 = ∞, and different disk radii
R (columns), with bulk gap �0 ≈ 1.76kBTc. Second row: same but line cuts at fixed y from the disk edge y = 0 (blue) to the disk center
y = R (red). Third row: same but line cuts at fixed ε from ε = 0 (purple) to ε = kBTc (orange).

shows the subgap LDOS versus energy and coordinate along
the diameter (top row) and line cuts through the same data at
fixed coordinates (middle row) and at fixed energies (bottom
row). Different columns correspond to different disk radii R.
Based on these results we find two different regimes with
significantly different behavior: R > 20ξ0 and R < 20ξ0.

For all radii R > 20ξ0, the edge modes behave the same
as in Figs. 3(a)–3(c): the edge modes decay into the bulk
over the same characteristic length scale r0 ≈ 6–10ξ0 as the
order parameter in Figs. 1(i)–1(j). We note that this is sim-
ilar to the spatial dependence of ABS at pairbreaking [110]
interfaces of a nodal dx2−y2 -wave superconductor [156,180].
However, Fig. 3(c) shows that the magnitude is largely in-
dependent of subgap energy, which stands in contrast to the
ABS. The overall spatial profile of the edge mode LDOS
is smooth except for some very small oscillation, but we
find that these oscillations reduce monotonically with higher
temperature and larger system size, see additional plots in
Appendix D 2.

Figures 3(d)–3(l) show that as the disk radius shrinks be-
low R < 20ξ0, significant finite-size effects develop, causing
a qualitatively different and highly nontrivial spatial depen-
dence. At R = 15ξ0, small kinks start to develop in the
LDOS, see Figs. 3(d)–3(f). These kinks develop into peaks
as R < 10ξ0, see Figs. 3(g)–3(l). We also find that the typical
decay length of the subgap states decreases with R, reaching
∼2–3ξ0 at R = 5ξ0 (depending on energy), see Figs. 3(j)
and 3(l). Hence, the subgap states are “compressed” to a
smaller spatial region, and in the process obtain a higher
magnitude. Furthermore, as R decreases, we find both that the
largest subgap LDOS peak moves slightly away from the edge
and that the gap close to the edge reduces, see in particular
Figs. 3(j)–3(l).

We interpret the finite-size results in Fig. 3 to be due to
hybridization between edge states on different portions of the
disk edge, and due to resonances between the condensate and
the edge arising when the system size becomes comparable
with the effective coherence length [189]. These hybridization
effects are naturally enhanced at smaller system sizes, but also
with higher temperatures due to a larger effective coherence
length.

V. SPONTANEOUS CHARGE CURRENTS

In the previous section IV, we showed how mesoscopic
finite-size effects cause a strong local enhancement of the
edge mode LDOS (see Fig. 3). Here, we study the conse-
quent effects on the chiral charge currents. Specifically, the
occupation of the dispersive edge modes leads to a finite
charge-current density. It might be tempting to conjecture that
since the two chiral branches have roughly the same group
velocity they will have a constructive contribution to the total
charge current. However, such a simple analysis based on the
group velocity can have little bearing on the real situation,
and the branches can in fact have the opposite contributions
[81,84]. Consequently, the charge-current density changes di-
rection close to the interface such that the total integrated
charge current (and OAM) can vanish. This occurs in par-
ticular for all higher-momentum chiral superfluids beyond
p-wave in the BCS limit and at low temperatures [73,81], in a
microscopic square lattice [81], but also in some chiral p-wave
systems [76]. The cancellation can be understood in terms
of the multiple confinement scales and the current response
of surface subgap states versus the condensate [65], and the
contribution from paired versus unpaired fermions [75], see
also Ref. [84]. In contrast, we here show that the mesoscopic
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FIG. 4. (a) Spatial dependence of the surface-parallel component
of the charge-current density jx (y) in a disk with radius R = 20ξ0

at λ0 = ∞ with temperatures from T = 0.1Tc (blue) to T = 0.9Tc

(red). Horizontal gray line is a guide to the eye marking jx = 0. Inset:
heatmap of the current-density magnitude at T = 0.1Tc. Charge-
current density jx (y) at T = 0.1Tc in systems with radii R � 20ξ0

(b) and R � 20ξ0 (c). Note the different ranges of the axes.

finite-size effects studied in the previous sections completely
modify the charge-current density, such that the cancellation
occurring for semi-infinite edges is avoided leading to a strong
enhancement of both the total charge current and the OMM.

A. Charge-current density

We start by analyzing the charge-current density in a chiral
d-wave superconductor. In Fig. 4(a), we plot the azimuthal
(surface-parallel) component of the charge-current density
jx(y) versus perpendicular distance y from the surface, at dif-
ferent temperatures in a system with radius R = 20ξ0. We find
an overall monotonic decrease of the magnitude with higher
temperatures, which we attribute to thermal suppression of
superconductivity. We find two different signs of the charge
current as a function of distance from the edge (barely visible
at T = 0.9Tc), with an overall spatial decay into the bulk
over the same characteristic length scale r0 ≈ 6–10ξ0 as the
order parameter and the edge modes in previous sections. In
Figs. 4(b) and 4(c), we analyze the dependence on system size
R by showing the spatial dependence of the charge-current
density for R � 20ξ0 and R � 20ξ0, respectively. In both
regimes, there is always a sign change. The current-density
magnitude also increases monotonically with decreasing disk
radius in agreement with the larger LDOS of the disper-
sive low-energy edge modes (see Fig. 3). Apart from these
similarities between large and small systems, the exact spatial
dependence varies between the two regimes.

In larger systems R � 20ξ0 shown in Fig. 4(b), the charge-
current density varies smoothly with the distance from the
edge, with the sign change occurring at roughly the same

distance y ≈ 3ξ0 for all R. We find that the overall decay
length from the edge remains roughly the same as that of
the chiral edge modes (r0 ≈ 6–10ξ0). As the disk radius in-
creases, the charge-current density reduces monotonically,
but seems to saturate around R ≈ 150ξ0. This is similar to
the saturation of the small oscillations in the LDOS which
also occurs at R ≈ 150ξ0, see the discussion in Sec. IV C.
We interpret this slow asymptotic behavior to be due to finite
interference and hybridization between nearby points on the
edge made possible by the curvature. Furthermore, we note
that at R = 20ξ0 (R = 150ξ0), the portion of positive and
negative charge-current density is very dissimilar (similar)
implying a large (small) integrated charge current, discussed
further in Sec. V B.

In smaller systems R � 20ξ0 shown in Fig. 4(c), a reduc-
tion of the radius leads to a notable increase in the magnitude
of the charge-current density, as well as the sign change occur-
ring at smaller distances, approaching y ≈ 1ξ0 at R = 5ξ0. We
point out two important factors contributing to this behavior.
The first is the spatial decay of the edge modes themselves.
Specifically, as we established in Sec. IV C, a smaller disk
radius effectively leads to a “compression” of the dispersive
edge modes to a smaller region resulting in a higher LDOS
magnitude, due to edge-edge hybridization. The occupation
of this locally increased LDOS of dispersive states natu-
rally leads to a locally increased charge-current density. The
second important factor is that current conservation enforces
the charge-current density to sum to zero across the whole
system diameter, such that jx(y) is antisymmetric across the
disk center (x, y) = (R,R) where it necessarily goes to zero.
For sufficiently small discs this forces jx(y) to decay to zero
below the characteristic decay length r0. As a consequence of
these finite-size effects, the portion of positive current becom-
ing smaller but with a larger maximum magnitude, while the
portion of negative current increases significantly.

To further supplement the above data, we provide in
Appendix D 3 the analog plots of Fig. 4(a) for different R,
corroborating that the above analysis holds qualitatively at
different temperatures.

In summary, the charge-current density j(R) in large sys-
tems R > 20ξ0 shows the same decay length r0 as the edge
modes. As R increases, the spatial profile of j(R) slowly
approaches an asymptotic form. In small systems R < 20ξ0,
j(R) is strongly modified with a shorter decay length but
with a much larger magnitude, which we relate to a similar
behavior of shorter decay length and larger LDOS magnitude
of the dispersive edge modes.

B. Total charge current and magnetic moment

We showed in Fig. 4 that the charge-current density j(R)
is finite on the length scale of the coherence length. Exper-
imentally resolving signatures of charge currents on such a
small scale is already extremely challenging. More feasible
techniques are based on measuring, e.g., magnetic signatures
of a total charge current averaged over some area. However,
the sign change in the charge-current density reduces such
averages. Consequently, the exact balancing of the positive
versus negative portions of the charge-current density and
its modification by the mesoscopic finite-size effects become
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important for experimental signatures of the total charge
current, and thus for the experimental verification of chiral
superconductivity. In this section, we therefore consider the
net charge current contribution [190], i.e., the total charge
current per edge portion

Ix =
∫ R

0
dy jx(y), (21)

as a function of disk radius R. We compare our calculation of
Ix against that of the semi-infinite scenario (R → ∞), since Ix

should asymtpotically approach the net current per edge for a
semi-infinite superconductor [81]. We also consider the OMM
mz [Eq. (18)] which is averaged over the entire superconduct-
ing sample. Figures 5 and 6 show the total charge current Ix

and OMM mz, respectively, at λ0 = ∞. In both figures, (a)
and (b) show the temperature dependence at fixed system size
R for the two regimes R � 20ξ0 and R � 20ξ0, respectively,
while (c) shows the R dependence at fixed temperature T .

In large systems R > 20ξ0 shown in Figs. 5(a) and 6(a),
increasing R monotonically reduces both Ix and mz at all
temperatures T , and the reduction shows a slow asymptotic
behavior above R ≈ 150ξ0. The reduction is explained by
a similar reduction in the magnitude of the charge-current
density j(R) with larger R, and more importantly, that the
positive and negative portions of j(R) become similar in area
thus reducing the spatial integral, see Fig. 4(b). The slow
asymptotic behavior in Ix and mz is in turn understood from the
similar slow asymptotic behavior in the exact spatial form of
j(R) above R ≈ 150ξ0, which we interpreted to be due to the
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FIG. 6. Same as Fig. 5 but for the OMM mz [Eq. (18)] in units of
m0 ≡ 2µBN .

finite curvature always allowing finite hybridization between
nearby points of the disk edge. Next, we note that Ix has a
maximum at T ≈ 0.4Tc and a minimum at T → 0 which are
both in agreement with calculations in semi-infinite systems
[81]. Similarly, mz also seems to develop a slight minimum
at low temperature, but only for the largest R. The minima
in Ix and mz tends slowly to zero as R → ∞, see analysis
further below. Most importantly though, both quantities show
a dramatic enhancement close to R = 20ξ0 which is in com-
plete contrast to the semi-infinite scenario, which we explain
by the strongly enhanced positive portion of j(R) [Fig. 4(b)],
in turn due to the strong local enhancement of the LDOS of
the dispersive edge modes.

In small systems R < 20ξ0 shown in Figs. 5(b) and 6(b),
Ix has a maximum at R ≈ 15–20ξ0 while mz has a maximum
at R ≈ 10ξ0. Below these maxima, both quantities decrease
monotonically with smaller R. However, this decrease is not
described by a decrease in the charge-current density j(R)
since it in fact grows monotonically with smaller R, but is
instead completely described by the area becoming similar for
its positive and negative portions, see Fig. 4(c). Interestingly,
the negative portion of j(R) eventually obtains a larger area
than the positive portion and starts dominating at low temper-
atures below R < 7ξ0, causing a complete reversal of the total
charge current, thus suddenly flowing in the opposite direction
to the chirality. In contrast, mz shows no such reversal. These
different behaviors in Ix and mz come from their different in-
tegrands in Eqs. (21) and (18), specifically mz always weighs
the positive portion of the charge-current density at the edge
stronger due to the integrand R × j(R) (note that R is the c.m.
coordinate with origin in the disk center).
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Figures 5(c) and 6(c) show Ix and mz, respectively, as
functions of R to directly illustrate the scaling behavior. We
find that a fit to ffit (R) = c0 + c1/R describes the asymptotic
behavior for large R rather well, where c0 and c1 are fit param-
eters. We choose such a simple model to reduce overfitting and
we verify that fitting only a few data points 30ξ0 � R � 80ξ0

(gray region) gives a good extrapolation to all other data
points in the interval R � 20ξ0. See Appendix E for further
details about the fitting procedure. Importantly, we find that as
T → 0 and R → ∞, both Ix and mz tend to very small values,
albeit very slowly. We naturally do not find an exact zero,
since our smallest temperature is finite T = 0.02Tc, we have a
finite maximum size R = 200ξ0, our fit model is simple, and
due to finite numerical accuracy. Furthermore, we point out
that our disk-shaped system has a curved surface in contrast to
the straight semi-infinite interface. Thus, even at R ≈ 150ξ0,
the surface curves significantly over the distance of a few
coherence lengths. Next, in the opposite limit as R reduces to-
wards the small regime R � 20ξ0, the 1/R dependence leads
to a significantly increased Ix and mz due to an increase in the
positive portion of j(R), but then a reduction in Ix and mz as
the negative portion of j(R) starts increasing. As explained
previously, this can be directly traced back to the edge-edge
hybridization of the dispersive edge modes. Eventually these
mesoscopic finite-size effects also cause a breakdown of the
1/R scaling in Ix and mz.

In summary, we find a 1/R scaling with increased
system size in both the total charge current Ix and OMM mz.
The scaling enhances both quantities in smaller systems, but
eventually the scaling breaks down due to the mesoscopic
finite-size effects, specifically the edge-edge hybridization, ef-
fects of current conservation, and a stronger nodal suppression
of the order parameters, together causing a local maximum
around R ≈ 20ξ0. As a consequence and in contrast to the
semi-infinte systems where the current is minimal at low tem-
peratures, we find that both the total charge current and OMM
can be large at low temperatures in small systems, pointing to
mesoscopic systems as a potential platform to experimentally
measure signatures of the chiral currents.

VI. SPONTANEOUS MAGNETIC INDUCTION
AND MEISSNER SCREENING

Any finite charge-current density j(R), i.e., like the one
we showed in Fig. 4, might induce a magnetic-flux density
(induction) according to Eq. (16) which couples back to the
superconductor and generates additional screening currents
(self-screening). This spontaneously induced flux serves as
a potential experimental observable, measurable with e.g.
nano-SQUIDS and other magnetometry setups [90–105].
Generally, the induction and screening scale inversely with
the penetration depth λ0 [112,149], tending to zero in the
limit κ ≡ λ0/ξ0 → ∞ (the limit studied so far), but may
become important when λ0 < R. It is reasonable to expect
that most proposed chiral d-wave superconductors fall in the
former limit, since most nonelemental or unconventional su-
perconductors are strongly type II, implying a relatively large
penetration depth λ0, as is also the case for most thin films and
layered materials [118–121]. However, for sake of complete-
ness, we in this section study the influence of finite penetration
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FIG. 7. Total charge current Ix (a), OMM mz (b), total induced
magnetic flux �ind [Eq. (19)] (c), vs finite penetration depth λ0 at
T = 0.1Tc. Note the semilogarithmic scale in (c) in units of flux
quantum �0 ≡ hc/2|e|. Line colors denote system radius R, while
dashed lines denote asymptotes of infinite penetration depth (zero
screening).

depth in the whole type-II interval λ0 ∈ [1,∞)ξ0, since the
penetration depth also depends on materials properties, e.g.,
typically increasing (decreasing) with the concentration of
nonmagnetic (magnetic) impurities in the system [121].

We begin by summarizing that we find only a small vari-
ation in the order parameter profile and in the LDOS for
different values of λ0 (see Appendices D 1 and D 2, respec-
tively for analysis). We find that the charge-current density
j(R) is unmodified for λ0 > R but changes significantly as
λ0 � R consequently obtaining an additional sign change
(see Appendix D 3). The total charge current Ix and OMM
mz show a stronger dependence with λ0 as they depend more
crucially on the exact balancing between positive and neg-
ative portions of j(R). This we illustrate in Figs. 7(a) and
7(b), respectively, while (c) shows the total induced flux �ind

defined in Eq. (19). Quite generally, the ratio between the
penetration depth λ0 and system size R essentially determines
the importance of the screening [191]. For λ0 � R, we find
that the system is poorly screened, with both the total charge
current Ix and OMM mz reaching the asymptotic value of zero
screening (λ0 → ∞). For λ0 < R, the screening becomes
stronger, and the charge-current density reorganizes to min-
imize the total charge current in the system. In particular,
the chiral charge currents lead to a finite superfluid momen-
tum, which in turn generates a finite kinetic energy. The
Meissner screening acts to reduce this kinetic energy. Thus, as
λ0 becomes small, both Ix and mz become vanishingly small.
This means that in strongly screened systems, the total charge
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current and OMM is difficult to measure. On the other hand,
the charge-current density might still be finite locally for such
small λ0 (see Appendix D 3 for further analysis), leading to
an induced magnetic-flux density Bind via Ampère’s law in
Eq. (16). Rewriting this equation on a dimensionless form
in our natural units (ξ0∇) × Bind(R)/B0 = (λ0/ξ0)−2 j(R)/ j0
with B0 ≡ �0/(πξ 2

0 ), we see that Bind effectively scales as λ−2
0

[149]. Thus, in contrast to Ix and mz, the induced magnetic flux
density Bind grows dramatically with smaller λ0 due to j still
being finite. This leads to a large total induced magnetic flux
�ind as we show in Fig. 7(c), implying that a signature of the
chiral currents can still be measured with, e.g., nano-SQUIDs
[90–105].

To summarize, we find that mesoscopic finite-size effects
dramatically increase different experimental observables that
can be used for verifying chiral superconductivity, specifically
the total charge current Ix and OMM mz for large λ0. This
scenario is reasonable to expect, since λ0 is expected to be
large in most proposed chiral d-wave superconductors. Even
if λ0 is for some reason small, our results show that the
induced flux �ind instead becomes large.

VII. CONCLUDING REMARKS

Chiral superconductors are characterized by dispersive
chiral edge modes that are presumed to generate sponta-
neous currents close to interfaces and surfaces. However, with
charge not being a conserved quantity in superconductors,
the charge current is not topologically protected. The charge-
current density j(R) may be finite on the superconducting
coherence length scale, ξ0, but previous studies have shown
that it in many systems also has a sign change close to the
surface in all chiral d-wave superconductors [73–76,81,84].
This sign change often causes the total charge current Ix (i.e.,
the integrated charge-current density), to vanish, thereby in-
hibiting experimental verification of chiral superconductivity.

In this work, we revisit the issue of edge charge currents in
chiral d-wave superconductors, focusing on mesoscopic sizes
relevant for quantum devices, and also computing the OMM
mz. We study the dependence of Ix and mz on the system
radius R, temperature T , and spontaneous Meissner screening
due to a finite penetration depth λ0. We show that there are
essentially two regimes with qualitatively different behavior,
namely large systems R > 20ξ0 and small systems R < 20ξ0.
This size dependence is emergent from the underlying compli-
cated spatial dependence in finite systems and is comparable
to the characteristic decay (recovery) length r0 ≈ 10ξ0 of edge
(bulk) quantities, such as the order parameter, edge modes,
and charge-current density.

For large systems R > 20ξ0, we show that the total charge
current and OMM scale as 1/R, recovering previous results
of vanishingly small total current as R → ∞ [73,81,84].
In smaller systems, we find that the 1/R scaling causes a
dramatic increase in Ix and mz, but this scaling eventually
breaks down below R < 20ξ0 due to mesoscopic finite-size
effects becoming dominant. These effects correspond to cur-
rent conservation forcing the current to decay faster than r0,
as well as edge-edge hybridization causing the dispersive
edge modes to compress to a smaller region but with a much
larger LDOS locally. As a result, the charge-current density

j(R) shows a similar shorter decay length and also with a
much larger magnitude locally as R reduces. Notably, the
portions of positive and negative signs in j(R) rebalance,
such that the positive portion closest to the surface shrinks,
while the negative portion further away grows. This causes a
local maximum to appear in Ix at R ≈ 15–20ξ0 and in mz at
R ≈ r0, since they are both described by a spatial integral of
j(R). Importantly, these local maxima survive in the limit of
zero temperature, which is in contrast to semi-infinite systems
where instead Ix vanishes in the same setup [81]. For even
smaller systems R � r0, the re-balancing of the positive and
negative portions of j(R) eventually causes a sign change in
the total charge current, i.e., the net current spontaneously
changes direction due to the mesoscopic finite-size effects,
flowing in the opposite direction to the chirality. A rever-
sal of the edge charge current in a chiral superconductor
has previously been shown to occur, e.g., due to FS nesting
[72], surface disorder [79,86], or contributions from nonedge
states [192], while we here show that it also occurs due to
mesoscopic finite-size effects. Furthermore, we show that
screening due to finite penetration depth λ0 leads to suppres-
sion of the charge current and OMM if ξ0 ∼ λ0 � R, but we
still find an increase in the spontaneously induced magnetic
flux �ind, measurable with magnetometry [90–105]. Thus our
results show that mesoscopic finite-size effects significantly
enhance the total charge current Ix and OMM mz in systems
with large λ0 (relative to the system size), while the induced
magnetic flux �ind is still significantly large even in systems
with small λ0. As a consequence, our results highlight finite
mesoscopic systems as a promising platform for enhancing
experimental signatures of chiral superconductivity.

Finally, we note that the circular geometry used in this
work treats the two nodal d-wave parameters on an equal
footing as it provides equal amount of pair breaking edges for
the two components. As such, the results in this work reports
on the most generic mesoscopic and finite-size effects. Be-
yond these effects, there might also be interesting mesoscopic
shape effects, explicitly depending on the geometry of the
sample. In particular, samples with different combinations of
edge terminations can be more pair breaking for one of the two
nodal d-wave component than the other, which in combination
with overall strong mesoscopic finite-size effects, may lead to
further effects. Such mesoscopic shape effects are currently
being investigated and will be reported elsewhere.
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APPENDIX A: RICCATI FORMALISM

Directly solving the Eilenberger equation [Eq. (5)] with
respect to the propagator ĝ typically leads to additional
unphysical and unstable solutions. In this Appendix, we
show how this can be avoided by expressing the qua-
siclassical propagators in terms of the Shelankov projec-
tors [125] which automatically encode the normalization
condition. This leads to the so-called Riccati formalism
[125,126,128,129,131,135,139], which is both more numer-
ically stable and efficient. This formalism is used both in all
the numeric simulations, and in all analytic calculations in the
subsequent appendices.

The Riccati formalism introduces the coherence ampli-
tudes γ (pF, R; z) and γ̃ (pF, R; z), sometimes called Andreev
amplitudes, as they correspond to probability amplitudes
for electron-hole and hole-electron conversion, respectively.
Dropping the arguments (pF, R; z) for brevity, the quasiclas-
sical propagator in Nambu-spin-space is written in terms of
γ and γ̃ as

ĝ = −iπN̂
(

(σ0 + γ ⊗ γ̃ ) 2γ

−2γ̃ −(σ0 + γ̃ ⊗ γ )

)
, (A1)

with

N̂ ≡
(

(σ0 − γ ⊗ γ̃ )−1 0
0 (σ0 − γ̃ ⊗ γ )−1

)
, (A2)

where ⊗ denotes a matrix product, σi are the Pauli spin matri-
ces, and the spin dependence is separated into spin-singlet (s)
and spin-triplet (t) parts according to

γ = (γs + γ t · σ)iσ2, (A3)

γ̃ = iσ2(γ̃s − γ̃ t · σ). (A4)

By equating Eqs. (A1) and (A2) with Eq. (4), the correspond-
ing spin-space propagators can be derived. Upon substitution
into the Eilenberger equation [Eq. (5)], a set of coupled
ordinary-differential equations are obtained, which are non-
linear and of Riccati type. For a spin-singlet superconductor in
equilibrium, the equations decouple to two matrix equations in
spin-space

[ih̄vF · ∇ + 2z]γ = γ �̃γ − �, (A5)

[ih̄vF · ∇ − 2z]γ̃ = γ̃ �γ̃ − �̃. (A6)

Spin degeneracy leads to the scalar Riccati equations

h̄vF · ∇γs = i�s + 2izγs + i�̃sγs
2, (A7)

h̄vF · ∇γ̃s = i�̃s − 2izγ̃s + i�sγ̃
2
s , (A8)

where additional signs were introduced by terms (iσ2)2 =
−σ0. The corresponding scalar propagators take the form

g0 = −iπ
1 − γsγ̃s

1 + γsγ̃s
, (A9)

fs = −2iπ
γs

1 + γsγ̃s
, (A10)

and similar for tilde quantities. From here on, we drop the
subscript “s” and work exclusively with scalar spin-singlet
propagators and coherence functions.

We note that the term vF · ∇ which appears in both the
Eilenberger and Riccati equations is a directional derivative
coupling spatial coordinates with momentum space, since the
Fermi velocity vF(pF) is parametrized by the FS. This term
naturally defines a set of ballistic quasiparticle trajectories,
where γ and γ̃ propagate parallel and antiparallel to vF,
respectively. It is common to introduce a coordinate system
along these trajectories. However, we keep the xy-coordinate
system in the analytic calculations since we either consider
translationally invariant interfaces along which ∂xγ = 0 (or
equivalently a disk system with large radius of curvature
R� ξ0), or bulk systems where ∂xγ = ∂yγ = 0. With the def-
inition vF(pF) = vF,x(pF)x̂ + vF,y(pF)ŷ, we explicitly rewrite
the operator vF · ∇ → vF,x∂x + vF,y∂y.

APPENDIX B: ANALYTIC SOLUTION
IN A UNIFORM ENVIRONMENT

This Appendix introduces analytic solutions to a bulk
chiral d-wave superconductor in the same model as described
in Sec. II. These results are used for comparison in the main
text against the self-consistent numeric results, as well as
in the subsequent Appendix C against analytic results in a
semi-infinite system.

In a uniform environment, �(pF, R) = �(pF) and vF ·
∇γ = 0. The scalar Riccati equations (A7) and (A8) then take
the polynomial form

�̃s(pF)γ 2(pF; z) + 2zγ (pF; z) + �(pF) = 0, (B1)

�s(pF)γ̃ 2(pF; z) − 2izγ̃ (pF; z) + �̃(pF) = 0. (B2)

From these equations, the homogeneous (h) solutions to the
Riccati equations are obtained as

γh(pF; z) = −�(pF)

z + i�(pF; z)
, (B3)

γ̃h(pF; z) = �̃(pF)

z + i�(pF; z)
, (B4)

where

�(pF; z) ≡
√

�(pF)�̃(pF) − z2. (B5)

For a chiral d-wave order parameter, we note that

�(pF) = �1(pF) + i�2(pF) (B6)

= |�1|η1(pF) ± i|�2|η2(pF), (B7)

�̃(pF) = |�1|η1(pF) ∓ i|�2|η2(pF) (B8)

= �∗(pF). (B9)

In contrast to the numeric calculations where both amplitudes
are allowed to evolve independently, we here assume equal
amplitudes appropriate for a degenerate bulk environment

|�| ≡
√

2|�1| =
√

2|�2|. (B10)

Using the trigonometric identity [η2
1(pF) + η2

2(pF)]/2 = 1, we
obtain

�(pF)�̃(pF) = |�|2, (B11)
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Inserting the above solutions and definitions into Eqs. (A9)
and (A10) yields the bulk propagators

g0(pF; z) = −πz

�(pF; z)
= −πz√

|�|2 − z2
, (B12)

f (pF; z) = π�(pF)

�(pF; z)
= π�(pF)√

|�|2 − z2
, (B13)

noting in particular that g0(pF; z) = g0(z) is independent of pF

(i.e., isotropic).
We next use the bulk propagators from Eq. (B12) and (B13)

to derive the DOS, the current, as well as the low-temperature
gap and free energy. These quantities are used for comparison
and as scales throughout the main text. The LDOS is given by
Eq. (1) in terms of the causal (retarded in time) propagator
with zR = ε + iδ, where δ is a small positive broadening.
Inserting the homogeneous propagator from Eq. (B12) and
taking the trivial FS average, we get the DOS

N (ε)

2NF
= |ε|√

ε2 − |�|2
�

(
ε2 − |�|2), (B14)

i.e., same as a fully gapped s-wave superconductor.
Next for the charge-current density Eq. (17), we note

that the homogeneous Matsubara propagator with z = iεn is
given by

gM
0 (εn) = −π

iεn√|�|2 + ε2
n

, (B15)

which is purely imaginary. The current effectively depends
on the real part of this propagator [157] and is therefore
zero. Hence, there are no currents in a uniform chiral d-wave
superconductor

jbulk = 0. (B16)

The breaking of additional symmetries, e.g., translational
symmetry by an interface, can induce chiral edge modes and
a finite chiral charge-current density j �= 0.

We next turn our attention to the pair propagator, which
can be used to solve the low-temperature gap equation in
a uniform environment. At low temperatures, we denote the
amplitude |�| → �0, and get the analytic solution

�0 = πe−γE kBTc ≈ 1.76kBTc, (B17)

which is the same as for an s-wave superconductor [191]
and where γE is the Euler-Mascheroni constant. The low-
temperature order parameter is consequently

�(T = 0, pF) = �0√
2

[η1(pF) ± iη2(pF)], (B18)

with |�(T = 0, pF)| = �0 constant across the whole FS.
Finally, we consider the bulk free energy, i.e., the BCS

condensation energy. At low temperature, it can be derived
from the Luttinger-Ward functional [124,193–195] and we
find it to be

�BCS
0

VNF(kBTc)2
= −1

2

〈�(pF)�̃(pF)〉FS

(kBTc)2

= −�2
0

2(kBTc)2
≈ −1.56, (B19)

which again is the same as for an s-wave superconductor
[191]. Here, V = ∫

d3R is the volume of the sample.
In summary, we have seen that in a uniform environment,

the properties of the chiral d-wave superconductor are very
similar to that of a conventional s-wave superconductor.

APPENDIX C: ANALYTIC SOLUTIONS AT VACUUM
INTERFACES AND DOMAIN WALLS

In this Appendix, we present analytic solutions to the
quasiclassical propagators close to interfaces, taking different
boundary conditions into consideration. These solutions are
used to interpret the spatial dependence of the numeric re-
sults in the main text, in particular in terms of the effective
coherence length. Furthermore, we show that perfect spec-
ular reflection leads to chiral edge modes and that such a
surface is equivalent to a transparent domain wall. Surface
retroreflection and back scattering, on the other hand, lead to
a reduced weight of the chiral edge modes. Additionally, the
solutions provide a starting point for further analytic studies of
the properties of chiral d-wave superconductors, such as the
thermodynamics, and the spectrum and its full contribution to
the angular momentum and equilibrium currents.

1. Inhomogeneous coherence functions
and effective coherence length

We start by deriving the form of the coherence functions
in an inhomogeneous environment and show the natural ap-
pearance of the effective coherence length discussed in the
main text.

Consider a semi-infinite superconductor, as depicted in
Fig. 8(a). For simplicity, we let the interface normal y be
aligned with the high-symmetry axes of the crystal lattice,
but note that the orientation does not influence the physics
for a chiral order parameter. This is in contrast to, e.g., a
nodal d-wave superconductor, where [110] and [100] inter-
faces are distinctly different [156]. Assuming that any spatial

FIG. 8. Superconductor-vacuum interface aligned with the crys-
tal ab-axes of a semi-infinte superconductor (SC). (a) Translationally
invariant interface with perfect specular reflection, connecting in-
coming (outgoing) quasiparticle momentum p′

F (pF) according to
p′

F,x = pF,x and p′
F,y = −pF,y. (b) Interface consisting of mesoscopic

perfect retroreflectors of size L with a0 � L � ξ0, such that surface
scattering connects incoming and outgoing quasiparticle momenta
according to p′

F = −pF.
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variations in the order parameter can be approximated by a
piecewise constant function, the inhomogeneous Riccati equa-
tions (A7)–(A8) can be solved analytically. In the absence
of vorticity and other inhomogeneities along the interface
coordinate x, there is translational invariance ∂xγ = ∂xγ̃ = 0.
The only inhomogeneity is then introduced by the boundary,
and the inhomogeneous solutions take the explicit form

�(pF, R; z) = γh + 2i�Ce−y/ξy

1 − �̃Ce−y/ξy
, (C1)

�̃(pF, R; z) = γ̃h + 2i�C̃e−y/ξy

1 + �C̃e−y/ξy
, (C2)

with integration constants C and C̃, and where the homo-
geneous solutions γh and γ̃h, as well as �, are given by
Eqs. (B3)–(B5). We note that even in the absence of trans-
lational invariance along the interface, the solutions take this
form, but with modified exponential factors. Here, ξy gives the
effective superconducting coherence along y (i.e., perpendic-
ular to the interface)

ξy(pF; z) ≡ h̄
∣∣vF,y(pF)

∣∣
2�(pF; z)

, (C3)

which can diverge, e.g., at the coherence peaks. We de-
termine the integration constants C and C̃ by imposing
continuity wherever there is an inhomogeneitiy, in this case
at the boundary of each piecewise constant part in �. This
yields the relation �(p′

F, y = 0; z) = �(pF, y = 0; z) and sim-
ilar for �̃. Here, p′

F = pF(cos θ ′
F, sin θ ′

F) with θ ′
F ∈ [π, 2π )

denotes the trajectory impinging on the boundary, while pF =
pF(cos θF, sin θF) with θF ∈ [0, π ) denotes the outgoing tra-
jectory. From here on, we introduce the subscripts “in” and
“out” to denote the impinging and scattered trajectories at
the interface, with arguments (p′

F, y = 0; z) and (pF, y = 0; z),
respectively. This determines the integration constants

C = �in − γh,out

2i�out + �̃out (�in − γh,out )
, (C4)

C̃ = �̃in − γ̃h,out

2i�out − �out (�in − γh,out )
, (C5)

where our notation specifies �in and �̃in via Eqs. (C1) and
(C2), and γh,out and γh,out from Eqs. (B3) and (B4). From
here on, we assume that the important contributions lie in the
boundary condition and quasiparticle scattering, rather than
in the exact spatial form of the order parameter, and therefore
approximate a uniform order parameter �(pF, R) ≈ �(pF).
This leads to simplification �in = γh,in and �̃in = γ̃h,in. Note
that we of course relax this assumptions (and several others) in
our numeric simulations. Effects of the spatial dependence of
the order parameter on the analytics is discussed, e.g., in Ref.
[83]. We apply the same unitary gauge transformation as in
Appendix B, such that again �(pF) = �1(pF) + i�2(pF) =
|�1|η1(pF) ± i|�2|η2(pF), and �(pF)�̃(pF) = ��∗ = |�|2
(i.e., spin-singlet). In the following derivations, we drop the
arguments: (pF) from �(pF), (pF; z) from �(pF; z), (pF, R; z)
from γ (pF, R; z), and similar for tilde quantities.

2. Specular boundary conditions: reflective vacuum interfaces
and transparent domain walls

We next proceed to derive the surface propagators and
their spatial dependence at interfaces with perfect specular
boundary conditions, followed by expressions for the chiral
edge modes and chiral edge currents. These expressions form
a base line to compare against fully self-consistent results in
the main text.

Perfect specular scattering at an interface is characterized
by the momentum change (p‖, p⊥) → (p‖,−p⊥), connect-
ing two trajectories with angles θ ′

F + θF = 2π , as shown in
Fig. 8(a). In both the chiral p-wave and d-wave systems, this
leads to a sign-change in one of the two order parameter
components, while the other is uninfluenced. In our notation,
this means that from an incoming to an outgoing trajectory,
(�1,�2) → (�1,−�2), and consequently � → �∗. In other
words, a quasiparticle undergoing such a scattering sees a
chiral inversion, in exactly the same way as if it transmits
through a transparent domain wall. The two scenarios are
treated analogously. This leads to

�in − γh,out = −�∗ − �

z + i�
= − 2i�2

z + i�
, (C6)

�̃in − γ̃h,out = �̃∗ − �̃

z + i�
= − 2i�2

z + i�
. (C7)

Inserting these solutions into Eqs. (C4) and (C5) yields the
integration constants

C = �2

�(z + i�) + �̃�2
, (C8)

C̃ = �2

�(z + i�) − ��2
, (C9)

such that after a bit of algebra, we find the inhomogeneous
solutions

� = γh
�� + (z − i�)�2 − (z + i�)�2e−y/ξy

�� + (z − i�)�2 − (z − i�)�2e−y/ξy
, (C10)

�̃ = γ̃h
��̃ − (z − i�)�2 + (z + i�)�2e−y/ξy

��̃ − (z − i�)�2 + (z − i�)�2e−y/ξy
. (C11)

Using these solutions, we can solve for the surface propa-
gators via Eqs. (A9) and (A10), but note that we have to
treat the direction of vF(pF) carefully. For θF ∈ [0, π ) we get
γs = � and γ̃s = γ̃h, while for θF ∈ [π, 2π ), we get γs = γh

and γ̃s = �̃. We find that the solutions can be generalized for
all θF by introducing the terms

s = sgn(vF,y). (C12)

The surface propagators then become

g0(pF, R; z) = − πz

�
− πs�2

�

��1 − zs�2

z2 − �2
1

e−y/ξy , (C13)

f (pF, R; z) =π i�2

�

(
1 − e−y/ξy

) + π�1

�

+ πs�2

�

�2
2 − z2

�z + s�1�2
e−y/ξy , (C14)

which are valid at a specular reflective interface and at a
transparent domain wall. We see that far from the interface,
where e−y/ξy → 0, the bulk propagators in Eqs. (B12) and
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(B13) are recovered. Close to the surface (e−y/ξy → 1), the
propagators take the form

g0(pF, y = 0; z) = − πz

�
− πs�2

�

��1 − zs�2

z2 − �2
1

, (C15)

f (pF, y = 0; z) =π�1

�
+ πs�2

�

�2
2 − z2

�z + s�1�2
, (C16)

We next take a closer look at the edge modes and currents
related to these surface propagators.

a. Chiral edge modes

The propagators in Eqs. (C13) and (C14) have a simple
pole at z = s�1, seen via the residue

Res[g(z = s�1)] = π |�2|e−y/ξy . (C17)

This corresponds to bound states at energy εbs = s�1 which is
a propagating chiral mode with momentum pF,x = pF cos(θF).
The spectrum of the chiral edge modes can essentially be
derived via the momentum-resolved LDOS, i.e., omitting the
angular average in Eq. (1). This yields the spectrum plotted in
Fig. 2(a), thus with two edge modes for s = ±1.

b. Chiral surface currents

In equilibrium, the Fermi-Dirac distribution together
with the chiral edge modes lead to the occupation of a
state with a net momentum, breaking time-reversal sym-
metry and generating a charge-current density. We next
study this charge-current density, defined by Eq. (17),
in terms of the Matsubara propagators gM(pF, R; εn) =
g0(pF, R; z = iεn) with Matsubara energies εn = πkBT (2n +
1). We find that the real part of the Matsubara quasiparticle
propagator is

Re
[
gM(pF, R; εn)

] = πs
�1�2

�2
1 + ε2

n

, (C18)

such that the chiral edge current is given by

jx(y)

j0
= −2

T

Tc

〈
vF,xs�1�2

�c∑
εn>0

e−y/ξy

�2
1 + ε2

n

〉
FS

. (C19)

Here, the overall sign is set by that of �2, i.e., the chi-
rality directly sets the direction of the current. The above
current shows a sign change at ∼1ξ0, similar to the fully
self-consistent numerical calculations in Fig. 4. However, the
overall magnitude differs significantly, which we interpret
to be due to the approximation in the spatial depen-
dence of the order parameter [83], and other nontrivial
effects omitted in the analytical but not in the numerical
calculations.

3. Retroreflection and back scattering

We next study interfaces with retroreflection and back
scattering (defined below), and show that it is an interest-
ing scenario that can be used to further distinguish between
spin-singlet and spin-triplet superconductors, e.g., between
chiral d-wave and chiral p-wave states. We note that retrore-
flection becomes experimentally relevant even in superfluid
3He [196].

Surface roughness and diffusivity causes a finite prob-
ability of back scattering. In the extreme limit of perfect
retroreflection, e.g., at a surface with a mesoscopic saw-
tooth profile of perfect reflectors with length L (where
a0 � L � ξ0) as depicted in Fig. 8(b), then (p‖, p⊥) →
(−p‖,−p⊥). A spin-singlet order parameter is symmetric
with respect to such a momentum reversal, �(−pF) = �(pF),
which leads to �in = γh,out, and consequently C = C̃ = 0,
such that

�retro(pF, R; z) = γh(pF; z), (C20)

�̃retro(pF, R; z) = γ̃h(pF; z). (C21)

Thus, despite the presence of the interface, this yields the
same bulk propagators and solutions presented in Appendix B.
In contrast, a spin-triplet system is instead antisymmet-
ric �(−pF) → −�(pF), and the retroreflective boundary
condition therefore leads a Jackiw-Rebbi zero mode [197]
associated with surface pairbreaking and the appearance of
flat bands of ABS. Hence, perfect retroreflection technically
causes a removal of the chiral edge modes since quasiparti-
cles essentially scatter between the same Chern numbers, but
this result is highly unstable as any infinitesimal modification
from perfect retroreflection leads to a recovery of the chiral
edge modes, see also Ref. [65] for further discussion. Thus,
for more realistic back scattering, there is instead a finite
suppression of the LDOS of the chiral edge modes, in favor
of a bulk (flat-band ABS) LDOS in spin-singlet (spin-triplet)
systems.

The above results point to an interesting scenario to distin-
guish between spin-singlet and spin-triplet order parameters,
since the spin-singlet system effectively behaves like a bulk
system close to a retroreflecting interface, while the spin-
triplet system leads to order parameter suppression and a large
density of dispersionless surface ABS with energies at the
Fermi level.

APPENDIX D: ADDITIONAL NUMERICAL RESULTS

This Appendix presents additional numerical results for a
chiral d-wave superconductor to supplement the analysis in
the main text. The first subsection studies the order parameter,
the second subsection studies the LDOS of the zero-energy
edge modes, while the third subsection studies the charge-
current density.

1. Order parameter

We next study how the spatial dependence of the order
parameter is influenced by mesoscopic finite-size effects in
Fig. 9 and by finite Meissner screening in Fig. 10, to be
compared with the analogous Fig. 1 in the main text.

Figure 9 shows the amplitude of the nodal (chiral) order
parameter components in the top (bottom) row, as a func-
tion of perpendicular distance y from a [100] interface, in a
disk-shaped superconductor with radius R, dominant chirality
�−, and penetration depth λ0 = ∞. The first (second) column
shows large (small) discs at low temperature T = 0.1Tc, while
the third (fourth) column shows large (small) discs at high
temperature T = 0.9Tc. The nodal component �dx2−y2 (�dxy )
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FIG. 9. Order parameter amplitudes as a function of distance from a [100] edge in a disk with radius R and dominant chirality �− at
λ0 = ∞, for the nodal components (top row) and chiral components (bottom row). First (second) column: low temperature in large (small)
discs. Third (fourth) column: high temperature in large (small) discs.

is enhanced (suppressed) due to fermionic bound states at the
surface [65], but recover to their bulk values over a charac-
teristic length r0, i.e., the same as in the main text, which is
also the decay length of the bound states. We note that other
choices of edges along the disk give different edge behav-
ior, including exchanging the behavior of �dx2−y2 and �dxy .
Similarly, the dominant (subdominant) chiral component �−

FIG. 10. Order parameter amplitudes as a function of distance
from a [100] edge in a disk with dominant chirality �−, for the nodal
components (top row), and chiral components (bottom row). First
(second) column: low (high) temperature.

(�+) is suppressed (enhanced) at the edge, but also recover
to their bulk value over the length scale r0. In large systems
R > 20ξ0, the order parameter profiles remain the same for
all disk radii, with the same r0 ≈ 6–10ξ0 (depending on e.g.
temperature). As R becomes comparable with r0, the inter-
ference between different portions of the disk edge becomes
important, leading to hybridization as discussed in Sec. IV C.
Therefore, in small systems R < 20ξ0, the order parameter
profiles vary strongly with disk radius, with the typical decay
length reducing monotonically to ∼2ξ0 at R = 5ξ0. Finally,
we note that increased temperatures lead to an overall suppres-
sion of the order parameter due to thermal excitations, which
leads to a longer effective coherence length as discussed in
Sec. III. Hence, finite-size effects are significantly enhanced
at higher temperatures. This leads to a complete destruc-
tion of superconductivity at T = 0.9Tc in the smallest disk
with R = 5ξ0. Thus the above results show a strong depen-
dence of the exact order parameter profile with system size.
Figure 10 shows the spatial dependence of the order parameter
amplitude in a disk with radius R = 10ξ0, for different λ0,
illustrating negligible influence for all λ0 ∈ [1,∞)ξ0 at both
high and low temperatures. The influence is even smaller for
larger R (not shown). Hence, the self-screening effects due
to small λ0 discussed in Sec. VI does not correspond to a
modified order parameter amplitude, but rather the subgap
states and the exact shape of the charge-current density as
discussed next.

2. Local density of states

We next study how the spatial dependence of the zero-
energy LDOS approaches an asymptotic form for large disk
radius R in Fig. 11, and how the spatial dependence is
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FIG. 11. Spatial dependence of the edge modes at zero energy,
T = 0.5Tc and λ0 = ∞, for different disk radii R.

influenced by finite Meissner screening in Fig. 12, to be com-
pared with, e.g., the bottom row in Fig. 3 in the main text.

Figure 11 plots the LDOS at zero energy as a function
of distance from the edge, for different disk radii R, at
fixed T = 0.5Tc and λ0 = ∞. Importantly, the spatial decay
length r0 ≈ 6–10ξ0 is roughly the same in all large systems
R > 20ξ0 and there are no strong kinks or additional peak
structures like in the small systems R � 20ξ0. Hence, the
overall spatial dependence is quite smooth, apart from a small
oscillations. These oscillations reduce significantly with larger
R and subsides almost completely at R ≈ 150ξ0. We note that
this is the size where the charge-current density reaches an
asymptotic value, see Fig. 4(b). However, it is not clear at
the present if this similar asymptotic behavior with large R
in the edge modes and charge-current density are related, or

0 2 4 6 8 10
y/ξ0

0

0.5

N
(y

,ε
=

0)
/2

N
F

(a) R = 30ξ0, T = 0.1Tc λ0 =∞
λ0 =R=30ξ0
λ0 =10ξ0
λ0 =5ξ0
λ0 =3ξ0
λ0 =1ξ0

0 2 4 6 8 10
y/ξ0

0

0.5

N
(y

,ε
=

0)
/2

N
F

(b) R = 10ξ0, T = 0.1Tc λ0 =∞
λ0 =30ξ0
λ0 =R=10ξ0
λ0 =5ξ0
λ0 =3ξ0
λ0 =1ξ0

FIG. 12. Spatial dependence of the edge modes at zero energy
and T = 0.1Tc in the large disk regime R = 30ξ0 (a) and small disk
regime R = 10ξ0 (b), from λ0 = 1ξ0 (pink) to λ0 = ∞ (cyan).

if this is more of a coincidence. Figure 12 shows the spatial
dependence of the zero-energy edge modes at T = 0.1Tc but
for different penetration depths, in a large disk R = 30ξ0 (a),
and a small disk R = 10ξ0 (b). In the large disk, different λ0

mainly influence the small oscillations in the LDOS, but the
edge mode decay is otherwise not influenced despite solving
fully self-consistently for both �(R) and A(R). In the small
disk, a reduction of λ0 causes a smaller LDOS magnitude and
slight increase in the decay length from the edge. Since the
LDOS corresponds to dispersive edge modes, these results
suggest that a stronger screening reduces the currents, which
is consistent with the results found in the main text. We note
that the large difference in the spatial dependence of the edge
modes in Figs. 12(a) and 12(b) are because these systems
fall in the large and small disk regimes, respectively. See
also Fig. 3 for the spatial evolution of the edge modes with
disk size.

3. Currents

We next study how the spatial dependence of the charge-
current density depends on temperature for different disk radii
R in Fig. 13, i.e., the direct analog of Fig. 4(a). We also
study how the charge-current density is influenced by finite
screening in Fig. 14, supplementing the analysis in Sec. VI.

Figure 13 shows the spatial dependence of the charge-
current density j(R) at λ0 = ∞ and at different temperatures,
where each panel corresponds to a different system radius R.
Below R � 10ξ0, the system radius is smaller than the typical
decay length r0 of the currents. This leads to a significantly
increased magnitude due to larger LDOS of dispersive edge
modes as discussed in Sec. IV C, and a more complicated
spatial dependence with kink-like structures (higher-order
harmonics) due to the edge-edge hybridization and effects of
current conservation as discussed in Sec. V A. We also note
that for large R, the size of the positive and negative portions
of j(R) become more similar in size implying a smaller total
integrated current Ix, while they are very dissimilar due to
a larger (smaller) positive portion at R = 20ξ0 (R = 5ξ0)
implying a large positive (negative) current. These effects are
most pronounced at low temperatures, which is in agreement
with the main text in Sec. V B. Figure 14 shows the charge-
current density versus distance from the edge in the large
regime R > 20ξ0 (a), and the small regime R < 20ξ0 (b).
Different lines correspond to different penetration depths λ0.
Above λ0 > R, there is negligible effect of screening (small
difference between finite and infinite λ0). As λ0 reduces below
R, the magnitude of the positive portion decreases, while
the negative portion increases, which is seen most clearly
in Fig. 14(a). Hence, the total current reduces, consistent
with a stronger diamagnetic Meissner screening from the
bulk condensate. However, as λ0 becomes comparable with
ξ0, a qualitatively different behavior develops. The current
obtains a more complicated spatial dependence with kinks,
a smaller negative region, and an additional sign change far
from the edge in agreement with semi-infinite systems studied
in Ref. [81]. This leads to a modified balance for the integrated
current, such that it changes sign as shown in the main text in
Sec. VI.
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FIG. 13. Azimuthal (surface-parallel) component of the charge-current density as a function of distance from the edge in a disk with
dominant chirality �− at λ0 = ∞. Different panels correspond to different R, with temperatures T = 0.1Tc (blue) to T = 0.9Tc (red).
Horizontal line (gray) marks jx = 0. Note different x- and y-axis scales in top versus bottom rows.

APPENDIX E: FIT OF ASYMPTOTIC BEHAVIOR
FOR LARGE SYSTEM SIZE

In this Appendix, we provide additional details on the fit
procedure used in Sec. V B for the total charge current Ix in
Fig. 5(c) and the OMM mz in Fig. 6(c) as a function of R.

We initially compare different fit functions, specifically ex-
ponential decay and various polynomial decays. We however
do not find a good agreement with exponential decay and
focus in the following on the polynomial function. We limit
ourselves to only considering polynomials with a few terms
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FIG. 14. Spatial dependence of the azimuthal (surface-parallel)
component of the charge-current density at T = 0.1Tc in a disk with
radius R = 30ξ0 (a) and 10ξ0 (b), for different λ0 from λ0 = 1ξ0

(pink) to ∞ (cyan). Horizontal line (gray) marks jx = 0.

to reduce overfitting, using the fit function

ffit (R) = c0 + c1R−|c2|, (E1)

with fit parameters c0, c1, and c2. We find that the fit function
which most accurately describe the asymptotic behavior of
Ix and mz for large R to be the polynomial 1/R (best fit
with c2 ≈ 1 ± 0.1), while the higher-order polynomials (e.g.,
1/R2) result in very poor fits. Moreover, we verify that fitting
only a few data points, e.g., 30ξ0 � R � 80ξ0 [gray region
in Figs. 5(c) and 6(c)], gives a good extrapolation to all other
data points in the interval R � 20ξ0.

Table I summarizes the best fit parameters for Ix and mz

for fixed c2 = 1. From these fit parameters, we find that as
T → 0 and R → ∞, both Ix and mz tends to a very small,
negligible, value. An exact zero is of course not found due to
finite temperature T/Tc = 0.02 and finite numerical accuracy.
The numerical accuracy causes some uncertainty in c0 for
each scenario depending on fit region, but c1 remains more
or less the same with c1 ≈ 0.7 ± 0.1. The fact that both Ix and
mz have the same limiting behavior for large R is understood
from their expressions in Eqs. (21) and (18): the total current
is the integral of j(R) over the radius, while the magnetic
moment is the integral over R × j(R) over the area.

TABLE I. Best fit parameters c0,1 for Ix (R) and mz(R) with
fit function ffit (R) [Eq. (E1)], at different temperatures and
fixed c2 = 1.

ffit T/Tc c0 c1

Ix 0.02 3×10−4I0 0.63
mz 0.02 −5×10−4m0 0.78
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