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Spin transfer exchange torque in ferromagnet/ferromagnet structures made
of half-metals with large exchange gaps
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Spin torques in magnetic multilayers are produced by spin polarization P of ferromagnetic (F) layers, and
increase with growing P. The latter, however, cannot exceed the P = 1 value found in half-metals. We study
the P = 1 case to find what other parameters still influence spin torques in this extreme limit. It is found that
the ratio of the exchange gap to Fermi energy strongly affects the properties of the torque. For large values
of the gap, the magnitude of exchange spin torque exhibits a sharp peak at very small misalignment angles
between magnetizations. This behavior is found to be linked to a transition between Ohmic and tunneling
transport regimes through the F/F boundary.
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I. INTRODUCTION

In metallic F/N/F spin valves with F denoting ferromag-
netic and N normal layers the motion of itinerant electrons
between the layers produces torques acting on the magnetiza-
tions of ferromagnets. In equilibrium the interlayer exchange
torque (RKKY-type exchange) is produced [1–4], and when
electric current is passed through the valve, nonequilibrium
corrections to the main torque appear [5–8]. If magnetizations
of left and right F layers are ML and MR, the equilibrium
torque Teq is pointed perpendicular to the (ML, MR) plane.
Electric current Ie directed perpendicular to F/N boundaries
produces two types of corrections. First, there is a change
in magnitude of Teq [9–11]. This correction �T⊥(Ie) is
perpendicular to the plane formed by ML and MR, and is
alternatively called an “out-of-plane” or a “fieldlike” torque.
Second correction �T||(Ie) is the Slonczewski-Berger spin-
transfer torque, directed in the (ML, MR) plane [5]. It is
alternatively called an “in-plane” or a “dissipationlike” torque.

In this paper, we study a system that differs from a conven-
tional F/N/F valve in several ways.

First, we consider ferromagnets with full spin polarization
P of itinerant electrons, i.e., half-metals with P = 1. Full
spin polarization can be realized in Heusler alloys that enjoy
recent popularity in spintronic literature [12–16]. Many novel
two-dimensional ferromagnets are also theoretically predicted
to be half-metals [17–19]. Since one cannot increase P beyond
unity, a question may be posed of whether all fully spin-
polarized ferromagnets produce the same, largest possible
spin torque. If not, what other material parameters influence
spin torques in this regime?

Second, we consider F/F structures without a normal
spacer [Fig. 1(a)]. It is still assumed that magnetizations
of ferromagnets can be rotated independently and that the
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exchange interaction between the layers is produced by itin-
erant electrons, as opposed to the overlap of localized orbitals
of atoms near the boundary. To justify such assumption one
can imagine that F layers are in fact separated by an ultrathin
normal layer. If the thickness of such layer is smaller than
the itinerant electron wavelength but larger than the extent of
localized orbitals, the F/F idealization is possible.

In a naive picture, at P = 1 an electron passing through an
F/F structure has its spin parallel to ML everywhere on the left
and parallel to MR everywhere on the right of the boundary,
so an instant spin rotation should take place at the boundary.
Explaining how it happens is our first task.

It is also clear that as angle β between ML and MR [defined
in Fig. 1(b)] increases, it becomes progressively harder for an
electron to cross the F/F boundary. For P = 1 all electrons
are fully reflected in the anti-parallel configuration, β = π .
Conversely, in a parallel configuration, β = 0, the boundary
is transparent. As a result, a fully spin-polarized F/F contact
will operate in an Ohmic regime for β ≈ 0, and in a tun-
neling regime for β ≈ π , even in the absence of any real
tunnel barrier at the boundary. The presence of a crossover
between two regimes differentiates the F/F case from that of
F/N/F structures, where both F/N boundaries may remain in
the Ohmic regime at any β, even in the case of full spin
polarization.

In this work, we treat the case of identical F layers. This
situation already demonstrates the features brought about by
our third assumption: ferromagnetic exchange gap � greatly
exceeds the Fermi energy εF of itinerant electrons. We ex-
pect the limit of � � εF to exhibit the most pronounced
features of the fully spin-polarized regime. The presence of
small parameter εF /� � 1 allows us to derive analytic ex-
pressions, which is the technical achievement of this work.
Using them, we find that many characteristics of F/F valves
exhibit strong variations at very small angles β. In particu-
lar, our calculations show that the crossover from Ohmic to
tunneling behavior happens at an angle βc ∼ (εF /�)1/4 � 1.
Furthermore, the same characteristic angle shows up in the
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(a) (b)

FIG. 1. (a) F/F device and (b) coordinates in spin space.

equilibrium exchange torque angular dependence Teq(β ) that
exhibits a sharp peak at βc. We explain the physics behind
this high sensitivity to small angular deviations and discuss
how rapid nonlinear changes of conductance and torques at
small angles may open new possibilities for building efficient
devices based of fully spin-polarized ferromagnets.

II. MODEL OF FERROMAGNETS

In line with the majority of spin-transport studies, we
employ a single-electron approximation to describe the F/F
valve. Namely, Stoner model [20] with exchange-split bands
is used. With spin quantization axis Z chosen along the mag-
netization M, one-electron Hamiltonian reads

Ĥ =
∣∣∣∣∣∣
− h̄2∇2

2m + eV (r) 0

0 − h̄2∇2

2m + � + eV (r)

∣∣∣∣∣∣, (1)

where V (r) is the electric potential and e < 0 is the electron
charge. In a bulk ferromagnet we can set V = 0 and get the
band energies

ε↑ = h̄2k2

2m
, ε↓ = h̄2k2

2m
+ �. (2)

A ferromagnet is fully spin-polarized when

� > εF = h̄2k2
F

2m
(3)

and all electrons reside in the lower band. Electron plane
waves in the bulk are then described by spinors(

ψ↑
ψ↓

)
=
(

1

0

)
eik·r. (4)

Note that Stoner model does not include spin-orbit inter-
actions, thus real and spin spaces are completely decoupled
and can be arbitrarily rotated with respect to each other.
We reserve (x, y, z) coordinates for real space, with x being
perpendicular to the boundary. Spin space coordinates are
denoted by capital letters (X,Y, Z ).

III. SINGLE-ELECTRON CONTRIBUTIONS TO
CURRENTS THROUGH THE BOUNDARY

A. Transmission and reflection amplitudes

In an F/F structure electron coming from the left is partially
reflected from the boundary when β 
= 0. The reflection pro-
cess is described by the standard matching of wave functions
and their derivatives at the interface. Electron transmission is
illustrated by the energy diagram in Fig. 2. Wave function

FIG. 2. Energy diagram for electrons crossing the F/F bound-
ary. Ferromagnets on both sides of the structure are assumed to be
identical.

matching can be achieved only if nonzero spin-down com-
ponents appear in the form of evanescent waves, decaying
far away from the boundary. For example, for an electron
incoming from the left (L → R process), the wave function
is given by spinors(

ψ↑
ψ↓

)
L

=
(

eikLx + re−ikLx

dLeκLx

)
(x < 0) (5)

and (
ψ↑
ψ↓

)
R

=
(

teikRx

dRe−κRx

)
(x > 0). (6)

The presence of spin-down components describes the “in-
stantaneous rotation” of spin upon boundary crossing. This
rotation is, in fact, happening on a lengthscale set by the
evanescent waves.

Appendix A gives the details of derivation for reflection
and transmission amplitudes. They are expressed in terms
of perpendicular to the boundary components kL and kR of
wave vectors. In a general case with possible voltage drop
on the boundary, energy conservation in transmission process
dictates relations

k2
L + κ2

L = k2
R + κ2

R = k2
�, (7)

k2
L + k2

V = k2
R. (8)

where k2
� = 2m�/h̄2, k2

V = 2meV/h̄2. For an L → R process,
we find

r = − (κR + ikL )(κL − ikR)s2 − i(κL + κR)(kR − kL )c2

D
,

dL = −2ikL(κR + ikR) s c

D
, (9)

where

s = sin(β/2), c = cos(β/2),

D = (κR − ikL )(κL − ikR)s2 − i(κL + κR)(kR + kL )c2. (10)

Amplitudes r and dL completely determine the wave function
on the left of the boundary.
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B. Single-electron currents

We assume all currents to flow perpendicular to the bound-
ary, i.e., in the x direction in real space. In terms of spinors
ψα (x), (α = ↑,↓) single-electron electric current is given by
the standard expression [21]

j (1)
e (x) = e

h̄

2m
[ψ∗

α (−i∂xψα ) + c.c.],

where e < 0 is electron charge, “c.c.” is the complex conju-
gate, and summation over repeated indices α is implied. It
is sometimes beneficial to discuss particle current jn = je/e
instead of electric current.

Single-electron spin current is given by [2]

j (1)
sa =

(
h̄

2

)
h̄

2m

[
ψ∗

ασ a
αβ (−i∂xψβ ) + c.c.

]
. (11)

where a = X,Y, Z , σ a are the Pauli matrices, and summation
over repeated Greek indices is implied.

Single-electron currents can be rewritten in terms of reflec-
tion amplitudes. For the L → R process, particle current is
given by

j (1)
n = h̄kL

m
(1 − |r|2). (12)

Spin current for the L → R process is obtained in the region
x < 0 by substituting spinor (5) into definition (11). For our
purposes, we will only need the y component of spin current,
for which we obtain an expression

j (1)
sY (x) = − h̄2

4m
[(κL + ikL )(dL + rd∗

L )eikLx + c.c.]. (13)

IV. EXCHANGE INTERACTION IN EQUILIBRIUM

Spin torques acting on the magnetizations of F layers are
related to the total spin currents jsa (a = X,Y, Z) entering and
leaving each layer [5]. Torque acting on the left layer has
components (see Appendix B)

TLa = − jsa(0) + jsa(−∞). (14)

The total spin currents are the sums of contributions from
electrons moving in L → R and R → L directions

jsa =
∑
L→R

j (1)
sa (k) +

∑
R→L

j (1)
sa (k).

Deep in the ferromagnet, the spin current is directed along the
magnetization and completely determined by the total particle
current

jsa(−∞) = (h̄/2)P jnδZa. (15)

This relation holds in any ferromagnetic material. However, in
partially spin-polarized materials, it requires spin-relaxation
processes to be included in the model [22–24]. In the present
case of full spin polarization, we have a much simpler
picture with relation (15) being already enforced by the
single-electron Hamiltonian (1), as one can see from spinor
expression (5).

In this section, we wish to find spin torque in equilibrium,
where jsa(−∞) = 0 and we only need to evaluate the sum for
jsa(0). In the state of equilibrium, equal numbers of electrons

cross the boundary in two directions. There is no potential
drop on the boundary, and any L → R moving electron with
perpendicular momentum kL has a partner moving in the
R → L direction with kR = −kL and same values of ε and k||.
Similar to the case of spin torque in tunneling contacts [1,10],
a direct computation shows that contributions of partners to
jsX (0) and jsZ (0) are opposite and cancel each other, leading
to the (expected) absence of Slonczewski-Berger torque �T||.
In contrast, partner’s contributions to jsY (0) are equal and add
up, doubling the L → R sum

jsY (0) = 2
∑
L→R

j (1)
sY (k, 0), (16)

where we use notation

j (1)
sY (k, 0) = j (1)

sY (k)|x=0.

Y component of spin current produces the only nonzero com-
ponent TLY of the equilibrium exchange torque.

The sum (16) is performed over all right-moving electrons
inside the Fermi sphere, i.e., over the region � defined by
|k| � kF and kL � 0

jsY (0) = 2
∑
k∈�

j (1)
sY (kL, 0) = 2

∫
�

j (1)
sY (kL, 0)

d3k

(2π )3
.

In spherical coordinates with k = |k| and polar angle θ mea-
sured from the x axis one has kL = k cos θ and the integral
acquires a form

jsY (0) = 2
∫ kF

0

∫ π/2

0

∫ 2π

0
j (1)
sY (k cos θ, 0)

k2dk sin θdθdφ

(2π )3

= 4π

(2π )3

∫ kF

0
k2
∫ 1

0
j (1)
sY (ξk, 0) dξ . (17)

We were able to compute this integral analytically in the limit
of large exchange gap, � � εF or equivalently k� � kF �
kL. This limit is discussed in Appendix A, where amplitudes
(9) are approximated, and formula (13) acquires a form

j (1)
sY (kL, 0) = −

(
h̄2

4m

)
16k2

Lk�s c

k2
�s4 + 16k2

Lc2
. (18)

Using it, we first compute the angle integral

∫ 1

0
j (1)
sY (ξk, 0) dξ = −

(
h̄2

4m

)
k�

s

c

∫ 1

0

ξ 2dξ

ν2 + ξ 2

= −
(

h̄2

4m

)
k�

s

c

(
1 − ν arctan

1

ν

)
,

where ν = ν(k, β ) = kc(β )/k with kc(β ) = k�s2/4c. Substi-
tuting this result into formula (17), we get

jsY (0) = −
(

4π

(2π )3

h̄2

4m
k�sc

)
I (β ), (19)
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FIG. 3. Angular dependence of normalized exchange torque
TLY (β )/k4

F . Numbers near curves give the values of kF /k�.

where integral I (β ) can be taken analytically as well

I (β ) =
∫ kF

0
k2

(
1 − kc(β )

k
arctan

k

kc(β )

)
dk

= k3
F

3
− k3

c

∫ kF /kc

0
ξ arctan ξ dξ

= k3
F

3
− k3

c

2

{[(
kF

kc

)2

+ 1

]
arctan

kF

kc
− kF

kc

}
.

The result can be expressed through a dimensionless parame-
ter

νF (β ) = ν(kF , β ) = k�s2

4kF c
(20)

as

I (β ) = k3
F φs

(
νF (β )

)
,

φs(νF ) = 1

3
− 1

2

(
νF
(
1 + ν2

F

)
arctan

1

νF
− ν2

F

)
. (21)

Substituting expression (21) into formula (19), and then into
(14) we find the exchange torque

TLY = − jsY (0) = π h̄2k�k3
F

(2π )3m

s

c
φs(νF ). (22)

As explained in Appendix B, positivity of TLY corresponds to
ferromagnetic exchange between the F layers. That Appendix
also explains that the assumption made in our model about
majority electron’s spins being parallel to M is not crucial:
had we assumed majority spins being antiparallel to M, the
sign of exchange interaction would remain ferromagnetic.

Factor k�k3
F in expression (22) can be understood as the

number of electrons participating in the process ne ∼ k3
F

multiplied by k� that quantifies the strength of exchange in-
teraction between itinerant electrons and local magnetization.

Typical angular dependencies of exchange torque TLY (β )
are shown in Fig. 3 (for reasons that will become clear below,
this figure shows torques normalized by k4

F ). Torque graphs
exhibit tall narrow peaks—in contrast with broad angular
dependencies of torques found in conventional spin valves,
where only quadratic and biquadratic exchange components

are important [3,11]. Sharp variations of torque at small angles
mathematically follow from the form of function νF (β ). As
angle β is swept from zero to π , the value of νF increases
from zero to infinity. In the limit kF /k� � 1, the crossover
between small and large values of νF happens in a narrow
range of angles. Namely, νF changes from 0.1 to 10 in the
interval 0.3βc < β < 3βc, where the characteristic angle

βc ≈ 4
√

kF /k� � 1 (23)

is the approximate solution of equation νF (β ) = 1 in that
limit. Locations of peaks in Fig. 3 are closely related to βc.
Equation dTLY /dβ = 0 is solved in Appendix C and gives the
peak position

βmax = 2

√
8kF

3πk�

≈ 0.46βc. (24)

The width of the peak is of order βc as well.
The height of the peak, calculated in Appendix C, is

TLY (βmax) =
(

π h̄2k4
F

(2π )3m

)√
8k�

3πkF
φs(2/3π )

≈
(

π h̄2k4
F

(2π )3m

)
0.19

√
k�

kF
. (25)

If kF is kept constant, the peaks grow higher and more
narrow as the ratio kF /k� is decreased (Fig 3). However, the
product of peak height by its width remains constant. Physical
meaning of this fact is revealed by calculating of exchange
energy Eex. When magnetizations make angle β with each
other, the energy of the system is higher than at β = 0 by

Eex(β ) =
∫ β

0
TLY (β ′)dβ ′.

Total exchange energy is given by an integral

E tot
ex =

∫ π

0
TLY (β )dβ. (26)

Calculations detailed in Appendix C result in

E tot
ex ≈ π2

4(2π )3

h̄2k4
F

m
. (27)

This shows that exchange energy becomes independent of
the ferromagnetic gap value when the latter is infinitely
increased—in that respect all “infinitely polarized” ferromag-
nets are equal. Instead of changing the magnitude of E tot

ex , large
gap leads to the evolution of the shape of function Eex(β ):
the latter rapidly increases from zero to almost full E tot

ex in the
vicinity of βc, and later remains nearly constant all the way to
β = π .

V. BOUNDARY CONDUCTANCE

As discussed in the introduction, an important feature of
the F/F system is the transition from Ohmic to tunneling
conductance regime upon the increase of angle β. A model
describing both regimes on equal footing necessarily needs
to take into account nonisotropic deviations of electron distri-
bution function n(k, x) from equilibrium. Indeed, for β = 0,
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(a)

(b)

FIG. 4. Model for electric current calculation. (a) Electron dis-
tribution in k-space. Distributions on both sides of the boundary
are shown. Filled electron states of the “shifted Fermi spheres” are
shown in red color; equilibrium Fermi spheres are shown by dashed
lines. Vertical dashed lines separate the k states of right-moving and
left-moving electrons. Current produced by L → R moving electrons
is partially compensated by R → L moving electrons. (b) Energy
diagram. Electrons contained in energy intervals I, II, and III are
uncompensated and contribute to the total current.

physical boundary between identical ferromagnets disappears,
and particle current at x = 0 assumes its bulk form

jn(0) =
∫

h̄k

m
n(k, 0)

d3k

(2π )3
.

Clearly, only nonisotropic distribution function n(k, 0) can
ensure nonzero value of the integral on the right.

At nonzero β, both the nonisotropic nature of n, and the
potential jump eV contribute to the electric current through
the boundary. In a fully self-consistent approach, electron
distribution function n(k, x) is allowed to have a jump at
x = 0 with n(k, 0−) = nL(k) and n(k, 0+) = nR(k). Away
from the boundary, the distribution gradually changes, until
acquiring its bulk, current-carrying form at x → ±∞. This
gradual change is governed by the Boltzmann equation. Self-
consistency is achieved when the potential jump eV and
functions nL,R are such that electric current through the bound-
ary equals the bulk current.

We will use an approximate description that restricts
n(k, x) to a predetermined form specified by just a few pa-
rameters, and imposes self-consistency condition on those
parameters. Namely, we will assume that electron distribution
functions in F layers are space-independent and given by
the simplest current-carrying solution of the bulk Boltzmann
equation with electrons occupying states inside a “shifted
Fermi surface” [Fig. 4(a)] [25,26]. Two parameters, the shift
�k and the boundary potential jump eV , determine both bulk
and boundary currents je. Condition for those currents to be
equal establishes a relation between �k and eV , and ulti-
mately determines the boundary conductance G = je/V .

Calculation is performed in two steps. First, electric cur-
rent through the boundary is calculated for arbitrary �k and
eV , without imposing self-consistency condition. The result
has “Ohmic” and “tunneling” contributions, as illustrated by

the energy diagram in Fig. 4(b). Ohmic contributions are
produced by the nonisotropic parts of n(k), represented by
zones II and III in the figure. Tunneling contribution is pro-
duced by zone I. The whole approach is conceptually simple
but involves many technical steps detailed in Appendix D,
where approximate single-electron contributions found in
Appendix A are summed over zones I, II, and III. The result,
expressed through dimensionless νF , reads

jn = 1

(2π )3

h̄k4
F

m

[
πφ1

2

eV

εF
+ 4πφ2

�k

kF

]
(28)

with

φ1 = 1 − ν2
F ln

(
1 + 1

ν2
F

)
, (29)

φ2 = 1

3
− ν2

F

(
1 − νF arctan

1

νF

)
. (30)

Appendix E derives the self-consistency requirement on
�k and eV , imposed by the equality of currents through the
boundary and in the bulk. It reads

�k

kF
= φ1

8(1/3 − φ2)

eV

εF
. (31)

Using this relation in formula (28) one can express current in
terms of eV alone

je = π

(2π )3

e2k2
F

h̄

φ1

1 − 3φ2
V = G(β )V

and find the conductance of the boundary

G(β ) = G0
φ1

1 − 3φ2
, (32)

G0 = π

(2π )3

e2k2
F

h̄
. (33)

As expected, conductance diverges when β → 0 (Ohmic
regime) and vanishes for β → π (tunneling regime).

One can now find the range of misalignment angles where
a crossover from Ohmic to tunneling regime takes place. In
terms of Fig. 4, this happens when the energy width of zone I
becomes much larger than that of zones II and III

eV � h̄kF

m
h̄�k ⇒ eV

εF
� �k

kF
.

Formula (31) then gives a condition for the tunneling regime

8(1/3 − φ2)

φ1
� 1. (34)

From this condition, we find in Appendix E that crossover
from eV/εF = 0.1�k/kF to eV/εF = 10�k/kF happens in
the interval 0.35 βc < β < 1.15 βc, with the Ohmic regime for
smaller angles and tunneling for larger ones.

VI. CONCLUSIONS AND DISCUSSION

It was always clear on general grounds [1] that conductance
of an F/F boundary with full spin polarizations of F layers
will vary between a large value in the parallel configuration
(infinity in our model with matched bands), and zero in the
antiparallel configuration. Our calculations show that when

174446-5



V. SHABLENKO AND YA. B. BAZALIY PHYSICAL REVIEW B 108, 174446 (2023)

ferromagnetic gap � is much larger than Fermi energy εF ,
crossover between the two limits happens around a very small
angle βc ∼ (εF /�)1/4 between the magnetizations, and has a
width of order βc. We also show that exchange interaction
energy Eex(β ) produced by itinerant electrons abruptly grows
near βc from almost zero to almost its maximum value, pro-
ducing a sharp peak of exchange torque located near βc and
having a width of order βc. This peak is in sharp contrast
with the broad angular dependence found for conventional
interlayer exchange in magnetic multilayers.

Phenomena described above are physically caused by effi-
cient blocking of electron propagation through the boundary
with increasing angle β. For an individual electron with
a perpendicular component of wave vector kL, propagation
switches from Ohmic to tunneling at an angle β(kL ) ∼√

kL/k�. When total conductance and total exchange torque
are calculated, single-electron contributions are averaged with
appropriate weight functions. Although the weights are not
the same in two cases, it is still true that transition happens
when most of electrons with kL � kF are blocked from prop-
agating through the boundary. This is how a common critical
angle βc ∼ √

kF /k� = (εF /�)1/4 emerges.
Our results show that crossover between Ohmic and tun-

neling regimes produces a region of nonlinear magnetic
dynamics, where, for example, the peak of exchange torque
may lead to a giant increase of ferromagnetic resonance
frequency, and a rapid conductance drop can enable easy
electronic readout. The newly found region is located in close
proximity to the equilibrium parallel configuration, and thus
can be reached easily and quickly. Its existence may lead to
novel devices based on ferromagnetic materials with large
values of exchange gap.

To discuss experimental realizations of the F/F devices
suggested in this work, one needs to search for candidate ma-
terials and assess whether our simplified model’s assumptions
will apply to actual systems.

In Refs. [18,19], half-metallic ferromagnetism with � �
εF was theoretically predicted in 2D magnets. The values
of the gap and Fermi energy were found to be of the order
� ≈ 1 eV and εF ≈ 0.1 eV. Since our calculations neglect
the temperature smearing of Fermi distribution, for them to
be applicable one needs to require kBT � εF , which in this
case translates into an experimentally reasonable condition
T � 100 K.

One major process, known to be crucial in conventional
spin valves but ignored in our theory, is the spin-flip scatter-
ing. In the bulk of half-metallic F layers such scattering is
suppressed in the following sense: since only up-spin states
exist near the Fermi energy, the result of impurity scattering is
not a propagating down-spin wave but a finite-size domain of
down-spin around an impurity. The size of such domain is of
the order 1/κ ≈ 1/k�. As long as impurities are located fur-
ther than 1/k� away from each other, down-spin domains do
not overlap and have no influence on spin transport in the bulk.
The situation is, however, different for spin-flipping impurities
that reside within the distance 1/k� from the boundary or in
the ultrathin normal spacer discussed in the introduction. Spin
flip on such impurities allows an electron to continue as a
propagating wave on the other side of the boundary. While
there may be few impurities in the layer of thickness 1/k�,

their presence becomes crucial at larger values of β, when
clean surface conductance G(β ) drops to very small values.
In this regime, the total conductance Gtot = G(β ) + Gimp is
dominated by the impurity spin-flip contribution and does
not tend to infinity as predicted by our theory. Appendix F
estimates Gimp and shows that for low impurity concentration
“shunting by impurity scattering” becomes appreciable only
for β � βc. Behavior near βc can therefore be well described
by a model that neglects spin flips. Condition of low impurity
concentration states that the average distance between the
impurities in the boundary layer has to be much larger than
the Fermi wavelength 1/kF .

One can imagine other factors violating the assumptions
of our theory. For example, will the spatial uniformity of
magnetization in F layers be violated due to the presence of
thermal magnons? Analysis of this issue, as well as of other
real-world effects, is left for the future.
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APPENDIX A: SINGLE-ELECTRON CURRENTS
THROUGH F/F BOUNDARY

1. Transmission amplitudes

For a 3D wave vector k, we define its parallel component
k|| as a 2D vector parallel to the boundary plane. Perpendicu-
lar to the boundary component is denoted as kL for x < 0 and
kR for x > 0.

Consider an L → R process with electron incoming from
the left. The boundary between ferromagnets is assumed to
be located at x = 0. The spinor of electron on the left of the
boundary is(

ψ↑
ψ↓

)
L

=
(

eikLx + re−ikLx

dLeκLx

)
eik|| ·r|| (x < 0). (A1)

On the right of the boundary, the spinor is(
ψ↑
ψ↓

)
R

=
(

teikRx

dRe−κRx

)
eik|| ·r|| (x > 0). (A2)

Here r and t are the reflection and transmission amplitudes,
and dL,R are the amplitudes of decaying spin-down waves
for an L → R process. Standard matching argument dictates
equal k||’s on both sides. When electric current flows through
an F/F structure at β 
= 0, a voltage drop is generally formed
at the boundary (Fig. 2)—thus kL and kR may be different.
Since we assume ferromagnets to be made from the same
material with equal gaps � and aligned bottoms of energy
bands at V = 0, the following relations are dictated by energy
conservation in transmission process

k2
L + κ2

L = k2
R + κ2

R = k2
�, (A3)

k2
L + k2

V = k2
R, (A4)

where k2
� = 2m�/h̄2 and k2

V = 2meV/h̄2.
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Spinors (A1) and (A2) are written down with respect to
two different quantization axis. On the left, ZL is directed
along ML, and on the right ZR is directed along MR. Without
loss of generality we will assume that MR lies in the (XL, ZL )
plane (Fig. 1). Matching of wave functions requires the use of
appropriate spin rotation matrix

Ry(β ) =
(

cos β/2 − sin β/2

sin β/2 cos β/2

)
.

We then have a system of conditions to satisfy at x = 0

ψL = RyψR,

∂ψL

∂x
= Ry

∂ψR

∂x
.

Using notation s = sin β/2 and c = cos β/2, we get a system
of equations

1 + r = tc − dRs,

dL = dRc + ts,

ikL(1 − r) = dRκRs + ikRtc,

dLκL = −dRκRc + ikRts,

from which we obtain expressions for reflection and transmis-
sion amplitudes

r = − (κR + ikL )(κL − ikR)s2 − i(κL + κR)(kR − kL )c2

D
,

t = −2ikL(κR + κL )c

D
,

dL = −2ikL(κR + ikR)sc

D
,

dR = 2ikL(κL − ikR)s

D
(A5)

with

D = (κR − ikL )(κL − ikR)s2 − i(κL + κR)(kR + kL )c2. (A6)

2. Approximations in the regime kV � kF � k�

Amplitudes and single-electron current expressions can be
simplified in the limit εF � �. We will also assume that the
potential drop eV at the boundary remains small compared to
εF . In terms of wave vectors this means

kV � kF � k�. (A7)

Since kL,R � kF , strong inequality kL,R � k� holds for all
electrons. On the other hand, perpendicular components kL,R

of individual electrons’ momenta can be either larger or
smaller than kV .

Denoting kR = kL + δk and κR = κL + δκ , we find

δκ =
√

k2
� − k2

R −
√

k2
� − k2

L ≈ − k2
V

2k�

, (A8)

δk =
√

k2
L + k2

V − kL. (A9)

Approximation in the first equation is always legitimate. In the
second equation, approximation δk ≈ k2

V /(2k�) can be used
only for kL � kV . Regardless of the relative values of kL and
kV , strong inequalities δκ � κL and δκ � δk always hold due

to the double strong inequality (A7). It is therefore possible to
set

κL = κR =
√

k2
� − k2

L ≈ k� − k2
L

2k�

(A10)

in all expressions.
Approximate treatment of small δk is more subtle and is

discussed below. Let us demonstrate how it works in the case
of denominator D given by expression (10). Using Eq. (A10),
we write

D ≈ (κ − ikL )(κ − ikR)s2 − 2iκ (kL + kR)c2

= (κ2 − kLkR)s2 − iκ (kL + kR)(1 + c2),

and therefore

|D|2 ≈ (κ2 − kLkR)2s4 + κ2(kL + kR)2(1 + c2)2

= k4
�s4 + k2

�[(kL + kR)2(1 + c2)2 − 2kL(kL + kR)s4]

− k2
L(kL + kR)2[(1 + c2)2 − s4].

We next use the smallness of kL,R/k� � 1 to keep the terms
of the orders of k4

� and k2
�k2

R,L but discard those of order k4
L,R.

That provides the next level of approximation

|D|2 ≈ k4
�s4 + k2

�[(kL + kR)2(1 + c2)2

− 2kL (kL + kR)s4]

= k4
�s4 + k2

�[(2kL + δk)2(1 + c2)2

− 2kL (2kL + δk)s4]

= k2
�

{
k2
�s4 + 4k2

L[(1 + c2)2 − s4]

+ (4kLδk + δk2)(1 + c2)2 − 2kL(δk)s4
}
. (A11)

At this point, we note that δk satisfies an identity

δk2 = k2
V − 2kLδk,

and for kL � kV , admits approximations

2kLδk ≈ k2
V (kL � kV ),

δk2 � k2
V (kL � kV ). (A12)

Anticipating integration of single-electron currents over a
range of wave vectors that greatly exceeds kV (due to our
assumption kF � kV ), we conjecture that using these approx-
imation will introduce a small relative error because they will
be violated only in a small part of the integration interval.

With approximations (A12) expression (A11) for |D|2 ac-
quires a form

|D|2 ≈ k2
�

{
k2
�s4 + 4k2

L[(1 + c2)2 − s4]

+ k2
V [2(1 + c2)2 − s4]

}
= k2

�

{
k2
�s4 + 16k2

Lc2 + k2
V F (β )

}
(A13)

with

F = 2(1 + c2)2 − s4 = 1 + 6c2 + c4. (A14)

Note a subtlety associated with expression (A13): for any
nonzero angle β, the second and third terms in |D|2 become
small compared to the first one for sufficiently small ratios
kL/k� and kV /k�. However, if we want to be able to vary
β from zero to π , we need to keep these terms to avoid a
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FIG. 5. Exact and approximate single-electron particle currents
j (1)
n (β ) for kL/k� = 0.1, kV /kL = 0.1.

vanishing denominator at β = 0 (mathematically speaking,
the limit of the denominator is nonuniform over the range
of β).

We next apply the same approximation scheme to expres-
sion (9) for reflection amplitude r. Using (A10), we write

r ≈ − (κ2 + kLkR)s2 − iκ (kL − kR)(1 + c2)

(κ2 − kLkR)s2 − iκ (kL + kR)(1 + c2)

and

|r|2 ≈ (κ2 + kLkR)2s4 + κ2δk2(1 + c2)2

(κ2 − kLkR)2s4 + κ2(2kL + δk2)(1 + c2)2
.

Discarding terms of order (kL,R)4, and employing approxima-
tions (A12), we further get

|r|2 ≈
(
k2
� − k2

V

)
s4

k2
�s4 + 16k2

Lc2 + k2
V F (β )

.

In the denominator, the term k2
V F (β ) can become comparable

to k2
�s4 at β → 0. Because of that, it cannot be discarded. In

the numerator, k2
V can be safely neglected compared to k2

�.
Our final result is

|r|2 ≈ k2
�s4

k2
�s4 + 16k2

Lc2 + k2
V F (β )

. (A15)

One important lesson from the above is that expression for
r had to be expanded up to quadratic terms in (kL,R/k�)2 in
order to correctly expand |r|2.

Single-electron particle current is given by formula (12). In
the approximation derived above, we find

j (1)
n =

(
h̄kL

m

)
16k2

Lc2 + k2
V F (β )

k2
�s4 + 16k2

Lc2 + k2
V F (β )

. (A16)

Figure 5 compares exact and approximate values of j (1)
n and

demonstrates a good quality of our approximation.
We could similarly work out an expression for the R → L

current j (1)
nR but we will see below that it will not be necessary

since all calculations for electric current can be done using the
formula for j (1)

nL alone.
Single-electron spin current is given by formula (13). Since

our goal will be to calculate exchange torque in equilibrium,

FIG. 6. Exact and approximate single-electron spin currents
j (1)
sY (β ) for kL/k� = 0.1.

we are only going to need j (1)
sY at V = 0, where κL = κR = κ

and kL = kR = k. Moreover, as explained in the main text, Teq

is expressed through the magnitude of spin current at x = 0
and equals

j (1)
sY (0) = − h̄2

4m
[(κ + ik)(dL + rd∗

L ) + c.c.]. (A17)

Current formula can be simplified due to the existence of
another easily verifiable property

(κ + ik)rd∗
L + c.c. = 0 (V = 0),

that holds at V = 0 for exact r and d given by expressions
(A5). Consequently, formula (A17) reduces to

j (1)
sY (0) = − h̄2

4m
[(κ + ik)dL + c.c.] (V = 0).

Amplitude dL is taken from Eq. (A5) and at V = 0 equals

dL = −2ik(κ + ik)s c

D0
,

D0 = (κ2 − k2)s2 − 2iκk(1 + c2).

Therefore

j (1)
sY (0) = − h̄2

4m

[
−2ik(κ + ik)2

D0
+ 2ik(κ − ik)2

D∗
0

]
s c.

Keeping terms up to k2, we can reduce the above to

j (1)
sY (0) ≈ −

(
h̄2

4m

)
16k2k�s c

k2
�s4 + 16k2c2

. (A18)

Figure 6 compares exact and approximate values of j (1)
n and

demonstrates a good quality of our approximation.

APPENDIX B: RELATION BETWEEN SPIN CURRENT
AND EQUILIBRIUM EXCHANGE TORQUE

In our model, spins of itinerant electrons experience ex-
change interaction with localized magnetic moments that
form magnetization M. This interaction is responsible for the
exchange gap � in the energy spectrum. When an individual
electron spin deviates from the direction of M, a torque acting
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on it is generated. An opposite torque acts on the magneti-
zation itself. After summation over itinerant electrons, one
obtains the total torque Ts(x) acting on all of them at a given
point in space. A torque Tm(x) = −Ts(x) acts on magnetiza-
tion at that same point.

Total angular momentum density (h̄/2)S(x) of all itinerant
electrons and total spin current satisfy the continuity equation
[27,28]

h̄

2
Ṡ(x) + djs

dx
= Ts(x).

In a stationary state, e.g. in equilibrium or with a d.c. electric
current flowing, Ṡ(x) = 0. If we integrate the continuity equa-
tion over the extent of the left ferromagnet, −∞ < x < 0, we
find

js(0) − js(−∞) = Ttot
s ,

where the right-hand side is the total torque acting on all
itinerant electrons present in the left F layer. Furthermore,
js(−∞) is directed along ZL. This is a consequence of full
spin polarization, or, in terms of spinors (A1), the result of
the decay of down-spin components for each single-electron
contribution at x → −∞. Therefore, for the Y components,
relation

jsY (0) = T tot
sY

holds in any stationary state, with or without a d.c. electric
current. The final result for the torque acting on ML is then

TLY = −T tot
sY = − jsY (0). (B1)

The sign of TLY is of importance. When it is positive,
the torque acts so as to push ML towards MR in Fig. 1(b).
In equilibrium this corresponds to the whole system having
energy minimum in the state with parallel magnetizations, i.e.,
to the ferromagnetic sign of exchange interaction. Negative
value of TLY would mean energy maximum in the parallel
configuration and energy minimum in the antiparallel state,
i.e., an antiferromagnetic exchange.

Because the sign of TLY has direct measurable conse-
quences, a natural question arises. What would have happened
if majority electrons had their spins anti-parallel to M? Such
situation is realized in some materials. Could this possibly
change the sign of TLY and switch the system from fer-
romagnetic to antiferromagnetic ground state? To answer
this question, we repeat the wave-function matching of Ap-
pendix A with spinors(

ψ↑
ψ↓

)
L

=
(

dA
L eκLx

eikLx + rAe−ikLx

)
eik|| ·r|| (x < 0)

and (
ψ↑
ψ↓

)
R

=
(

dA
R e−κRx

tAeikRx

)
eik|| ·r|| (x > 0).

where superscript “A” stands for “antiparallel majority elec-
trons.” Performing the calculations one finds exact relations
tA = t , rA = r, and dA

L,R = −dL,R. Using them in the spinors
above, and substituting into the definition of spin current, we
find, after a straightforward calculation,

jA
sY (0) = jsY (0),

FIG. 7. Dynamic behavior of ML is governed by the equation
L̇ = TL for the angular momentum of the left layer, where L ↑↓ ML .
The sense of rotation is determined by L̇Y = TLY > 0. Similar logic
works for the dynamics of MR.

i.e., a material with majority electron spins antiparallel to
M has the same sign of TLY as its counterpart with majority
electron spins parallel to M. Both materials should exhibit the
same type of ground state.

Our calculations are performed with an assumption of
static magnetizations, held in place by external interactions,
e.g., by strong anisotropies. Were magnetizations allowed to
rotate, their dynamics would be governed by the equation
L̇ = T, with L being the angular momentum associated with
M. Since L and M are antiparallel (gyromagnetic ratio is
negative), the magnetizations would rotate around each other
as depicted in Fig. 7, where the sense of rotation is shown for
TLY > 0.

APPENDIX C: APPROXIMATIONS FOR EQUILIBRIUM
EXCHANGE TORQUE

1. Position and height of the torque maximum

Location of the maximum of TLY (β ) can be determined
from dTLY /dβ = 0, or equivalently from dTLY /ds = 0. With
angular dependence given by

TLY ∼ s

c
φs(νF ),

this leads to an equation(
1

c
+ s2

c3

)
φs + s

c

dφs

dνF

k�

4kF

(
2s

c
+ s3

c3

)
= 0.

Due to the presence of large factor k�/kF in the second term
we know that solution smax will be close to zero. We can
therefore approximate all quantities by their values at s → 0,
namely, c = 1, φs = 1/3, dφs/dνF = −π/4 and get an ap-
proximate equation

1

3
− π

4

k�

4kF
2s2 = 0,

which gives the maximum position

smax =
√

8kF

3πk�

⇒ βmax = 2

√
8kF

3πk�

. (C1)
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In terms of βc ≈ 4
√

kF /k� that was defined in the main text,

βmax =
√

2

3π
βc ≈ 0.46βc.

To calculate the value of TLY at the peak’s maximum, we
first find

νmax = νF (βmax) ≈ k�

4kF
s2

max = 2

3π
.

Then

TLY (βmax) =
(

π h̄2k�k3
F

(2π )3m

)
smax φs(νmax)

=
(

π h̄2k�k3
F

(2π )3m

)√
8kF

3πk�

φs

(
2

3π

)

=
(

π h̄2k4
F

(2π )3m

)√
8k�

3πkF
φs

(
2

3π

)

≈
(

π h̄2k4
F

(2π )3m

)
0.19

√
k�

kF
. (C2)

2. Total exchange energy

We need to calculate

E tot
ex =

∫ π

0
TLY dβ =

(
π h̄2k�k3

F

(2π )3m

)
I

with

I =
∫ π

0

s

c
φs(νF (β ))dβ. (C3)

Changing integration variable to x = β/2, we rewrite

I = 2
∫ π/2

0

sin x

cos x
φs
(
νF (x)

)
dx,

with

νF (x) = k� sin2 x

4kF cos x
. (C4)

Since

dνF = k�

4kF
sin x

(
2 + sin2 x

cos2 x

)
dx,

the change of variable of integration to νF gives

I = 2
∫ ∞

0

sin x

cos x

φs(νF )dνF

(k�/4kF ) sin x(2 + sin2 x/ cos2 x)

= 2
∫ ∞

0

φs(νF )dνF

(k�/4kF )(2 cos x + sin2 x/ cos x)

= 2
∫ ∞

0

φs(νF )dνF

2(k�/4kF ) cos x + νF
.

Inverting definition (C4), we find

cos x =
√(

2kF νF

k�

)2

+ 1 − 2kF νF

k�

,

and therefore the denominator of the integrand simplifies to

2
k�

4kF
cos x + νF =

√
ν2

F +
(

k�

2kF

)2

,

giving

I = 2
∫ ∞

0

φs(νF )dνF√
ν2

F + (k�/2kF )2
.

So far all transformations were exact. Now we make an
approximation based on k�/kF � 1 and rapid decay of the
function φs(νF ). The latter allows us to follow the usual
three-step approximation process. First, we acknowledge that
rapid decay of φs allows us to replace the upper limit of
integration by a number A � 1 without introducing a large
error. Moreover, this number can be chosen so as to satisfy
1 � A � k�/2kF . Second, on the interval (0, A) we can ne-
glect ν2

F in the denominator of the integrand. Finally, we again
replace the upper limit by infinity, arguing that this operation
will not introduce large error for the same reason as in the first
step. We thus conclude that

I ≈ 2
∫ ∞

0

φs(νF )dνF

k�/2kF
= 4kF

k�

∫ ∞

0
φs(νF )dνF . (C5)

In our case, the integral of φs can be calculated exactly [29]∫ ∞

0
φs(νF )dνF = π

16
,

which gives

I ≈ πkF

4k�

.

Note that we can estimate the neglected contribution from the
interval (A,∞) by expanding φs in powers of 1/νF at νF � 1.
The result is

φs ≈ 1

15ν2
F

,
φs(νF )√

ν2
F + (k�/2kF )2

<
2kF

k�

1

15ν2
F

and

�I = 2
∫ ∞

A

φs(νF )dνF√
ν2

F + (k�/2kF )2
<

4kF

15k�

∫ ∞

A

dνF

ν2
F

= 4

15

kF

k�

1

A
� I,

where the last strong inequality is based on A � 1.
Being now confident in our approximation for integral I ,

we can write down the final result for exchange energy

E tot
ex ≈ π2

4(2π )3

h̄2k4
F

m
. (C6)

APPENDIX D: INTEGRATING SINGLE-ELECTRON
CONTRIBUTIONS TO ELECTRIC CURRENT

Total particle current jn through the boundary depends
on the distribution functions nL(k) and nR(k) of electrons
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(a)

(b)

FIG. 8. Distributions of electrons on both sides of F/F boundary.
Fermi surface shift by �k translates into the energy shift �ε. (a)
Three intervals of energy contributing to electric current. (b) Regions
in the k space of the left F layer, corresponding to the three energy
intervals in (a). Dashed semicircles with radii kF and k(−) define
region I. Crescent-shaped regions II and III have widths �k and δk,
see text.

reaching the boundary from left and right sides

jn =
∫

kL>0
j (1)
nL nL

d3k

(2π )3
−
∫

kR<0
j (1)
nR nR

d3k

(2π )3
.

It is well known that in such calculations an identity holds

j (1)
nL (k||, kL )

d2k||dε

v⊥L
= j (1)

nR (k||, kR)
d2k||dε

v⊥R
,

where kL and kR are related by ε(k||, kL ) = ε(k||, kR), and
v⊥ = h̄k⊥/m is the perpendicular to the boundary component
of electron velocity. This means that the L → R current of
electrons from a small element of momentum space is exactly
compensated by the R → L current of electrons from an ele-
ment of different size, corresponding to the same interval of
energy. Because of this identity, full electric current can be
expressed through jnL alone

jn =
∫

kL>0

j (1)
nL

v⊥L
[nL(kL ) − nR(kR(kL ))]

d2k||dε

(2π )3

=
∫

kL>0
j (1)
nL [nL(kL ) − nR(kR)]

d3k

(2π )3
.

This property, in particular, ensures that electric current al-
ways vanishes in thermal equilibrium. In our situation, when
nL and nR are equal to either zero or unity, it means that full
current can be calculated as a sum of contributions of those
L → R electrons that have no R → L counterparts with the
same energy.

When both nL and nR are the “shifted Fermi sphere” dis-
tributions, three intervals of energy where L → R electrons
have no R → L counterparts are shown in Fig. 8. First, there
is a “tunneling” region (I) formed by electrons within the
boundary voltage jump eV . Second, there are two “Ohmic”
regions II and III, related to the shift �k. Their energy width

is �ε = h̄2kF �k/m. Here we start by expressing the contribu-
tions from regions I, II, and III through eV and �k, assuming
that both parameters are known independently. In the actual
stationary state with d.c. current there is a self-consistency
connection between them, which we will derive and apply in
Appendix E.

1. Tunneling contribution (region I)

We use single-electron particle currents in approximation
(A16) to find the sums. Tunneling contribution to the particle
current is given by an integral

jn(I) = h̄

m

∫ kF

k(−)

2πk2

(2π )3

∫ 1

0
j (1)
n (ξk) dξ dk

= h̄

m

∫ kF

k(−)

2πk2dk

(2π )3

∫ 1

0
dξ

kξ
[
16k2c2ξ 2 + k2

V F (β )
]

k2
�s4 + 16k2c2ξ 2 + k2

V F (β )
,

where the lower limit is given by k2
(−) = k2

F − k2
V . The angular

part of the integral

Sn =
∫ 1

0
dξ

kξ
[
16k2c2ξ 2 + k2

V F (β )
]

k2
�s4 + 16k2c2ξ 2 + k2

V F (β )

can be calculated by performing a variable change t = ξ 2.
This results in

Sn = k

2

[
1 − k2

�s4

16k2c2
ln

(
1 + 16k2c2

k2
�s4 + k2

V F (β )

)]
.

Integration over k is more complicated but if we assume the
regime of small voltage drop eV � εF , i.e., k2

V � k2
F , then

k(−) ≈ kF and integration is performed over a narrow interval
of width kF − k(−) ≈ k2

V /2kF � kF . We therefore can approx-
imate

jn(I) = h̄

m

∫ kF

k(−)

2πk2

(2π )3
Sndk ≈ h̄

m

2πk2
F

(2π )3
Sn(kF )(kF − k(−) ).

Defining

χ = k2
V

k2
F

= eV

εF
,

(D1)

νF = k�s2

4kF c
,

we rewrite this result as

jn(I) = π

2(2π )3

h̄k4
F

m
χ

[
1 − ν2

F ln

(
1 + 1

ν2
F + χF/16c2

)]
or

jn(I) = π

2(2π )3

h̄k4
F

m
χφ1,

φ1 = 1 − ν2
F ln

(
1 + 1

ν2
F + χF/16c2

)
. (D2)

Since νF (β ) becomes arbitrarily small at β → 0, one cannot
simply say that ν2

F + χF/16c2 ≈ ν2
F at χ � 1. Nevertheless,

it is possible to show that

φ1 ≈ 1 − ν2
F ln

(
1 + 1

ν2
F

)
(D3)

is a very good approximation at small χ .
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2. Ohmic contributions: regions II and III

Region II is a crescent of constant thickness �k in the x
direction. It has a circular left boundary with radius kF . Due
to the assumed smallness of �k/kF we can express the contri-
bution of this region as a surface integral over the half-sphere
of radious kF

jn(II) =
∫ 1

0
j (1)
n (ξkF )�k ξ

2πk2
F dξ

(2π )3
.

Using approximation (A16) for single-electron current and
notation (D1), we get

jn(II) = 2π

(2π )3

h̄k4
F

m

�k

kF

∫ 1

0

ξ 2(ξ 2 + χF/16c2)

ν2
F + ξ 2 + χF/16c2

dξ . (D4)

Evaluating the integral we get

jn(II) = 2π

(2π )3

h̄k4
F

m

�k

kF
φ2,

φ2 = 1

3
− ν2

F

(
1 − η arctan

1

η

)
,

η =
√

ν2
F + χF/16c2. (D5)

Again, it is possible to show that at χ � 1

φ2 ≈ 1

3
− ν2

F

(
1 − νF arctan

1

νF

)
(D6)

is a very good approximation.
Region III is a crescent similar to that for region II with

two modifications. First, it has a variable thickness δk in the x
direction, related to constant �k by the requirement of equal
energy intervals

kLδk = kR�k.

Since k2
R = k2

L + k2
V , this gives

δk =
√

k2
L + k2

V

kL
�k. (D7)

Second, its circular right boundary has a radius k(−) =√
k2

F − k2
V . Assuming small δk, we can again express the con-

tribution of that region as a surface integral over a half-sphere
of radius k(−)

jn(III) =
∫ 1

0
j (1)
n (ξk(−) ) δk ξ

2πk2
(−)dξ

(2π )3
.

Defining a dimensionless ratio

q = k(−)

kF
=
√

1 − χ,

we rewrite the current expression as

jn(III) = 2π

(2π )3

h̄k4
F

m

�k

kF

× q2
∫ 1

0

ξ
√

q2ξ 2 + χ (q2ξ 2 + χF/16c2)

ν2
F + q2ξ 2 + χF/16c2

dξ .

Performing a variable change qξ = ζ , we find

jn(III) = 2π

(2π )3

h̄k4
F

m

�k

kF

∫ q

0

ζ
√

ζ 2 + χ (ζ 2 + χF/16c2)

ν2
F + ζ 2 + χF/16c2

dζ .

(D8)

This formula differs from expression (D4) for jn(II) in two
ways. The upper limit of integration is different, and the
integrand has a factor ζ

√
ζ 2 + χ instead of ξ 2 in (D4).

In the limit of interest χ � 1, we can use approximations

ζ
√

ζ 2 + χ ≈ ζ 2 + χ

2
,

q ≈ 1 − χ

2
,

and write

jn(III) = jn(II) +
(

2π

(2π )3

h̄k4
F

m

�k

kF

)
χ

2
φ3, (D9)

with

φ3 =
∫ 1

0

ζ 2 + χ/2

ν2
F + ζ 2 + χ/2

dζ − (1 + χ/2)(1 + χ/2)

ν2
F + 1 + χ/2

= 1 − ν2
F√

ν2
F + χ/2

arctan

⎡
⎢⎣ 1√

ν2
F + χ/2

⎤
⎥⎦

− (1 + χ/2)2

ν2
F + 1 + χ/2

. (D10)

When χ � 1, the second term in formula (D9) will be small
compared to the first, provided φ3 is not diverging or becom-
ing too large. By plotting the graphs of φ3 we can numerically
convince ourselves that it is bounded by

|φ3| < 0.4.

Existence of this bound allows us to use the approximation
jn(III) = jn(II) for χ � 1.

3. Total current through the boundary

Adding contributions from regions I, II, and III, we obtain
the total current through the boundary

jn = jn(I) + jn(II) + jn(III)

= 1

(2π )3

h̄k4
F

m

[
πφ1

2

eV

εF
+
(

4πφ2 + 2π
χ

2
φ3

)�k

kF

]

≈ 1

(2π )3

h̄k4
F

m

[
πφ1

2

eV

εF
+ 4πφ2

�k

kF

]
. (D11)

APPENDIX E: SELF-CONSISTENT CALCULATION
OF BOUNDARY VOLTAGE DROP

1. Current in the bulk

Throughout this work we assume that the distribution func-
tion n(k) of electrons carrying electric current in the bulk
is given by Botlzmann equation in isotropic scattering time
approximation. A well known solution for this case is a filled
Fermi sphere shifted in the direction of current propagation by
a small wave vector �k = eEτ/h̄, where τ is the relaxation
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time [25,26]. The total particle current corresponding to such
distribution is

jn =
∫

h̄kx

m
n(k)

d3k

(2π )3
=
∫

h̄kx

m
[n(k) − nF (k)]

d3k

(2π )3
,

where nF is the Fermi distribution (we consider low tem-
perature T � εF ). Note a small difference from standard
calculation: we have single occupancy of each k state, since
only one direction of spin is allowed. The integral is calculated
as

jn =
∫ π

0

h̄kF cos θ

m
(�k cos θ )

2πk2
F sin θdθ

(2π )3

= 4π

3(2π )3

h̄k3
F �k

m
= 4π/3

(2π )3

h̄k4
F

m

�k

kF
. (E1)

We can estimate the value of �k/kF in real devices setting
eF = 10 eV for metallic ferromagnets and using the largest
current density je = 1012 A/m2 observed in metallic spin-
tronic devices. For these parameters,

kF =
√

2mεF

h̄
≈ 1.6 × 1010 1/m

and

�k

kF
= 6π2m

h̄k4
F

je
e

≈ 5 × 10−5.

2. Self-consistency condition

Using relations (E1) and (D11), one can write down the
condition of having the same electric current flowing in the
bulk and through the boundary

4π

3(2π )3

h̄k3
F �k

m
= 1

(2π )3

h̄k4
F

m

[
πφ1

2

eV

εF
+ 4πφ2

�k

kF

]
or

4π

(
1

3
− φ2

)
�k

kF
= πφ1

2

eV

εF
,

which finally gives

eV

εF
= 8(1/3 − φ2)

φ1

�k

kF
(E2)

with φ1,2 given by approximations (D3) and (D6).

3. Boundary conductance

Inverting Eq. (E2)

�k

kF
= φ1

8(1/3 − φ2)

eV

εF
,

and substituting the result into Eq. (E1), we find for electric
current

je = e jn = e
4π/3

(2π )3

h̄k4
F

m

φ1

8(1/3 − φ2)

eV

εF

= π

(2π )3

e2k2
F

h̄

φ1

1 − 3φ2
V = G(β )V,

where the conductance of the boundary is

G(β ) = G0
φ1

1 − 3φ2
, (E3)

G0 = π

(2π )3

e2k2
F

h̄
. (E4)

As expected, conductance diverges at γ → 0 (Ohmic regime)
and vanishes at γ → ∞ (tunneling regime).

4. Crossover between Ohmic and tunneling-dominated regimes

Tunneling regime is achieved when potential drop eV
on the boundary is large enough to ensure eV � �ε =
(h̄kF /m)�k, i.e., when the majority of contributing electrons
reside in region I (Fig. 8). In terms of wave vectors this
requirement reads

k2
V � kF �k ⇒

(
kV

kF

)2

� �k

kF
, (E5)

or

χ = eV

εF
� �k

kF
. (E6)

Using self-consistency relation (E2), we find that tunneling
regime is realized for

8(1/3 − φ2)

φ1
� 1. (E7)

The left-hand side (l.h.s.) of inequality (E7) is a function
of νF alone. To estimate the width of the crossover region
between Ohmic and tunneling regime, we numerically find the
values of ν± for which the l.h.s. is equal to 0.1 and 10. This
gives an interval (ν−, ν+) ≈ (0.12, 1.35), or, equivalently, a
range of misalignment angles

0.35 βc < β < 1.16 βc

expressed in terms of the characteristic angle βc = 4
√

kF /k�.
From that we conclude that βc is the angle around which a
crossover from Ohmic to tunneling regime takes place. This
transition is the root cause of rapid variations demonstrated
by many properties of F/F system near βc.

APPENDIX F: EFFECT OF SPIN-FLIP SCATTERING
AT THE BOUNDARY

In this Appendix, we consider the effect of spin-flipping
impurities located at the boundary separating the two ferro-
magnets in an F/F structure. Electrons colliding with such
impurities can flip their spins (Fig. 9) and proceed to the other
side even in the case of anti-parallel magnetic configuration
where conventional propagation is completely blocked. As a
result, transmission through impurities acts as a shunt inserted
in parallel with the conductance considered in our study. Total
conductance is a sum of clean boundary and impurities con-
tributions

Gtot = G(β ) + Gimp,

with G(β ) given by expression (E3). We will assume that im-
purities have low concentration, so that their presence does not
appreciably change G(β ). At the same time, when G(β ) → 0
the term Gimp dominates in the total conductance. Here we
want to estimate the angle βshunt at which the two terms
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FIG. 9. Impurity at the boundary enables conductance by flip-
ping electron spins.

become equal. For β � βshunt, our results for conductance, and
possibly for the exchange torque, become questionable.

To produce a rough estimate, we will assume that after
scattering off a spin-flipping impurity the electron can proceed
into the other ferromanget without reflection. Clearly this
will be the case of largest possible influence of impurities
on the total boundary conductance. Then we can view each
impurity as a quantum point contact between two ferromag-
netic half-spaces (Fig. 9). Such point contact will contribute
e2/(2π h̄) to the total conductance of the boundary. Denoting
the area concentration of impurities on the boundary as nS

imp,
we can write the impurity conductance per unit area as Gimp =
nS

impe2/(2π h̄). (If volume concentration nimp of spin-flip im-
purities is known and assumed to be constant throughout
the structure, area concentration can be expressed through it:
as argued in Sec. VI, effective thickness of the boundary is
1/k�, so nS

imp = nimp/k�). Equation G(β ) = Gimp then gives a

condition

φ1

1 − 3φ2
= 4πnS

imp

k2
F

, (F1)

where the left-hand side is a function of β according to the
definitions (29), (30), and (20). When nS

imp is small enough, so
that the inequality

nS
imp

k2
F

� 1 (F2)

holds, i.e., when the distance between impurities on the
boundary is much larger than the electron Fermi-wavelength,
the right-hand side of Eq. (F1) has to be small as well. The
latter is only possible in the limit β � βc, where the function
on the left then can be approximated by

φ1

1 − 3φ2
≈ 1

2ν2
F

≈ β4
c

2β4
.

Equation (F1), when solved in this approximation, gives

βshunt = βc

(
k2

F

8πnS
imp

)1/4

� βc.

In conclusion, we see that for the low impurity concen-
trations satisfying condition (F2) the shunting effect will not
modify our results until the magnetizations’ misalignment
angle increases well beyond the critical angle. All effects
observed near the critical angle should be visible despite the
wash-out due to impurity shunting. Note that inequality (F2)
also ensures that impurities can be viewed as independent
quantum point contacts.
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