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On-off switch and sign change for a nonlocal Josephson diode in spin-valve Andreev molecules

Erik Wegner Hodt * and Jacob Linder
Department of Physics, Center for Quantum Spintronics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

(Received 30 June 2023; revised 2 October 2023; accepted 17 October 2023; published 1 November 2023)

Andreev molecules consist of two coherently coupled Josephson junctions and permit nonlocal control over
supercurrents. By making the barriers magnetic and thus creating a spin valve, we predict that a nonlocal
Josephson diode effect occurs that is switchable via the magnetic configuration of the barriers. The diode effect
is turned on, off, or changes its sign depending on whether the spin valve is in a parallel, normal, or antiparallel
configuration. These results offer a way to exert complete control over a nonlocal Josephson diode effect via the
spin degree of freedom.
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I. INTRODUCTION

The flow of a supercurrent between superconductors sep-
arated by a nonsuperconducting restriction—the Josephson
effect [1]—is a striking depiction of the quantum nature of
the superconducting state, and its physical implementation—
the Josephson junction—is a fundamental device in quantum
technology applications such as magnetic field sensing and
metrology [2–4].

The interaction between multiple Josephson junctions (JJs)
located within a distance on the order of the superconduct-
ing coherence length ξ0 is an emerging field of interest.
While there are numerous works on diverse nonlocal effects
in systems with several Josephson junctions, several works
have considered a particular model system known as the An-
dreev molecule, both theoretically [5–11] and experimentally
[12–18]. The Andreev molecule is formed by the hybridiza-
tion of overlapping Andreev bound states (ABSs) stemming
from individual JJs separated by a distance on the order of ξ0.
The Andreev molecule has been predicted to depict a nonlocal
Josephson effect due to the nonlocal interaction between the
phase gradients over the two JJs [5], causing a deviation from
the single-junction current-phase relation and a nonreciprocal
critical current. This can be viewed as a nonlocally induced
superconducting diode effect.

The superconducting diode effect, the observation of an
asymmetry between the forward and reverse critical currents
Ic+ �= Ic−, is believed to be an important building block in
future, dissipationless electronics devices. The effect was ob-
served for a bulk system by Ando et al. [19] and was attributed
to a magnetochiral anisotropy, caused by the breaking of
time and spatial inversion symmetries. Apart from properties
of bulk superconductors, there have been several predictions
of rectifying behavior in Josephson junction based systems;
for instance, Refs. [20–28] where the sources of the asym-
metry are diverse, originating in magnetic barriers, sample
geometry, and the presence of spin-orbit coupling among
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others. As indicated by Pillet et al. [5], the nonlocal modu-
lation of the current-phase relation in an Andreev molecule
also introduces an asymmetry between the positive and neg-
ative critical currents. As such, the Andreev molecule is an
interesting system for the study and realization of the super-
conducting diode effect. However, the role of the spin degree
of freedom has not been addressed so far in the literature on
this system.

In this paper, we introduce the spin-valve Andreev
molecule, consisting of three superconducting regions sep-
arated by spin-active barriers [see Fig. 1(a)]. The relative
orientation of the magnetic moment on the two barriers can
be rotated in experimental setups and we show that the rec-
tifying behavior of the spin-valve Andreev molecule changes
significantly when the magnetic barriers are parallel (P), nor-
mal to each other (N), or antiparallel (AP). We show that
by switching the relative magnetization from P to (1) N and
(2) AP, the diode effect in the molecule can be (1) switched
off and (2) reversed, with comparable diode efficiency in the
other direction. This shows that the spin degree of freedom
in coherently coupled Josephson junctions can be used to
obtain new functionality, offering full control over the diode
effect.

II. MODEL

The spin-valve Andreev molecule consists of three one-
dimensional (1D) superconductors connected by ferromag-
netic weak links, as depicted in Fig. 1(a). The phase
differences between the superconducting order parameters
across each weak link are fixed for the middle superconductor
by a connection to ground. If the weak links are separated
by a distance on the order of the superconducting coherence
length ξ0, the phase difference across one weak link can affect
the “effective” phase over the other through hybridization
of the ABSs centered at each weak link. The spin-active
barriers serving as the weak links are modeled as Dirac δ

functions.
We model the SFSFS spin-valve Andreev molecule using

the Bogoliubov–de Gennes formalism [29]. Due to the spin
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FIG. 1. (a) The spin-valve Andreev molecule consists of three
1D superconductors where the phase difference between the su-
perconducting order parameters is fixed. By a relative rotation of
the magnetic moments of the spin-active barriers separating the
three superconducting regions, drastically different superconducting
diode characteristics can be achieved in the molecule. (b) Experi-
ment proposal for characterizing the spin-valve Andreev molecule.
By pinching off the uppermost current loop, the phase difference
between the middle and right superconductors can be fixed with a
magnetic flux �R.

splitting induced by the ferromagnetic barriers, we consider
the full 4 × 4 Nambu space Hamiltonian

H =

⎛
⎜⎜⎝

H0 + V↑↑ V↑↓ 0 �

V↓↑ H0 + V↓↓ −� 0
0 −�∗ −H0 − V↑↑ −V ∗

↑↓
�∗ 0 −V ∗

↓↑ −H0 − V↓↓

⎞
⎟⎟⎠,

(1)

where the gap parameter �(x) and potentials Vαβ (x) are de-
fined by

�(x) =
⎧⎨
⎩

|�|eiδL if x < −l/2
0 if |x| < l/2
|�|eiδR if x > l/2,

(2)

Vαβ =UL(σ0 + γ n̂L · σ)αβδ(x + l/2)

+ UR(σ0 + γ n̂R · σ)αβδ(x − l/2), (3)

where H0 = −h̄2

2m ∂2
x − μ, l is the length of the middle super-

conductor, U0 is the spin-independent barrier potential, and
0.0 < γ < 1.0 denotes the strength of the spin-active poten-
tial relative to UL/UR. Moreover, m is the electron mass, μ the
chemical potential, n̂L/R the unit vector denoting the direction
of the left/right barrier moment, and σ the vector of Pauli
matrices while σ0 is the identity matrix. We will only consider
situations where the spin-independent barriers are symmetric,

UL = UR = U0 = 0.25h̄vF where vF is the Fermi velocity.
For the nonmagnetic Andreev molecule, this barrier strength
corresponds to a transmission probability of τ = 0.94, which
is considered realistic for single-channel conductors such as
InAs-Al nanowires [30].

It could also be interesting to include the role of spin-
orbit interactions in the superconducting regions in future
studies. However, as has been noted in previous literature
[31], experiments have reported [32] a spin-orbit energy in,
e.g., InAs nanowires, which is, at most, of order 100 μeV.
In contrast, the proximity-induced superconducting gap in
In-based nanowires has been reported [33] to be as high as
500 μeV. Therefore, a model where the spin-orbit interactions
are neglected relative to the superconducting gap is warranted,
since such a scenario should be experimentally feasible based
on previous reports in the literature. Regarding the exper-
imental aspect of controllable spin barriers, this has been
demonstrated earlier in the literature [34] in the context of
spin-valve Josephson junction. So long as the barriers differ
in some respect, either geometrically (shape or thickness) or
in terms of material choice, their magnetic switching fields
will be different, thus allowing control of the relative magnetic
configuration.

The diode efficiency is quantified by the difference in
critical supercurrent in the positive and negative directions,
�Ic = Ic+ − Ic− and the diode efficiency is commonly defined
as [35]

η ≡ �Ic

Ic+ + Ic−
. (4)

Solving Eq. (1) in each of the three superconductors
and using appropriate boundary conditions at the interfaces
(see the Appendices for details), one obtains the discrete
subgap (E < |�|) energy levels known as Andreev bound
states as well as a continuum of states for energies E > |�|.
We make the common semiclassical approximation ξ0 � λF

where λF is the Fermi wavelength and choose the Fermi
momentum such that kF l = π/2 mod 2π , kF l � 1. The two
barriers of the Andreev molecule form an effective Fabry-
Perot resonator and the transmission τ is affected by whether
kF l = 0 (mod 2π ) (on resonance) or kF l = π/2 (mod 2π )
(off resonance) [5,8]. The results below are obtained in the
off-resonance condition (resonance is discussed in the Ap-
pendices). For the spin-valve Andreev molecule, the coupling
of the independent plane-wave solutions in each super-
conductor involves solving for 16 coefficients giving the
weight of the electron- and hole-type plane waves of spin
up/spin down. The results shown in this paper are calculated
numerically.

III. RESULTS AND DISCUSSION

As the length of the middle superconductor in the An-
dreev molecule becomes on the order of the superconducting
coherence length ξ0, the ABSs located at each of the two
Josephson junctions hybridize. The ABS for the regular An-
dreev molecule without magnetic barriers is shown in Fig. 2
for middle superconductor lengths l � ξ0 and l = ξ0. For
long separations (l � ξ0), the molecule behaves as two inde-
pendent junctions with a regular, short weak-link Ic ∝ sin(δL )
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FIG. 2. Andreev bound states (ABSs) for the Andreev molecule
with the length of the middle superconductor (a) significantly longer
than, or (b) comparable to the superconducting coherence length ξ0.
For l � ξ0, EABS (δL, δR ) → EABS (δL ) for the ABSs localized at the
left weak link as the nonlocal impact of δR diminishes. As l becomes
on the order of ξ0, the ABSs from the two junctions hybridize into
Andreev molecule orbitals. These states feature avoided crossings at
δL = ±δR (dotted lines) related to the emergence of double-crossed
Andreev reflection (dCAR) and double elastic cotunneling (dEC)
processes.

current-phase relation for the left junction while the ABS
from the separated, right junction remain dispersionless under
the variation of the local phase δL. This reflects the absence
of nonlocal modulation for this setup. As l becomes on the
order of a coherence length (l = ξ0), the bands hybridize
and avoided crossings arise at the previous band degenera-
cies at δL = ±δR. These are caused by two distinct processes
in the Andreev molecule: double-crossed Andreev reflection
(dCAR) and double elastic cotunneling (dEC). dEC facilitates
transmission of Cooper pairs through the molecule and occurs
for δL = −δR (i.e., the same phase gradient over both junc-

tions) [36], while dCAR involves the creation of a Cooper pair
in the middle superconductor by an incident electron from the
left in the left superconductor and an Andreev reflected hole
in the right superconductor for δL = δR, made possible by the
length of the middle superconductor being on the order of the
extent of the Cooper pair itself [8,37].

The magnetic barriers of the spin-valve Andreev molecule
lift the spin degeneracy of the spin-up and spin-down states
and have a significant effect on the ABS spectrum. The left
junction current IL, as well as the ABS, is shown in Fig. 3
for the parallel (P), normal (N), and antiparallel (AP) config-
urations, as depicted in Fig. 1. The nonlocal phase is fixed at
δR = 2.56, the value which gives the largest superconducting
diode effect in the nonmagnetic Andreev molecule. As the
barriers become spin active, the ABSs in the P configuration
are spin split in a manner reminiscent of regular Zeeman-type
splitting where the band curvature remains largely unchanged,
except close to the gap −�. This is significant because the
current contribution from the ABS spectrum is proportional
to the phase gradient of the ABS bands. The AP configu-
ration experiences a similar splitting away from the avoided
crossings at δL = ±δR, but due to a retained spin degener-
acy at those points, the phase gradient of the ABS is more
affected in this case. An additional important consequence of
the magnetic barriers is that for the P configuration, the gap
at the Fermi level (EABS = 0.0) closes for a critical barrier
strength γ 
 0.3. As a consequence, the ABS spectrum for the
P configuration displays band inversion above this threshold,
causing a cancellation of the current contribution due to the
two upper bands in the ABS spectrum. For a regular Joseph-
son junction, ABS spin splitting has no rectifying effect on
the current-phase relation due to a symmetry around δL = π .
In the Andreev molecule, this symmetry is broken due to the
nonlocal modulation from δR, causing the band inversion to

FIG. 3. Current through the left junction as well as the subgap Andreev bound states (ABSs) as a function of local phase δL for barrier
strengths γ = 0.00, γ = 0.25, and γ = 0.75 for the parallel (a), normal (b), and antiparallel (c) configurations. The nonlocal phase is set at δR =
2.56. As the strength of the magnetic barrier increases, the P ABS experiences a Zeeman-like spin splitting, leading to current discontinuities
caused by band inversion as the gap between the ABS at the Fermi level closes at a critical value γ 
 0.3. In contrast, the AP configuration
retains its spin degeneracy at the points δL = ±δR (black dotted lines) and the Fermi level gap remains open for all parameters investigated but
with a reduced Ic+ due to spin-splitting induced mismatch in the phase gradient of the four bands. The N configuration ABS depicts both the
reduction in Ic+ from AP and the band inversion and current discontinuities from N, behaving as an effective mix of the two extrema.
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FIG. 4. On-off switch as well as sign change in the nonlocal Josephson diode efficiency is shown for a spin-valve Andreev molecule with
l = ξ0. (a) The diode efficiency dependence on the nonlocal phase δR and spin splitting of the barrier γ shows that significant deviations
arise between the three configurations for γ > 0.5. (b) The JJL current-phase relation is shown for the parameter region denoted by red rings
in (a). For specific combinations of δR and γ shown in (c), η > 0.1 for the P configuration, −0.1 < η < 0.1 for N, and η < −0.1 for the
AP configuration. This enables an effective on-off switching as well as sign change of the diode efficiency by an appropriate rotation of
the spin-valve configuration. (d) The diode efficiency is shown as a function of nonlocal phase δR along the dotted line in (a), for γ 
 0.9,
highlighting the asymmetry between the three configurations.

have an impact also on the rectifying behavior of the nonlocal
Josephson effect.

We now demonstrate that the combination of the magnetic
barriers and the nonlocal current-phase modulation in the
spin-valve Andreev molecule constitutes a novel route for
exerting complete control of the superconducting diode effect:
both its existence and its sign can be tuned in situ via the
spin-valve configuration. The diode efficiency in the critical
current through the left junction is shown as a function of the
nonlocal phase δR in Fig. 4 for a system with length l = ξ0

(the diode efficiency dependence on the middle superconduc-
tor length l is shown in the Appendices). For values of the
spin-active barrier strength γ < 0.5 (see additional data in
the Appendices), the three barrier configurations show similar
diode efficiency characteristics, but a significant asymmetry
in the diode behavior arises above γ = 0.5. While the diode
efficiency of the AP configuration increases monotonously
with γ , the diode efficiency of the P configuration depicts a
reversion phenomenon for δR close to π , as is evident from
Fig. 4(a). The combined effect of the breaking of symmetry
in the current-phase relation around δL = π as well as the
barrier-induced band inversion and subsequent partial can-
cellation of the ABS phase gradients for δL > π cause the
negative critical current Ic− to reduce in magnitude for the
P configuration. This makes the originally negative diode
efficiency zero and then positive for γ > 0.5 in the interval
3π
4 < δR < π . The behavior for δR > π is equivalent but with

the opposite sign. For the N configuration, the combination of
a weaker band inversion effect as well as a reduction in critical
positive current Ic+ [see Fig. 3(b), upper panel] effectively

establishes a region of vanishing diode efficiency. The junc-
tion current in this parameter region is shown for the P, N, and
AP configuration in Fig. 4(b).

As a metric of the extent of this effect, we show the
region of δR and γ for which an on-off effect as well as
switching with a P/AP threshold efficiency of ηlim > |0.1| and
N efficiency of −0.1 < ηlim < 0.1 is achievable. Figure 4(c)
shows the diode efficiency for these specific δR and γ and
their respective efficiency in the parallel, normal, and antipar-
allel configurations. The inset shows where in the diagrams
in Fig. 4(a) both the on-off and the switching effects are
observed. We note that this parameter region increases sig-
nificantly if the threshold efficiency ηlim is lowered or if one
relinquishes the need for a vanishing normal diode efficiency
and only considers the switching between positive and nega-
tive diode efficiency for the P and AP configurations.

To conclude, we propose an on-off and switching mech-
anism in the superconducting diode effect of a spin-valve
Andreev molecule. This occurs due to the interplay be-
tween nonlocal phase modulation from the regular Andreev
molecule and the introduction of magnetic barriers which
alters the ABS spectrum of the molecule. The combination
of a vanishing Fermi level gap and subsequent band inversion
with nonlocal phase modulation in the parallel configuration
Andreev molecule causes a reversion of the diode efficiency
which establishes a parameter region where the magnitude
and sign of the diode efficiency can be tuned by relative
rotation of the magnetic barrier moments. This entails the
possibility of a device where one can switch on-off as well
as reverse the diode efficiency for a constant phase-bias δR.
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APPENDIX A: CALCULATION OF ANDREEV BOUND
STATE CURRENT

The wave functions in each of the three superconduc-
tors are constructed with spin-full electron/hole plane waves,
which are eigenstates of an infinite superconductor. For posi-
tive energies, the plane waves are given by

ψδ±
e,↑(x) = 1√

L
(u0e−iδ/2, 0, 0, v0eiδ/2)T e±ik+x,

ψδ±
h↓ (x) = 1√

L
(v0e−iδ/2, 0, 0, u0eiδ/2)e∓ik−x,

ψδ±
e,↓(x) = 1√

L
(0, u0e−iδ/2,−v0eiδ/2, 0)e±ik+x,

ψδ±
h↑ (x) = 1√

L
(0,−v0e−iδ/2, u0eiδ/2, 0)e∓ik−x,

(A1)

where the coherence factors u0, v0 are defined as

u0 = 1√
2

(
1 +

√
E2 − �2

E

)1/2

, (A2)

v0 = 1√
2

(
1 −

√
E2 − �2

E

)1/2

, (A3)

where E is the Bogoliubov–de Gennes energy eigenvalue.
For negative energies, the wave functions are modified and
become

ψδ±
e,↑(x) = 1√

L
(−v∗

0e−iδ/2, 0, 0, u∗
0eiδ/2)e∓ik−x,

ψδ±
h↓ (x) = 1√

L
(−u∗

0e−iδ/2, 0, 0, v∗
0 eiδ/2)e±ik+x,

ψδ±
e,↓(x) = 1√

L
(0,−v∗

0e−iδ/2,−u∗
0eiδ/2, 0)e∓ik−x.

ψδ±
h↑ (x) = 1√

L
(0, u∗

0e−iδ/2, v∗
0eiδ/2, 0)e±ik+x.

(A4)

We assume that ξ0 � λF where ξ0 is the superconduct-
ing coherence length and λF is the Fermi wavelength. We
may approximate the wave vector of the electron and hole
plane waves k+, k− as k+ 
 k f + i

√
1 − ε2/ξ0, k− 
 k f −

i
√

1 − ε2/ξ0 where the coherence length is defined as ξ0 =
h̄vF /�. Note that for subgap states, −1 < ε < 1 where ε =
E/|�|, causing the wave vector to become complex. The
complex nature of the subgap wave vector reflects that the
ABS is confined to the vicinity of the junction, vanishing in
the superconductor bulk.

The wave function in the spin-valve Andreev molecule is
now given by

ψ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1ψ
δl −
e,↑ + c2ψ

δl −
e,↓ + c3ψ

δl +
h,↑ + c4ψ

δl +
h,↓ x < −l/2

c5ψ
0−
e,↑ + c6ψ

0−
e,↓ + c7ψ

0+
h,↑ + c8ψ

0+
h,↓

c9ψ
0+
e,↑ + c10ψ

0+
e,↓ + c11ψ

0−
h,↑ + c12ψ

0−
h,↓ |x| < l/2

c1ψ
δl −
e,↑ + c2ψ

δl −
e,↓ + c3ψ

δl +
h,↑ + c4ψ

δl +
h,↓ x < −l/2,

(A5)
where diverging solutions for x → ±∞ are excluded. The
total wave function must be continuous at the boundaries

ψ (±l/2+) = ψ (±l/2−) (A6)

and the wave function derivatives must, due to the Dirac delta
barriers, satisfy the following relation:

∂xψ (±l/2+) − ∂xψ (±l/2−) = 2m

h̄
UR/Lψ (±l/2). (A7)

Upon matching the wave function ψ (x) at the two bound-
aries in the spin-valve Andreev molecule, a homogeneous
equation set of 16 equations is obtained which can be solved
for the 16 coefficients c1 . . . c16. This was done numerically
in this project by requiring the determinant of the coefficient
matrix to be zero in order for a nontrivial solution.

From the approach above, one obtains up to eight distinct
energies ε, and the contribution to the Josephson current from
the ABS spectrum is given by the phase gradient of the free
energy [38]

I (δL, δR) = − e

h̄

∑
ε<0

∂ε(δL, δR)

∂δL
tanh

(
ε

2kBT

)
, (A8)

where the ABS energies depend on both the local and the non-
local phases δL, δR due to the Andreev molecule hybridization.
The current contribution comes from occupied states, which
for T = 0 is ε < 0. It then follows that tanh ( ε

2kBT ) → −1, so
that the ABS contribution can be written more simply as

I (δL, δR) = e

h̄

∑
ε<0

∂ε(δL, δR)

∂δL
. (A9)

APPENDIX B: CALCULATION OF CONTINUUM
CURRENT

For the calculation of the continuum current, we use the
same electron and hole plane waves given by Eqs. (A1)–(A4),
but as we now consider states in the continuum, the plane
waves are not evanescent. The electron and hole wave vec-
tors may be approximated as k+ 
 k f + √

ε2 − 1/ξ0, k− 

k f − √

ε2 − 1/ξ0 with the coherence length defined as ξ0 =
h̄vF /�. We are in effect considering a scattering problem with
incoming waves ψinc(x) which are scattered to outgoing waves
ψout (x) at the barriers,

ψ (x) = ψinc(x) + ψout (x). (B1)

The outgoing waves are identical with the wave function con-
structed for the ABS in Eq. (5) (except for the wave vectors
ke/kh now being real), but we must now also consider eight
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distinct types of incoming waves,

ψe
inc(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ
δL+
e,↑/↓ if x < −l/2

ψ
δL−
h,↑/↓ if x < −l/2

ψ
δR−
e,↑/↓ if x > l/2

ψ
δR+
h,↑/↓ if x > l/2.

(B2)

where each wave has a spin-up and spin-down version.
For each of the eight incoming waves in Eq. (B2), we

construct the total wave function from Eq. (B1) and solve
for the 16 coefficients c1 . . . c16. This yields the total wave
function

ψ (x) = 1√
L

⎛
⎜⎜⎜⎝

u↑(x)

u↓(x)

v↑(x)

v↓(x)

⎞
⎟⎟⎟⎠ (B3)

for the eight distinct cases. We may calculate the current
contribution from the continuum states using the following
general expression for the current:

j = e

2m

∑
σ

〈�†
σ p̂�σ + ( p̂†�†

σ )�σ 〉. (B4)

Using now that �σ = ∑
k[unσ (x)γk − σv∗

kσ (x)γ †
k ] and that

〈γ †
k γk〉 = f (Ek ), we obtain

j = h̄e

m

∑
k,σ

Im
[
u∗

kσ (x)∂xukσ (x)
]

f (Ek )

+ Im[v∗
kσ (x)∂xvkσ (x)][1 − f (Ek )]. (B5)

Assuming now that T = 0, only the holelike components vkσ

will contribute to the current. We let
∑

k → ∫
dk L

2π
and turn

to an integral over energy by using that dζ/dk 
 h̄2k f /m
and dζ/dE = E√

E2−�2 = ε√
ε−1

. The expression for the current
contribution from the continuum becomes

I (x) = 1

2φ0

∑
σ

∫ ∞

1

dε

2πk f

ε√
ε − 1

Im[v∗
εσ (x)∂xvεσ (x)],

(B6)

where φ0 = h̄/2e. The current through the left junction can
now be evaluated by taking x = −l/2 and evaluating Eq. (B6)
for all incoming waves defined in Eq. (B2).

APPENDIX C: DIODE EFFECT DEPENDENCE ON kF

The properties of the Andreev molecule are dependent on
the value (mod 2π ) chosen for the Fermi momentum kF . In
the main text, a value kF = π/2 mod 2π , kF l � 1 was found
to give the most interesting results, corresponding to the off-
resonance case discussed by Refs. [5,8]. In effect, the value
of π/2 corresponds to the case where there is no resonance
in the effective Fabry-Perot cavity formed by the two barriers
in the Andreev molecule. This is associated with a reduced
transmission probability τ . Oppositely, the kF = 0.0 mod 2π

case is on resonance and is associated with an increase in
transmission probability compared to the bare barriers [5].
The results in the main text are presented for a l = ξ0 system
and diode efficiency diagrams analogous to Fig. 4(a) in the

FIG. 5. Diode efficiencies for the parallel (P), normal (N), and
antiparallel (AP) conditions for different choices of Fermi momen-
tum, indicating the effect on the diode characteristics as the system
deviates from the “off-resonance” condition kF = π/2 mod 2π . The
results indicate that the off-resonance condition is ideal for the
switching effect due to the largest asymmetry between the P, N,
and AP configurations. However, the effect can also persist when
perturbed away from the π/2 condition.

main text are shown in Fig. 5 for Fermi momentum values
kF = θ mod 2π , kF l � 1, θ ∈ [0, π

2 ].
From Fig. 5 it is clear that as θ moves away from the off-

resonance condition, the asymmetries enabling the switching
and sign-change effects become less significant and disappear
for θ = π/4. It is, however, also clear that the effect persists
away from θ = π/2 indicating that the observed effects are
not a result of a “magic” parameter choice, but a more rigorous
property of the system in the vicinity of the off-resonance
condition.

APPENDIX D: DIODE EFFECT AS A FUNCTION OF l

The superconducting diode effect in the spin-valve An-
dreev molecule is dependent on the hybridization of the ABSs
in the two junctions. It shows a strong dependence on the

174502-6
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FIG. 6. Superconducting diode efficiency in the spin-valve Andreev molecule as a function of the middle superconductor length l . The
maximum diode efficiency is denoted by the upper-left corner text. A significant increase in the diode efficiency is observed as l decreases,
with a maximum diode efficiency of η = 0.44 observed for the parallel configuration at l = 0.30ξ0.

middle superconductor length l . The diode efficiency is shown
in Fig. 6 as a function of l ranging from 0.25 to 1.25ξ0. The
diagram for l = 1.00 is a zoomed-out version of the data
presented in the main text.

The results in Fig. 6 show that the largest observed
diode efficiencies given symmetric barrier strengths of U0 =

0.25h̄vF is η = 0.44, observed for the l = 0.30ξ0 N configu-
ration. It is clear that while the diode characteristics change
significantly with the middle superconductor length l , asym-
metries in diode behavior between the different configurations
persist, which can be utilized for selective control of the diode
efficiency.
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