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Exceptional points in coupled vortex-based spin-torque oscillators
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We theoretically study the linear and nonlinear dynamics of a system of mutually coupled magnetic vortices.
We consider the excitation of vortex dynamics by both an external harmonic magnetic field and a spin-polarized
current. The results based on the Thiele equations for the motion of coupled vortices are compared with the
numerical integrations. Theoretical analysis shows that the appearance of the exceptional point corresponding to
the coincidence of the normal modes of the system allows one to observe such effects as the death of amplitudes
and parametric resonance. We propose a method for observing the effect of amplitude death in coupled magnetic
vortices. In the investigated system, the emergence of exceptional points is controlled by the spin-polarized
current and the strength of the coupling between vortices. Thus, possibilities are uncovered for the development
of tunable spintronic devices.
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I. INTRODUCTION

The study of nanoscale ferromagnets is of scientific inter-
est due to the possibility of their application in spintronics
devices, such as superdense data storage, magnetic logic el-
ements, and spintronic oscillators [1–3]. The most promising
spintronic nano-oscillators are those characterized by the vor-
tex structure of the magnetization of the ferromagnetic layer
[4]. It has been shown [2,5] that for such oscillators the highest
level of output power of oscillations and a narrow width of
the spectral line is achieved even without external magnetic
field. Thus, the control of the magnetization dynamics in vor-
tex nano-oscillators is possible both by applying an external
magnetic field and by passing a spin-polarized current through
the nanostructure [4,6]. Studies of magnetization dynamics
for single vortices taking into account the nonlinearity are
carried out [2,7,8]. Nonlinear effects such as frequency shift at
resonance and the emergence of a limit cycle are investigated
[4,9,10].

Nowadays, the phenomena arising in arrays of spintronic
oscillators are most actively studied in connection with the
tasks of constructing neuromorphic computing and Ising
machines [2,11–13], as well as stable sources of oscillations
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with the effect of power addition [14]. Various studies of
linear and nonlinear regimes under the impact of external
magnetic field and spin-polarized current have been carried
out for a system of coupled vortex nano-oscillators [2]—in
particular, the effects of mutual synchronization and multi-
mode generation [15–19]. Nevertheless, in coupled oscillatory
systems, with the help of a special choice of parameters, it
is possible to achieve a state of the so-called “exceptional
point” corresponding to the coincidence of the normal modes
of the system [20–22]. In this state, it is possible to observe
various effects (e.g., amplitude death and parametric reso-
nance [23,24]). Currently, the possibilities of using dynamical
behavior of different nature systems near the exceptional point
for the tunable sensitive detector construction are being inten-
sively investigated [25,26]. In particular, in spintronics, the
latest research concerns the dynamic of waveguide systems
in the vicinity of these states [20,21,27]. Recent theoretical
and experimental research carried out for ferromagnets with
vortex magnetization configuration showed the occurrence of
the effect of amplitude death [23].

Several types of oscillations are possible in the system of
two mutually coupled spin-torque vortex oscillators (STVOs).
Self-oscillations occur when damping is compensated by
pumping realized at the transmission of spin-polarized cur-
rent through magnetic vortices. Driven oscillations are excited
by an applied external harmonic magnetic field. In addition,
the spintronic oscillator dynamics can be implemented by a
special parametric impact [28]. In this paper, we consider the
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influence of nonlinearity on the dynamics of the exceptional
point (EP) emergence for all mentioned types of oscillations.
In Sec. II we discuss the theoretical model under study and
also indicate the external impacts. In Sec. III we consider the
strength of the coupling between magnetic vortices, as well
as the values of spin-polarized currents and their directions
as parameters of the system. Examining various combinations
of these parameters, we explore the potentials of achiev-
ing the EP state and its influence on the switching to the
self-oscillating mode. We theoretically analyze the effect of
amplitude death, experimentally discovered in [23], and de-
scribe a way of observing this effect. In Sec. IV we investigate
the nonlinear resonance in two coupled magnetic vortices
when an external harmonic magnetic field is applied to them.
In Sec. V we show ways to realize parametric resonance in
a system when exceptional points are reached. We consider
the parametric impact in the form of small oscillations of the
spin-polarized current density around a stationary value in one
of the nanocylinders, as well as the case of similar oscillations
in the coupling between vortices. Section VI concludes the
paper.

II. PHYSICAL STRUCTURE AND MATHEMATICAL
MODEL

A magnetic vortex is one of the possible ground states of
the magnetization in the ferromagnetic nanocylinders [29].
Vortices are characterized by polarity P and chirality χ [4].
The polarity determines the direction of magnetization in
the core, while the chirality shows the type (clockwise or
counterclockwise) of vortex curling in the plane of the base
of the cylinder around the vortex core. We consider the case
when the direction of magnetization in the core coincides with
the axis OZ perpendicular to the plane of the base of the
nanocylinders, and the twisting of the magnetization in this
plane is counterclockwise. For such a vortex, the polarity is
P = 1 and the chirality is χ = −1 [4].

The model of the system under consideration is similar to
the one experimentally implemented in Ref. [23]. It consists
of two mutually coupled STVOs as shown in Fig. 1. Cou-
pling between vortices is organized as follows. The state of
magnetization in the second nanocylinder is converted into an
electric current Ic2→1 . Such a conversion can be performed us-
ing the tunnel magnetoresistance effect (TMR) [23,30]. Then
the electric current Ic2→1 is applied to the strip-line antenna
located above the first STVO. Thus, a magnetic field Hc1 is
created in the first nanocylinder. Similarly, the electric current
Ic1→2 arises due to the dynamics of magnetization in the first
vortex and is applied to the strip-line antenna located above
the second nanocylinder. This leads to the formation of the
magnetic field Hc2 in second vortex. Since the magnetic field
created in this way in one oscillator depends on the dynamics
of another oscillator, then the STVOs become coupled. In this
case, with the help of tunable amplifiers (TAs) that change the
amplitudes of the Ic1→2 and Ic2→1 , it is possible to control
the strength of the coupling between the vortices. Note that the
so-called dipole coupling, which is often realized in practice,
does not give such tunability [15,19]. In addition, we assume
that the small oscillating part can be added to the Ic1→2 to
observe the parametric resonance described further in Sec. V.

FIG. 1. Schematic view of a system of coupled STVOs. Coupling
is organized by powering strip-line antennas with electric currents
Ic1→2 , Ic2→1 generated by the dynamics of magnetization in oscil-
lators. The amplitudes of these currents are controlled by tunable
amplifiers (TA). External harmonic magnetic fields H1, H2 are pro-
duced using an external current source (ES). The vectors of the
spin-polarized current densities J1, J2, j(t ) are perpendicular to the
planes of the bases of the nanocylinders. The direction of polarization
of the fixed layer is denoted by the vector p.

An external magnetic field in both STVOs can be created
by connecting an external current source (ES) to the antennas.
Harmonic electric current with a frequency � generated by
this source creates harmonic magnetic fields H1 and H2.
Changing the � makes it possible to study resonant effects
in the system under consideration.

It is shown [21] that in order to reach the state of an
exceptional point, a special balance of gain and loss in an
oscillatory system is required. At that, it is known [4] that the
spin-polarized current in the so-called current perpendicular
to plane (CPP) configuration provides pumping or additional
damping to the magnetic vortex, depending on the polariza-
tion of the vortex core and the direction of the current density
vector [2,4]. So, that is why we need to use spin-polarized
current. The STVO consists of a fixed layer, a spacer, and
a free layer. In the case under consideration, the free layer
is a ferromagnetic permalloy Ni80Fe20 cylinder with radius
R = 100 nm and thickness L = 20 nm. This material is often
used to study the dynamics of vortices [29,31]. The direction
of polarization of the fixed layer coincides with the OZ axis
p = (0, 0, 1). So, the electrical currents are polarized along
the OZ axis. The density vectors J1, J2 of these currents
are assumed to be constant, but to observe the paramet-
ric resonance described further in Sec. V, we assume that
an oscillating component j(t ) can be injected into the first
nanocylinder in addition to the direct current J1.

The dynamics of magnetization in coupled vortices can be
described using the Thiele equations [32], which are written
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as [4,19,23]

F1,2 + G × dX 1,2

dt
+ D̂α

dX 1,2

dt
+ T ST T1,2 + Fc1,2 + Fz1,2

= 0. (1)

Here X 1,2 = (x1,2, y1,2, 0) are the displacements of the vortex
cores from the centers of the disks; F1,2 are the potential
forces; G = Gez is the gyrovector; D̂ is the damping tensor; α

is the Gilbert damping constant [33]; Fc1,2 are the coupling
forces; T ST T1,2 are torques arising from the spin-polarized
currents. In the thin-cylinder approximation, it is assumed that
the damping tensor has only two nonzero components Dxx =
Dyy = D = −[πMsμ0L ln(R/l )]/γ [10,34]. Here Ms is the
saturation magnetization; μ0 is the magnetic constant; γ is the
gyromagnetic ratio; l is the exchange length of the material
[35]. For a vortex in a nanocylinder, the gyrovector module is
calculated by the expression G = −(2πMsμ0L)/γ [4,6]. It is
shown [8] that for the CPP configuration spin-transfer torques
are expressed as

T ST T1,2 = J1,2B ez × X 1,2, (2)

where ez is the unit vector of the OZ axis; B = π h̄ P/|e|,
where h̄ is the reduced Planck constant, e is the electron
charge, and P is the spin polarization of the current.

The forces involved in equation (1) are calculated as gradi-
ents of the corresponding energies. The potential forces F1,2

arising from the fact that the exchange and magnetostatic
energies are minimal when the vortex cores are in the centers
of the disks are calculated using the expression [7]

F1,2 = −∇1,2 ·
(

W0 + κ

2
|X1,2|2 + β

4
|X1,2|4

)
. (3)

Here operator ∇1,2 denotes differentiation with re-
spect to the corresponding coordinates ∇1,2 · W =
(∂W/∂x1,2, ∂W/∂y1,2, ∂W/∂z1,2), where W is the scalar
function; W0 is the magnetic energy of one vortex when its
core is located in the center of the disk. The exact value of W0

is of no interest to dynamics because when taking the gradient
in Eq. (3), it disappears. The stiffness coefficients κ > 0,
β > 0 can be obtained from the experiment or micromagnetic
simulation [10,36].

In [6] it is shown that the expressions for the Zeeman forces
are written as

Fz1,2 = −∇1,2 · Wz1,2 (|X 1,2|, H1,2) = A ez × H1,2, (4)

where A = −μ0MsRL/2 is the proportionality coefficient. In
(4) the nonlinear term is not taken into account because it is
much smaller than the nonlinearity in Eq. (3) [6].

The coupling in our model is symmetrical. This means that
the coupling force acting on one vortex is proportional to the
displacement relative to the equilibrium position of the second
oscillator. This is a common situation for coupled oscillatory
systems [19,24]. Then we can write

Fc1,2 = −∇1,2 · Wint1,2 (X 1,2) = −μ X 2,1. (5)

Here μ is coupling constant. Note that such an expression was
used in [23] and coincides in form with the expression for the
strength of the dipole coupling [15].

III. EXCEPTIONAL POINTS AND SELF-OSCILLATIONS

The appearance of exceptional points in the system of
coupled oscillators is possible when the normal modes of the
system coincide. Thus, in order to find the conditions for EP
emergence, it is necessary to find these normal modes. For this
from Eq. (1) we express the velocities of the vortex cores(

ẋ1,2

ẏ1,2

)
=

(
aκx1,2 + aβ

(
x2

1,2 + y2
1,2

)
x1,2

aκy1,2 + aβ
(
x2

1,2 + y2
1,2

)
y1,2

)

+
(

−bκy1,2 − bβ
(
x2

1,2 + y2
1,2

)
y1,2

bκx1,2 + bβ
(
x2

1,2 + y2
1,2

)
x1,2

)

+
(

−bBJ1,2x1,2 + aBJ1,2y1,2

−bBJ1,2y1,2 − aBJ1,2x1,2

)

+
(

−AbHx 1,2 + AaHy 1,2

−AbHy 1,2 − AaHx 1,2

)

+
(

μax2,1 + bμy2,1

μay2,1 − bμx2,1

)
, (6)

where

a = Dα

(G2 + (Dα)2)
, b = G

(G2 + (Dα)2)
. (7)

The system of four nonlinear equations (6) is cumbersome, so
for simplicity we introduce complex amplitudes

c1,2 = x1,2 + i y1,2. (8)

Then without an external magnetic field the system of Thiele
equations can be written as

ċ1,2 + i(ω0 + �ω1,2 + Qc|c1,2|2)c1,2

+(�0 + ��1,2 + Q|c1,2|2)c1,2 = (ic + )c2,1. (9)

Here ω0 = −bκ , �ω1,2 = −aBJ1,2, �0 = −aκ , ��1,2 =
bBJ1,2, c = bμ,  = aμ, Q = −aβ, Qc = −bβ. The search
for a solution of system (9) in the linear case β = 0 in the form
c1,2 = exp(−iλ t ) gives expressions for the normal modes of
the system

λ± = 1
2 (ω1 + ω2) − i

2 (�1 + �2)

± i
√

(iω + �)2 + ( + ic)2, (10)

where ω = 1
2 (�ω1 − �ω2), � = 1

2 (��1 − ��2), ω1,2 =
ω0 + �ω1,2, and �1,2 = �0 + ��1,2.

In general, the problem under consideration is three-
parameter, since we assume the possibility of changing the
values of spin-polarized currents in each nanocylinder and the
coupling constant between them. We start our analysis by fix-
ing the coupling constant μ and finding the relations between
the values of spin-polarized currents in nanocylinders at which
the system reaches the exceptional point state λ− = λ+. Thus
we get

J2 = J1 ± 2μ

B
. (11)

Note that the obtained expressions (10) allow us to find not
only exceptional points, but also areas of stability of the
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(a) (b) (c)

FIG. 2. Phase diagrams with indications of the areas of instability (IIa, IIb, III) and stability (I) of the linear regime. In region III, the
imaginary parts of both normal modes are positive. In IIa, the inequality Im[λ+] > 0 is fulfilled. In IIb, the inequality Im[λ−] > 0 is fulfilled.
(a) Phase diagram in the parameter plane (J1, J2 ). Solid black lines are plotted using (12), while dash-dotted black lines are plotted using
(13). The red dashed line shows EPs. The purple dashed line on which J1 = J2 is the axis of symmetry of the diagram. Gray dotted lines
show critical spin-polarized current densities Jcrit, J ′

crit . Line S1S2 illustrates a way to observe the effect of amplitude death near EP. The line
S3S4 shows how one can switch between self-oscillation and steady linear mode without approaching EP. Line C1C2 plotted with help of
(15) at δ = 0.005. Points C3, C4 are the intersection of the lower boundary of the area IIa with the line C1C2. The coupling constant is fixed
μ = −3.6 × 10−11 N/m. (b) The vicinity of point P1. Line C1C2 crosses the lower boundary of area IIb at point C3. (c) Phase diagram in the
parameter surface (J1, μ). Solid black lines are plotted using (16) and dash-dotted line corresponds to (17). The red dashed line shows EPs.
Line C1C2 illustrates a way to observe the effect of amplitude death. The parameter δ is fixed δ = 0.005.

linear oscillation regime. To do this, it is necessary to resolve
inequalities Im[λ±] < 0 since the solutions of (9) in the linear
case have the form c1,2 = exp(−iλ t ). It is shown that in
such a system the instability of the linear regime leads to the
Andronov-Hopf (supercritical) bifurcation, which means the
birth of a limit cycle [2]. So, the obtained equations describing
the boundaries of the sign change of the imaginary parts of the
normal modes λ± are written as

Jb
2 = 1

bB

(
aκ + b2μ2

aκ − Bb J1

)
, (12)

Jb
2± = 1

(a2 + b2)B
(B(a2 − b2)J1 + 2abκ

± 2a
√

(a2 + b2)μ2 − (aκ − bBJ1)2). (13)

The areas of stability and instability, boundaries, and ex-
ceptional points of the system are shown in Fig. 2(a). As one
can see, the figure is symmetrical with respect to a line J1 =
J2, which fully corresponds to the symmetry of the system
since the indices 1 and 2 can be swapped.

To observe the effect of amplitude death near the EP, we fix
the current density in the second nanocylinder J�

2 and increase
the current density in the first oscillator starting from certain
selected value J◦

1 and ending with a value J•
1 . The choice of

these values should be made in such a way that the point
S1 = (J◦

1 , J�
2 ) belongs to region IIa and the point S2 = (J•

1 , J�
2 )

belongs to region III. In addition, it is necessary that the line
S1S2 intersect region I. Then, when one moves from S1 to S2,
the system passes through area I, in which self-oscillations are
impossible. This means that at the values of the current in the
first nanocylinder that correspond to the location of the system
in the region IIa or III, self-oscillations will be observed, and
when the system enters region I, they will vanish. This is how
the effect of amplitude death manifests itself.

All restrictions applied to a fixed current are mathemat-
ically equivalent to an inequality Jcrit < J�

2 < J ′
crit , where

critical current densities are determined from expressions

Jcrit = aκ

bB
, J ′

crit = 1

bB
(aκ − bμ). (14)

The first of these equations can be obtained by taking the
limit lim

J1→−∞
J2(J1) using the relation (12). The second value

J ′
crit is found when searching for the intersection point of

the lines (12) and (13). Besides, expressions for the stability
boundaries of the linear regime allow us to find the width of
the area of the vanishing of self-oscillations �J1 at a given
value J�

2 as the difference between the current densities J1

determined from Eqs. (12) and (13). So this width at different
coupling coefficients is plotted in Fig. 3. As one can see, this
area can be quite big or as small as necessary, depending
on the fixed value of the current density J�

2 . However, the
limitations of the used Thiele model should be taken into
account. First of all, the model does not take into account
the influence of temperature. Besides as shown in [4,8], the
Thiele equation precisely describe the dynamics of a magnetic
vortex with small deviations of the core from the equilibrium
position. So, the observation of an arbitrarily small width �J1

can be limited by the influence of temperature not taken into
account in Eq. (1). Moreover, with sufficiently large currents
the vortex core can switch [2,4]. This means changing the
sign of the parameter P . The result will be a sign change
in the pumping performed due to spin-polarized current. In
this case, the excitation of self-oscillations in vortices will be
possible only with a corresponding change in the direction
of the density vector of the spin-polarized current. However,
switching processes are beyond the scope of this paper.
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FIG. 3. Width �J1 of amplitude death region at various coupling
constants μ.

There is another way to observe the phenomenon of am-
plitude death near the EP. It is interesting because it becomes
possible to lead the system through two regions of the vanish-
ing of self-oscillations. However, one can assume that there
is an area of emergence of self-oscillations enclosed between
these two regions. To implement this way, one can pull the
system from the upper region IIa to the lower IIa while inter-
secting I and IIb in Fig. 2(a). A line C1C2 parallel to the P1P2

satisfies these requirements. As one can see in Fig. 2(b), when
the system moves along this line, area I will indeed be crossed.
Then we can assume that the density J2 varies depending on
J1 in accordance with the expression

J2 = −J1 + 2aκ

bB
(1 − δ). (15)

Here δ is the parameter. It is convenient to set the J2(J1) in this
form because at the exceptional point Im[λ+] = Im[λ−] =
−δ�0 = aκδ. When the delta is equal to zero, the line speci-
fied by the formula (15) passes through the points P1 and P2 in
Fig. 2(a). In this case, only regions IIa and IIb are intersected
by this line. When the delta is equal to unity, the dependence
(15) sets a line passing through (0, 0) and parallel to P1P2

in Fig. 2(a). Such a line can only cross areas IIb and I. It is
possible to intersect all the necessary areas: IIa, I, and IIb with
δ = 0.005. Figure 2(a) is a phase diagram in the parameter
plane (J1, J2) drawn at a fixed coupling coefficient. To study
the influence of the choice of different μ on the observation of
the effect of amplitude death by the method proposed in this
paper, such a representation is inconvenient. Therefore, we
redraw the phase diagram by selecting the parameters (J1, μ).
To find the stability boundaries in this case, it is necessary
to solve the equations Im[λ±] = 0 with respect to μ. So the
obtained relations have the form

μb
1± = ±1

b

√
[aκ (2δ − 1) + bBJ1](bBJ1 − aκ ), (16)

μb
2± = ±1

b
{[(δ − 1)2a2 + b2δ2]κ2

+ 2Bab(δ − 1)κJ1 + (bBJ1)2} 1
2 . (17)

The equations for determining EPs are found from expres-
sions (11) and (15),

μ = ±1

b
[bB J1 + (1 − δ)aκ]. (18)

The phase diagram of the system in the parameter surface
(J1, μ) is shown in Fig. 2(c). Due to the symmetry of the
coupling, we draw only half-plane μ < 0. There is no need
to depict a half-plane μ > 0 because it is a mirror image of
Fig. 2(c). Note that although the EPs defined by expression
(18) are close enough to the boundary plotted using Eq. (16),
they do not coincide.

To observe the effect of amplitude death, one can move
along line C1C2 drawn at a constant μ�. When the system
parameters belong to regions IIa and IIb, self-oscillations are
possible, while in region I, self-oscillations vanish. Since here
we are interested in observing two areas of amplitude death,
we find the critical coupling constant μ�

crit at which line C1C2

becomes tangent to the boundary (17). So the obtained equa-
tion has the simple form

μ�
crit = ± κδ. (19)

For any |μ| < |μ�
crit|, there is only one region of amplitude

death. Note that when the coupling coefficient is sufficiently
close to zero, all the equations obtained break down to cor-
rectly describe the behavior of the system, which is normal
since the oscillators cease to be coupled.

The length of the segment C3C4 in Fig. 2(c) corresponds to
the width �J ′

1 of the area of emergence of self-oscillations.
This value can be found by substituting the coupling con-
stant μ = μ� into expression (17) and solving the resulting
quadratic equation with respect to the current density in the
first nanocylinder and finding the difference between the
roots. So one can write

�J ′
1 = 2

B

√
μ�2 − δ2κ2. (20)

It is clear that when the coupling constant approaches its
critical value, the width becomes sufficiently close to zero. It
should also be taken into account that a sufficiently high value
μ� required to achieve a larger �J ′

1 can lead to the destruction
of the vortex structure in nanocylinders since in this case the
amplitudes of the coupling fields Hc1,2 become big enough.

Note that it is possible to achieve the vanishing of self-
oscillations in the system under study without considering the
dynamics near exceptional points—for example, if one moves
the system in the phase diagram shown in Fig. 2(a) along line
S3S4. As one can see, there are no self-oscillations at points S3

and S4 located in area I, while they occur in area III. However,
to implement such an opportunity, a nonlinear dependence
J2(J1) is required, while to observe the effect of amplitude
death near EPs, a linear dependence like (15) or fixation of
one of the currents is sufficient.

Based on the methods described in this section for ob-
serving the effect of amplitude death, it is possible to design
sensitive tunable sensors. The sensitivity of normal modes
near exceptional points makes it possible to observe a change
in the oscillation mode of the system when passing through
the vicinity of these points in the space of parameters. Since
the vortex oscillation mode can be converted into an electrical
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signal using TMR [23], the output signal of the sensor will
be extremely sensitive to changes in the input spin-polarized
currents J1, J2. The width of the area of changing of the
output signal as shown in this section is controlled by the
coupling coefficient, which can be adjusted using amplifiers
(see Sec. II). However, self-oscillations are not the only types
of oscillations that can be excited in a system of coupled
magnetic vortices. The application of an external harmonic
magnetic field excites driven oscillations. This allows us to
investigate the resonant properties of the system.

IV. EXCEPTIONAL POINTS IN NONLINEAR RESONANCE

Let us proceed to the study of the resonant properties of
the system. In this section we describe the resonance that
occurs in the system when an external harmonic magnetic
field is applied. Such frequency response is a selective re-
action of a system of coupled oscillators to this external
impact. Determining the influence of the EP emergence on
this selectivity may begin with finding resonant frequencies.
Then the terms corresponding to this external magnetic field
should be included in Eq. (9). We assume a harmonic in-
fluence; therefore they have the form H1,2 exp(−i�t ). Here
the complex amplitudes of the external field are calculated
by the formulas H1,2 = A(aHy 1,2 − bHx 1,2) + iA(aHx 1,2 +
bHy 1,2). To derive the resonant frequencies and amplitudes
in the linear regime of the oscillations of the vortex cores, we
write down Eq. (9) for c1,2 under the condition β = 0 taking
into account external fields

ċ1,2 + i(ω0 + �ω1,2)c1,2 + (�0 + ��1,2)c1,2

= (ic + )c2,1 + H1,2 exp(−i�t ) (21)

and search for a solution in the form c1,2 = r1,2 exp(−i�t ).
The solution of the system of linear equations obtained in this
case is given by

r1,2 = (ic + )H2,1 + [i(ω1,2 − �) + �1,2]H1,2

[i(ω1 − �) + �1][i(ω2 − �) + �2] + (ic + )2
.

(22)
In the linear case, there are resonant frequencies �res among
the extremum points of the amplitude modules |r1,2|. How-
ever, solving the equations ∂|r1,2|/∂� = 0 is a complicated
task due to the fact that they have the fifth order relative to the
desired extremum points. The general analytical solution of
such equations is unknown. Therefore, we use simplifications.
In the magnetic vortices under consideration, the values of
the gyrovector module |G| and the module of the component
of the damping tensor |D| are approximately of the same
order, although the formula for the coefficient a (7) includes
a small Gilbert damping constant α in the numerator. Hence
the value of the ratio |a|/|b| = Dα/G ≈ 0.01 allows us to
disregard the terms �ω1,2 and . Note that since the effect of
the spin-polarized current on the frequency is proportional to
its density �ω1,2 = −aB J1,2, neglecting the �ω1,2 is possible
only in a certain range J1,2. In addition, we consider cases
when an external harmonic magnetic field is applied only to
the one of the nanocylinders.

Taking into account all the simplifications made, the solu-
tions of the equation ∂|r1,2|/∂� = 0 are written as

�01 = �02 = ω0, (23)

�
H1
1± = ω0 ±

√
|c|

√
2

c + 2�1�2 + 2�2
2 − �2

2, (24)

�
H2
1± = �

H1
2± = ω0 ±

√
2

c − 1
2

(
�2

1 + �2
2

)
, (25)

�
H2
2± = ω0 ±

√
|c|

√
2

c + 2�1�2 + 2�2
1 − �2

1 . (26)

Here �
Hm
k± denotes the frequency at which the amplitude |rk| is

maximal under the condition Hm �= 0. So, if we set Hm �= 0 in
one nanocylinder and the field in another is equal to zero, then
if �

Hm
k are real, then they correspond to resonant frequencies,

while expression (23) determines the local minimum on the
frequency response. If �

Hm
k± turn out to be complex, then

the frequency ω0 is the only resonant frequency. Thus, the
condition for the existence of a single resonant peak on the
frequency response is the complexity of the frequencies �

Hm
k±.

The heights of these resonant peaks can be found by substi-
tuting �

Hm
k± or ω0 into the expressions (22) and calculating

the amplitude modules |r1,2|. The formulas obtained in this
case are cumbersome, but the calculation with their help is
not complicated.

The resonant frequencies in general do not coincide with
the eigenfrequencies with appropriate simplifications Re[λ±].
If we assume that the coupling is greater than damping
or pumping in each of the nanocylinders �1,2 � c then
Re[λ±] = �

Hm
k± holds. This is a common situation for oscilla-

tors when damping leads to the fact that there is no resonance
at eigenfrequencies [37]. Thus, the EP state does not cor-
respond to the degeneration of two peaks into one at the
frequency response, as is observed in waveguide systems [21].

To study the nonlinear resonance, we performed numerical
integration of the Thiele equations (6). The results are shown
in Figs. 4(a) and 4(b). For calculations, we chose a case
when the current in the second nanocylinder is fixed. With
the selected density J2 = 5 MA/cm2, the switch to the self-
oscillating mode is possible at both J1 = −4.3 MA/cm2 and
J1 = 3.0 MA/cm2. Therefore, the left and right boundaries of
Figs. 4(a) and 4(b) correspond to the loss of stability in the
linear regime. So as the system approaches the boundary of
the switch to the self-oscillating mode, the resonant amplitude
increases. This happens because the Andronov-Hopf bifurca-
tion in the system under study means exact compensation of
damping by means of spin-polarized current. And it is known
that a resonator with a small damping has a large amplitude in
resonance.

With small deviations of the vortex cores from the
equilibrium positions, the numerically calculated amplitudes
coincide with those determined analytically. This indicates
that the used simplifications are acceptable for describing the
amplitudes. As one can see, the nonlinearity leads to a signif-
icant decrease in the resonant amplitude in comparison with
the linear case. However, in the calculated case, the nonlinear-
ity did not affect the condition of the existence of two peaks on
the frequency response. Figure 4 also shows that the resonance
in the region where there is only one peak on the frequency
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FIG. 4. Dependencies of resonant amplitudes (a), frequencies
(b), and frequency shift χ (c) of coupled vortices on the J1. The
external harmonic magnetic field applied to the first vortex is di-
rected along the OY axis and has an amplitude Hy 1 = 500 A/m. The
current density in the second nanocylinder is fixed J2 = 5 MA/cm2.
(a), (b) Coupling constant μ = −3.6 × 10−11 N/m. Solid and dashed
lines denote analytically obtained dependencies for the linear regime.
Squares and diamonds denote the results obtained by numerical inte-
gration of the Thiele equations. The dashed lines and diamonds refer
to the low-frequency peak on the frequency response while the solid
lines and squares refer to the high-frequency peak. If there is one
peak then a circle is drawn for numerical results. The color according
to the legend shows which of the nanocylinders the results belong
to. Dashed black lines refer to eigenfrequencies. (c) Solid lines are
plotted using χ = �

H1
1± − Re[λ±]. Dashed vertical lines are drawn

at the J1 corresponding to the state of the exceptional point. The
color according to the legend shows which coefficient of coupling
the result refers to.

response does not occur at the frequency ω0 as follows from
the formula (23). This is due to the fact that we have neglected

the term �ω1,2. In the case when the influence of currents is
taken into account (24), (25) and the deviations of the vortex
cores from their equilibrium positions are small, as for ex-
ample with current densities J1 = −1 to 1 MA/cm2 in the first
nanocylinder, the coincidence of numerical calculations and
analytical results is observed. The nonlinearity determines the
shift of the resonant frequency to the high-frequency region,
as it is for one nanocylinder and is determined by the β sign
[2,10].

In order to show the sensitivity of the system of coupled
magnetic vortices in the case under study, it is possible to
depict the shift of resonant frequencies relative to the eigenfre-
quencies χ = �

H1
1± − Re[λ±]. As one can see from Fig. 4(c),

the dependence χ (J1) changes dramatically when passing
through an exceptional point. Thus, if the system is in an
exceptional point state J1 = JEP

1 , even a small perturbation
of the spin-polarized current density J1 = JEP

1 + �pJ1 will
significantly change the frequency shift χ . Here JEP

1 can be
found with help of (11), and perturbation �pJ1 may have a
different nature. It may appear due to thermal effects or it
may be a signal that needs to be registered. The control of
the coupling coefficient in this case allows one to adjust JEP

1 .

V. PARAMETRIC RESONANCE

In addition to the resonance described in the previous sec-
tion, when an external harmonic magnetic field is applied, a
parametric resonance can also be obtained in coupled vor-
tices. In this section, we refer to parametric resonance as the
instability of the linear regime arising in the case of small
oscillations of one of the parameters of the system. From
the point of view of practical applications, it makes sense to
consider only small harmonic perturbations in the densities of
spin-polarized currents or in the coupling between oscillators,
since it is impossible to give such a perturbation to other
system parameters, e.g., material parameters and sizes of the
nanocylinders.

Let us consider that the density of the spin-polarized
current oscillates with a small amplitude around a given
stationary value J1(t ) = J01 + j cos(�t ). The value J01, the
constant current density in the second nanocylinder J2, and
the coupling constant μ are such that the system is in the state
of an exceptional point. So we can consider the equation J01 =
J2 + 2μ/B is fulfilled. Besides we assume that β = 0 and
neglect �ω1,2 and  for the reasons explained in Sec. IV.
Then Eq. (9) take the form

ċ1 + iω0c1 + [�0 + ��01 + η(t )]c1 = icc2, (27)

ċ2 + iω0c2 + (�0 + ��2)c2 = icc1. (28)

Here ��01 = −bBJ01, η(t ) = −bB j cos(�t ) = η0 cos(�t ).
Analyzing Eqs. (27), (28) we obtain an expression for the
boundary frequency of parametric resonance (see Appendix A
for the details)

�2
b = −4δ2�2

0 + 1
2η0

√
16�2

0δ
2 + 162

c − η2
0. (29)

Parametric resonance is observed for all frequencies � <

�b. To verify this statement, numerical integrations of the
Thiele equations were carried out. The results are shown in
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FIG. 5. The boundary frequencies of parametric resonance
with oscillations of the spin-polarized current density J1 = J01 +
η0 cos(�t ) depending on δ. Solid lines are plotted using (29). Squares
mark the results of numerical integration of Thiele equations. The
color according to the legend indicates which parameter η0 the results
relate to. Coupling constant μ = −7.15 × 10−11 N/m.

Fig. 5. As one can see the analytically determined stability
boundary only approximately corresponds to the calculated
one. Note that we did not expect exact convergence because
simplifications were applied. However, the obtained condition
� < �b can be explained. If the additional pumping due to
the oscillating part has frequency � < �b, then the inertia of
the system does not allow magnetic vortices to react to this
small parametric influence. If the frequency is not too high,
then the equations of motion of the cores of magnetic vortices
cannot be averaged over the period T = 2π/� and additional
pumping leads to instability.

There is another way to implement parametric resonance
in a system of coupled magnetic vortices. We assume that it is
possible to add a small oscillating part to the coupling current
Ic2→1 . This leads to the fact that the coupling ceases to be sym-
metrical and the first nanocylinder is additionally affected by
the oscillating magnetic field. Mathematically, this means os-
cillating the coupling coefficient μ(t ) = μ0[1 + ξ0 cos(�t )]
in the equations for the motion of the core of the first vortex.
So the equations for complex amplitudes for the linear regime
can be written as

ċ1 + iω0c1 + �1c1 = ic[1 + ξ0 cos(�t )]c2, (30)

ċ2 + iω0c2 + �2c2 = icc1. (31)

By investigating the solutions of this equations, one can ob-
tain an expression for the boundary frequency of parametric
resonance (see Appendix B for the details)

�2
b = 2ξ0

2
c − 4�2

0δ
2. (32)

If the oscillation frequency of the coupling constant turns
out to be less than the boundary (32) then the linear regime
is unstable. We performed numerical integrations of Thiele
equations to estimate the accuracy of determining the bound-
ary frequency in this case. The results are shown in Fig. 6. As
expected according to analytical calculations, the threshold

FIG. 6. The boundary frequencies of parametric resonance with
oscillations of coupling coefficient μ = μ0 + ξ0 cos(�t ) in first
nanocylinder depending on δ. Solid lines are plotted using (32).
Squares mark the results of numerical integration of Thiele equa-
tions. The color according to the legend indicates which parameter
ξ0 the results relate to. Coupling constant μ0 = −7.15 × 10−11 N/m.

frequency decreases with increasing δ. However, numerical
calculations have shown that the dependence has a sharper
character than the theory developed in this work predicts.

With the parameters used in this section, the threshold
oscillation frequencies fall into the high-frequency band. To
increase �b, it is necessary to reduce the damping of the
material from which the nanocylinders are made, increase the
coupling constant, or increase the oscillation amplitude ξ0 and
η0. However, it is not possible to increase the frequency by
several orders of magnitude. The Gilbert damping in permal-
loy does not vary widely [33]. Increasing μ by several orders
of magnitude can lead to remagnetization of nanocylinders as
the coupling fields Hc1,2 become large. Setting a high level of
oscillations leads to the fact that the expressions obtained here
cease to be correct. This limitation arises from the fact that we
assumed that the amplitudes of parametric impacts are low
ξ0 � 1, η0 � ��01.

Note that in this section, when analyzing the dynamics of
vortices, it was assumed that the densities of spin-polarized
currents and the coupling coefficient were selected in such a
way that the system is in the state of an exceptional point.
Thus, the presence of the boundary frequency of instability
of the linear regime indicates the sensitivity of the system to
the frequency of the parametric impact. It turns out that if one
use TMR to register the mode of vortex oscillations, then one
can get a sensor that registers the frequency transition of the
input signal through �b. This frequency can be controlled by
selecting a parameter δ.

VI. CONCLUSION

In summary, we have presented the results of the in-
vestigation of the dynamics of coupled magnetic vortices
near exceptional points under the influence of spin-polarized
current in the CPP configuration and applied external har-
monic magnetic field. We described the amplitude death and
found critical currents to observe this effect at a fixed current
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density in one of the STVO. Moreover, a method of observing
this effect near exceptional points is proposed in this paper. A
critical coupling constant is defined for this case. We demon-
strate that the EPs in the general case do not correspond to
the transition of the system to a state with a single resonant
frequency. The conditions of such a transition are defined.
In addition, the role of nonlinearities in resonance is taken
into account. It consists in that the stiffness coefficient β

determines the nonlinear frequency shift to the high-frequency
region as well as the decrease of the resonant amplitude. We
show that pumping oscillations in one of the STVOs lead
to parametric instability. The boundary oscillation frequency
of the spin-polarized current is determined for this case.
Moreover, we have shown the possibility of implementing
parametric resonance with coupling oscillations and found
expressions for determining the stability boundaries.

The presented results reveal the potential of EPs in coupled
magnetic systems with vortex ground states. The parametric
nature of the effects occurring near EPs will make it possi-
ble to design sensitive detectors controlled by spin-polarized
current using the investigated system.
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APPENDIX A: DERIVATION OF THE BOUNDARY
FREQUENCY OF PARAMETRIC RESONANCE FOR

SMALL OSCILLATIONS OF SPIN-POLARIZED CURRENT

We begin our analysis of the dynamics of magnetic vortices
by searching for solutions of Eqs. (27), (28) in the form
c1,2 = r1,2(t ) exp(−iλEPt ), where λEP = ω0 − i(�1 + �2)/2.
This can be done because we consider the dynamics near the
EP. Thus the system of equations (27), (28) is equivalent to

ṙ1 + [� + η(t )]r1 = icr2, (A1)

ṙ2 − �r2 = icr1. (A2)

We reduce the obtained system of two differential equations of
the first order to one equation of the second order

r̈2 + η(t )ṙ2 − �η(t )r2 = 0. (A3)

We introduce a new variable U (t ) as r2(t ) =
U (t ) exp[−η0 sin(t )/(2�)]. Then one can write

Ü + [�0 + 2�(t )]U = 0, (A4)

where �(t ) = �s sin(�t ) + �c cos(�t ) + �2c cos(2�t );
�s = η0�/4; �c = −�η0/2; �2c = −η2

0/16; �0 = −η2
0/8.

The obtained equation is a Hill type equation [38]. In the

case under consideration, we are interested in determining
the areas of instability under parametric impact. Therefore,
we do not search for the exact type of solution. It is enough
to substitute U (t ) = exp(st ) sin(�t/2 − σ ) into Eq. (A4)
and determine the increase parameter s as is done for the
generalized Hill equation [38]. So equating the coefficients at
sin(�t/2) and cos(�t/2) to zero we get

s
�

2
= �c sin (2σ ) − �s cos (2σ ), (A5)

�0 =
(

�

2

)2

− s2 + �s sin (2σ ) + �c cos (2σ ). (A6)

Here we neglect the overtones with frequencies 3�/2, 5�/2
because the equations can be averaged over their periods. We
solve the system (A5), (A6) and get an expression for the
parameter s

s = ±
√

−�0 − �2

4
±

√
�2�0 + �2

s + �2
c . (A7)

Strictly speaking, four solutions have been obtained, but we
are interested in only one for which the inequality s > 0 can
be fulfilled. Therefore, both plus signs should be selected in
Eq. (A7).

We are looking for such spin-polarized current densities
J10, J2, j and coupling constant μ at which the linear oscilla-
tion regime will be unstable. To achieve this, it is necessary
to comply with the condition s + Re[−iλEP] > 0. This con-
dition is obtained by taking into account the substitutions
made c2 → r2 → U . Note that the exponent in the expression
r2(t ) = U (t ) exp[−η0 sin(t )/(2�)] is not taken into consider-
ation here because it cannot lead to instability. However, the
frequency of small oscillations of the spin-polarized current �

is in the denominator of the fraction −η0 sin(t )/(2�), which
means that the applied formalism gives correct results not at
too low frequencies.

For convenience, we assume that the densities J01 and J2

are connected by the relation

J01 = 1

bB
[aκ (1 − δ) + bμ], (A8)

J2 = 1

bB
[aκ (1 − δ) − bμ]. (A9)

Thus, δ determines the values of currents in nanocylinders
with a fixed coupling. Then from s + Re[−iλEP] > 0 we get
the stability boundary

�2
b = −4δ2�2

0 + 1
2η

√
16�2

0δ
2 + 162

c − η2. (A10)

Parametric resonance is observed for all frequencies � < �b.

APPENDIX B: DERIVATION OF THE BOUNDARY
FREQUENCY OF PARAMETRIC RESONANCE
FOR SMALL OSCILLATIONS IN COUPLING

Let us consider the case when the system is in the state of
an EP, which means that the current densities can be calculated
using formulas (A8), (A9) with substitutions μ→ μ0, J01 →
J1. The equations for complex amplitudes for the linear regime
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and using the possibility of neglecting the values �ω1,2 and 

can be written as

ċ1 + iω0c1 + �1c1 = ic[1 + ξ0 cos (�t )]c2, (B1)

ċ2 + iω0c2 + �2c2 = icc1. (B2)

We apply transformations similar to those used in finding the
stability boundaries of the linear regime in the case when
we assumed small oscillations of the spin-polarized current
density in the first nanocylinder. Then when searching for a
solution in the form c1,2 = r1,2(t ) exp(−iλEPt ) we get

ṙ1 + �r1 = ic[1 + ξ0 cos (�t )]r2, (B3)

ṙ2 − �r2 = icr1. (B4)

We reduce this system to the Hill parametric oscillator equa-
tion

r̈2 + 2
cξ0 cos (�t )r2 = 0. (B5)

Substituting r2 = exp(st ) sin(�t/2 − σ ) in this equation we
get a system(

ξ0
2
c

2
+ s2 − �2

4

)
sin (σ ) − s� cos (σ ) = 0, (B6)(

−ξ0
2
c

2
+ s2 − �2

4

)
cos (σ ) + s� sin (σ ) = 0. (B7)

Here the overtones with frequency 3�/2 are not taken into
account. The solution we are interested in has the form

s = 1

2

√
2ξ02

c − �2. (B8)

Due to the replacement made c2 → r2, the instability condi-
tion of the linear regime remains s + Re[−iλEP] > 0. So one
can write

�2
b = 2ξ0

2
c − 4�2

0δ
2. (B9)

Parametric resonance is observed for all frequencies � < �b.
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