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Theory of pseudospin resonance for multiband superconductors
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We formulate a generalized pseudospin formalism for multiband superconductors in the presence of an
external perturbing electromagnetic field. Our theory naturally captures the effects of quantum band geometric
quantities and is valid even for flat-band superconductors. As an interesting consequence of our theory, we show
that there is an interband pairing fluctuations induced by the external field and mediated by the quantum band
geometry. Surprisingly, this interband fluctuation is independent of the band gap, which can be understood from
the geometric nature of such novel fluctuations. We derive the generalized equation of motion for the multiband
pseudospin and the self-consistency equation. We present a formal solution to the pseudospin equation of motion
in powers of the perturbing electromagnetic field. As a simple illustration of our theory, we calculate the Leggett
modes for the two-band case.
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I. INTRODUCTION

The recent progress in twisted multilayered van der Waals
materials has placed the physics of multiple flat bands into
the limelight. The advent of such moiré materials gave
us unprecedented control over band geometry and carrier
concentration [1]. By tuning the twist between one of the
adjacent layers into a “magic” angle, one can create nearly
flat bands [2,3]. This in turn opens the exciting possibility
of studying the interplay between the band geometry and the
strong electronic correlations. Here, band geometry does not
merely mean band curvature, but the band Berry curvature
and quantum metric, which is captured by the full complex
quantum geometric tensor.

In the superconducting phase of the twisted bilayer
graphene [4], for example, many studies have shown that
the band quantum geometry plays a central role [5–9]. This
motivated the formulation of new theories incorporating the
effects of band geometry and the existence of multibands and
flat bands in a superconductor [10–12]. Indeed, the presence
of a multiband have been shown to have nontrivial effects such
as the enhancement of superfluid weight [7], breaking of time
reversal symmetry [13], and the existence of geometric Higgs
modes [14].

In our previous work [14], we have shown that the quan-
tum band geometry leads to novel effects for the collective
excitations. In particular, we have shown that the Higgs mode
can be excited by an external electromagnetic field even in
the flat-band superconductors by virtue of band-geometric
coupling. This can be relevant in the Higgs spectroscopy [15]
applications since this opens the possibility of using such tools
for these types of superconductors. Further, we have shown
in our previous work that there exists a second harmonic
generation, in contrast to the conventional third harmonic
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generation, and that the Higgs amplitude is lower bounded
by the band Chern number. In this previous work, however,
we did not formulate the general theory that is valid for
generic multiband superconductors. In our calculations, for
example, we eventually focused on the single-band projected
case for simplicity. The price paid for this limited scope is that
we missed the interesting interband effects. The aim of our
current work is to fully develop a general microscopic theory
of multiband pseudospin resonance. By formulating the gen-
eral multiband theory, we will show that there are geometric
interband pairing fluctuations and geometric Leggett modes
that can be excited even for flat or Dirac bands. We hope
that this general theory will be useful in understanding the
interplay of band geometry and superconductivity in multi-
band systems. This will be relevant as such systems are now
easily realized using moiré systems such as in twisted bilayer
graphene.

This paper is organized as follows. We start our discussion
with the multiorbital Hamiltonian in an external electromag-
netic field in Sec. II, along with the multiband Bogoliubov–de
Gennes–Nambu formalism. In Sec. III, we present a careful
expansion of the Bloch, pairing, and interaction matrices in
powers of the external field. The appearance of the quantum
band geometric quantities can be traced to these expansions.
In Sec. IV, we present the pseudospin formalism generalized
to multiband systems. We will derive the equation of motion
for the multiband pseudospin and provide the formal solution.
After a careful expansion of the interaction matrix in the previ-
ous section, we show the correct form of the self-consistency
equation in Sec. V. We do this by first separating the particle-
hole and band spaces. We then show the self-consistency
equation for arbitrary choice of the SU(2N) generators, where
N is the number of bands. To illustrate our multiband pseu-
dospin theory, we provide a sample calculation in Sec. VI,
where we calculate the interband pairing and Leggett mode
fluctuations. Lastly, we give the summary, conclusion, and
future outlook in Sec. VII.
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II. HAMILTONIAN

A. Kinetic term

Our starting point is the tight-binding Hamiltonian coupled
to an external field via Peierls substitution,

HK =
∑
iα, jβ

∑
σ

ĉ†
iασ Kσ

iα, jβeiA·(riα−r jβ )ĉ jβσ , (1)

where i and j label the lattice sites, α and β label the orbitals,
σ denote spins, Kσ

iα, jβ is the hopping amplitude, and A is
the vector potential. Here we used the natural units e = 1
and h̄ = 1.

The Fourier transform K̃σ (k) of Kσ
iα, jβ can be diagonalized,

K̃σ (k) = GkσEkσG†
kσ , (2)

where Ekσ ≡ diag(εnkσ ) is a diagonal matrix composed of
band dispersions εnkσ and n labels the bands. The nth column
of the unitary matrix Gkσ is the Bloch function of the nth band.

B. Interaction and mean-field BCS

We take the interaction relevant to the pairing to be of the
form

Hint = 1

2

∑
kk′

V (k, k′) β ρ
α γ c†α

k c†
−kβcγ

−k′ck′ρ (3)

= 1

2

∑
kk′

V (k, k′) b d
a c c†a

k c†
−kbcc

−k′ck′d . (4)

Here the first line is written in the orbital basis, while the
second line is written in the band basis. Note that we reserved
the Greek letters for the orbital basis and the Roman letters
for the band basis. When to raise and lower the indices will
become clearer later in Sec. II C when we express the mean-
field BCS Hamiltonian in the Nambu formalism.

The mean-field pairing Hamiltonian written in the orbital
space is

Hm f = −1

2

∑
k

(
�

β

kα c†α
k c†

−kβ + H.c.
)
. (5)

The pairing Hamiltonian has the same form in band space,
with the indices α and β replaced by band indices a and b.
The pairing potential must satisfy the self-consistent equation

�
β

kα
= −

∑
k′

V (k, k′) β ρ
α γ

〈
cγ

−k′ck′ρ
〉
. (6)

The self-consistent equation in band space again has the same
form and can be easily obtained by changing the orbital in-
dices to band indices.

C. Bogoliubov–de Gennes–Nambu formalism

We introduce the Nambu spinor generalized for multiband
systems,

ψ̂k = (c1,k↑, . . . , cN,k↑, c†
1,−k↓, . . . , c†

N,−k↓)T , (7)

where 1, 2, . . . , N label the bands. The above form is written
for singlet pairing. For triplet pairing, where the spins are
polarized, we can simply omit the spin indices.

It will be convenient for later calculations to adopt the
index notation in linear algebra and tensor analysis and write

{c1,k↑, . . . , cN,k↑} → ca,k↑,

{c1,k↑, . . . , cN,k↑, c†
1,−k↓, . . . , c†

N,−k↓} → c†
a,−k↓.

That is, every time we write an operator with a band index
such as ca,k↑, we actually mean a list c1,k↑, . . . , cN,k↑. This
shortens our spinor notation to

ψ̂k = (ca,k↑, c†
a,−k↓)T , (8)

where a labels the band components.
The conjugation raises the band indices,

ψ̂
†
k = (

c†a
k↑, ca

−k↓
)
. (9)

This will prove to be convenient later when we write matrix
multiplication, as we can simply use the Einstein summation
convention for the repeated covariant and contravariant in-
dices.

The Hamiltonian can now be written in the Bogoliubov–de
Gennes (BdG) form,

H =
∑

k

ψ̂
†
kHk(A)ψ̂k, (10)

where the Bloch Hamiltonian matrix Hk(A), upon introducing
a chemical potential μ, is given by

Hk(A) = 1

2

(
Ek−A − μ G†

k−A�k,orbGk+A

G†
k+A�

†
k,orbGk−A −(Ek+A − μ)

)
. (11)

Here, �k,orb is the pairing potential matrix in the orbital space.
Note that Eq. (11) is written as 2×2 blocks in the electron-

hole space, and that the opposite charges of the electron and
hole give opposite signs to the external field A. For example,
the upper right block of Eq. (11), in terms of explicit matrix
elements, has the form

[�k,band] b
a = [G†

k−A] α
a [�k,orb] β

α [Gk+A] b
β . (12)

This is associated with the pairing c†
kc†

−k. In Nambu formal-
ism, c†

k comes from the particle degree of freedom, while
c†
−k comes from the hole degree of freedom. Consequently,

in Eq. (12), [�k,orb] β
α transforms as a hole from the right, i.e.,

[Gk+A] b
β , and as a particle from the left, i.e., [G†

k−A] α
a . From

here on, we will omit the label “orb” and “band,” as the basis
that is used will be clear from the type of indices (Roman or
Greek) that appear.

III. EXPANSION IN POWERS OF THE EXTERNAL FIELD

In this section, we will expand the pairing potential and the
interaction matrix in powers of the external electromagnetic
field. We will see that the geometric contributions appear due
to the deformation of the Bloch functions.

A. Gap function

We begin by expanding the Bloch matrix and the band
dispersion,

G (†)
k±A = G (†)

k ± ∂iG (†)
k Ai + 1

2∂i∂ jG (†)
k AiAj + · · · , (13)

εk±A = εk ± ∂ jεkAj + 1
2 (∂i∂ jεk )AiAj + · · · . (14)
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Substituting Eq. (13) into the off-diagonal blocks of Eq. (11)
we have, up to second order,

�k(A) b
a =

(
G†

k − ∂iG†
kAi + 1

2
∂i∂ jG†

kAiAj

) α

a

(
�

(0)
k + �

(1)
k

+ �
(2)
k

) β

α

(
Gk + ∂iGkAi + 1

2
∂i∂ jGkAiAj

) b

β

.

(15)

Recall that lowercase Roman letters a, b, etc. are for band
indices, while Greek letters are for orbital indices.

We also expand the left-hand side of the equation above,

�k(A) b
a = �

(0) b
k,a + �

(1)
k (A) b

a + �
(2)
k (A) b

a , (16)

and equate Eqs. (15) and (16), order by order.
The zeroth order is

�
(0) b
k,a = (G†

k ) α
a

(
�

(0)
k

) β

α
(Gk ) b

β , (17)

which is just the usual transformation from the orbital to band
basis.

The first order is given by

�
(1)
k (A) b

a = (G†
k ) α

a

(
�

(1)
k

) β

α
(Gk ) b

β

− (∂iG†
k ) α

a

(
�

(0)
k

) β

α
(Gk ) b

β Ai

+ (G†
k ) α

a

(
�

(0)
k

) β

α
(∂iGk ) b

β Ai. (18)

To elucidate this further, we rewrite (�(1)
k ) β

α and (�(0)
k )

β

α

in the right-hand side of Eq. (18) in the band basis via

(�(1)
k ) β

α = (Gk ) c
α

(
�

(1)
k,dir

) d

c (G†
k ) β

d , (19)

(�(0)
k ) β

α = (Gk ) c
α

(
�

(0)
k

) d

c (G†
k ) β

d . (20)

Here, the subscript “dir” of (�(1)
k,dir ) d

c means the direct defor-
mation of the order parameter due to the external field that
must be calculated self-consistently. In contrast, there will
also be geometric contributions that come from the defor-
mation of the Bloch functions, as will be expounded more
below in the paragraph after Eq. (24). We introduce the Berry
connection Aki ≡ iG†

k∂iGk, which is, in general, a matrix and
non-Abelian for degenerate bands.

We now get

�
(1)
k (A) b

a = �
(1)
k,dir (A) b

a − i
{
Δ(0)

k ,Aki
} b

a Ai, (21)

where the curly brackets mean anticommutator {A, B} ≡
AB + BA. Note that for general multiband systems, both Δ(0)

k
and Aki are matrices.

It is convenient to factor out the explicit dependence on Ai

by writing

�
(1)
k,dir (A) b

a ≡ [
�

(1)
ki,dir

] b

a
Ai (22)

and

�
(1)
k (A) b

a = [
�

(1)
ki

] b

a Ai. (23)

Equation (21) now becomes[
�

(1)
ki

] b

a ≡ [
�

(1)
ki,dir

] b

a − i
{
Δ(0)

k ,Aki
} b

a . (24)

Let us now discuss the meaning and the consequence of
Eq. (21) or Eq. (24) above. Its second term, which comes
from the second and third terms of (18), comes purely from
the deformation of the Bloch functions by the external field
∂iG (†)

k Ai. This deformation gives rise to the geometric contri-
bution in first order via the Berry connection. Note that it gets
multiplied only by the zeroth-order gap Δ(0)

k . This geometric
contribution therefore does not need to be calculated self-
consistently. Once we know the zeroth-order pairing potential
and the Berry connection, this contribution is completely de-
termined. In contrast, the first term of Eq. (21), which comes
from the first term of (18), does not involve derivatives of the
Bloch functions. That is, the Bloch functions serve only to
change from the orbital basis to the band basis. This means
that this contribution comes from the direct perturbation of
the gap function due to the external field and this is the reason
for the label dir in (21). This term must be calculated self-
consistently.

One interesting result of our current theory comes from
the second term of Eq. (21). To see this, consider the case
where the bands are well separated so that the zeroth-order
pairing occurs only in one band, call it band s, where the
chemical potential is located. The zeroth-order pairing can
then be written as

�
(0) b
ka = δ s

a δ b
s �0 fk (no sum over s). (25)

Now even when the initial pairing is only on band s, note
that there are nonzero off-diagonal terms coming from the
second term of (21). That is, in general, i{Δ(0)

k ,Aki} b
s Ai �= 0

and i{Δ(0)
k ,Aki} s

a Ai �= 0 for a, b �= s. That is, there are in-
duced interband pairings that are independent of the band
gap. This is surprising as a large energy difference between
each electron in a Cooper pair leads to pair breaking in the
conventional theory. This band-gap independence can be un-
derstood as follows. The external perturbation A deforms the
Bloch function of the s band via (∂iG s

kα )Ai. The resulting state
becomes a superposition of different Bloch states including
the other bands,

∂iG s
kα =

∑
a

wkaG a
kα , (26)

where wka are the complex amplitudes.
Hence, the single-particle state of one of the electrons

involved in the Cooper pair becomes a superposition of many
Bloch states, creating a band-gap-independent interband pair-
ing. This independence on the band energy scale also shows
the underlying geometric nature of this induced interband
pairing.

For the second order, we have the following expansion:

�
(2)
k (A) b

a = (G†
k ) α

a

(
�

(2)
k

) β

α
(Gk ) b

β + [
(G†

k ) α
a

(
�

(1)
k

) β

α
(∂iGk ) b

β − (∂iG†
k ) α

a

(
�

(1)
k

) β

α
(Gk ) b

β

]
Ai

+ 1
2

[
(∂i∂ jG†

k ) α
a

(
�

(0)
k

) β

α
(Gk ) b

β − 2(∂iG†
k ) α

a

(
�

(0)
k

) β

α
(∂ jGk ) b

β + (G†
k ) α

a

(
�

(0)
k

) β

α
(∂i∂ jGk ) b

β

]
AiAj . (27)
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The first term above comes from the fluctuations of the
order parameter due to the perturbation without the contribu-
tions from the deformation of the Bloch functions. Following
what we did for first order, we can call this �

(2)
k,dir (A) b

a . The
second term of (27) contains combinations of the contribu-
tions from the Bloch function deformations and first-order
corrections �

(1)
k (A). The second line in (27) is purely geo-

metric and comes from the second-derivative Bloch function
deformations. Note that the gap function appears only in
zeroth order. This means that the second line is completely
determined if the zeroth-order pairing and the Bloch functions
are known. That is, there is no need to calculate it from a
self-consistent equation.

Just like in first order, we express (27) purely in the band
basis. The result is

�
(2)
k (A) b

a = �
(2)
k,dir (A) b

a − i
{
Δ(1)

k ,Aki
} b

a Ai

−
[
AkiΔ

(0)
k Ak j − 1

2
(Gk,i jΔ

(0)
k + H.c.)

] b

a

AiA j,

(28)

where

(Gk,i j )
b

a ≡ (∂i∂ jG†
k ) α

a (Gk ) b
α . (29)

The above quantity is related to the quantum metric gi j (k)
via

gi j (k) = Tr[Gk,i j − AkiAk j], (30)

with the trace taken in the band space.
Similar to what we did for the first order above, it is

convenient to factor the external field components Ai and Aj

explicitly. We have

�
(2)
k (A) b

a = [�k,i j]
b

a AiA j, (31)

where

[�k,i j]
b

a ≡ [
�dir

k,i j

] b

a
− i{Δki,Ak j} b

a

− [
AkiΔ

(0)
k Ak j − 1

2

(
Gk,i jΔ

(0)
k + H.c.

)] b

a
. (32)

The presence of two subscripts i and j in [�k,i j] b
a and

[�dir
k,i j]

b
a tells us that these are second-order contributions and

we do not have to put superscripts like the left-hand side
of (31).

B. Interaction

Note that the geometric contributions primarily come from
the transformation of the pairing potential matrix given by

Eq. (12) [16] and the expansion of the Bloch functions
Gk±A in powers of A. The complete form of this pairing
potential in turn must be solved from the self-consistent
equation (6), which involves the matrix components of the
effective electron-electron interaction V̂ . This means that we
must also carefully treat the transformation and expansion of
the interaction matrix V .

Consider the transformation from the orbital basis to the
band basis of the interaction matrix in (3). Recall the mean-
field form and the self-consistent equation,

Hm f = − 1

2

∑
k

(
�

β

kα
c†α

k c†
−kβ + H.c.

)
, (33)

�
β

kα = −
∑

k′
V (k, k′) β ρ

α γ 〈cγ

−k′ck′ρ〉. (34)

In going to the Nambu formalism (8), we observe that the
operators c†α

k and ck′ρ in Eqs. (33) and (34) above, respec-
tively, describe the electron degree of freedom. The α and ρ

indices of the interaction matrix V (k, k′) β ρ
α γ should therefore

be transformed with [G†
k−A] α

a and [Gk′−A] d
ρ , respectively. In

contrast, the operators c†
−kβ and cγ

−k′ in Eqs. (33) and (34)
above, respectively, describe the hole degree of freedom. The
β and γ indices of the interaction matrix V (k, k′) β ρ

α γ should

therefore be transformed using [Gk+A] b
β and [G†

k′+A] γ
c , re-

spectively. Note the opposite signs of A for the electron and
the hole degrees of freedom. The momenta k and k′ must also
be assigned carefully.

To clearly track the electron and hole degrees of freedom,
we now adopt the convention that hole indices come with bars
on top: β̄, γ̄ , b̄, c̄, etc.

With the observations above, we can now write the trans-
formation

V (k, k′, A) b̄ d
a c̄

= [G†
k−A] α

a [G†
k′+A] γ̄

c̄ V (k, k′) β̄ ρ
α γ̄ [Gk+A] b̄

β̄
[Gk′−A] d

ρ . (35)

We now use Eq. (13) and expand the interaction matrix in
powers of the external field.

The zeroth order is simply the transformation from the
orbital basis to the band basis,

V (0)(k, k′) b̄ d
a c̄ = [G†

k] α
a [G†

k′]
γ̄

c̄ V (k, k′) β̄ ρ
α γ̄ [Gk] b̄

β̄
[Gk′] d

ρ

≡ V (k, k′) b̄ d
a c̄ . (36)

That is, there is no deformation of the Bloch functions due to
the external perturbation.

The first-order contribution is given by

V (1)(k, k′, A) b̄ d
a c̄ = −[∂iG†

k] α
a [G†

k′ ]
γ̄

c̄ V (k, k′) β̄ ρ
α γ̄ [Gk] b̄

β̄
[Gk′ ] d

ρ Ai + [G†
k] α

a [∂ ′
iG†

k′ ]
γ̄

c̄ V (k, k′) β̄ ρ
α γ̄ [Gk] b̄

β̄
[Gk′ ] d

ρ Ai

+ [G†
k] α

a [G†
k′]

γ̄
c̄ V (k, k′) β̄ ρ

α γ̄ [∂iGk] b̄
β̄

[Gk′] d
ρ Ai − [G†

k] α
a [G†

k′]
γ̄

c̄ V (k, k′) β̄ ρ
α γ̄ [Gk] b̄

β̄
[∂ ′

iGk′] d
ρ Ai. (37)

It is convenient to express all the factors above in the band basis. In doing so, we will see the explicit appearance of the
quantum band geometric quantities. We do this by inverting (36). That is, we express V (k, k′) β̄ ρ

α γ̄ in terms of V (k, k′) b̄ d
a c̄ , then
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use the relations

A b̄
k ja = i[G†

k] α
a [∂ jGk] b̄

α , (38)

[∂ jG†
k] α

a [Gk] b̄
α = − [G†

k] α
a [∂ jGk] b̄

α . (39)

The result is

V (1)(k, k′) b̄ d
a c̄ = −i[Ak j]

e
a V (k, k′) b̄ d

e c̄ A j + i[Ak′ j]
f̄

c̄ V (k, k′) b̄ d
a f̄ A j − iV (k, k′) ḡ d

a c̄ [Ak j]
b̄

ḡ A j

+ iV (k, k′) b̄ h
a c̄ [Ak j]

d
h A j . (40)

Here we see that the external field changes the interaction matrix via the Berry connection.
Similar manipulations can be made to get the second-order expansion of the interaction matrix. We have

V (2)(k, k′) b̄ d
a c̄ = {

V (k, k′) r̄ s
a c̄ [Ak j]

b̄
r̄ [Ak′i]

d
s − V (k, k′) r̄ d

m c̄ [Ak j]
m

a [Ak′i]
b̄

r̄ + V (k, k′) b̄ s
m c̄ [Ak j]

m
a [Ak′i]

d
s

+ V (k, k′) r̄ d
a n̄ [Ak j]

b̄
r̄ [Ak′i]

n̄
c̄ − V (k, k′) b̄ s

a n̄ [Ak′i]
n̄

c̄ [Ak′ j]
d

s + V (k, k′) b̄ d
m n̄ [Aki]

m
a [Ak′ j]

n̄
c̄

+ 1
2 (G†

k,i j )
b̄

r̄ V (k, k′) r̄ d
a c̄ + 1

2 (G†
k′,i j )

d
s V (k, k′) b̄ s

a c̄ + 1
2 (Gk,i j )

m
a V (k, k′) b̄ d

m c̄

+ 1
2 (Gk′,i j )

n̄
c̄ V (k, k′) b̄ d

a n̄

}
AiAj, (41)

where Gk,i j is defined in (29).
Equations (36), (40), and (41) will be useful when we solve

the self-consistent equation perturbatively in powers of the
external electromagnetic vector potential.

IV. THE PSEUDOSPIN FORMALISM

After laying down the Hamiltonian and the expansions of
the pairing and interaction matrices, we now proceed to the
main section of this work. Here, we will generalize Ander-
son’s pseudospin formalism [17] to include the multiband
systems. We will rewrite the BdG Hamiltonian in terms of
the multiband pseudospins formalism. We provide an explicit
formula for the pseudomagnetic field, then derive the equa-
tions of motion for the pseudospins. We then provide a formal
solution to the equations of motion using Laplace transforma-
tion and perturbation.

A. Equations of motion

We start with the generalized definition for the pseudospin
of a multiband system,


�k = ψ̂
†
k

Γψ̂k. (42)

We note that at this stage, what we have is a pseudospin
operator. This will become a c number later on when we take
the expectation value after we derive the equations of motion.

Here the vector components of 
Γ are the generators of
SU(2N), {Γm} for m = 1, . . . , 4N2 − 1, where N is the num-
ber of bands. The factor of two in SU(2N) comes from the
electron and hole degrees of freedom in the Nambu formalism.
Sometimes it is convenient to include the 2N×2N identity
matrix. In such a case, we will designate it as Γ0 ≡ I2N×2N .

Furthermore, it is standard to choose the generators that
satisfy the relations

Tr[ΓmΓn] = 1
2δmn, [Γl ,Γn] = i f lmnΓn, (43)

where f lmn are the structure coefficients of the Lie algebra
su(2N ). We will assume that this is the case in this work.

In terms of the pseudospins, the Hamiltonian can be
written as

H (A) = 2
∑

k


Bk(A) · 
�k, (44)

where 
Bk(A) is the pseudomagnetic field, whose explicit com-
ponents will be solved below. For an N-band superconductor,
this pseudomagnetic field is a 4N2 − 1-dimensional vector.

A comparison of the BdG Hamiltonian given by Eq. (10)
with the Hamiltonian given by Eq. (44) above gives us the
Bloch BdG Hamiltonian in terms of the pseudomagnetic field,

Hk(A) = 2Bk(A)nΓ
n. (45)

We can express the pseudomagnetic field in terms of this BdG
Hamiltonian matrix Hk(A) by multiplying Eq. (45) by Γm,
taking the trace, then using the relations (43) to get

Bk(A)n = Tr[ΓnHk(A)]. (46)

Hence, once the form of Hk(A) is known, we can calculate the
components of the pseudomagnetic field vector.

The pseudospin fluctuations due to the external elec-
tromagnetic field are usually solved using perturbation. To
prepare for this, let us expand the pseudomagnetic field in
powers of A. Using Eqs. (13), (23), and (31), we can write
the BdG Hamiltonian as

Hk(A) = H (0)(k) + Hi(k)Ai + Hi j (k)AiAj, (47)

where

H (0)(k) = 1
2

(
Ek − μ Δ(0)

k

Δ(0)†
k −Ek + μ

)
, (48)

Hi(k) = 1
2

(
∂iEk Δki

Δ†
ki −∂iEk

)
, (49)

Hi j (k) = 1
2

(
1
2∂i∂ jEk Δki j

Δ†
ki j − 1

2∂i∂ jEk

)
. (50)

Here, Δki and Δki j are defined in Eqs. (24) and (32),
respectively.
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The nth component of the pseudomagnetic field up to sec-
ond order can then be written as

B(0)n
k = Tr[ΓnH (0)(k)], (51)

B(1)n
k = Tr[ΓnHi(k)]Ai ≡ Bn

i (k)Ai, (52)

B(2)n
k = Tr[ΓnHi j (k)]AiAj ≡ Bn

i j (k)AiAj . (53)

The equations of motion can be calculated from the
Heisenberg equation,

∂t�
l
k = i

[
H (A),�l

k

]
. (54)

Note that even though we have rewritten the Hamiltonian in
terms of the pseudospin, in order for the commutator at the
right-hand side to make sense, the pseudospin must be an
operator at this stage. An alternative is to replace the com-
mutation relation by the Poisson bracket. The pseudospin can
then be immediately replaced by its semiclassical value.

To evaluate the commutator at the right-hand side of
Eq. (54), we first note that the multiband Nambu spinor (8)
obeys the anticommutation relations

{ψ̂k, ψ̂
†
k′ } = δkk′I and {ψ̂k, ψ̂k′ } = 0, (55)

where I is now a 2N × 2N identity matrix.
Using the Hamiltonian (44), the Heisenberg equation (54)

becomes

∂t�
l
k = 2i

∑
k′

[
B j

k′ (A)�k′ j,�ki
]

(56)

= 2i
∑

k′
B j

k′ (A)[�k′ j,�ki]. (57)

We therefore need to evaluate the commutator between the
two pseudospin operators,

[�k′ j,�ki] = [ψ̂†
k′ jψ̂k′ , ψ̂

†
kiψ̂k]. (58)

It is convenient to rewrite this in terms of the SU(2N) indices,
which we will denote by A, B, C, and D, and use the Einstein
summation convention,

[�k′ j,�ki] = [
ψ̂

† A
k′ B

jAψ̂k′B, ψ̂
† C
k D

iCψ̂kD
]

= B
jAD

iC

[
ψ̂

† A
k′ ψ̂k′B, ψ̂

† C
k ψ̂kD

]
= B

jAD
iC

(
ψ̂

† A
k′ ψ̂k′Bψ̂

† C
k ψ̂kD

− ψ̂
† C
k ψ̂kDψ̂

† A
k′ ψ̂k′B

)
. (59)

Now consider the second term inside the parentheses of
the last line in Eq. (59). We bring the factor ψ̂

† A
k′ ψ̂k′B to the

left of ψ̂
† C
k ψ̂kD by using the anticommutation relations for the

multiband Nambu spinor given by Eq. (55). The result is

[�k′ j,�ki] = −δkk′ψ̂
† C
k �A

iC�B
jAψ̂k′B + δkk′ψ̂

† A
k′ B

jAD
iBψ̂kD.

(60)

For the first term, we change the dummy indices C → A,
A → B, and B → D. Furthermore, because of the Dirac delta
δkk′ , we can replace the momentum subscripts of the Nambu
spinors, k′ → k. The equation above then becomes

[�k′ j,�ki] = δkk′ψ̂
† A
k

(
B

jAD
iB − B

iAD
jB

)
ψ̂kD. (61)

Note that the indices has the correct placing, i.e., paired up
and down and adjacent, so that we can rewrite the right-hand

side above as matrix multiplications. The difference then gives
the commutator

[�k′ j,�ki] = δkk′ψ̂
†
k [ j, i]ψ̂k. (62)

Now recall that i are the generators of SU(2N) and obeys the
Lie algebra

[ j, i] = i f jinn. (63)

Using this in Eq. (62), we have

[�k′ j,�ki] = iδkk′ f jinψ̂
†
knψ̂k = iδkk′ f jin�kn. (64)

Finally, substituting the result above into Eq. (57), we obtain
the equations of motion,

∂t�kl = 2 fi jnB j
k(A)�kn. (65)

We can now replace the pseudospin operators by the classical
values or take the expectation values as is done in the original
pseudospin formalism [17].

B. Formal solution

Having derived the equations of motion for the general
multiband pseudospin, we now provide its formal solution
using perturbation and Laplace transformation. Note that
the order matters: one must first expand in powers of A,
along with

Bk(A) = B(0)
k + B(1)

k + B(2)
k + · · ·, (66)

where the components are given by Eqs. (51)–(53) and

�k = �
(0)
k + �

(1)
k + �

(2)
k + · · ·, (67)

where the superscripts reflect the orders in powers of A.
The Laplace transformation must then be used to solve the

differential equation order by order. For zeroth order, we have

0 = 2 f l
mn B(0)

k (A)m�
(0)n
k . (68)

Since the structure coefficients are antisymmetric under the
exchange of the m and n indices, f l

mn = − f l
nm , this shows

that �
(0)n
k ∝ B(0)

k (A)n is a solution. Since we want the energy
to be minimized at the ground state, we choose the solution to
be antiparallel to the pseudomagnetic field,


�(0)
k = −B̂(0)

k (A). (69)

This solution is reasonable as our Hamiltonian (44) is analo-
gous to a system of spin immersed in a magnetic field but in
higher dimensions.

Let us now deal with the higher-order equations of motion.
Unlike the zeroth-order Eq. (68), these higher orders contain
derivatives with respect to time and are therefore proper differ-
ential equations. We assume that the perturbing external field
vanishes in the far past A(t → −∞) = 0, so that we can take
the initial condition to be �(i)(t → −∞) = 0 for i � 1.

The Laplace transform of the first-order equation of
motion is

−s�(1)l
k = 2 f l

mn

[
B(0)

k (A)m�
(1)n
k + B(1)

k (A)m�
(0)n
k

]
, (70)

where s comes from the Laplace transform, which trades off
t → s.
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This is just a system of algebraic equations (for l =
1, 2, . . . , 4N2 − 1), which we can solve for each components
�

(1) j
k , giving

�
(1) j
k = −2

(
M−1

0

) j

l f l
mnB(1)

k (A)m�
(0)n
k , (71)

where M−1
0 is the inverse of the matrix M0 whose elements are

given by

(M0)l
n ≡ sδl

n + 2 f l
mnB(0)

k (A)m. (72)

Note that by the time we are calculating the first-order so-
lution (71), the zeroth-order solution is already known from
Eq. (69).

Once the first-order correction to the pseudospin is known,
the same steps can be done for the second order. This gives

�
(2) j
k = −2

(
M−1

0

) j

l f l
mn

[
B(1)

k (A)m�
(1)n
k + B(2)

k (A)m�
(0)n
k

]
.

(73)

Equations (69), (71), and (73) give us the formal solutions to
the pseudospin fluctuations up to second order in the external
field.

V. THE SELF-CONSISTENT EQUATION

In the previous section, we derived Eqs. (69), (71), and (73)
and called them “formal solutions.”There is, however, a
caveat: this assumes that the pseudomagnetic field com-
ponents are known. In actuality, the pseudomagnetic field
depends on the pairing potential, which, in turn, is to be
calculated using the expectation value given by Eq. (6). The
complete system of equations to be solved therefore includes a
self-consistent equation in addition to the equations of motion
for the pseudospins.

In this section, we will show how to correctly write the
self-consistent equation in terms of the generalized multiband
pseudospin formalism. This is where our expansion of the
interaction potential matrix that we did in Sec. III B becomes
useful.

We start with the self-consistent equation analogous to
Eq. (6), but written in the band basis,

�k(A) b̄
a = −

∑
k′

V (k, k′, A) b̄ d
a c̄

〈
cc̄
−k′ck′d

〉
. (74)

Recall from our discussion in Sec. III B that a bar on top of an
index denotes a hole degree of freedom.

We want to express the self-consistency condition (74) in
terms of the pseudospin. To do this, we write the interaction
as a matrix, [

V (k, k′, A) b̄
a

] d

c̄
, (75)

where c̄ and d label the elements of the matrix V(k, k′, A) b̄
a

for fixed a and b̄. For example, [V (k, k′, A) 2̄
1 ] 4

3̄
means the

third row and fourth column of the particular matrix labeled
by a = 1 and b̄ = 2̄.

We expand these matrices in terms of the generators of
SU(2N) (including the identity matrix) and write[

V (k, k′, A) b̄
a

] d

c̄ = 
V (k, k′, A) b̄
a · [
Γ] d

c̄ , (76)

where


V (k, k′, A) b̄
a ≡ Tr

{
ΓV(k, k′, A) b̄
a

}
. (77)

Note that the above equations are just the generalization of
the well-known expansion of any 2×2 matrix in terms of the
Pauli matrices, but with the Pauli matrices replaced by the
SU(2N) group generators. The components of 
V (k, k′, A) b̄

a
are the just the number coefficients. We also clarify the possi-
ble confusion of notation here: 
V (k, k′, A) b̄

a is different from
V(k, k′, A) b̄

a . The former is defined via Eq. (75) and has a
matrix structure, while the latter is defined via Eq. (77) and
has a vector structure.

Using Eq. (76) in Eq. (74), we get

�k(A) b̄
a = −

∑
k′


V (k, k′, A) b̄
a · 〈

cc̄
−k


Γ d
c̄ ck′d

〉
. (78)

Now not all of the generators enter into the self-consistent
equation above. To understand this, recall that in the single-
band case, only the x and y components of the pseudospin
appear in the right-hand side of the self-consistency equa-
tion [17,18],

� = U
∑

k

(
σ x

k + iσ y
k

)
. (79)

We follow this clue to determine the relevant generators that
enter into the right-hand side of the self-consistency equa-
tion in the multiband case. To do this, we first explicitly
separate the particle-hole degrees of freedom from the band
degrees of freedom. The particle-hole degrees of freedom can
be described by the set of 2×2 matrices,

σα = {σ 0, 
σ }, (80)

where σ 0 is the 2×2 identity matrix while the components of

σ are the three Pauli matrices.

Similarly, the band degrees of freedom are described by the
N×N matrices,

�μ = {Θ0, 
Θ}, (81)

where Θ0 is an N×N identity matrix and the N2 − 1 compo-
nents of 
Θ are the generators of the SU(N) group.

The generators of the full SU(2N) group can then be as-
sembled via

Λαμ ≡ σα ⊗ Θμ, (82)

for α = 0, . . . , 3 and μ = 0, . . . , N2 − 1. One of these,
specifically Λ00, is of course just the 2N×2N identity matrix.

With the particle-hole degrees of freedom explicitly “fac-
tored out” in the generators given by Eq. (82), we can now
follow Eq. (79) and write the self-consistency equation for the
multiband case as

�k(A) b̄
a = −

∑
k′


V (k, k′, A) b̄
a · 〈ψ†

k (σ x − iσ y) ⊗ 
Θψk〉.

(83)

That is, the SU(2N) generators Λ1μ and Λ2μ, for μ =
0, . . . , N2 − 1, are the generators that are involved in the
self-consistency equation.
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While the choice given by Eq. (82) makes it clear how
to write the self-consistency equation, most SU(2N) genera-
tors that are listed in the literature are not of this form. We
must then be able to relate {(σ x − iσ y) ⊗ 
Θ} with an arbitrary
choice of SU(2N) generators {Γi|i = 0, 1, 2, . . . , 4N2 − 1},
where, for brevity, we include the identity matrix in the set.
To do this, we expand

(σ x − iσ y) ⊗ Θμ = α
μ
i Γi, (84)

where

α
μ
i = Tr{Γi[(σ

x − iσ y) ⊗ Θμ]}. (85)

We can now write Eq. (83) as

�k(A) b̄
a = −

∑
k′

Vμ(k, k′, A) b̄
a α

μ
i �i, (86)

where �i = 〈ψ†
kΓiψk〉 are the pseudospin components in

terms of the generators {Γi|i = 0, 1, 2, . . . , 4N2 − 1}.
Equation (86) is our main result of this section. It expresses

the self-consistency equation in terms of the multiband pseu-
dospin in terms of arbitrary choice of generators. This and
the equations of motion for the pseudospin form a set of
equations that need to be solved. Lastly, anticipating that this
system of equations is to be solved perturbatively, we expand
the self-consistency equation in powers of the external field.
The zeroth, first, and second orders are, respectively,

�
(0)
k (A) b̄

a = −
∑

k′
V (0)

j (k, k′, A) b̄
a α

j
i �

(0)i, (87)

�
(1)
k (A) b̄

a = −
∑

k′
V (0)

j (k, k′, A) b̄
a α

j
i �

(1)i

−
∑

k′
V (1)

j (k, k′, A) b̄
a α

j
i �

(0)i, (88)

�
(2)
k (A) b̄

a = −
∑

k′
V (0)

j (k, k′, A) b̄
a α

j
i �

(2)i

−
∑

k′
V (1)

j (k, k′, A) b̄
a α

j
i �

(1)i

−
∑

k′
V (2)

j (k, k′, A) b̄
a α

j
i �

(0)i, (89)

where the different orders of the interaction matrix and pseu-
dospins are given in the previous sections.

VI. EXAMPLE: GEOMETRY-INDUCED LEGGETT MODE

In this section, we provide a sample calculation of the
formalism that we outlined above. We leave the exploration
of more complex case, such as the twisted bilayer graphene
superconductor, for future work. Here we only focus on the
simple case and explore the first-order geometric contribution
by considering the specific case of the two-band Bernevig-
Hughes-Zhang model described by the Hamiltonian [19]

H = sin kxσx + sin kyσy + B(2 + M − cos kx − cos ky)σz.

(90)

At the single-particle level, this model has a topological
phase transition, but is sufficiently simple, which makes
it ideal to use in investigating band geometric effects in
superconductivity.

We can write the zeroth-order pairing potential in the band
space and the Berry connection as

�k =
(

�11 eiα�12

−eiα�12 eiβ�22

)
(91)

and

Aki =
(

aki bki + icki

bki − icki dki

)
, (92)

where �11, �12, �22, aki, bki, cki, and dki are real numbers.
Note that the components of the Berry connection are depen-
dent on the parameters M and B, but for notational brevity
we omit such functional dependence and simply write aki,
bki, etc. The explicit expressions for the components of the
Berry connection are given in the Supplemental Material [20].
We further note that our starting point is a mean-field pairing
potential given by Eq. (91) for some suitable interaction ma-
trix that produces such intraband and interband pairing. Since
our aim here is to show that there are geometric interband
pairing fluctuations and Leggett mode at the first order, we
do not need to specify the microscopic source of the pairing
or the interaction matrix. We simply assumed that there is a
pairing potential at zeroth order. Such a pairing potential can
be intrinsic to the material studied or can come from some
bulk superconductor via the proximity effect. The angles α

and β are the phase differences between different band and
interband pairings and are therefore physical quantities. Note
that we have omitted the superscript zero of � since we will
not be concerned with higher-order corrections.

We can write the different elements of the second term
of (24),

i{�k,Ak}11 = 2�12 cos αcki + 2i(�11aki + �12 sin αcki ),
(93)

i{�k,Ak}12 = −�11cki − �12(dki − aki ) sin α

− �22(bki sin β + cki cos β )

+ i[�11bki + �12(dki + aki ) cos α

+ �22(bki cos β − cki sin β )], (94)

i{�k,Ak}22 = 2�12cki cos α − 2�22dki sin β

+ 2i(�12cki sin α + �22dki cos β ). (95)

To explore the effects of geometry further, we consider the
simpler case where the top band is empty and the pairing only
occurs in the bottom band so that, to zeroth-order, �11 �= 0
while �12 = �22 = 0. The equations above then reduce to

i{�k,Ak,i}11 = 2i�11aki, (96)

i{�k,Ak,i}12 = −�11cki + i�11bki, (97)

i{�k,Ak}22 = 0. (98)

We see that the induced fluctuation in �11 pairing is purely
imaginary. Since the zeroth order �11 is chosen to be real, an
imaginary fluctuation is a pure phase mode. This comes from
the expansion

(� + δ�)eiδθ ≈ � + δ� + i�δθ, (99)
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Δ12 Δ12

FIG. 1. (a) Real (blue) and imaginary (orange) parts of the in-
duced interband pairing fluctuations. (b) Leggett modes θLeggett =
δθ11 − δθ12 for M = 0 (orange) and M = −2 (blue).

showing that the imaginary part comes from the phase
fluctuation. This will couple to the external field via the
Anderson-Higgs mechanism, but this is not our main interest.

The second equation in (97) describes the interband pairing
fluctuations induced by the band geometry. Note that in zeroth
order, we started with �12 = 0. That is, there is no zeroth-
order interband pairing. In Fig. 1(a), we show the real and
imaginary components of the interband fluctuations using the
external pulse field,

A(t ) = A0 exp
( − t2

/
t2
0

)
sin(ωt ), (100)

with A0 = 〈0.1, 0.1〉, t0 = 10, and ω = 2. The parameters
are M = −2, B = 1, and k = 〈0.1, 0.0〉. At this point in the
Brillouin zone, the band gap is ≈ 4 eV, which is much larger
than the typical pairing, � � 10−3 eV. However, as can be
seen from the figure, there is a clear interband mode even if
the band gap is large. This can also be seen from the analytic
expression, i.e., Eq. (97), that shows no dependence on the
band gap. This contribution is purely geometric and is inde-
pendent of the energy scales of the system. While the phase
fluctuation of �11 is not a physical quantity, the fluctuation of
the relative phase between �11 and �12, i.e., δθ11 − δθ12, is a
physical quantity, which is the Leggett mode [21]. We show
this mode in Fig. 1(b) for different values of the parameter
M and k = 〈0.1, 0.0〉. There is a small band gap at this k

value for M = 0, where the band is gapless at k = 0. In
contrast, the band gap at k = 〈0.1, 0.0〉 for M = −2 is ≈ 4 eV.
Consistent with the geometric nature of this Leggett mode,
its amplitude does not vanish even with the large band gap
(M = −2, blue curve). In addition, unlike the conventional
Leggett mode [21], the geometric Leggett mode that we found
here is not proportional to the Fermi velocity. We therefore
expect this geometric mode to persist even in the flat-band
superconductors.

VII. SUMMARY

Let us now summarize our results. We start with the gener-
alized Anderson pseudospin theory and the equations that are
needed to be solved in using this formalism. First, we have
the formal solutions for the pseudospin components given by
Eqs. (69), (71), and (73):


�(0)
k = − B̂(0)

k (A), (101)

�
(1) j
k = − 2

(
M−1

0

) j

l f l
mnB(1)

k (A)m�
(0)n
k , (102)

�
(2) j
k = − 2

(
M−1

1

) j

l f l
mn

[
B(1)

k (A)m�
(1)n
k + B(2)

k (A)m�
(0)n
k

]
.

(103)

Here we derived the results up to second order, but one can, in
principle, obtain the higher orders.

These formal solutions, however, are not yet the final so-
lutions, as the right-hand side of the equations above contains
the unknown order parameter �( j) through the pseudomag-
netic field B( j)

k . This in turn can be calculated from Eq. (46)
and then expanded in powers of A as in Eq. (66). The differ-
ent orders of the pseudomagnetic field can be calculated via
Eqs. (51)–(53).

The equations of motion for the pseudospin must be solved
self-consistently. This can be done by substituting the formal
solution for the pseudospin components above into the self-
consistency equation (86),

�k(A) b̄
a = −

∑
k′

Vμ(k, k′, A) b̄
a α

μ
i �i. (104)

We can also do this order by order by using Eqs. (88)
and (89), with the expansion of the interaction matrix derived
in Sec. III B. Upon doing this, one ends up with a system
of equations with �

(n)
k,dir as the unknowns, where n labels the

order. Equations (24) and (32) then gives the first- and second-
order fluctuations to the pairing potential. These fluctuations
contain contributions that are purely geometric in nature. In
the special case where one projects to a single-band case,
these fluctuations were shown to survive even in the flat-band
limit [14]. At first order, we also saw that the geometric
contribution induces interband pairing fluctuations that are
independent of the band gap. Since these pairing fluctuations
are written in the band basis, the off-diagonal solutions give
the interband pairing fluctuations, while the diagonal terms
give the intraband fluctuations. When the zeroth-order pairing
matrix in the band basis is known, the fluctuations in magni-
tude or radial fluctuations will give us the Higgs mode, while
the fluctuations of the phases for different band pairings will
give us the Leggett modes.
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We provided a simple first-order calculation using the
Bernevig-Hughes-Zhang model. We have shown that the in-
terband pairing fluctuation and the Leggett mode persists even
when the band gap is larger than the energy scale of the
pairing.

It would be interesting to explore the consequences of
our theory to specific models of multiband superconductors,
such as the layered systems. A full calculation would require
solving the self-consistency equation and integrating either
over the Fermi surface or the entire band in the case of flat
bands. One may also study the interplay of dispersive and

flat bands in the interband pairing and the Leggett modes by
using other toy models that are known to have nontrivial band
geometry [22,23]. We leave all such detailed explorations for
future work.

ACKNOWLEDGMENT

The author would like to thank B. Yang for the insightful
discussions. This work was funded by the UP System Balik
PHD Program (Grant No. OVPAA-BPhD-2022-06).

[1] E. Y. Andrei, D. K. Efetov, P. Jarillo-Herrero, A. H. MacDonald,
K. F. Mak, T. Senthil, E. Tutuc, A. Yazdani, and A. F Young,
The marvels of moiré materials, Nat. Rev. Mater. 6, 201
(2021).

[2] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
double-layer graphene, Proc. Natl. Acad. Sci. USA 108, 12233
(2011).

[3] G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of
magic angles in twisted bilayer graphene Phys. Rev. Lett. 122,
106405 (2019).

[4] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[5] X. Hu, T. Hyart, D. I. Pikulin, and E. Rossi, Geometric and
conventional contribution to the superfluid weight in twisted
bilayer graphene, Phys. Rev. Lett. 123, 237002 (2019).

[6] F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Topology-
bounded superfluid weight in twisted bilayer graphene, Phys.
Rev. Lett. 124, 167002 (2020).

[7] A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkilä, and P. Törmä,
Superfluid weight and Berezinskii-Kosterlitz-Thouless transi-
tion temperature of twisted bilayer graphene, Phys. Rev. B 101,
060505(R) (2020).

[8] H. Tian, X. Gao, Y. Zhang, S. Che, T. Xu, P. Cheung, K.
Watanabe, T. Taniguchi, M. Randeria, F. Zhang, C. N. Lau, and
M. W. Bockrath, Evidence for Dirac flat band superconductiv-
ity enabled by quantum geometry, Nature (London) 614, 440
(2023).

[9] A. Abouelkomsan, K. Yang, and E. J. Bergholtz, Quantum
metric induced phases in moiré materials, Phys. Rev. Res. 5,
L012015 (2023).

[10] D. Shaffer, J. Wang, and L. H. Santos, Theory of Hofstadter
superconductors, Phys. Rev. B 104, 184501 (2021).

[11] W.-M. Huang and H.-H. Lin, Pairing mechanism in multiband
superconductors, Sci. Rep. 10, 7439 (2020).

[12] S. A. Chen and K. T. Law, The Ginzburg-Landau theory of flat
band superconductors with quantum metric, arXiv:2303.15504.

[13] N. R. Poniatowski, J. B. Curtis, A. Yacoby, and P. Narang,
Spectroscopic signatures of time-reversal symmetry breaking
superconductivity, Commun. Phys. 5, 44 (2022).

[14] Kristian Hauser A. Villegas and B. Yang, Anomalous Higgs
oscillations mediated by Berry curvature and quantum metric,
Phys. Rev. B 104, L180502 (2021).

[15] H. Chu, M.-J. Kim, K. Katsumi, S. Kovalev, R. D. Dawson,
L. Schwarz, N. Yoshikawa, G. Kim, D. Putzky, Z. Z. Li, H.
Raffy, S. Germanskiy, J.-C. Deinert, N. Awari, I. Ilyakov, B.
Green, M. Chen, M. Bawatna, G. Cristiani, G. Logvenov et al.,
Phase-resolved Higgs response in superconducting cuprates,
Nat. Commun. 11, 1793 (2020).

[16] S. Peotta and T. Päivi, Superfluidity in topologically nontrivial
flat bands, Nat. Commun. 6, 8944 (2015).

[17] P. W. Anderson, Random-phase approximation in the theory of
superconductivity, Phys. Rev. 112, 1900 (1958).

[18] N. Tsuji and H. Aoki, Theory of Anderson pseudospin reso-
nance with Higgs mode in superconductors, Phys. Rev. B 92,
064508 (2015).

[19] A. B. Bernevig and T. L. Hughes, Topological Insulators
and Topological Superconductors (Princeton University Press,
Princeton, NJ, 2013).

[20] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.174504 for the explicit expressions of
the Bloch eigenfunctions and the components of the Berry
connection.

[21] A. J. Leggett, Number-phase fluctuations in two-band supercon-
ductors, Prog. Theor. Phys. 36, 901 (1966).

[22] J. S. Hofmann, E. Berg, and D. Chowdhury, Superconductiv-
ity, pseudogap, and phase separation in topological flat bands,
Phys. Rev. B 102, 201112(R) (2020).

[23] J. Mitscherling and T. Holder, Bound on resistivity in flat-band
materials due to the quantum metric, Phys. Rev. B 105, 085154
(2022).

174504-10

https://doi.org/10.1038/s41578-021-00284-1
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1038/nature26160
https://doi.org/10.1103/PhysRevLett.123.237002
https://doi.org/10.1103/PhysRevLett.124.167002
https://doi.org/10.1103/PhysRevB.101.060505
https://doi.org/10.1038/s41586-022-05576-2
https://doi.org/10.1103/PhysRevResearch.5.L012015
https://doi.org/10.1103/PhysRevB.104.184501
https://doi.org/10.1038/s41598-020-63608-1
http://arxiv.org/abs/arXiv:2303.15504
https://doi.org/10.1038/s42005-022-00819-0
https://doi.org/10.1103/PhysRevB.104.L180502
https://doi.org/10.1038/s41467-020-15613-1
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRevB.92.064508
http://link.aps.org/supplemental/10.1103/PhysRevB.108.174504
https://doi.org/10.1143/PTP.36.901
https://doi.org/10.1103/PhysRevB.102.201112
https://doi.org/10.1103/PhysRevB.105.085154

