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Skyrmion dynamics in moiré magnets
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We consider a twisted magnetic bilayer subject to the perpendicular electric field. The interplay of in-
duced Dzyaloshinskii-Moriya interaction and spatially varying moiré exchange potential results in complex
noncollinear magnetic phases in these structures. We numerically demonstrate the coexistence of intralayer
skyrmions and bound interlayer skyrmion pairs and show that they are characterized by distinct dynamics under
the action of external in-plane electric field. Specifically, we demonstrate the railing behavior of skyrmions along
the domain walls which could find applications in spintronic devices based on van der Waals magnets.
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I. INTRODUCTION

van der Waals (vdW) materials offer unprecedented oppor-
tunities to form heterostructures of different monolayers with
unique magnetic, transport, and optical properties and enable
a powerful toolbox for bottom-up material engineering [1,2].

vdW magnets are a class of the vdW materials [3,4].
The experimental realization of two-dimensional (2D) vdW
magnets CrI3 [5] and CrGeTe3 [6] was reported, and since
then, the family of 2D magnets has rapidly grown with dozens
of materials appearing each year [7]. Due to atomic-scale
thickness, vdW magnets are highly susceptible to external
perturbations such as external fields [8–10] and strain [11,12].
Specifically, a perpendicular electric field may induce the
Dzyaloshinskii-Moriya interaction (DMI) which leads to the
emergence of noncollinear magnetic structures [13] such as
helices, individual skyrmions, and skyrmion crystals [14].
Moreover, for some vdW materials, their magnetic properties
depend crucially on stacking configuration: Controlling the
stacking angle and relative displacement of individual mag-
netic monolayers allows for the precise tuning of the interlayer
exchange coupling (IEC) as well as dipole-dipole interaction
which results in the emergence of various magnetic phases
in twisted vdW magnets [15–21]. The existence of coupled
skyrmionic states was predicted in twisted bilayer graphene
for certain values of model parameters [22].

In twisted magnetic bilayers, the site-dependent interlayer
exchange potential, or moiré potential, which is periodic
with a period equal to the moiré supercell, defines the spa-
tial scale of the emergent noncollinear phases. At the same
time, the chiral interactions such as DMI correspond to an
alternative spatial scale which can be tuned by external per-
pendicular electric fields. It is thus tempting to explore the
emergent magnetic phases in twisted magnetic bilayers where
both interlayer exchange moiré potential and intralayer DMI
are present. Such a competition would lead to a rich phase
diagram of such structures, if the strength and characteristic
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length scale of two types of interactions are compatible [23].
A similar competition of intra- and interlayer interactions
takes place in synthetic antiferromagnets (SAFs) [24]. In these
structures, two magnetic layers are exchange-coupled through
a thin metal nonmagnetic spacer due to the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction of conduction electrons.
The magnitude and sign of the IEC depend on the thickness of
the nonmagnetic interlayer, which can be chosen in such a way
as to ensure antiferromagnetic (AFM) exchange. If in one of
the magnetic layers there are domains with different directions
of magnetization, then in the other layer, the same domain
structure will be repeated but with the opposite direction of
magnetization.

The IEC varies depending on the thickness of the spacer
layer. If it is made in the form of a wedge, then the IEC will
oscillate with thickness, which will lead to the formation of
a domain structure, even if one of the magnetic films is in a
single-domain state. Such a smooth change in thickness makes
it possible to observe short- and long-range IEC oscillations
in metal magnetic trilayers [25]. If, in the presence of DMI,
localized magnetic structures of the skyrmion type are formed
in one magnetic layer, then another skyrmion should form in
the second layer, which will be in a bound state with the first
one [26]. The skyrmions will be coupled ferromagnetically
(FM) or AFM, and this bonding should also vary with the
thickness of the nonmagnetic interlayer.

An important aspect of the physics of vdW magnets is
related to their stability with respect to thermal fluctuations
and random external perturbations. For SAFs, it has been
experimentally shown that skyrmions in them can be stable
up to room temperature [26]. Calculations within the frame-
work of the transition state theory show that skyrmion pairs
caused by interlayer interaction are more stable than individ-
ual skyrmions in layers. Moreover, it turns out that the most
likely mechanism for the decay of a skyrmion pair occurs
through the disappearance of the skyrmion in one of the layers
[27]. The same behavior should be observed in twisted vdW
magnetic layers.

In this paper, we present the features of the magnetic
structure and dynamics of skyrmions in a moiré magnet
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FIG. 1. Twisted ferromagnetic bilayer. Two-dimensional (2D)
color map demonstrates interlayer interaction potential (moiré po-
tential). Moiré period is proportional to a/θ , a is the lattice period,
and θ is the angle between twisted layers. Twist angle on the picture
is much bigger than the real moiré angle in simulations and used for
better visual perception.

associated with the competition of in-plane and out-of-plane
interactions. We consider the structure shown in Fig. 1. A
twisted magnetic bilayer is subject to an external electric
field inducing intralayer DMI in each layer. The interlayer
moiré potential arises due to the spatially dependent IEC.
The system models the recently reported experiments with
twisted monolayers of CrI3 [28,29]. We start from numerical
modeling of the magnetic phases supported by this structure.
We show that spatially dependent interlayer exchange poten-
tial results in complex noncollinear magnetic structures and
the formation of FM and AFM domains. Moreover, we show
that the system supports several types of intralayer skyrmions
as well as bound interlayer skyrmion pairs predicted previ-
ously [17]. We then study the skyrmion dynamics using the
Landau-Lifshitz-Gilbert (LLG) equation and demonstrate the
railing of skyrmions along the domain walls under the action
of an external in-plane electric field. We give a qualitative
explanation of the observed effect using the Thiele equation.

This paper is organized as follows: in Sec. II, we define the
model and present the results of numerical simulations of the
magnetic phases supported by the structure. In Sec. III, we
present the results on the dynamics of the skyrmions under
the external in-plane electric field. Section IV summarizes the
obtained results.

II. NONCOLLINEAR MAGNETIC PHASES IN TWISTED
MAGNETIC BILAYER

A. Model

In our model, we consider two layers of a FM material
with a hexagonal crystal lattice, rotated relative to each other
by a small angle, which determines the shape of the moiré
potential. In the FM case considered below, the interaction
potential is rather difficult to describe analytically, but it can
be specified numerically. The moiré period is proportional
to a/θ , and a is the lattice period, which is typically about
several angstroms. The twist angle we use in our calculations

FIG. 2. (a) Spatial dependence of interlayer interaction �(r) and
normalized z projection of total bilayer magnetic moments in moiré
magnets for (b) ζ = 10, (c) ζ = 1.22, and (d) ζ = 0.78. Scale bar:
100 lattice constants.

equals ∼0.7◦. The profile of moiré potential �(r) adopted
from Ref. [30] is shown in Fig. 2(a) along with a scale bar.

We consider a continuous generalized Heisenberg-type
model with the energy:

E = d ·
∫

d2r

( ∑
i=1,2

{
A[∇ni(r)]2 − Kn2

zi(r) + Dni(r)

·(ẑ × ∇ ) × ni(r)
} − J1,2�(r)n1(r) · n2(r)

)
(1)

Here, n1 and n2 are the unit vectors along the magnetization in
layers 1 and 2, respectively, d is the magnetic layer thickness,
and A is the exchange stiffness constant. Pairs of nearest
atoms in different layers also contribute to the Heisenberg
exchange, but the interaction strength depends on the posi-
tion of atoms and equals J1,2�(r), where J1,2 is a parameter
controlling the interaction strength.

DMI is turned on in each layer, but there is no antisym-
metric exchange interaction between layers. Dzyaloshinskii
vectors are parallel to the line connecting interacting spins;
the length of the vector determines the DMI density D.
Anisotropy axis ez is the same for all points of the system,
the anisotropy density K > 0 corresponds to the easy-axis
anisotropy. The spin texture generated in a moiré supercell
can give rise to an electric polarization associated with such a
noncollinear magnetic state due to spin-orbit coupling, result-
ing in a local ferroelectric order following moiré [31].

When performing numerical calculations, the micromag-
netic model is discretized on a square lattice. A cell of
429 × 50 lattice points with free boundary conditions was
used. Its size coincided with the cell size in Ref. [30], where
the moiré potential is taken from.
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Micromagnetic parameters are converted into the discrete
model parameters:

J = 2A, D = aD, K = a2K, (2)

where a is the in-plane lattice constant.
In our modeling, we use dimensionless variables, and all

parameters in Eq. (2) are measured in J units. The easy-axis
anisotropy K/J = 0.01 is used below, which gives an estimate
of ∼22 lattice constants for the thickness of a domain wall in
a bulk material without DMI: L = π

√
A/K.

DMI can be varied by changing the external electric field
[13], so the system will be considered at different values
of the DMI constant. In a bulk material with DMI, the FM
state becomes unstable with respect to the transition to the
spiral state at Ds = 4

√
AK/π . We will use the dimensionless

parameter ζ = D/Ds.

B. Results

The determination of the magnetic configuration corre-
sponding to the local energy minimum begins from a state
with a random distribution of magnetic moment directions.
The nonlinear conjugate gradient method is used for energy
minimization with Hessian matrix evaluated in Cartesian co-
ordinates [32]. The minimization stops when the gradient
becomes <10−5. The system has many metastable states with
close energies, and Fig. 2 reproduces the typical examples of
locally stable magnetic configurations for different values of
the ζ parameter. Figure 2(a) shows the spatial configuration
of the moiré potential, which defines the regions with FM and
AFM IEC. The interlayer exchange potential was computed
in Ref. [30]. Here, �(r) = 1 (red) and �(r) = −1 (blue) cor-
respond to the FM and AFM exchanges, respectively, and the
white lines are the FM grain boundaries, where the exchange
is close to zero.

For ζ = 10, the ground state in each layer is a spiral struc-
ture of the fingerprint type. In the FM IEC region, the same
structure is observed for the total magnetization of both layers,
as can be seen from Fig. 2(b). In the AFM region, the mag-
netizations of the helical domains are largely compensated,
except for the ends of the domains, where point out-of-plane
magnetic states appear for total magnetization. These states,
however, are not layer-localized structures, and their mobility
is very limited since their movement can only arise as a result
of rearrangement of the helical structure in each layer. We
provide a more detailed illustration of the formation of these
pointlike states arising due to the superposition of the domain
walls in the two layers in Appendix A.

As effective DMI strength ζ decreases, the size of the do-
mains increases. For example, at ζ = 1.22 shown in Fig. 2(c),
the domain size is comparable with the moiré grain size.
Moreover, the skyrmion states are identified in FM and AFM
regions and at the boundaries between FM and AFM.

For ζ = 0.78, the observed skyrmions have size much
smaller than the regions of a constant IEC sign. Figure 2(d)
indicates that most of these skyrmions are located at the
boundary of the moiré grains, although they also can be found
inside the grains. The magnetization profiles for other values
of ζ are shown in Appendix A, illustrating gradual increase of
the domain size with the decrease of ζ .

FIG. 3. Various types of skyrmions in a twisted bilayer. Light
gray corresponds to the direction of the magnetization vector out-of-
plane, and z component is positive; black is out-of-plane and negative
z component. Other colors demonstrate the orientation of the magne-
tization vector in-plane. Pair of antiferromagnetic (AFM) skyrmions
located in the AFM interlayer exchange coupling (IEC) grain (1), in
the ferromagnetic (FM) IEC grain (2) and single skyrmions (3,3*)
fixed at the border of zero moiré potential in bottom and top layers,
respectively. Boundaries with zero moiré potential are shown as
white lines.

To demonstrate different types of skyrmion structures,
Fig. 3 shows the configurations in the upper and lower layers
of moiré magnet in this case. Pairs of coupled skyrmions can
reside both in the AFM and FM IEC regions. In the first case
(1), the total topological charge of the pair is equal to zero and,
in the second (2), to two. Single skyrmions in one layer with a
unit topological charge and domain walls in another layer are
usually located in the region of zero moiré potential (3).

To explain the localization of skyrmions and domain walls
near the boundaries of moiré grains, the energies of these
structures near the boundaries �(r) = 0 were calculated. The
results are shown in Fig. 4. We note that we only need to
account for the interlayer exchange terms, which have explicit
spatial dependence, while exchange and DMI terms are spa-
tially invariant and, as thus, do not contribute to the domain
wall localization. As a first step, we find the optimal position
for the domain wall near zero moiré potential by varying its
position along the line perpendicular to the grain boundary
and calculating the energy of the system. It can be seen that,
at a certain position, the energy is minimal, so this position is
energetically favorable for the domain wall. It is also notice-
able that this minimum is slightly offset from the point where
�(r) = 0, which can be seen in Fig. 4.

The second step is to minimize the energy as function
of the position of the skyrmion in the other layer. The wall
in one layer retains its position, while the skyrmion in the
other layer is translated in the direction perpendicular to the
moiré grain boundary. There is also a certain energy mini-
mum here which does not coincide with the minimum for
the domain wall but is located closer to zero of the moiré
potential.

III. SKYRMION DYNAMICS IN TWISTED
MAGNETIC BILAYER

In this section, we will show that the three described types
of skyrmions are characterized by the distinctive dynamics

174440-3



SHABAN, LOBANOV, UZDIN, AND IORSH PHYSICAL REVIEW B 108, 174440 (2023)

FIG. 4. Dependence of domain wall and skyrmion exchange en-
ergy (in a.u.) on the displacement with respect to the interlayer
exchange potential (IEC) boundary. (a) Blue and red shaded areas
correspond to the antiferromagnetic (AFM) and ferromagnetic (FM)
IEC. (b) Zoomed central part presenting the shift of skyrmion and
domain wall potential with respect to the grain boundary.

under applied spin-polarized current. We perform numerical
simulation of the dynamics of the skyrmions using the
LLG equation. At the same time, to provide a qualitative
explanation of the specific features of the skyrmion dynamics,
we employ collective coordinates and a generalization of
the Thiele equation introduced in Ref. [33]. The Thiele
equation was adapted to skyrmionic textures stabilized with
DMI in Ref. [34], followed by Ref. [35] demonstrating weak
interaction of the textures with impurities. In Refs. [36,37],
the equation of motion for AFM skyrmions was derived
demonstrating absence of the Hall angle. The AFM skyrmion
pairs living in the moiré magnet consist of two ordinary
skyrmions located in distinct layers, which is closer to
SAFs than to single-layer materials with AFM exchange
between nearest-neighbor atoms studied in Ref. [36]. The
Thiele equation for SAFs is provided, e.g., in Ref. [38].
The interlayer exchange in the moiré magnets is variable
in contrast to SAFs; the respective Thiele equations with
necessary corrections are introduced below.

One of the features of moiré magnets is a domain wall
localized in a single layer, which is pinned to the curve of zero
interlayer exchange. As we have shown above, the skyrmions
may attach to the domain wall; hence, the domain wall can be
used as a guide for the skyrmions. It was proven in Ref. [39]

that the repulsive force between skyrmion and domain wall
in the same layer can be used to enhance stability of the
skyrmion and increase its speed. In moiré magnets, the do-
main wall and skyrmion are located in separate layers, and the
skyrmion is attracted to the domain wall, resulting in an even
greater stabilization effect, namely, for small DMI, single-
layer skyrmions exist only in the vicinity of the domain walls.

Below, we provide a brief derivation of the Thiele equa-
tion for two-layer magnetic systems with varying interlayer
exchange. In the Supplemental Material [40], we provide the
results of the numerical simulation confirming that the collec-
tive coordinate approximation is valid.

A. Thiele equation

The dynamics of the bilayer system is described by the
LLG equation:

dn
dt

= −γ n ×
(

Heff − ηMs
dn
dt

)
+ τ, (3)

where γ is gyromagnetic ratio, η is damping parameter, and
Heff is the effective magnetic field:

Heff = − 1

Ms

∂E

∂n
. (4)

All the vector fields depend on the layer l = 1, 2 and the spin
coordinates r = (x, y). The term τ is the Slonczewski spin-
transfer torque (STT) [41]:

τ = −n × (n × jt ) − βn × jt , (5)

where β is the antidamping constant associated with STT, and

jt = (j · ∇ )n =
∑

k=x,y

jk
∂n
∂k

. (6)

We are interested in the dynamics of the topological soli-
tons, assuming their shape is invariant. Denote Rl = (Rl

x, Rl
y)

the position of the soliton in layer l . If the shape is fixed, then
Rl ’s are the only varying degrees of freedom. The constrained
dynamics is derived by projecting the velocity ṅ = dn/dt to
the generators of the translations of the solitons:

Gl
k = ∂nl

∂Rl
k

= −∂nl

∂k
, k = x, y. (7)

The projected LLG equation onto the space spanned by the
vectors Gl

k is called the Thiele equation. For the multilayer
system, the Thiele equation becomes

−4πQl JṘl = − γ

Ms

∂E

∂Rl
+ γ ηMsA

lṘl + 4πQlJjl + β lAl jl ,

(8)

where Ql is the topological charge of layer l:

Ql = 1

4π

∫
nl ·

(
∂nl

∂x
× ∂nl

∂y

)
dr, (9)

and we introduce matrices:

J =
(

0 1
−1 0

)
,

Al
jk =

∫
∂nl

∂ j
· ∂nl

∂k
dr, j, k = x, y. (10)

174440-4



SKYRMION DYNAMICS IN MOIRÉ MAGNETS PHYSICAL REVIEW B 108, 174440 (2023)

The Thiele equation can be solved with respect to Ṙ. Con-
sider an FM pair of solitons; assuming their perfect alignment,
then the system becomes essentially single layer with a thicker
layer. Suppose the background phase is isotropic, e.g., FM;
then ∂E/∂R = 0. The Thiele equation in this case is well
known:

Ṙ = −(4πQJ + γ ηMsA)−1(4πQJ + βA)j. (11)

The soliton velocity in this case is connected with current j by
a linear transform, and the transform commutes with rotations.
Therefore, the angle between soliton velocity Ṙ and current j
is constant and is called the Hall angle.

If the soliton is invariant under reflections with respect
to both coordinate axes (e.g., skyrmion, skyrmionium), then
matrix A is proportional to identity operator Î , Â = AÎ . The
Hall angle is given by

θ = π + arctan
4πQ

βA
− arctan

4πQ

γ ηMsA
. (12)

The Hall angle vanishes if (C1) Q = 0 or (C2) β = γ ηMs.
The value of velocity is proportional to the current:

|Ṙ| =
(

16π2Q2 + β2A2

16π2Q2 + γ 2η2M2
s A2

)1/2

j. (13)

In the case (C2), the velocity does not depend on the topo-
logical charge or dissipation constant. In the case Q = 0, the
soliton velocity is given by

|Ṙ| = β

γ ηMs
j (14)

and is determined by the ratio of the damping constants.
Thus, the Thiele equation predicts that the skyrmions local-

ized in the AFM domains will have no Hall angle due to the
vanishing of the topological charge, and the sign of the Hall
effect for the skyrmions in FM domains depends on the ratio
of the Gilbert damping η and STT β. We will further confirm
these predictions in the numerical simulations.

For the case when the skyrmion in one of the layers is in
the vicinity of the domain wall in the other layer, one can also
employ the Thiele equation. We assume rotational symmetry
of the skyrmion (in practice, the symmetry can be slightly
violated due to interaction with the domain wall). For clarity,
we consider a flat grain boundary and straight domain wall,
that is, the IEC potential � and the domain wall texture n2

depend only on the x coordinate. Energy of the system up to
an additive constant is given by

V = −J1,2

∫
�(x)n1

(
x − R1

x, y − R1
y

)
n2

(
x − R2

x

)
dx dy.

(15)

The magnetization Ms, the current j, and damping pa-
rameters η, β are assumed equal in both layers. The Thiele
equation for the system is

γ ηMsAṘ1
x + 4πQṘ1

y = γ

Ms

∂V

∂R1
x

− βA jx − 4πQ jy,

−4πQṘ1
x + γ ηMsAṘ1

y = 4πQ jx − βA jy,

γ ηMsbṘ2
x = γ

Ms

∂V

∂R2
x

− βb jx, (16)

FIG. 5. The blue line defines the energy gradient as a function
of skyrmion shift from the equilibrium position, which is actually
the returning force. Energy profile, equilibrium position, and in-
teraction potential are given in Fig. 4. To simplify the analysis of
skyrmion motion, we consider the special case of the dissipation
constants when the Hall angle vanishes: β = γ ηMs. In this case,
the perpendicular force is produced only by jx and by the potential
gradient. Dashed horizontal lines demonstrate the absolute value of
perpendicular current, given in the units of energy gradient. Arrows
define the direction of skyrmion motion: we see that, for the current
larger than critical value 0.71κ , the skyrmion leaves the boundary of
the grain. For smaller currents, we obtain two equilibrium positions,
one of which is sustainable, and the other one is unsustainable.

The first equation in Eq. (16) defines two competing forces,
acting on a skyrmion on the grain boundary: the first one from
potential gradient and the second one from the current. The
railing behavior of the skyrmion is observed for the values of
perpendicular current less than some critical value, when the
returning force can no longer compensate the action of the
electric current, and the skyrmion leaves the grain boundary:

jcr
x = γ 2ηA

(4πQ)2 + (βA)2
· ∂V

∂R1
x

= κ · ∂V

∂R1
x

. (17)

Here, we introduce the parameter κ:

κ = γ 2ηA

(4πQ)2 + (βA)2
. (18)

Figure 5 demonstrates the equilibrium points and critical cur-
rent for the case of pinning to the rail.

We now check the predictions of the Thiele equation by
numerical simulations via the LLG equation. The results of
the simulations for the FM and AFM skyrmion pairs are
shown in Fig. 6. The simulation was performed by evolving
the initial state (labeled i.s. in the figures) for a fixed amount of
time and taking the snapshot of the final state. The simulation
was performed for three different values of the antidamping
constant β. First, it is seen that, for the AFM skyrmion pair
with zero topological charge, the Hall angle vanishes, and the
skyrmion propagates along the current according to Eq. (12).
Moreover, the module of velocity grows linearly with β as
follows from Eq. (13). For the case of the FM skyrmion, the
Hall angle is generally finite and depends on the ratio between
antidamping constant β and Gilbert damping constant η.

For the single-layer skyrmion localized in the vicinity of
the domain wall in the other layer, the LLG simulations
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FIG. 6. Dynamics of skyrmion pairs for different values of β.
The temporal evolution of skyrmion positions over an identical pe-
riod of time is demonstrated. i.s. = initial state, I: final state for
β = 0.6, II: β = 0.45, III: β = 0.15. The value of Gilbert damping
constant η here equals 0.2. The color scheme description is the same
as in Fig. 3.

are shown in Fig. 7. In the figure, two skyrmions can be
identified localized in two different layers. It can be seen
that, for the bottom-layer skyrmion, the angle between the
current direction and the domain wall is relatively small, and
thus, the skryrmion propagates along the domain wall. At the
same time, for the top-layer skyrmion, the current is almost
perpendicular to the domain wall, and thus, the skyrmion is
dragged away from the domain wall and then disappears. This
behavior qualitatively corresponds to the predictions of the
Thiele in Eq. (17). As can be seen, the Thiele equation gives
qualitatively correct predictions for the dynamics of the three
types of skyrmions. This is due to the fact that, as we show
in Appendix C, the skyrmion profile indeed remains almost
unaffected in the course of motion under applied current. At
the same time, there are quantitative discrepancies between
the numerical modeling and analytical simulations which are
caused by the smooth variations of the moiré potential along
the domain wall, the presence of skyrmionic internal degrees
of freedom which may cause its inertia, and the offset of the
initial skyrmion position with respect to the bottom of the
potential produced by the domain wall, which may affect the

FIG. 7. Motion of skyrmion along the domain wall. i.s. = initial
state. The color scheme description is the same as in Fig. 3. Single
skyrmions tend to be located in the area of zero interlayer interaction
potential (borders of moiré grains). If current direction makes not too
large an angle with the direction of the grain boundary, the skyrmion
remains attached to this boundary in the process of movement and
moves along a kind of rail.

numerically extracted value of the threshold current. We also
note that there exists a considerably larger threshold current
needed to depin the domain wall from the moiré potential
boundary. However, for the currents close to the threshold cur-
rent for the skyrmion depinning, the domain walls remained
pinned to the grain boundary.

IV. CONCLUSIONS

We have shown that the interplay of the spatially depen-
dent interlayer moiré exchange potential and DMI in vdW
magnets leads to a rich variety of noncollinear magnetic struc-
tures. Specifically, we have identified three distinct families
of skyrmions characterized by different topological properties
and kinetics under applied in-plane current. Of particular in-
terest are the skyrmions pinned to the grain boundary of the
moiré potential. Our numerical calculations predict the railing
of these skyrmions along the grain boundary under applied
current, and we have provided an analytical description of this
effect using the Thiele equation. This behavior is quite general
for the two-layer structures with spatially varying interlayer
exchange potential, and we thus anticipate that it may be ob-
served in different vdW moiré magnetic bilayers. We note that
the moiré potential-induced domain walls are pinned and are
not moving with the external current. Therefore, engineering
the twist in vdW structures can allow us to shape the flow of
skyrmions in a predefined way along the domain wall bound-
aries. Railing of skyrmions in vdW magnets opens routes
toward applications of these heterostructures in spintronics.
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APPENDIX A: NONCOLLINEAR MAGNETIC PHASES IN
TWISTED MAGNETIC BILAYER

Figure. 8 provides the evolution of noncollinear phases,
stabilized in moiré magnets for different values of ζ . The
dimensionless parameter ζ = D/Ds.

More detailed consideration of magnetization for ζ = 10
is given in Fig. 9. The structure obtained in that case is the
so-called fingerprint pattern. The small points that manifest
in the regions characterized by AFM exchange coupling are
subjected to a detailed investigation. These defects emerge at
the intersections of domains (fingers), as visually exemplified
in the figure.

APPENDIX B: STABILITY OF SKYRMION

To discover the applicability of the Thiele equation in our
analysis, we examine the deformation of the skyrmion profile,
as depicted in Fig. 10.

Notably, the skyrmion profile remains predominantly un-
changed and retains its symmetry while moving along the
domain wall. However, once the skyrmion starts leaving the
boundary and begins to collapse, deformation becomes evi-
dent. Based on these observations, we infer that the Thiele
equation holds validity during the stable motion of the
skyrmion.
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FIG. 8. z projection of total bilayer magnetic moments in moiré magnets for different values of ζ . Scale bar: 100 lattice constants.

APPENDIX C: CRITICAL CURRENT CONDITION

Consider the system of equations obtained for the case of
the skyrmion and domain wall interaction:

γ ηMsAṘ1
x + 4πQṘ1

y = γ

Ms

∂V

∂R1
x

− βA jx − 4πQ jy,

− 4πQṘ1
x + γ ηMsAṘ1

y = 4πQ jx − βA jy,

γ ηMsbṘ2
x = γ

Ms

∂V

∂R2
x

− βb jx. (C1)

FIG. 9. Normalized z projection of magnetic moments for ζ =
10. Magnetization in the first layer, second layer, total magnetization
(the sum of the magnetizations of the first and second layers at a
given point), and Néel vector (the difference between the magneti-
zations of the first and second layers) are given. Scale bar: 10 lattice
constants.

Consider the first two equations that relate to the first
layer. We focus on the special case in which the Hall angle
vanishes and the skyrmion tends to move along the current
(this regime is provided by the special relation between the
parameters β = γ ηMs). Following this, the equations get the
form:

βAṘ1
x + 4πQṘ1

y = γ

Ms

∂V

∂R1
x

− βA jx − 4πQ jy,

−4πQṘ1
x + βAṘ1

y = 4πQ jx − βA jy, (C2)

FIG. 10. Modification of the skyrmion profile as it moves along
the domain wall. Insets show two cross-sections of the z component
of the skyrmion magnetization along the lines of corresponding
color.
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Ṙ1
y = 4πQ

βA

(
jx + Ṙ1

x

) − jy,

Ṙ1
x = γ

MsβA
· ∂V

∂R1
x

− jx − 4πQ

βA
Ṙ1

y − 4πQ

βA
jy, (C3)

Ṙ1
x = γ βA

Ms[(4πQ)2 + (βA)2]
· ∂V

∂R1
x

− jx. (C4)

The condition for the critical current (the value of current
when the returning force does not compensate the current any
more and the skyrmion leaves the boundary) is Ṙ1

x = 0. Here,
we introduce the parameter κ:

jcr
x = γ 2ηA

(4πQ)2 + (βA)2
· ∂V

∂R1
x

= κ · ∂V

∂R1
x

. (C5)
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