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Soft magnetic dots in the form of thin rings have unique topological properties. They can be in a vortex state
with no vortex core. Here, we study the magnon modes of such systems both analytically and numerically. In an
external magnetic field, magnetic rings are characterized by easy-cone magnetization and shows a giant splitting
of doublets for modes with the opposite value of the azimuthal mode quantum number. The effect of the splitting
can be refereed as a magnon analog of the topology-induced Aharonov-Bohm effect. For this we develop an
analytical theory to describe the nonmonotonic dependence of the mode frequencies on the azimuthal mode
number, influenced by the balance between the local exchange and nonlocal dipole interactions.
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I. INTRODUCTION

One of the most attractive features of magnetic nanostruc-
tures is the presence of topological defects [such as vortices,
skyrmions, monopoles (Bloch points), domain walls, and
chiral bobbers] as their magnetic equilibrium configurations,
sometimes even the ground state. Among these spin textures,
magnetic vortices, a spontaneously forming ground state in
(sub)micron soft-magnetic disks have attracted great atten-
tion during the past two decades [1,2]. The magnetic vortex
consists of a curling in-plane magnetization with closed mag-
netic flux around a the nanoscale region known as the vortex
core with out-of-plane magnetization. The vortex state has
been extensively studied, partly due to its rich excitation
spectrum [3–7] and the possibility of the usage in magnonic or
spintronic devices, for example, as storage units [8–10], nano-
oscillators [11–15], or even for neuromorphic computing [16].

Spectrum of the vortex-state particle includes the gy-
rotropic mode with low (sub-gigahertz) frequency ωg, cor-
responding to the vortex core precession around the disk
center, and a system of higher modes. These modes with the
frequencies ωm,n are denoted by two integers, the number of
radial nodes in the out-of-plane component of the dynamical
magnetization (radial mode number) n � 1 and the azimuthal
mode number m, which determines the angular dependence on
this component. These modes form doublets with the splitting
�ωn,m ≡ ωn,|m| − ωn,−|m|.

The model describing magnon dynamics on a vortex
background that takes into account nonlocal magnetostatic
dipole interaction leads to integrodifferential Landau-Lifshitz
equations. In general case, this problem cannot be solved an-
alytically. Current successes in the understanding of magnon

modes for the vortex-state soft-magnetic particles are partly
based on past investigations of these modes for easy-plane
two-dimensional (2d) models with local interactions only, see
[3]. Indeed, in case of vortex-state disk the gyroscopic mode is
present for both models, with the same sense of the vortex pre-
cessional mode, which can be described on the ground of the
Thiele equation for vortex core coordinate. For both models,
the frequencies of modes are determined by small parameters
of the problems, which are (a/R)2 for the 2d local model and
L/R for soft magnetic disks, where R is the radius of the disk,
a is the lattice constant, and L is the disk thickness. The higher
modes were found to form a set of doublets with given value
of n and m = ±|m|, their mean frequencies are proportional
to the square root of these small parameters, (a/R) and

√
L/R

for both models. It was found that the interaction with the
vortex core is significant for higher translation modes with
m = ±1, leading to doublet splitting �ωn,1 of the order of
ωg. Surprisingly the ratio �ω1,1/ωg

∼= 3.5 is the universal
value for these two quite different models. The dynamics of
vortex core with accounting for higher modes leads to higher
order Thiele equation, first proposed for a local model, see
[3], and confirmed by numerical simulations for vortex state
soft-magnetic dots [17,18].

For a soft ferromagnetic disk, the leading contribution in
magnon frequencies is provided by the strong dipolar inter-
action of magnetostatic origin [6,19]. Near the vortex core,
the magnon wave functions strongly decrease as r|m−1|, i.e.,
magnon for modes with azimuthal number |m| > 1 are de-
localized from the core region. This asymptotic behavior is
valid for the easy-plane local model and the soft ferromag-
net. Thus the interaction of these magnons with the vortex
core, particularly the doublet splitting, is expected to be weak
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for these modes. Indeed, it is the case for standard in-plane
vortex. Nevertheless, one exception was found for the cone
vortex state, created by an external magnetic field applied
along the hard axis. In this case, the magnetization far from
the core is tilted relative to the disk plane. For the cone
vortex state, the significant splitting, linear over the value of
the magnetic field appears, as discussed in Ref. [20]. Other
studies by Dugaev and Bruno [21,22] have discussed such
a splitting in vortex-state ferromagnetic rings without a core
but tilted magnetization. Similar splitting was also found in
helical-state magnetic nanotubes [23]. In these studies, the
dominant role of the local exchange interaction was high-
lighted, with Ref. [21] connecting the frequency splitting
to a geometrical phase arising due to the nontrivial Berry
connection in inhomogeneous magnetic equilibria. These re-
cent studies, however, have only discussed the role of local
interactions.

Here, we show that giant doublet splitting is a generic
feature related to the nontrivial topology of the vortex cone
state, by developing a model including both local exchange
and nonlocal dipole interactions. The topology of magnetic
textures gives rise to a variety of fundamentally new effects,
such as skew and rainbow scattering the magnon modes in
the presence of a single skyrmion in a ferromagnet [24]
and a chiral magnet [25]; it also results in a finite gyro
coupling force in the Thiele equation [26]. Soft magnetic
dots with easy-cone magnetization possess unique topological
properties, absent for other cases, either skyrmions or planar
vortices. To this end, we demonstrate how the topology of a
vortex gives rise to the magnon analog of the Aharonov-Bohm
effect that results in giant doublet splitting. We also describe
the nontrivial dependence of the mean magnon frequency on
the azimuthal number. The studies were conducted analyti-
cally and numerically, with good agreement between the two
approaches.

Therefore, in Sec. II, we discuss the general topological
features of the cone vortex state in magnetic nanodots and
nanorings, which ultimately give rise to the topology-induced
Aharonov-Bohm effect. In Sec. III, we present an approx-
imate analytical model of the magnon spectrum about the
cone-vortex equilibrium state, including both local and non-
local interactions. In order to disentangle the giant doublet
splitting in the cone state from the splitting of the m = ±1
doublet, which appears already due to the presence of a vortex
core, our theory is applied to a ferromagnetic ring without
a core. In Sec. IV, our model is compared with exact nu-
merical solutions of the linearized equation of motion that
governs the magnon spectrum, providing good agreement.
Our approximate analytical theory describes the magnon dis-
persion in the cone-vortex state and directly attributes its
nontrivial dependence on the azimuthal mode number m to
the interplay between local and nonlocal interactions. Finally,
we demonstrate how both of these interactions contribute to
the topology-induced giant doublet split. Besides providing
an analytical model for magnon dynamics in (cone)-vortex-
state nanodots and rings, our paper contributes to the
fundamental understanding of topological effects in magnon
dynamics and magnetism, in general. We also discuss conse-
quences on potential applications based on cone-state vortex
rings.

II. VORTEX STRUCTURE AND TOPOLOGY-INDUCED
AHARONOV-BOHM EFFECT.

We consider a soft magnetic particle in a form of a thin
ring with an inner radius Rin, outer radius Rout, and thick-
ness L. The inner and outer radii are much larger than the
exchange length l0 of the ferromagnetic material. The mag-
netization vector is denoted M(r), normalized magnetization
m(r) = M(r)/Ms, where Ms is the saturation magnetization.
An external magnetic field H0 is applied along the axis of the
ring. In what follows, we use the cylindrical basis (er, eχ , ez )
with the ez along the axis of the particle.

The ground state of the thin magnetic particle in a shape
of a disk or a ring is the vortex ground state, in which the
magnetization circulates around the center region to close the
magnetic flux. The vortex state was obtained as a solution of
the Landau-Lifshitz equations ∂M/∂t = γ [M × (δW/δM)].
Here γ is the gyromagnetic ratio, and (δW/δM) denotes the
variation of energy functional of the ferromagnet. We will
discuss the specific form of the functional W = W [M] in the
next section. Here we just note that only the local exchange
interaction contributes to the vortex solution. The contribu-
tion of the magnetostatic dipole interaction to Landau-Lifshitz
equations is proportional to ÷M, which for the vortex ground
state is zero.

Within the standard parametrization of the normalized
magnetization m = (sin θ cos φ, sin θ sin φ, cos θ ) the vortex
structure can be described as φ = qχ + π/2, θ = θ0(r), with
q being an integer, see Ref. [20]. Here the function θ0(r)
satisfies the ordinary differential equation

d2θ0

dr2
+ dθ0

rdr
+ sin θ0 cos θ0

(
1

l2
0

− q2

r2

)
= h sin θ0

l2
0

(1)

with the natural boundary conditions sin θ0(0) = 0 and
cos θ0(∞) = h. Here, h is the dimensionless strength of the
external field: H0 = 4πMshez.

The set of possible values of m in the equilibrium state
form the order parameter space. From a topological point of
view, the vortex state is described by the group of continuous
mappings of the coordinate into the order parameter space.
This, in particular, is the relative homotopy group π2(S2, S1)
of mappings of the two-dimensional sphere S2 with the non-
contractible boundary S1, because of the nonequivalence of m
and −m magnetization.

The vortex is characterized by two topological invariants.
The π1-topological charge is known as vorticity

q = 1

2π

∫
S1

∂χφ dχ (2)

counting the accumulation of phase φ along a remote closed
path S1 in coordinate space embracing the vortex center.

The mapping of the S2 sphere to the vortex configuration
defines the π2-topological charge, also known as Skyrmion
number, as

Q = 1

4π

∫
S2

Qrdrdχ (3)
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FIG. 1. Structure of a cone-state magnetic vortex with angle
θ0(r) to the z axis. A cylindrical basis (r, χ, z) is defined as shown.
The winding number of the magnetization along the closed loop S1

defines a π1-topological charge (vorticity). The mapping of a sphere
S2 to the order parameter space defines a π2-topological charge
(also referred to as Skyrmion number).

with the topological-charge density

Q = m · (∂rm × ∂χm), (4)

playing the role of a gyro-coupling density [4]. In terms of the
spherical magnetization angles, it can be given as

Q = q sin θ0

r

(
dθ0

dr

)
. (5)

The value of Q is directly determined by the boundary condi-
tions imposed on the polar angle of magnetization

Q = q

2

∫ θ0(∞)

θ0(0)
sin θ0dθ0 = q

2
[cos θ0(0) − cos θ0(∞)]. (6)

The boundary condition in the center plays the role of
polarization p = cos θ0(0), which takes integer values ±1
depending on whether the direction of m coincides with the
direction of z axis or is opposite to it.

In the case of a zero external field, a configuration of a
planar vortex takes place. Then θ0(∞) = π/2 and Q = pq/2,
which corresponds to the mapping on the upper or lower
hemispheres depending on the sign of polarization. In this
case, the planar vortices with opposite polarization (p = ±1)
are energetically degenerate. Applying the external field, the
planar vortex transforms into the cone-state vortex, in which
the vector m can lie inside or outside the cone with opening
angle 2θ0(∞) = 2 arccos h, see Fig. 1. Thus there are vortices
of two different types, corresponding to different values of
polarization p = ±1. They have different energy, the vortex
with polarization along the magnetic field has lower energy
and is called light vortex. The vortex with the opposite value
of polarization has higher energy and is called the heavy one
[20]. For light vortex with p = 1 mapping of S2 is an upper
spherical segment shown on figure by red color, for heavy
vortex with p = −1 it is the remaining part of the sphere
shown by white color. The topological charge Q = q(p −
h)/2 implies in general transcendent values are responsible for

unique topological properties of easy-cone vortices regardless
of their specific nature.

The topological features of the system also show them-
selves in the fact that in the linearized Landau-Lifshitz
equations describing the magnon dynamics contain a formal
magnetic field B = rot A = Qez, see Ref. [4]. This field acts
on magnons in a way the usual magnetic field influences
electrons. For example, in the local model the linearized equa-
tions can be rewritten in the form of a generalized Schrödinger
equation for a complex magnon wave function [4],

i∂tψ = (−i∇ − A)2 + U )ψ + W ψ∗, (7)

which contains the vector potential A in a standard way. The
total magnetic flux passing through any closed surface em-
bracing the vortex � = ∫

Bds = ∮
Adl is exactly

� = 4πQ = q[p − h]�0 (8)

with the flux quantum �0 = 2π .
In the original Aharonov-Bohm effect, this total flux

determines the interference between charged particles trav-
eling along different paths around a long (formally infinite)
solenoid [27]. In particular, the magnetic flux is concentrated
inside the solenoid while the movement of the particles takes
place outside the magnetic field region where B = rot A = 0.
The Hamiltonian of the system explicitly contains the vector
potential and the resulting Schrödinger equation has a general
solution expressed in terms of Bessel function of transcen-
dent index J|m+α| where α = −�s/�0 is the phase difference
acquired by particle while traveling around solenoid, with
�0 = 2πch̄/e being the flux quantum. When the total flux
inside the solenoid �s is a multiple of flux quantum
�0 the index of Bessel function is integer valued and the
interference is constructive (the phase shift depend only on
difference between the traveled paths). Noninteger α means
that wave function acquire additional phase factor and the
interference pattern shifts [27,43].

Even though magnons are not charged particles, the non-
trivial topological charge of the vortex core influences the
magnon excitations even when they do not enter core region.
If the total flux � defined by Eq. (8) is not an integer mul-
tiple of the flux quantum the wave functions of the magnons
become dependent on sign of the azimuthal number m and
splitting for modes with different sense of gyration appears.
This effect is general in the sense that cone state of a mag-
netic particle can be created not only by a magnetic field.
In fact, the same effects are obtained in a magnet with the
complex crystallographic anisotropy, including second- and
fourth-order contributions, so that the ground state is realized
by the cone state [28].

For comparison, we can mention splitting that occurs due
to the magnetostatic dipole interaction, but it is not associated
with the Aharonov-Bohm effect [29]. In the case of topolog-
ically induced splitting, which we consider, the effect exists
even for the pure local model that does not take into account
the magnetostatic interaction.

The topological splitting of magnons is a unique prop-
erty of the cone-state vortex regardless of its nature [30].
Indeed, the total flux � depends on the value of magnetization
far from the vortex center θ0(∞). For the planar vortices
θ0(∞) = π/2 and the total flux is the integer multiple of the
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flux quantum. The same situation is with skyrmions, which
are characterized by θ0(∞) = π . In both cases, � is an integer
multiple of �0 and the Aharonov-Bohm type of splitting does
not appear.

In what follows we are considering vortices with the lowest
energy: only vortices with q = 1 are stabilized by the mag-
netostatic dipole interaction. We expect that for higher q the
situation will be qualitatively the same.

The structure of magnetic vortex discussed above is
basically similar for disk- and ring-shaped particles, but topo-
logical properties have peculiarities. For both cases the main
topological invariant is the π1-topological charge, because
the vortex structure is essential for magnons to be scattered
on its background. The π2-topological charge is an auxiliary
quantity, determined by area of part of the sphere, in which
the distribution of magnetization M is mapped. In the disk-
shaped particle this mapping covers half of the sphere for
planar vortex, and the part other than half for the cone vortex.
Contrary, a central part of the vortex, including the vortex
core, is absent in the ring, and the topological arguments
about π2-topological charge are not applicable in this case,
in particular, the polarization p is undefined. But as we will
see below, this peculiarities does not change the essence of
the effect we are investigating.

Indeed, in the context of the Aharonov-Bohm effect the
most fundamental point of the topological analysis is the
introduction of the vector potential [27]. In the magnon analog
of the effect the vector potential A induced by the vortex
topology can be naturally identified from the Landau-Lifshitz
equations, if they are transformed to a Schrödinger-like form.
We show in the next section that it can be done for a model that
takes into account both local exchange and nonlocal magneto-
static interactions. We show that the vector potential induced
by the vortex topology results a giant magnon splitting in
a ring-shaped magnetic particle, for which a vortex core is
absent. This result corresponds exactly to the letter and spirit
of the Aharonov-Bohm effect, whose goal was to show the
primacy and physicality of the vector potential.

III. THEORETICAL DESCRIPTION OF MAGNON MODES
IN THE FERROMAGNETIC RING

In this section we analyze the magnon excitations in the
ferromagnetic ring on the background of the cone-state vortex.
The energy of the soft magnetic ferromagnet, like permalloy,
contains the contributions from the isotropic exchange inter-
action and the magnetic dipole interaction

W =
∫

dr

[
A

2M2
s

∑
i

(∂iM)2 − M(H0 + 1

2
Hm)

]
(9)

where A is the exchange constant, H0 = 4πMshez is external
field. The field Hm is determined by the magnetostatic equa-
tions div(Hm + 4πM) = 0 and rot Hm = 0 with the standard
boundary conditions: the continuity of the normal component
of (Hm + 4πM) and the tangential component of Hm on the
border of the sample. Formally, the sources of Hm can be
considered as “magnetic charges” with the volume and surface
charge density being ρm = divM and surface charge density
is equal to −(M · n), where n is the unit vector normal to the

border. The magnetostatic field is separated into volume Hvol
m

and surface contributions including lateral surfaces Hedge
m and

ring faces H face
m .

In the most general case, the solution of magnetostatic
equations is a Coulomb-type integral of the magnetic charge
density that makes the Landau-Lifshitz equations integrodif-
ferential. However, if we are considering a thin ring, for which
L/Rin, L/Rout can be treated as small parameters, the expres-
sions for demagnetizing field can be essentially simplified as
following.

The main term arising from the surface charges of two
ring faces is H face

m = −4πMzez, that corresponds to the energy
density of 2πM2

z and provides an effective planar anisotropy.
The contribution of the ring edges Hedge

m can be taken into ac-
count by virtue of boundary condition on Mr (R), see [31,32].
The volume magnetic charges produce the nonlocal field
Hvol

m = −∇Fin, where the magnetostatic potential in the main
order can be obtained in the from

Fin = −2πL

k̄
div⊥M. (10)

Here k̄ takes the eigenvalues of the Laplace operator and
determines the decrease in the demagnetizing field in free
space outside the ring; for details see Appendix.

The magnon modes on the vortex background are
investigated considering small deviations ϑ,μ from the
vortex ground state φ = χ + π/2 + (sin θ0)−1μ, θ =
θ0(r) + ϑ . The additional factor (sin θ0)−1 is introduced to ex-
press corrections to magnetization m0 = cos θ0ez + sin θ0eχ

in the form δm = −μer + ϑ cos θ0eχ − ϑ sin θ0ez. The
linearized Landau-Lifshitz equations in terms of ϑ and μ can
then be written as

− 1

ωm

∂μ

∂t
= −l2

0 	ϑ + V1ϑ + 2l2
0 cos θ0

r2

∂μ

∂χ

+ L

2k̄

cos θ0

r

∂

∂χ

(
∂μ

∂r
+ μ

r
− cos θ0

r

∂ϑ

∂χ

)
,

1

ωm

∂ϑ

∂t
= −l2

0 	μ + V2μ − 2l2
0 cos θ0

r2

∂ϑ

∂χ
−

− L

2k̄

∂

∂r

(
∂μ

∂r
+ μ

r
− cos θ0

r

∂ϑ

∂χ

)
, (11)

where ωm = 4πMsγ , γ = gμB/h̄ is the gyromagnetic ratio,
g ≈ 2, μB is the Bohr magneton, l2

0 = A/4πM2
s , and the po-

tentials are

V1 = cos 2θ0

(
l2
0

r2
− 1

)
+ h cos θ0,

V2 = −l2
0

(
dθ0

dr

)2

+ cos2 θ0

(
l2
0

r2
− 1

)
+ h cos θ0. (12)

For the dynamics of magnons in the form of plane waves
considered far from the vortex core, Eq. (11) give the magnon
dispersion law as a function of the wave vector k, namely

ω = ωmk
√

1 − h2 + l2
0 k2

√
l2
0 + L

2k̄
. (13)

It takes into account both exchange and magnetostatic inter-
actions.
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The nonlocal dipolar interaction greatly complicates the
dynamic equations and they cannot be reduced neither to
Schrödinger nor to generalized Schrödinger equations of the
form (7). Thus Eqs. (11) rewritten as one equation for single
complex-valued function ψ = ϑ + iμ are of the form

i
∂ψ

∂t
= Ĥ1ψ + Ĥ2ψ

∗ + iωm

[
2l2

0 + L

2k̄

]
Aχ

r

∂ψ

∂χ
, (14)

where Ĥ1 and Ĥ2 are highly anisotropic second-order differ-
ential operators. Here Aχ can be interpreted as χ component
of the effective topology-induced vector potential

A(r) = −cos θ0

r
eχ . (15)

Let us now calculate the flux. As we discussed in the previ-
ous section, the vortex structure is characterized by nonzero
vorticity q, here we take q = 1, and has a singularity in the
center, at point r = 0. For a disk-shaped particle, the direc-
tion of magnetization at point r = 0 determines polarization
p = cos θ0(0), and the total flux can be calculated in terms of
q and p. For the ring, there is no magnetization in the central
region; however, this central singularity can not be ignored.
At the inner radius there is a jump of the vector potential.
Thus, the correct definition of A can be written as follows:
A(r)�(r − Rin ), where �(r) is the Heaviside step function.
Then rot A = B = Bez, where the magnitude of the field B is
obtained as

B = cos θ0

r
δ(r − Rin ) + sin θ0

r

(
dθ0

dr

)
�(r − Rin ). (16)

The flux � = ∫
Bds has the form

�

�0
= cos θ0(Rin ) +

∫ θ0(∞)

θ0(Rin )
sin θ0dθ0 = cos θ0(∞). (17)

For the cone vortex state created by the external field
cos θ0(∞) = h and the final expression for the total flux is
� = �0h. This result differs from the one obtained for the
vortex in the disk, Eq. (8). In particular, for the planar vortex in
a ring-shaped particle � = 0 while for the disk case � = �0.
But the general properties of the vortex are the same; in both
cases there is no Aharonov-Bohm effect for a planar vortex.

Considering the case when the inner radius of the ring Rin

exceeds the size of the vortex core, it is possible to separate
radial and azimuthal variables in Eqs. (11). Then the wave
function of magnon with azimuthal number m takes the form
ψ = f (r) cos(mχ − ωt ) + ig(r) sin(mχ − ωt ) and operators
from Eq. (14) are

Ĥ1 = ωm

2

[
1 − h2 − 2l2

0 	 − L

2k̄
	r

]
,

Ĥ2 = ωm

2

[
1 − h2 + L

2k̄
	r

]
, (18)

where 	r = ∂2/∂r2 + (1/r)∂/∂r − 1/r2. Both operators Ĥ1

and Ĥ2 have terms 1 − h2 finite at r → ∞ what makes the
Imψ the master function and Reψ the slave one.

Then the equation (14) in the lowest powers of small
parameters L/Rin, L/Rout and l2

0 /r2 reduces to the Bessel
equation and has a general solution expressed in terms of

FIG. 2. Comparison of dispersions obtained by our analytical
model (lines) and numerical calculations (points) for rings with
different outer radii, (a) 250 nm and (b) 350 nm, in the absence of
external magnetic field. The frequencies of the modes with different
radial index n are plotted in function of the modulus of the azimuthal
mode index |m|.

cylindrical functions of the index

ν =
√

L + 2k̄m2l2
0

L + 2k̄l2
0

+ 2L + 8k̄l2
0

L + 2k̄l2
0

ωmh

ωm(1 − h2)
. (19)

Therefore, the magnon wave function is expressed in terms
of the Bessel functions Jν (kr) and J−ν (kr) of the noninteger,
generally speaking transcendental, indexes.

Spectrum of magnons can be calculated on the base of the
dispersion law (13) by substituting the values of k and k̄. The
wave number k is obtained from the boundary condition on
the ring edges and the eigenvalue of Laplace operator k̄ is
obtained from the condition of equality of the magnetostatic
potential inside and outside the magnetic ring. The frequen-
cies found within this analytical approach are computed by
the iterative procedure of consistently solving of the boundary
conditions. The results are shown by the solid lines in Figs. 2
and 3 and are discussed in the next section. Detailed descrip-
tion of the procedure is presented in Appendix.

Before performing these calculations, some conclusions
can be made from the Eq. (19) for the index of the Bessel func-
tion. In general the index ν is not-integer even for the planar
vortex, and the reason is the competition of magnetostatic and
exchange interactions. The limit case of exchange domination
corresponds to large m, m2 > m2

c = L/(k̄l2
0 ), ν = |m|, as for

local easy-plane model [3], giving the rise for growing of all
the frequencies with increasing of |m|. For small |m| < mc, the
magnetostatic interaction dominated and ν ∼ 1. It is giving an
anomalous dispersion, decreasing of frequencies for growing
|m| [6,33]. For planar vortices, h = 0, ν depends on |m| only
and the doublets with m = ±|m| are not splitted. For the cone
vortex state, the situation changes drastically, ν(m) �= ν(−m),
that leads to the doublet splitting proportional to h. Note that
the same mathematical features, namely presence of Bessel
functions with noninteger index, which depends on the sign
of azimuthal quantum number of electronic states, appear in
the standard Aharonov-Bohm problem [27].
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FIG. 3. Doublet split. The frequency evolution of the first three
azimuthal modes calculated analytically (lines) and numerically
(points) for rings with different outer radii, (a) 250 nm, (b) 350 nm,
and (c) 450 nm, in function of the out-of-plane static magnetic field
strength. Correction shift C is zero-field frequency, C = ω(0)/2π ,
which we adjust to compare the results.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

A. Micromagnetic modeling

To confirm our theoretical predictions, we performed mi-
cromagnetic modeling using an in-house-developed dynamic-
matrix method similar to the one by Grimsditch [34] or
d‘Aquino [35,36]. We start with the calculation of the nonlin-
ear ground-state magnetization m0, that determines the vortex
structure. For this we are solving static Landau-Lifshitz equa-
tion [m0 × Heff] = 0. Then to calculate the frequencies of
the magnon eigenmodes, we are solving linearized dynamic
Landau-Lifshitz equation,

∂m
∂t

= −γμ0{m × Heff[m0] + m0 × δh[δm]}. (20)

which describes the temporal evolution of the magnetization
dynamics for small variations δm around equilibrium distri-
bution m0. The static effective field Heff contains Zeemann,
exchange and dipolar interactions, while its dynamic

counterpart δm contains only the latter two (as the ex-
ternal field is taken as constant in time). To proceed,
Eq. (20) is expanded in terms of linear magnon modes δm =∑

ν m j exp(iω jt ) + c.c. with mode index j, eigenfrequencies
ω j , and spatial mode profiles m j (r). With this, the linearized
equation can be written as an eigenvalue problem

ω j

γμ0Ms
m j = D̂m j (21)

for the resulting dynamic matrix D̂, which is, subsequently,
discretized using a finite-element method. The dipolar fields
generated by the static and dynamic magnetization are cal-
culated using the hybrid finite-element/boundary-element
method by Fredkin and Koehler [37]. The frequencies ω j and
spatial mode profiles m j (r) are then obtained by diagonaliz-
ing the dynamic matrix using an iterative Arnoldi-Lanczos
method [38,39]. Details of the used dynamic-matrix method
are also found in Ref. [40]. We note that such an approach di-
rectly yields the exact oscillation frequencies (up to numerical
errors).

For our calculations, typical material parameters of the
soft-magnetic alloy Ni80Fe20 were used. In particular, we took
a saturation magnetization of Ms = 796 kA/m, an exchange
stiffness constant of Aex = 13 pJ/m and a reduced gyromag-
netic ratio of γ /2π = 28 GHz/T. Three different magnetic
rings with an inner radius of Rin = 50 nm, a thickness of
L = 20 nm and a varying outer radius Rout = 250, 350, and
450 nm were discretized using small tetrahedrons with an av-
erage edge length of 5 nm. The magnetization of the ring was
brought into a cone-state vortex using a static out-of-plane
magnetic field. For each value of the field, the magnetization
was first initialized in a vortex state and then subsequently
relaxed into its equilibrium state by minimizing the total mag-
netic energy. Finally, the lowest 100 eigenmodes for each field
(500 for zero field) were obtained using our finite-element
dynamic-matrix code. The azimuthal indices m of the modes
were obtained automatically from the spatial mode profiles
using a cylindrical discrete Fourier transform.

B. Alternating dispersion at zero field

At first, we compare theory and numerical calculations for
the case of zero applied field, where the rings are magnetized
completely in-plane, and they are in a circular vortex state.
In this case, the Aharonov-Bohm flux is equal to an integer
number of effective flux quanta, which means no Aharonov-
Bohm splitting and, therefore, the modes with opposite
azimuth al index ±m form degenerate doublets. Figure 2
shows the frequencies ω/2π of the modes with different radial
indexes n = 1, 2, . . . in a vortex ring for two different outer
radii as a function of the modulus of the azimuthal indices |m|.

We observe a good agreement between our analytical
model and numerical calculations. In particular, the alternat-
ing character of the dispersion with increasing |m|, which
arises from the balance between dipolar and exchange in-
teractions, is recovered. The analytical description compares
the exchange length l0 and the thickness of the sample L
with all other spatial parameters of the system, including
the spatial variation of the magnetization. In this small m
regime, the dipolar interaction is dominant and favours closure
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of the magnetic flux by bringing dynamic magnetic surface
charges closer together (by increasing |m|). For small az-
imuthal indices the dispersion is negative, i.e., the frequencies
decrease with increasing |m|. This effect for magnons prop-
agating parallel to the equilibrium magnetization is known
as backward-volume behavior in thin magnetic films and
has been measured in vortex-state magnetic nanodots for
the first time by Buess et al. in Ref. [6]. As m increases,
the characteristic size of spatial variation of magnetization
2πRout/m becomes comparable to the sample thickness. For
large |m|, the exchange interaction is dominant and leads
to an increase in frequency with increasing azimuthal index
proportional to m2.

In the intermediate region, a minimum of the dispersion
is present, which shifts to larger |m| as the outer radius of
the ring increases and, thus, dipolar fields become more im-
portant. For even larger radii, it is already well known that
this negative dispersion and its shift towards larger radii can
lead to resonant three-magnon decay of the second- or even
first-order radial modes n = 1, 2, which, in return, allows for
the experimental observation of azimuthal modes with very
large |m| [41].

C. Doublet split

When an external magnetic field H0 is present, the degen-
eracy of doublets with different signs of the azimuthal number
m is removed and we can observe a splitting of doublets.

This splitting is the topological analog of the
Aharonov-Bohm effect for magnons scattered by the core
of magnetic vortex, despite the fact that the ring-shaped
sample does not have the vortex core region. Indeed, in the
cone state of the vortex provided with an external magnetic
field, the total flux � defined by formula (8) is not an
integer of a flux quantum. The magnon wave functions are
proportional to Bessel functions of the index ν, given by
Eq. (19), which is dependent on sign of the azimuthal number
m. Therefore, modes with different sense of gyration have
different frequencies. The existence of the doublet splitting is
confirmed by the simulations.

The frequencies as a functions of external out-of-plane
field ω(H0), showing the doublet splitting, that are obtained
from both theory and simulations are presented in Fig. 3.
To make the comparison more clear we introduce a correc-
tion shift C, representing the frequency at zero field, C =
ω(0)/2π . In Fig. 3 we are using C as a single adjustable
parameter of the theory. The calculated values of ω(0) are
presented in Fig. 2, where can be seen that the difference
between the frequency values obtained from numerical cal-
culations and analytics is not more than 10%. It is quite a
good agreement, taking into account the simplifications we
made. The magnitude of the splitting is well reproduced by
the theory without any adjustable parameters, because the
splitting is robust due to its topological nature.

V. CONCLUSIONS

In this paper, we have focused on studying how the non-
trivial topology of a magnetic dot in the form of a ring affects
the dynamics of magnons. An exact analytical calculation in

such a geometry is not possible, due to the presence of a
three-dimensional nonlocal field. Therefore, when construct-
ing the theory, it was necessary to make an approximation
where the thickness of the sample is the smallest spatial pa-
rameter of the problem.

The developed approximate theory, which contains both
local exchange and nonlocal dipolar interactions can describe
the nontrivial behavior of dependence of the mode frequency
on azimuthal mode number m. The analytical results are
confirmed by numerical calculations, using a finite-element
dynamic-matrix approach.

We have also shown that a nonzero external magnetic field,
applied perpendicular to the ring plane, leads to the splitting
of doublets with the opposite sign of azimuthal mode num-
ber. This phenomenon is a consequence of the interaction of
magnons with the cone vortex state. In this sense, it is a topo-
logical analog of the Aharonov-Bohm effect, when splitting
occurs at a noninteger number of flux quanta. The numerical
data for the splitting are reproduced by theory using a single
adjustable parameter, namely the frequency at zero field. Im-
portantly, the presence of the splitting itself is a topologically
determined consequence of the nontrivial Aharonov-Bohm
effect.

Apart from the fundamental implications of this study, the
described doublet splitting can have various consequences
for different applications based on magnons. For example,
magnetic rings in the vortex state can be used as magnon
filters or nonlinear resonators [42]. We expect the behavior of
such devices to change under the application of a static out-of-
plane field. As another example, the magnons in vortex-state
disks or rings can undergo multimagnon scattering processes,
which adhere to selection rules that depend on the spatial
profiles of the modes involved [41]. These selection rules
lead to scattering within well-defined channels that can be
exploited to achieve magnon-based pattern recognition [16].
The Aharonov-Bohm flux in the cone-vortex state can poten-
tially modify such selection rules, as it influences not only
the mode frequencies but also their spatial profiles. Thus,
magnetic structures in the cone-vortex state also provide an
interesting system to study in the interplay between topologi-
cal properties, nonlinear dynamics, and applications thereof.
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APPENDIX

We consider the case where the thickness of the ring L
is the smallest size of the system. This allows us to make
some approximate analytical calculations for dynamic equa-
tions that are quite complex in the general case.

Taking the ratios L/Rin and L/Rout as small parameters, the
main contribution of the surface charges of the two faces of the
ring we can find directly from the continuity of the component
of (Hm + 4πM) along z direction, which immediately gives
H face

m = −4πMzez. In the expression for the energy density
this corresponds to 2πM2

z and provides an effective easy-
plane anisotropy. The term Hedge

m can be taken into account by
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virtue of boundary condition on Mr (R) on the ring edges, from
which the magnon wave number is determined. Thus Hedge

m do
not contribute to the Landau-Lifshitz equations; for details see
Refs. [31,32].

The volume magnetic charges, Hvol
m = −∇Fin, are the

sources of a nonlocal field, that cannot be computed analyt-
ically in the general case. The corresponding magnetostatic
potential Fin satisfies the Poisson’s equation 	Fin = 4πρm

and is continuous on the ring faces. For the thin ring under
consideration the volume magnetic charge density can be
assumed effectively two dimensional, ρm(r) = Lδ(z)div⊥M,
where

div⊥M = (∇⊥ · M) = ∂ (rMr )

r∂r
+ ∂ (Mχ )

r∂χ
. (A1)

Here M = (Mr, Mχ , Mz ) are the magnetization components in
cylindrical coordinates. Then the potential in the outer region
F (|z| > L/2) = Fout can be written as the general solution of
Laplace equation, 	Fout = 0, that is finite at the origin and
decaying at infinity. Namely, Fout = ∑

m Jm(k̄r)ξ (χ, t )e−k̄|z|,
where ξ (χ, t ) is a harmonic function of the mχ − ωt . For the
thin magnetic dot the potential in the inner region F (|z| <

L/2) = Fin can be assumed homogeneous in z coordinate. It
allows to separate z and in-plane variables in the Poisson’s
equation and integrate it over z throughout the space. Herewith
z derivative is explicitly singled out in the Laplace operator,
	 = ∂2/∂z2 + 	⊥. Since there are no magnetic charges in
the outer region the only nonzero contributions in the integral
from Fout are the contributions from the regions in the close
vicinity of the two faces of the ring,

∂

∂z
Fout

∣∣∣∣
L/2+0

−L/2−0

+ L	⊥Fin = 4πLdiv⊥M. (A2)

Taking into account the equality of potentials on faces, the
first term is −2k̄Fin and in the main order we obtain for the
potential inside the sample

Fin = −2πL

k̄
div⊥M. (A3)

Note that magnetostatic potential is nonzero only for devia-
tions from the vortex ground state. The wave number k is
obtained from the boundary condition on the on the ring
edges. The eigennumber of Laplace operator k̄ should be
found from continuity of the potential F and its tangential

field −∇⊥F ,

Fout||z|= L
2

= Fin||z|= L
2
,

∇⊥Fout||z|= L
2

= ∇⊥Fin||z|= L
2
. (A4)

Separating the variables into radial and angular components
and also using the explicit form of the wave function, we can
solve (approximately) Eq. (A4).

In the main approximation the magnon wave function ψ

has the form

ψ (r, χ ) = [Jν (kr) − σmJ−ν (kr)] sin(mχ − ωt ), (A5)

where σm = Jν (kRin )/J−ν (kRin ) and noninteger index ν of
Bessel functions Jν and J−ν is given by Eq. (19). Here is taken
into account that the r part of the edge conditions on the outer
and inner radii of the ring can be considered fixed without
significant loss of accuracy, g(Rin ) = g(Rout ) = 0, whereas the
angular part is naturally satisfied for the harmonic function
ξ (χ, t ).

The wave number k in the dispersion law can be computed
from the condition on the outer edge, ψ (Rout, χ ) = 0, and the
eigenvalue of Laplace operator k̄ is the solution of Eqs. (A4).
Since we are using the thin-ring approximation to introduce
the dipole interaction potential, the conditions of equities of
potentials and fields (A4) can not be satisfied exactly. There-
fore, we are using for calculations conditions (A4) averaged
over the surface of the ring with the magnon eigenfunctions
ψ , Eq. (A5). The first order of these perturbations when aver-
aged over the surface is equal to zero, since all quantities are
proportional to sin(mχ − ωt ). The next order of perturbations
will give us the equation for calculating k̄,∫ Rout

Rin

rdr
∫ 2π

0
dχ

[
F2

in − F2
out

]|ψ |4 = 0,

∫ Rout

Rin

rdr
∫ 2π

0
dχ [(∇⊥Fin )2 − (∇⊥Fout )

2]|ψ |4 = 0. (A6)

Here we need to substitute the explicit expressions for poten-
tials Fin and Fout, and for the wave function ψ , Eq. (A5).

In its turn the equation for calculating k has the form

Jν (kRout )J−ν (kRin ) = Jν (kRin )J−ν (kRout ). (A7)

Finally, spectrum of magnons is obtained by the iterative
calculation of the dispersion law (13), Eq. (A6) and Eq. (A7).

[1] K. Y. Guslienko, X. F. Han, D. J. Keavney, R. Divan,
and S. D. Bader, Magnetic vortex core dynamics in cylin-
drical ferromagnetic dots, Phys. Rev. Lett. 96, 067205
(2006).

[2] Y. Zhang, C. Wang, H. Huang, J. Lu, R. Liang, J. Liu, R. Peng,
Q. Zhang, Q. Zhang, J. Wang et al., Deterministic reversal of
single magnetic vortex circulation by an electric field, Sci. Bull.
65, 1260 (2020).

[3] B. A. Ivanov, H. J. Schnitzer, F. G. Mertens, and G. M.
Wysin, Magnon modes and magnon-vortex scattering in
two-dimensional easy-plane ferromagnets, Phys. Rev. B 58,
8464(1998).

[4] D. D. Sheka, I. A. Yastremsky, B. A. Ivanov, G. M. Wysin, and
F. G. Mertens, Amplitudes for magnon scattering by vortices in
two-dimensional weakly easy-plane ferromagnets, Phys. Rev. B
69, 054429 (2004).

[5] B. A. Ivanov and C. E. Zaspel, High frequency modes in vortex-
state nanomagnets, Phys. Rev. Lett. 94, 027205 (2005).

[6] M. Buess, T. P. J. Knowles, R. Höllinger, T. Haug, U. Krey, D.
Weiss, D. Pescia, M. R. Scheinfein, and C. H. Back, Excitations
with negative dispersion in a spin vortex, Phys. Rev. B 71,
104415 (2005).

[7] B. Taurel, T. Valet, V. V. Naletov, N. Vukadinovic, G. de
Loubens, and O. Klein, Complete mapping of the spin-wave

174445-8

https://doi.org/10.1103/PhysRevLett.96.067205
https://doi.org/10.1016/j.scib.2020.04.008
https://doi.org/10.1103/PhysRevB.58.8464
https://doi.org/10.1103/PhysRevB.69.054429
https://doi.org/10.1103/PhysRevLett.94.027205
https://doi.org/10.1103/PhysRevB.71.104415


NONTRIVIAL AHARONOV-BOHM EFFECT AND … PHYSICAL REVIEW B 108, 174445 (2023)

spectrum in a vortex-state nanodisk, Phys. Rev. B 93, 184427
(2016).

[8] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono,
Magnetic vortex core observation in circular dots of permalloy,
Science 289, 930 (2000).

[9] B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T.
Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss
et al., Magnetic vortex core reversal by excitation with short
bursts of an alternating field, Nature (London) 444, 461 (2006).

[10] R. Hertel, S. Gliga, M. Fähnle, and C. M. Schneider, Ultrafast
nanomagnetic toggle switching of vortex cores, Phys. Rev. Lett.
98, 117201 (2007).

[11] K. Y. Guslienko, G. R. Aranda, and J. Gonzalez, Spin torque
and critical currents for magnetic vortex nano-oscillator in
nanopillars, J. Phys.: Conf. Ser. 292, 012006 (2011).

[12] Q. Mistral, M. van Kampen, G. Hrkac, J.-V. Kim, T. Devolder,
P. Crozat, C. Chappert, L. Lagae, and T. Schrefl, Current-driven
vortex oscillations in metallic nanocontacts, Phys. Rev. Lett.
100, 257201 (2008).

[13] V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca,
O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Buhrman,
Magnetic vortex oscillator driven by d.c. spin-polarized current,
Nat. Phys. 3, 498 (2007).

[14] A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C.
Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, and A. Fert,
Phase-locking of magnetic vortices mediated by antivortices,
Nat. Nanotechnol. 4, 528 (2009).

[15] V. Sluka, A. Kákay, A. M. Deac, D. E. Bürgler, C. M.
Schneider, and R. Hertel, Spin-torque-induced dynamics at
fine-split frequencies in nano-oscillators with two stacked vor-
tices, Nat. Commun. 6, 6409 (2015).

[16] L. Körber, C. Heins, T. Hula, J.-V. Kim, S. Thlang, H.
Schultheiss, J. Fassbender, and K. Schultheiss, Pattern recog-
nition in reciprocal space with a magnon-scattering reservoir,
Nat. Commun. 14, 3954 (2023).

[17] A. V. Khvalkovskiy, J. Grollier, A. Dussaux, K. A. Zvezdin,
and V. Cros, Vortex oscillations induced by spin-polarized cur-
rent in a magnetic nanopillar: Analytical versus micromagnetic
calculations, Phys. Rev. B 80, 140401(R) (2009).

[18] B. A. Ivanov, G. G. Avanesyan, A. V. Khvalkovskiy,
N. E. Kulagin, C. E. Zaspel, and K. A. Zvezdin, Non-Newtonian
dynamics of the fast motion of a magnetic vortex, JETP Lett. 91,
178 (2010).

[19] M. Buess, Y. Acremann, A. Kashuba, C. H. Back, and D. Pescia,
Pulsed precessional motion on the ‘back of an envelope’,
J. Phys.: Condens. Matter 15, R1093 (2003).

[20] B. A. Ivanov and G. M. Wysin, Magnon modes for a circu-
lar two–dimensional easy–plane ferromagnet in the cone state,
Phys. Rev. B 65, 134434 (2002).

[21] V. K. Dugaev, P. Bruno, B. Canals, and C. Lacroix, Berry phase
of magnons in textured ferromagnets, Phys. Rev. B 72, 024456
(2005).

[22] P. Bruno, Berry phase, topology, and degeneracies in quantum
nanomagnets, Phys. Rev. Lett. 96, 117208 (2006).

[23] M. M. Salazar-Cardona, L. Körber, H. Schultheiss, K. Lenz,
A. Thomas, K. Nielsch, A. Kákay, and J. A. Otálora, Non-
reciprocity of spin waves in magnetic nanotubes with helical
equilibrium magnetization, Appl. Phys. Lett. 118, 262411
(2021).

[24] J. Iwasaki, A. J. Beekman, and N. Nagaosa, Theory of magnon-
skyrmion scattering in chiral magnets, Phys. Rev. B 89, 064412
(2014)

[25] C. Schütte and M. Garst, Magnon-skyrmion scattering in chiral
magnets, Phys. Rev. B 90, 094423 (2014).

[26] B. A. Ivanov and D. D. Sheka, Local magnon modes and the
dynamics of a small-radius two-dimensional magnetic soliton
in an easy-axis ferromagnet, JETP Lett. 82, 436 (2005).

[27] Y. Aharonov and D. Bohm, Significance of electromagnetic
potentials in the quantum theory, Phys. Rev. 115, 485 (1959).

[28] V. A. Uzunova and B. A. Ivanov, Magnon modes for a magnetic
disc in a cone vortex state, Low Temp. Phys. 45, 92 (2019).

[29] M. Chen, A. F. Schäffer, J. Berakdar, and C. Jia, Generation,
electric detection, and orbital-angular momentum tunneling of
twisted magnons, Appl. Phys. Lett. 116, 172403 (2020).

[30] V. A. Uzunova and B. A. Ivanov, Topologically induced split-
ting in cone-vortex state ferromagnetic disks (unpublished).

[31] B. A. Ivanov and C. E. Zaspel, Magnon modes for thin circular
vortex-state magnetic dots, Appl. Phys. Lett. 81, 1261 (2002).

[32] K. Y. Guslienko, S. O. Demokritov, B. Hillebrands, and A. N.
Slavin, Effective dipolar boundary conditions for dynamic mag-
netization in thin magnetic stripes, Phys. Rev. B 66, 132402
(2002).

[33] K. Y. Guslienko, A. N. Slavin, V. Tiberkevich, and S.-K. Kim,
Dynamic origin of azimuthal modes splitting in vortex-state
magnetic dots, Phys. Rev. Lett. 101, 247203 (2008).

[34] M. Grimsditch, L. Giovannini, F. Montoncello, F. Nizzoli, G. K.
Leaf, and H. G. Kaper, Magnetic normal modes in ferromag-
netic nanoparticles: A dynamical matrix approach, Phys. Rev.
B 70, 054409 (2004).

[35] M. d’Aquino, C. Serpico, G. Miano, and C. Forestiere, A novel
formulation for the numerical computation of magnetization
modes in complex micromagnetic systems, J. Comput. Phys.
228, 6130 (2009).

[36] M. d’Aquino, Computation of magnetization normal oscillation
modes in complex micromagnetic systems, IFAC Proc. Vol. 45,
504 (2012).

[37] D. Fredkin and T. Koehler, Hybrid method for computing de-
magnetizing fields, IEEE Trans. Magn. 26, 415 (1980).

[38] C. Lánczos, An Iteration Method for the Solution of the Eigen-
value Problem of Linear Differential and Integral Operators
(United States Government Press Office Los Angeles, CA).

[39] W. E. Arnoldi, The principle of minimized iterations in the
solution of the matrix eigenvalue problem, Q. Appl. Math. 9,
17 (1951).

[40] L. Körber, G. Quasebarth, A. Otto, and A. Kákay, Finite-
element dynamic-matrix approach for spin-wave dispersions in
magnonic waveguides with arbitrary cross section, AIP Adv. 11,
095006 (2021).

[41] K. Schultheiss, R. Verba, F. Wehrmann, K. Wagner, L. Körber,
T. Hula, T. Hache, A. Kákay, A. A. Awad, V. Tiberkevich,
A. N. Slavin, J. Fassbender, and H. Schultheiss, Excitation of
whispering gallery magnons in a magnetic vortex, Phys. Rev.
Lett. 122, 097202 (2019).

[42] Q. Wang, A. Hamadeh, R. Verba, V. Lomakin, M. Mohseni, B.
Hillebrands, A. Chumak et al., A nonlinear magnonic nano-ring
resonator, npj Comput. Mater. 6, 192 (2020).

[43] V. A. Uzunova, Continuous Aharonov–Bohm effect, Condens.
Matter Phys. 22, 33002 (2019).

174445-9

https://doi.org/10.1103/PhysRevB.93.184427
https://doi.org/10.1126/science.289.5481.930
https://doi.org/10.1038/nature05240
https://doi.org/10.1103/PhysRevLett.98.117201
https://doi.org/10.1088/1742-6596/292/1/012006
https://doi.org/10.1103/PhysRevLett.100.257201
https://doi.org/10.1038/nphys619
https://doi.org/10.1038/nnano.2009.143
https://doi.org/10.1038/ncomms7409
https://doi.org/10.1038/s41467-023-39452-y
https://doi.org/10.1103/PhysRevB.80.140401
https://doi.org/10.1134/S0021364010040041
https://doi.org/10.1088/0953-8984/15/24/203
https://doi.org/10.1103/PhysRevB.65.134434
https://doi.org/10.1103/PhysRevB.72.024456
https://doi.org/10.1103/PhysRevLett.96.117208
https://doi.org/10.1063/5.0048692
https://doi.org/10.1103/PhysRevB.89.064412
https://doi.org/10.1103/PhysRevB.90.094423
https://doi.org/10.1134/1.2142872
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1063/1.5082327
https://doi.org/10.1063/5.0005764
https://doi.org/10.1063/1.1499515
https://doi.org/10.1103/PhysRevB.66.132402
https://doi.org/10.1103/PhysRevLett.101.247203
https://doi.org/10.1103/PhysRevB.70.054409
https://doi.org/10.1016/j.jcp.2009.05.026
https://doi.org/10.3182/20120215-3-AT-3016.00088
https://doi.org/10.1109/20.106342
https://doi.org/10.1090/qam/42792
https://doi.org/10.1063/5.0054169
https://doi.org/10.1103/PhysRevLett.122.097202
https://doi.org/10.1038/s41524-020-00465-6
https://doi.org/10.5488/CMP.22.33002

