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The symmetry of long-range magnetic order in manganese telluride (α-MnTe) is unknown. Likewise, its
standing as an altermagnet. To improve the situation, we present symmetry informed Bragg diffraction patterns
based on a primary magnetic order parameter for antiferromagnetic alignment between Mn dipoles. It does
not break translation symmetry in a centrosymmetric structure, in keeping with an accepted definition of
altermagnetism. Four templates serve x-ray diffraction that benefits from signal enhancement using a Mn
atomic resonance, and neutron scattering. Even rank multipoles in magnetic neutron diffraction reflect a core
requirement of altermagnetism, since they are zero for strong spin-orbit coupling presented by the jeff = 1/2
model of an iridate, say. Symmetry in the templates demands that nuclear and magnetic contributions pos-
sess the same phase, which enables standard neutron polarization analysis on Bragg spots with overlapping
contributions. Identical symmetry demands a 90◦ phase shift between magnetic (time-odd) and chargelike
(time-even, Templeton-Templeton) contributions to x-ray scattering amplitudes, and circular polarization in the
primary beam of x-rays is rotated. We illustrate stark differences between our four templates and those of a
(PT)-symmetric antiferromagnet (CuMnAs).
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I. INTRODUCTION

Early studies of hexagonal manganese telluride (α-MnTe)
included the use of fixed solutions ZnTe/MnTe and thin films
[1,2]. It is a correlated magnetic semiconductor with a mod-
erate indirect band-gap Eg ≈ (1.27–1.46) eV, and long-range
magnetic order below a Néel temperature 307–310 K [3,4].
A piezomagnetic (PM) effect, neutron Bragg diffraction, in-
elastic scattering (spin waves), and magnetic susceptibility
measurements have been reported for powder samples and
single crystals [3–6]. By and large, however, recent measure-
ments are performed on MnTe films [7–9]. The promotion of
MnTe as a candidate for bulk altermagnetism has led to a surge
of publications about its magnetic and transport properties
[10–15]. An accepted definition of an altermagnet includes the
absence of spin-orbit coupling and presence of nonrelativistic
collinear antiferromagnetism. Moreover, in this definition the
two sublattices are related by symmetries other than transla-
tion or inversion symmetry [12]. In the absence of a consensus
for the magnetic symmetry of MnTe crystals discussions of its
altermagnetism inevitably remain speculative. For example,
a PM effect is interpreted with a crystal class mmm [6], and
discussions of x-ray magnetic circular dichroism (XMCD)
measurements and simulations proceed with m′m′m [9]. In
light of the current uncertainty for the magnetic symmetry
of MnTe, we study templates of magnetic symmetry that fit
the aforementioned definition of altermagnetism. Our four
templates are derived from the parent NiAs-type structure of
MnTe, and their essential properties are gathered in Table I.
Corresponding x-ray and magnetic neutron scattering ampli-
tudes ( Secs. V and VI) to be tested in future experiments are
inferred from crystal and magnetic symmetry.

The x-ray scattering we discuss uses a Mn atomic reso-
nance to enhance the intensity of Bragg spots. This attribute
enables x-ray diffraction to measure more weak magnetic
reflections that are forbidden by the symmetry of the parent
lattice. A nonmagnetic analog is Bragg spots in an x-ray
diffraction pattern created by departures from spherical sym-
metry of electronic charge: spherical scatterers on a regular
lattice define a parent space group. Polarization analysis is a
second attribute of resonant x-ray diffraction that we explore.
All our templates rotate the helicity (handedness) of primary
x-rays. A difference in intensities of a Bragg spot measured
with left- and right-handed primary x-rays defines a chiral
signature as a quantitative measure of the rotation of the
plane of polarization. Our x-ray diffraction amplitudes and
chiral signatures allow for rotation of the illuminated crystal
through an azimuthal angle about the reflection vector. Chiral
signatures hallmark magnetic symmetry in the templates. In
the Appendix, we show they are forbidden in a parity-time
(PT)-symmetric antiferromagnet, for example, that supports
a linear magnetoelectric (ME) effect and forbids a PM ef-
fect. By way of an example of the information provided by
an azimuthal angle scan we anticipate the result for chiral
signatures of orthorhombic templates (1) and (2). Signatures
are twofold symmetric functions of the azimuthal angle when
the reflection vector is parallel to the crystal c axis and thus
the dyad axis of rotation symmetry. Magnetic neutron diffrac-
tion is the most widely used technique by which to establish
the magnetic structure of a material. By and large, diffrac-
tion patterns are interpreted in terms of magnetic dipoles
alone. Beyond are multipoles of higher rank that exist for
particular electronic configurations. Even rank multipoles in
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TABLE I. Templates for magnetic symmetry in hexagonal MnTe
below a Néel temperature 307–310 K. The primary order parameter
is an antiferromagnetic alignment between dipoles of the two Mn
ions. Magnetic groups and Mn site symmetries are centrosymmetric
(� denotes spatial inversion). The magnetic order does not break
translation symmetry, and anti-inversion (1′) is absent in magnetic
crystal classes. All crystal classes permit a piezomagnetic effect
and forbid a linear magnetoelectric effect. Ferromagnetism as a
secondary order parameter is allowed (Y) in (1), (3), and (4) and for-
bidden (N) in (2). The hexagonal lattice vector (1, 0, 0)h is parallel
to a dyad axis of rotation symmetry, and (1, 0, 0)h and (1, −1, 0)h

subtend an angle of 30◦. The volume of a unit cell vo = (1/2) a2c
√

3
for (3) and (4), and the volume of an orthorhombic unit cell = 2vo.

Template (1) (2) (3) (4)

Magnetic group Cm′c′m Cmcm P21/m C2′/m′

Crystal class m′m′m mmm 2/m 2′/m′

Mn site symmetry 2′/m′ 2/m � 2′/m′

Ferromagnetism Y N Y Y
Dipole direction (1, −1, 0)h (1, 0, 0)h General (1, −1, 0)h

in the (ab) plane

magnetic neutron diffraction exist when the atomic config-
uration includes two or more J states. Such is the case for
zero, or very weak, spin-orbit coupling in the definition of
altermagnetism. To be specific, the neutron quadrupole mea-
sures the entanglement of a spin anapole and orbital degrees
of freedom, and the hexadecapole has a similar equivalence.

II. STRUCTURE PROPERTIES

The parent structure of bulk MnTe is P63/mmc (No. 194,
crystal class 6/mmm [16]), with Mn2+ (3d5) and Te2− ions
in sites 2a (0, 0, 0) and 4f (1/3, 2/3, 1/4), respectively, with
cell dimensions a ≈ 4.190 Å, c ≈ 6.751 Å [4]. Manganese
Mn2+ is an s-state ion with spin S = 5/2 and orbital angular
momentum L = 0. Unit cell vectors are ah = (a, 0, 0) parallel
to a dyad axis of rotation symmetry normal to the triad c
axis, and bh = (1/2) (− a, a

√
3, 0) and ch = (0, 0, c), that

enclose a unit cell volume vo = (1/2) a2c
√

3.

III. MAGNETIC SYMMETRIES

An antiferromagnetic alignment between axial dipoles of
the two Mn ions is the primary order parameter common to
all four templates discussed here. Symmetries therein differ
with respect to directions of the dipoles canting out of the
basal plane, cf. Table I. Choice of the cells follows standard
crystallographic requirements. They respect the translation
symmetry of the crystal (including both structural and mag-
netic degrees of freedom), have minimal unit cell volume, and
represent the standard setting for the magnetic space groups
[16]. Magnetic symmetries are centrosymmetric, possess a
magnetic order that does not break translation symmetry [a
propagation vector k = (0, 0, 0)], and anti-inversion is ab-
sent in the magnetic crystal class. Absence of anti-inversion
precludes a linear ME effect, of course, and Landau free-
energies include a contribution HEE, where H and E denote
magnetic and electric fields. All templates allow a PM effect

TABLE II. A generic multipole 〈OK
Q〉 has integer rank K and (2K

+ 1) projections Q in the interval − K � Q � K. Angular brackets
〈. . .〉 denote the expectation value, or time average, of the enclosed
spherical tensor operator. Parity (σπ ) and time (σθ ) signatures = ±1,
e.g., 〈tK

Q〉 for magnetic neutron diffraction is parity-even (σπ = +1)
and time-odd (σθ = −1). Manganese ions in MnTe occupy sites
that are centers of inversion symmetry resulting in σπ = +1 for all
multipoles. Not so for CuMnAs, leading to a need for Mn Dirac
multipoles 〈gK

Q〉 and 〈GK
Q〉 with σθ σπ = +1.

Signature σπ σθ

Neutrons
〈tK

Q〉 +1 −1

〈gK
Q〉 −1 −1

Photons

〈TK
Q〉 +1 (−1)K

〈GK
Q〉 −1 −1

[6]. Ferromagnetism parallel to the c axis is a secondary order
parameter in three templates (it is expected to be vanishingly
small).

Looking at Table I, our four templates in brief are: (1)
Cm′c′m (No. 63.462 (BNS [16]), magnetic crystal class
m′m′m); (2) Cmcm (No. 63.457, mmm); (3) P21/m(No. 11.50,
2/m); (4) C2′/m′ (No. 12.62, 2′/m′). The Néel vector is con-
fined to the basal plane in (3), while the demands of additional
symmetries in (1) and (2) place it parallel to (1, −1, 0)h, i.e.,
off-set by 30 ° from ah, and ah, respectively. Symmetries in
template (4) permit dipoles to cant out of the basal plane,
with axial moments along (1, −1, 0)h, as in (1), and the c
axis. Manganese ions occupy sites that are centers of inversion
symmetry.

A net magnetic field allows an XMCD signal for x-rays
traveling along the c axis, while XMCD = 0 for x-rays prop-
agating in the basal plane [17–19]. Experiments by Hariki
et al. do not reveal an XMCD signal at Mn L2,3 edges in a
MnTe film contrary to expectations derived from their simula-
tions of an electronic structure compatible with templates (1)
and (4) [9]. Regarding resonant x-ray and neutron diffraction
amplitudes for magnetic symmetries, which are the principal
results from our study, the former are complex and the latter
can be chosen purely real without loss of generality [20–27].
In consequence, an x-ray chiral signature is permitted and the
intensity of a Bragg spot is the sum of squares, one compo-
nent comprised of magnetic multipoles and one component
comprised of chargelike (Templeton-Templeton (T & T) [20])
multipoles. Chiral signatures are a product of magnetic and
chargelike multipoles, cf. Table II. The common phase of
nuclear and magnetic contributions to neutron diffraction
amplitudes permits an interference of the two components
routinely exploited in neutron polarization analysis [28,29].

For an atomic description of electronic degrees of free-
dom, Mn ions are assigned spherical multipoles 〈OK

Q〉
as in Table II. They encapsulate properties of the elec-
tronic and magnetic ground state of MnTe. Cartesian
and spherical components Q = 0, ±1 of a vector n =
(ξ, η, ζ ), for example, are related by ξ = (n−1 − n+1)/

√
2,
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η = i(n−1 + n+1)/
√

2, ζ = n0. A complex conjugate of a
multipole is defined as 〈OK

Q〉∗ = (−1)Q 〈OK
−Q〉, meaning the

diagonal multipole 〈OK
0 〉 is purely real. The phase convention

for real and imaginary parts labeled by single and double
primes is 〈OK

Q〉 = [〈OK
Q〉′ + i〈OK

Q〉′′]. Whereupon, 〈O1
ξ 〉 =

−√
2 〈O1

+1〉′ and 〈O1
η〉 = −√

2 〈O1
+1〉′′.

Multipoles for each template are specified in local orthog-
onal coordinates (ξ , η, ζ ) and they are:

(1) ξ1 = (1, 0, 0)h; η1 = (1, 2, 0)h; ζ1 = (0, 0, 1)h; (1)

(2) ξ2 = (1, 1, 0)h; η2 = (−1, 1, 0)h; ζ2 = (0, 0, 1)h. (2)

Here, (1, 2, 0)h ≡ (1, −1, 0)h ∝ (0, 1, 0) and (1, 1, 0)h ≡
(1, 0, 0)h ∝ (1/2) (1,

√
3, 0) where the equivalences exploit

the triad axis of rotation symmetry along the c axis. With
unique axis η3,

(3) ξ3 = −(2, 1, 0)h ∝ −(1/2) (
√

3, 1, 0); η3 = (0, 0,−1)h;

ζ3 = (0,−1, 0)h. (3)

In line with standard practice, ξ3 is proportional to the recip-
rocal lattice vector (η3 × ζ3). Likewise, in (4),

(4) ξ4 = −(1, 2, 0)h; η4 = (1, 0, 0)h; ζ4 = (0, 0, 1)h. (4)

IV. ELECTRONIC STRUCTURE FACTORS

An electronic structure factor,

	K
Q = [

exp(iκ · d)
〈
OK

Q

〉
d

]
, (5)

determines neutron and x-ray diffraction patterns for a partic-
ular template. The implied sum in Eq. (5) is over positions d
of Mn ions in a unit cell. The reflection vector κ is defined by
integer Miller indices (h, k, l) for all magnetic structures. For
templates (1) and (2) one finds [16],

	K
Q (1, 2) = 〈

OK
Q

〉
[1 + (−1)h+k][1 + (−1)l+Q]. (6)

Site symmetries impose conditions 〈OK
Q〉 = [σθ (−1)K] 〈OK

−Q〉
and 〈OK

Q〉 = (−1)K 〈OK
−Q〉 for (1) and (2), respectively. The

time signature σθ = +1 for time even (chargelike or nuclear)
and σθ = −1 for time odd (magnetic) multipoles, cf. Table II.
In template (3) there are no additional constraints on 〈OK

Q〉
beyond spatial inversion and [16],

	K
Q (3) = [〈

OK
Q

〉 + (−1)k (−1)K+Q
〈
OK

−Q

〉]
. (7)

Two independent sites accommodate Mn ions in template
(4), namely, 2a and 2c in C2′/m′. Both sites have symme-
try 2′/m′ that subjects multipoles to the constraint 〈OK

Q〉 =
[σθ (−1)K+Q] 〈OK

−Q〉. In consequence, magnetic dipoles are
aligned with −(1, 2, 0)h and (0, 0, 1)h.

Bulk properties of a material are determined by 	K
Q eval-

uated for h = k = l = 0. A selection rule for templates (1)
and (2) is even Q. Specifically, a bulk property composed of
dipoles is created by 	1

ζ , which is zero for template (2) on
account of the constraint placed by site symmetry, while 	1

ζ

is allowed to be nonzero for magnetic dipoles in (1). The ζ

axis is parallel to the c axis in both cases. The bulk value
of �1(3) can be nonzero on account of 〈O1

η〉, and the unique
monoclinic axis η3 is parallel to the c axis. On the other hand,
bulk value of �1(4) are parallel to ξ4 and ζ4. An XMCD signal
is proportional to the projection of the net magnetic field �1

on the photon wave vector [17–19]. For the symmetries we
consider, XMCD = 0 for the photon wavevector parallel to
the basal plane and template (2).

V. X-RAY BRAGG DIFFRACTION ENHANCED
BY E1-E1 OR E2-E2 EVENTS

The triangle rule for vectors permits electronic multipoles
of rank K = 0, 1, and 2 in an electric dipole-electric dipole
(E1-E1) absorption event [18,20]. Looking at Table II, dipoles
(K = 1) are magnetic (time-odd), and multipoles with rank
K = 0 and K = 2 are chargelike (time-even). Manganese ab-
sorption edges used in an E1-E1 scattering event have energies
E ≈ 6.537 keV for the K edge (1s → 4p), and L2 ≈ 0.649
keV and L3 ≈ 0.638 keV (2p → 3d). The cell dimensions
of MnTe are too small for diffraction enhanced by Mn L
edges. There have been many rewarding experiments on 3d-
transition metal compounds exploiting a K-edge absorption
event, and early examples include V2O3 and TbMnO3 [21,22].
Specifically, the Bragg angle in Fig. 3 is determined by (λ/2c),
where the photon wavelength λ ≈ (12.4/E ) Å and the x-ray
energy E is in units of keV. Whence, (λ/2c) ≈ 0.141 for
MnTe and the Mn K edge. A resonance in an E1-E1 event is
attributed to magnetic dipoles if it disappears above the Néel
temperature. Furthermore, such a resonance contributes to the
rotated channel of polarization and the chiral signature. The
sensitivity to magnetic order at the 1s → 4p dipole transition
energy is due to the 4p − 3d intra-atomic Coulomb interaction
and to the mixing of the 4p with the 3d states of neighboring
magnetic ions. At the E2 threshold, exhibiting five multipoles
(K = 0–4), its origin is in the spin polarization of the 3d
states. An E2-E2 amplitude is included in our discussion of
template (4).

Diffraction amplitudes are labeled by states of primary and
secondary polarization depicted in Fig. 3, e.g., (π ′σ ) is the
energy-integrated diffraction amplitude for primary σ polar-
ization and secondary π polarization. They are functions of
the angle ψ that measures rotation of the crystal about the
reflection vector [18,23,24]. The start of an azimuthal angle
scan ψ = 0 is defined by the placement of a lattice vector
relative to the plane of scattering.

Consider lattice forbidden, or weak, Bragg reflections for
which 	K

0 = 0 with even K. Reflections are taken to be (0,
0, l) with odd l for templates (1) and (2), and (0, k, 0) with
odd k for (3). For orthorhombic symmetries and a reflection
vector (0, 0, l) the origin ψ = 0 is defined by (− ζ , − η,
− ξ ) in terms of coordinates (x, y, z) in Fig. 3. In consequence,
vectors η1 = (1, 2, 0)h ∝ (0, 1, 0) and η2 = (−1, 1, 0)h ∝
(1/2) (−√

3, 1, 0) are in the plane of scattering at the start
of an azimuthal-angle scan for symmetries (1) and (2), re-
spectively. Local coordinates η1 and η2 subtend an angle
of 60◦ that appears as an off-set to relative azimuthal-angle
scans. Corresponding x-ray dipoles are 〈T1

η〉1
and 〈T1

ξ 〉2
and

quadrupoles 〈T2
+1〉1,2 contributing to T & T scattering are re-

lated by changes to local coordinates [20]. Dipoles 〈T1
ξ 〉3

and
〈T1

ζ 〉2
in directions ξ3 ≡ −(2, 1, 0)h and ζ3 ≡ −(0, 1, 0)h

subtend angles 150◦ and 60◦ with ah.
Diffraction amplitudes for templates (1)–(3) have a number

of features in common. Unrotated amplitudes in the σ channel
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are zero. With (σ ′σ ) = 0 a chiral signature,

ϒ = [(π ′π )∗(π ′σ )]′′. (8)

In practice, ϒ is the measured difference in intensities of a
Bragg spot observed with oppositely handed primary x-rays.
So, ϒ and XMCD are alike with regard to polarization
requirements. Unrotated amplitudes in the π channel are
magnetic and purely imaginary, while rotated amplitudes are

a sum of magnetic (purely imaginary) and T & T (purely real)
contributions. It follows that ϒ is a measure of the interference
between magnetic and chargelike degrees of freedom.
Canting away from the basal plane allowed in template (4)
yields distinctly different diffraction amplitudes, not least an
absence of lattice forbidden reflections investigated for the
remaining three templates:

Template (1) (π ′π )1 = i
√

2 sin(2θ ) sin(ψ )
〈
T 1

η

〉
1
,

(
π ′σ

)
1 = cos(θ ) cos(ψ )

[
i
√

2
〈
T1

η

〉
1
+ 2

〈
T2

+1

〉′′
1

]
, (9)

ϒ(1) = −√
2 sin(2θ ) cos (θ ) sin(2ψ )

〈
T1

η

〉
1

〈
T2

+1

〉′′
1.

Reflection (0, 0, l) with odd l and ξ1 = (1, 0, 0)h normal to the plane of scattering at the start ψ = 0:

Template (2) (π ′π )2 = −i
√

2 sin(2θ ) cos(ψ )
〈
T 1

ξ

〉
2
,

(
π ′σ

)
2 = cos(θ ) sin (ψ )

[
i
√

2
〈
T1

ξ

〉
2
+ 2

〈
T2

+1

〉′′
2

]
, (10)

ϒ(2) = √
2 sin (2θ ) cos (θ ) sin (2ψ )

〈
T1

ξ

〉
2

〈
T2

+1

〉′′
2.

Reflection (0, 0, l) with odd l and ξ2 = (1, 1, 0)h normal to the plane of scattering at ψ = 0. The twofold symmetry of ϒ(1)
and ϒ(2) with respect to the azimuthal angle ψ is due to dyad axes of symmetry in orthorhombic structures:

Template (3) (π ′π )3 = i
√

2 sin(2θ )
[

cos(ψ )
〈
T 1

ζ

〉
3
− sin(ψ )

〈
T 1

ξ

〉
3

]
,

(π ′σ )3 = −i
√

2 cos (θ )
[
sin(ψ )

〈
T1

ζ

〉
3
+ cos (ψ )

〈
T1

ξ

〉
3

] + 2 cos (θ )
[
cos (ψ )

〈
T2

+1

〉′′
3 + sin(ψ )

〈
T2

+2

〉′′
3

]
, (11)

ϒ (3) = −2
√

2 sin (2θ ) cos (θ )
[
cos(ψ )

〈
T1

ζ

〉
3
− sin(ψ )

〈
T1

ξ

〉
3

][
cos(ψ )

〈
T2

+1

〉′′
3 + sin(ψ )

〈
T2

+2

〉′′
3

]
.

Reflection (0, k, 0) with odd k and ξ3 = (η3 × ζ3) is in the
plane of scattering at the start of an azimuthal-angle scan.
Dipoles 〈T1

ξ 〉3
≡ 〈T1

η〉1
and 〈T1

ζ 〉3
≡ 〈T1

ξ 〉2
on account of the

triad axis of rotation symmetry along the c axis, and there is
an additional quadrupole in (π ′σ )3 compared to (π ′σ )1 and
(π ′σ )2. In consequence, ϒ(3) is a function of sin (2ψ ) and
cos (2ψ ), whereas ϒ(1) and ϒ(2) are functions of sin (2ψ )
alone.

Template (4). All multipoles are purely real for template
(4) and parity-even absorption events, for which σθ = (−1)K.
Dipoles 〈T1

η〉1
and 〈T1

ξ 〉4
are antiparallel and off-set from the

dyad ah by 30◦. Notably, chargelike (even K) and magnetic
(odd K) Bragg reflections overlap, and amplitudes for unro-
tated channels of polarization, (σ ′σ )4 and (π ′π )4, admit a
scalar. It is proportional to the number of holes No in the
valence shell that accepts the photoejected photon, and very
strong compared to lattice forbidden amplitudes created by
small fractions of an electron [23,24]. The scalar is absent in
rotated channels of polarization, however, and for an E1-E1
event [23],

(π ′σ )4 = (i/
√

2)
[

cos(θ ) sin(ψ )
〈
T1

ξ

〉
4
+ sin(θ )

〈
T1

ζ

〉
4

]

− cos(θ ) cos(ψ )
〈
T2

+1

〉′
4 − sin(θ ) sin(2ψ )

〈
T2

+2

〉′
4.

(12)

Reflection (0, 0, l) with the reflection vector parallel to the c
axis, is as in all other cases already mentioned. The contribu-
tion to (π ′σ )4 from the dipole parallel to the c axis 〈T1

ζ 〉4
is

independent of the azimuthal angle, as expected. The start of
an azimuthal angle scan has (1, 0, 0)h normal to the plane
of scattering, as for template (1). Dipoles 〈T1

ξ 〉4
and 〈T1

ζ 〉4
are contained in a plane spanned by (1, 2, 0)h and (0, 0, 1)h
normal to a dyad axis of rotation symmetry. As with all our
templates, chargelike and magnetic contributions to (π ′σ )4
differ in phase by 90◦ and an intensity |(π ′σ )4|2 is a sum of
squares.

The full expression for ϒ(4) is long, simply because there
are contributions from four amplitudes. Given that the chiral
signature is likely dominated by the scalar charge we record
the contribution to ϒ(4) that is proportional to No, a relatively
simple expression, namely,

ϒ (4) ≈ No
[
sin3(θ )

〈
T1

ζ

〉
4

− cos3(θ ) sin(ψ )
〈
T1

ξ

〉
4

]
. (13)

At the Mn K-edge Miller indices are l = 1, 3, 5, 7. For l = 7
one finds sin3 (θ ) ≈ 0.970 and cos3 (θ ) ≈ 0.003, indicating
that ϒ(4) in Eq. (13) is independent of the azimuthal angle, to
a good approximation.

Lastly, we give an example of diffraction enhanced an
E2-E2 absorption event at the K edge (1s → 3d). Not sur-
prisingly, contributions from dipoles and quadrupoles to
E2-E2 and E1-E1 amplitudes are similar with respect to
the azimuthal angle. We therefore include the distinguishing
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octupole 〈T3
Q〉

4
,

(π ′σ )4 ≈ cos(3θ )
[−i sin (ψ )

〈
T1

ξ

〉
4

+ √
(30/7) cos (ψ )

〈
T2

+1

〉′
4

] + sin(3θ )
[−i〈T 1

ζ 〉
4
+ √

(30/7) sin(2ψ )
〈
T 2

+2

〉′
4

]

+ i sin (θ )
[
(3 cos2 (θ ) − 2)

〈
T3

0

〉
4 − √

30 cos2 (θ ) cos (2ψ )
〈
T3

+2

〉′
4

]

+ i cos (θ ) sin(ψ )
[√

3 (sin2 (θ ) + 1)
〈
T3

+1

〉′
4 + √

5 (3 cos2 (θ ) − 2) {1 + 2 cos(2ψ )}〈T3
+3

〉′
4

]
. (14)

The reflection is (0, 0, l), as in the E1-E1 amplitude Eq. (12)
to which Eq. (14) should be compared.

VI. MAGNETIC NEUTRON BRAGG DIFFRACTION

The axial (parity-even) multipoles for neutron diffraction
are denoted 〈tK

Q〉 in Table II, and they are magnetic (time-odd,
σθ = −1). A scattering amplitude 〈Q⊥〉 generates an intensity
|〈Q⊥〉|2 for unpolarized neutrons. In more detail, 〈Q⊥〉 =
[e × (〈Q〉 × e)] = [〈Q〉 − e(e · 〈Q〉)] with a unit vector e =
κ/κ. The intermediate amplitude 〈Q〉 is proportional to the
magnetic moment 〈μ〉 in the forward direction of scattering,
with 〈Q〉 = 〈μ〉/2 for κ = 0, apart from a numerical factor
related to site multiplicity.

Magnetic neutron scattering amplitudes that follow are
chosen to be purely real, and in phase with the nuclear scat-
tering amplitude. Our templates designed for altermagnetism
permit this property, and it is not universal; cf. Appendix.
We continue to discuss basis forbidden reflections for tem-
plates (1)–(3) for which the reflection vector parallel to the
hexagonal c axis. Magnetic and nuclear amplitudes overlap
in (4). For this symmetry we consider reflection vectors par-
allel to the c axis and (1, −1, 0)h. The total intensity is
[|〈Q⊥〉a|2 + |〈Q⊥〉c|2], where subscripts a and c denote inde-
pendent Mn ions in sites 2a and 2c in C2′/m′. Subtraction of
diffraction patterns gathered above and below the magnetic
ordering temperature provided an estimate of the magnetic
content [4].

Polarization analysis offers greater sensitivity to mag-
netic contributions, however. A polarization dependence of
the neutron scattering can be described as a departure
from unity of the ratio of the reflected intensities for in-
coming neutron beams of opposite polarization, i.e., R =
(N + Z)2/(N − Z)2, where N and Z are total nuclear and
magnetic amplitudes, respectively. For R �= 1 it is clear that
neither N nor Z can be zero. Moreover, N and Z must have
like phases [28,29]. More generally, a fraction ∝ {(1/2)(1 +
P2)|〈Q⊥〉|2 − |P · 〈Q⊥〉|2} of neutrons participate in events
that change (flip) the neutron spin orientation, where P is the
primary polarization. The assumption of perfect polarization
(P · P) = 1 yields a spin-flip signal [30,31],

SF = [|〈Q⊥〉|2 − |P · 〈Q⊥〉|2]. (15)

Evidently, all scattering is spin-flip when P and e are aligned
since e · 〈Q⊥〉 = 0.

Magnetic multipoles in neutron diffraction depend on the
magnitude of the reflection vector, κ . The dipole 〈t1〉 contains
standard radial integrals 〈 j0(κ )〉 and 〈 j2(κ )〉 shown in Fig. 4,
with 〈 j0(0)〉 = 1 and 〈 j2(0)〉 = 0 [31]. An approximation to
〈t1〉 suitable for a transition-metal ion is [25,26],

〈t1〉 ≈ (〈μ〉/3)[〈 j0(κ )〉 + 〈 j2(κ )〉(g − 2)/g] (16)

Here, the magnetic moment 〈μ〉 = g 〈S〉 and the orbital mo-
ment 〈L〉 = (g−2)〈S〉. The coefficient of 〈L〉 is approximate,
while 〈t1〉 = (1/3)〈2 S + L〉 for κ→ 0 is an exact result.
Higher order multipoles with even rank depend on the elec-
tronic position operator n. The equivalent operator [(S × n)n]
for t2 shows that actually the quadrupole measures the corre-
lation between the spin anapole (S × n) and orbital degrees of
freedom [26]. The quadrupole 〈t2〉 is proportional to 〈 j2(κ )〉
in Fig. 4.

Magnetic neutron multipoles with an even rank do not exist
for magnetic states derived from a J-state, instead, a ground
state must possess two or more J states for 〈t2〉 nonzero [26].
A single J state is likely at odds with the basic premise of
altermagnetism because it is an outcome of a strong spin-orbit
coupling [10–15]. Indeed, a Landau theory in the extreme
zero spin-orbit coupling limit has been shown to capture the
essence of altermagnetism [32]. Quadrupoles and hexade-
capoles (K = 4) are permitted by all our templates.

The following expressions for magnetic neutron scattering
amplitudes are correct for dipoles and quadrupoles, and we set
multipoles of rank K = 3, 4, 5 aside [26]. One finds 〈Q⊥〉 =
〈Q〉 in symmetries (1)–(3) because e · 〈Q〉 = 0.

Template (1). Reflections (0, 0, l) with odd l and 〈Q⊥〉1 =
(0, 〈Qη〉1, 0) with,

〈Qη〉1 ≈ 2
[
3
〈
t1
η

〉
1
− 2

√
3
〈
t2
+1

〉′
1
]
. (17)

Referring to Table I, the dipole is aligned with (1, 2, 0)h.
Template (2). Reflections (0, 0, l) with odd l and 〈Q⊥〉2 =

(〈Qξ 〉2, 0, 0) with,

〈Qξ 〉2 ≈ 2
[
3
〈
t1
ξ

〉
2
+ 2

√
3
〈
t2
+1

〉′′
2

]
. (18)

Template (3). Reflections (0, k, 0) with odd k and,

〈Qξ 〉3 ≈ 3
〈
t1
ξ

〉
3
− 2

√
3
〈
t2
+1

〉′′
3,

〈Qη〉3 = 0, 〈Qζ 〉3 ≈ 3
〈
t1
ζ

〉
3
− 2

√
3
〈
t2
+2

〉′′
3. (19)

Template (4). Reflections (0, 0, l) and all l . For Mn ions
in sites 2a and 2c the neutron diffraction amplitude 〈Q〉4 ≈
(〈Qξ 〉4, 0, 3〈t1

ζ 〉4
) and 〈Q⊥〉4 ≈ (〈Qξ 〉4, 0, 0) with,

〈Qξ 〉4 ≈ 3
〈
t1
ξ

〉
4
+ 2

√
3
〈
t2
+1

〉′′
4. (20)
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FIG. 1. Chemical structure of MnTe.

Reflections (0, k, 0) and even k, to respect C centering, with
e = (1/2) (ξ + √

3η) ∝ (1, −1, 0)h. One finds,

〈Q⊥ξ 〉4 ≈ (3/2)
[
(3/2)

〈
t1
ξ

〉
4
− √

3
〈
t2
+1

〉′′
1

]
,
〈
Q⊥η

〉
4

≈ (3/2)
[ − (1/2)

√
3
〈
t1
ξ

〉
4
+ 〈

t2
+1

〉′′
4

]
,

〈Q⊥ζ 〉4 ≈ 3
〈
t1
ζ

〉
4
− √

3
〈
t2
+2

〉′′
4. (21)

Recall that local coordinates for dipoles in template (4)
are ξ4 = −(1, 2, 0)h and ζ4 = (0, 0, 1)h, with (1, 2, 0)h ≡
(1, −1, 0)h.

VII. CONCLUSIONS

In summary, templates specified in Table I possess mag-
netic symmetries suitable for hexagonal manganese telluride
(α-MnTe, Fig. 1), and differ with respect to the orientation
of Mn dipoles in the basal plane and canting out of the
plane. Moreover, they satisfy an accepted definition of an
altermagnet [12]. Our motivation is the prospect of matching
a measured Bragg diffraction pattern with a template. Inherent
symmetry requires neutron diffraction amplitudes to be purely
real (or purely imaginary), and polarization analysis is avail-
able to separate magnetic signals and nuclear signals when
the contributions overlap [29]. Identical symmetry requires
magnetic and chargelike (T & T [20]) contributions to x-ray
amplitudes to be 90◦ out of phase. Meaning that circular polar-
ization in the primary x-ray beam is rotated upon diffraction
[24]. The mentioned attributes of our diffraction amplitudes
are not universal, cf. the Appendix. But they are attributes
expected for diffraction by an altermagnet. Likewise, neutron
multipoles with an even rank are not suppressed by a spin-
orbit coupling.

Other properties that can be tested in resonant x-ray
diffraction include zero diffraction in the unrotated σ po-
larization channel (Fig. 3) for templates (1)–(3) in Table I.
Templates (1) and (4) permit ferromagnetism as a secondary

FIG. 2. Configuration of Mn dipoles in the template with sym-
metry C2′/m′ (No. 12. 62) labeled (4) in the text and Table I.

order parameter and magnetic circular dichroism (XMCD);
dipoles in (4) are depicted in Fig. 2. They also allow dipoles
in the basal plane off-set by 30◦ from the dyad axis of rotation
symmetry. By contrast, the dipole in template (2) is confined
to the dyad. Templates (1), (2), and (3) possess reflections
that are lattice forbidden, i.e., they do not exist in nuclear or
Thomson scattering by the parent structure.

Our templates are centrosymmetric, and possess long-
range antiferromagnetic order with a propagation vector k =
(0, 0, 0). Anti-inversion, requiring invariance with respect to
the product of parity and the reversal of time 1′, is absent
in all magnetic crystal classes listed in Table I. Landau free-
energies include a contribution HEE, where H and E denote
magnetic and electric fields, and a piezomagnetic effect is

FIG. 3. Primary (σ , π ) and secondary (σ ′, π ′) states of polariza-
tion. Corresponding wave vectors q and q′ subtend an angle 2θ . The
Bragg condition for diffraction is met when q − q′ coincides with
a reflection vector (h, k, l) of the reciprocal lattice. Crystal vectors
that define local axes (ξ , η, ζ ) and the depicted Cartesian (x, y, z)
coincide in the nominal setting of the crystal.
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FIG. 4. Radial integrals 〈 j0〉 (black), 〈 j2〉 (red), and 〈 j4〉 (blue)
for Mn2+ (3d5) calculated using Cowan’s code [33]. The dimension-
less parameter w and the magnitude of the reflection vector κ are
related by the Bohr radius, namely, κ = w/3ao. Also, κ = 4πs with
s = sin(θ )/λ and λ the neutron wavelength (cf. Section 6.3.1, [27]).

permitted [6]. Nineteen of the 122 magnetic crystal classes
include anti-inversion, together with a Landau free-energy EH
and a linear magnetoelectric effect. Chromium sesquioxide
Cr2O3 is an epitome material (magnetic crystal class 3′m′).
Today, PT-symmetric antiferromagnets attract attention be-
cause of their nonlinear responses, e.g., a second-order Hall
effect [34]. CuMnAs depicted in Fig. 5 is cited in this context,
and it is the subject of the Appendix by way of a contrast
to properties of our templates [35,36]. Specifically, magnetic
and chargelike contributions to x-ray amplitudes for CuMnAs
possess the same phase and a chiral signature is forbidden.
The orthorhombic semimetal supports antiferromagnetic k =
(0, 0, 0) long-range order described by magnetic symmetry
Pn′ma (No. 62.443 [16]), which belongs to the magnetic

FIG. 5. Configuration of Mn axial dipoles in CuMnAs (magnetic
crystal class m′mm) with magnetic symmetry Pn′ma (No. 62.443)
[36]. Reproduced from MAGNDATA [37].

crystal class m′mm. Properties of this crystal class differ from
the four listed in Table I for our templates with respect to just
two bulk effects; a linear magnetoelectric effect is allowed in
m′mm, and the piezomagnetic effect is forbidden.

Note added. ARPES data for MnTe are published by [38].

ACKNOWLEDGMENTS

Dr. U. Staub advised on the feasibility of the proposed
resonant x-ray Bragg diffraction using Mn edges. Dr. S. Dhesi
discussed experimental findings mentioned in Ref. [9].

APPENDIX: PT-SYMMETRIC ANTIFERROMAGNET

Emmanouilidou et al. [36] found the magnetism of
CuMnAs very sensitive to the stoichiometry of the Cu and
Mn sites. They make the statement “While Cu0.95MnAs is
a commensurate antiferromagnet below 360 K with a prop-
agation vector of k = (0, 0, 0), Cu0.98Mn0.96As undergoes
a second-order paramagnetic to incommensurate antiferro-
magnetic phase transition at 320 K with k = (0.1, 0, 0),
followed by a second-order incommensurate to commensurate
antiferromagnetic phase transition at 230 K”. Here we explore
a commensurate antiferromagnet CuMnAs (Mn2+, 3d5) de-
picted in Fig. 5.

Manganese ions occupy sites 4c in Pn′ma (magnetic crys-
tal class m′mm) that are not centers of inversion symmetry,
unlike sites used by Mn ions in our templates. Site symmetry
demands [σπ (−1)K+Q 〈OK

−Q〉] = 〈OK
Q〉, with (−1)Q 〈OK

−Q〉 =
〈OK

Q〉∗. The PT-symmetric Pn′ma electronic structure factor,

	K
Q (4c) = 〈

OK
Q

〉{αγ + (αγ )∗σθ σπ (−1)k

+ σπ (−1)h+l+Q[αγ ∗ + (αγ ∗)∗σθ σπ (−1)k]}.
(A1)

Spatial phase factors α = exp (i2πhx) and γ = exp (i2π lz),
where x ≈ 0.460 and z ≈ 0.677 are general coordinates.
As with MnTe, cell lengths a ≈ 6.57 Å, b ≈ 3.86 Å, c ≈
7.30 Å of CuMnAs are too small for resonant x-ray diffraction
at Mn L2,3 absorption edges [36]. Extinction rules for lattice
reflections are derived from 	K

0 (4c) evaluated with even K
and σθ = σπ = +1, namely, (h, k, 0) with even h, and (0, k, l)
with even k + l .

For lattice forbidden reflections (h, 0, 0) with odd h, and an
E1-E1 absorption event (1s → 4p) the x-ray amplitudes are
(σ ′σ ) = 0,

(π ′π ) = 2
√

2 sin(2θ ) sin(ψ )α′′〈T 1
b

〉
,

(π ′σ ) = 2 cos(θ ) cos(ψ )
[√

2α′′〈T 1
b

〉 − 2α′〈T 2
+1

〉′]
. (A2)

X-ray amplitudes are purely real or zero and the chiral sig-
nature is zero, as anticipated in Sec. VII. The configuration
of axial dipoles 〈T1

b〉 is illustrated in Fig. 5. At the start of an
azimuthal angle scan ψ = 0 the crystal b axis is in the plane
of scattering, Fig. 3.

Dirac multipoles 〈GK
Q〉 in Table II diffract x-rays in the

σ ′σ channel of polarization for reflections (h, 0, 0) with odd
h, unlike the foregoing result for parity-even E1-E1. For an
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E1-E2 (1s → 3d, 4p) event [23],

(σ ′σ ) = (4/5)α′√3 cos(θ ) sin(ψ )
{ − 〈

G1
c

〉 + (1/3)
√

10
〈
G2

+2

〉′′

+ √
(2/3)[1 − 5 cos2(ψ )]

〈
G3

0

〉 + (2/3)
√

5[1 − 3cos2(ψ )]
〈
G3

+2

〉′}
. (A3)

The remaining three E1-E2 x-ray amplitudes are also purely
real. The Dirac dipole (anapole) parallel to the crystal a
axis 〈G1

a〉 does not contribute to (σ ′σ ) at (h, 0, 0) with
odd h.

All E1-E1 amplitudes are zero for (0, k, 0) with odd k.
Likewise for diffraction enhanced by the parity-odd E1-E2
event, and neutron diffraction that we consider next.

Neutron diffraction by CuMnAs is created by axial 〈tK
Q〉

and Dirac 〈gK
Q〉 multipoles that feature in Table II. Scattering

amplitudes are labeled by superscripts (±) using + (−) for
axial (Dirac) amplitudes. Continuing a study of lattice for-
bidden reflections (h, 0, 0) with odd h, we find 〈Q⊥〉(+) =
(0, 〈Qb〉(+), 0) with,

〈Qb〉(+) ≈ 4iα′′ [(3/2)
〈
t1
b

〉 + √
3
〈
t2
+1

〉′]
. (A4)

Equation (16) provides an estimate of the dipole parallel to
the b axis in Eq. (A4), using radial integrals in Fig. 4. The
anapole in neutron diffraction 〈g1〉 is a sum of three multi-
poles, including a spin anapole (S × n) and an orbital analog
[(L × n) − (n × L)] [18,26]. Associated radial integrals for
Mn2+ are displayed in Fig. 3 of Ref. [39]. The Dirac scattering
amplitude for reflections (h, 0, 0) with odd h has a component

parallel to the crystal b axis, namely,

〈Qb〉(−) ≈ 4iα′[ − 〈
g1

c

〉 + (3/
√

5)
〈
g2

+2

〉′′]
, (A5)

and 〈Q⊥〉(−) = (0, 〈Qb〉(−), 0). Notably, 〈Q⊥〉(±) are purely
imaginary. Dirac and axial amplitudes are correct at the level
of quadrupoles, as in the main text.

Axial and polar (Dirac) neutron diffraction amplitudes are
zero for (0, 0, l) with odd l . Two of the four x-ray amplitudes
are zero for both E1-E1 and E1-E2 enhancements, namely,
amplitudes diagonal in polarization states (σ ′σ ) = (π ′π ) = 0.
An azimuthal angle scan starts with the b axis in the plane of
scattering and directed along − y in Fig. 3. For the parity-even
event E1-E1,

(π ′σ ) = (σ ′π )

= −4γ ′ cos(θ ) cos(ψ )
〈
T 2

+1

〉′
. (0, 0, l ) odd l. (A6)

In other words, E1-E1 diffraction at these reflections is exclu-
sively T & T scattering [20]. For enhancement by an E1-E2
event [23],

(π ′σ ) = −(σ ′π ) = 2γ ′√(2/15) cos2(θ )sin(2ψ )

× [−〈
G2

+2

〉′′ + 2
√

2
〈
G3

+2

〉′]
. (0, 0, l ) odd l. (A7)

No multipoles are neglected in Eqs. (A6) and (A7) [39].
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K. Geishendorf, Z. Šobáň, G. Springholz, K. Olejník, L.
Šmejkal, J. Sinova, T. Jungwirth, S. T. B. Goennenwein, A.
Thomas, H. Reichlová, J. Železný, and D. Kriegner, Phys. Rev.
Lett. 130, 036702 (2023).

[9] A. Hariki, T. Yamaguchi, D. Kriegner, K. W. Edmonds, P.
Wadley, S. S. Dhesi, G. Springholz, L. Šmejkal, K. Výborný,
T. Jungwirth, and J. Kuneš, arXiv:2305.03588.

[10] L. Šmejkal, R. González-Hernádez, T. Jungwirth, and J. Sinova,
Sci. Adv. 6, eaaz8809 (2020).

[11] I. Turek, Phys. Rev. B 106, 094432 (2022).

[12] L. Šmejkal, J. Sinova, and T. Jungwirth, Phys. Rev. X 12,
031042 (2022).

[13] L. Šmejkal, J. Sinova, and T. Jungwirth, Phys. Rev. X 12,
040501 (2022).

[14] I. Mazin (The PRX Editors), Phys. Rev. X 12, 040002 (2022).
[15] I. I. Mazin, Phys. Rev. B 107, L100418 (2023).
[16] We use the BNS setting of magnetic space groups, see Bilbao

Crystallographic server, http://www.cryst.ehu.es.
[17] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev.

Lett. 68, 1943 (1992); P. Carra, B. T. Thole, M. Altarelli, and X.
D. Wang, ibid. 70, 694 (1993); P. Carra, H. König, B. T. Thole,
and M. Altarelli, Physica B 192, 182 (1993).

[18] S. W. Lovesey, E. Balcar, K. S. Knight, and J. Fernández
Rodríguez, Phys. Rep. 411, 233 (2005).

[19] G. van der Laan, International Tables for Crystallography
(Wiley, New York, 2022), Vol. I.

[20] D. H. Templeton and L. K. Templeton, Acta Crystallogr. A 36,
237 (1980); 38, 62 (1982).

[21] L. Paolasini, S. Di Matteo, C. Vettier, F. de Bergevin,
A. Sollier, W. Neubeck, F. Yakhou, P. A. Metcalf, and J.
M. Honig, J. Electron Spectros. Relat. Phenomena 120, 1
(2001).

[22] D. Mannix, D. F. McMorrow, R. A. Ewings, A. T. Boothroyd,
D. Prabhakaran, Y. Joly, B. Janousova, C. Mazzoli, L. Paolasini,
and S. B. Wilkins, Phys. Rev B 76, 184420 (2007).

174437-8

https://doi.org/10.1007/BF00541800
https://doi.org/10.1143/JPSJ.18.356
https://doi.org/10.1016/j.jmmm.2004.08.001
https://doi.org/10.1103/PhysRevB.73.104403
http://arxiv.org/abs/arXiv:2305.14786
https://doi.org/10.1088/1367-2630/aba0e7
https://doi.org/10.1103/PhysRevLett.130.036702
http://arxiv.org/abs/arXiv:2305.03588
https://doi.org/10.1126/sciadv.aaz8809
https://doi.org/10.1103/PhysRevB.106.094432
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevX.12.040002
https://doi.org/10.1103/PhysRevB.107.L100418
http://www.cryst.ehu.es
https://doi.org/10.1103/PhysRevLett.68.1943
https://doi.org/10.1103/PhysRevLett.70.694
https://doi.org/10.1016/0921-4526(93)90119-Q
https://doi.org/10.1016/j.physrep.2005.01.003
https://doi.org/10.1107/S1574870722005390
https://doi.org/10.1107/S0567739480000472
https://doi.org/10.1107/S0567739482000114
https://doi.org/10.1016/S0368-2048(01)00307-3
https://doi.org/10.1103/PhysRevB.76.184420


TEMPLATES FOR MAGNETIC SYMMETRY AND … PHYSICAL REVIEW B 108, 174437 (2023)

[23] V. Scagnoli and S. W. Lovesey, Phys. Rev. B 79, 035111 (2009).
[24] L. Paolasini, de la Société Française de la Neutronique (SFN)

13, 03002 (2014).
[25] S. W. Lovesey, Theory of Neutron Scattering from Condensed

Matter (Clarendon Press, Oxford, 1987), Vol. 2.
[26] S. W. Lovesey, Phys. Scr. 90, 108011 (2015).
[27] A. T. Boothroyd, Principles of Neutron Scattering from Con-

densed Matter (Oxford University Press, Oxford, 2020).
[28] H. A. Alperin, P. J. Brown, R. Nathans, and S. J. Pickart, Phys.

Rev. Lett. 8, 237 (1962).
[29] P. J. Brown, Physica B 192, 14 (1993); International J. Mod.

Phys. B 7, 3029 (1993).
[30] R. M. Moon, T. Riste, and W. C. Koehler, Phys. Rev. 181, 920

(1969).

[31] P. Bourges, D. Bounoua, and Y. Sidis, C. R. Phys. 22, 1
(2021).

[32] P. A. McClarty and J. G. Rau, arXiv:2308.04484.
[33] R. D. Cowan, J. Opt. Soc. Am. 58, 808 (1968).
[34] D. Ma, A. Arora, G. Vignale, and J. C. W. Song, Phys. Rev.

Lett. 131, 076601 (2023).
[35] L.-D. Yuan, X. Zhang, C. M. Acosta, and A. Zunger, Nat.

Comm. 14, 5301 (2023).
[36] E. Emmanouilidou, H. Cao, P. Tang, X. Gui, C. Hu, B. Shen, J.

Wu, S.-C. Zhang, W. Xie, and N. Ni, Phys. Rev. B 96, 224405
(2017).

[37] MAGNDATA, http://webbdcrista1.ehu.es/magndata.
[38] T. Osumi et al., arXiv:2308.10117.
[39] S. W. Lovesey, Phys. Rev. B 107, 224410 (2023).

174437-9

https://doi.org/10.1103/PhysRevB.79.035111
https://doi.org/10.1088/0031-8949/90/10/108011
https://doi.org/10.1103/PhysRevLett.8.237
https://doi.org/10.1016/0921-4526(93)90104-E
https://doi.org/10.1142/S0217979293003140
https://doi.org/10.1103/PhysRev.181.920
http://arxiv.org/abs/arXiv:2308.04484
https://doi.org/10.1364/JOSA.58.000808
https://doi.org/10.1103/PhysRevLett.131.076601
https://doi.org/10.1038/s41467-023-40877-8
https://doi.org/10.1103/PhysRevB.96.224405
http://webbdcrista1.ehu.es/magndata
http://arxiv.org/abs/arXiv:2308.10117
https://doi.org/10.1103/PhysRevB.107.224410

