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We investigate the S = 1 antiferromagnetic quantum spin chain with the exchange and single-ion anisotropies
in a magnetic field, using numerical exact diagonalization of finite-size clusters, level spectroscopy analysis, and
the density matrix renormalization group (DMRG). We find that a translational symmetry broken magnetization
plateau possibly appears at the half of the saturation magnetization, when the anisotropies compete with each
other. The level spectroscopy analysis gives the phase diagram at half the saturation magnetization. The DMRG
calculation presents the magnetization curves for some typical parameters and clarifies the spin structure in the
plateau phase.
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I. INTRODUCTION

One-dimensional quantum spin systems have been attract-
ing increasing attention both experimentally and theoretically
in recent years [1]. Various kinds of phenomena that originate
from strong spin-spin interactions as well as strong quan-
tum fluctuations due to being in one dimension have been
found. Among these phenomena, the magnetization plateau
is one of most interesting phenomena because it is a macro-
scopic quantized phenomenon with a topological background
in many-body spin systems. In quantum spin chains, based on
the Lieb-Schultz-Mattis theorem [2], the rigorous necessary
condition for the appearance of the plateau was derived as [3]

Q(S − m̃) = integer, (1)

where S and m̃ are the total spin and the magnetization per
unit cell and Q is the periodicity of the ground state mea-
sured by the unit cell. The magnetization plateau for Q � 2
should be accompanied by spontaneous translational symme-
try breaking. The simple magnetization plateau for Q = 1
has been theoretically predicted or experimentally observed
in the following systems: the S = 3/2 and S = 2 anisotropic
antiferromagnetic chains [4,5], the S = 1/2 distorted diamond
chain [6–14], the S = 1/2 trimerized chain [15–19], the S =
1/2 tetramerized chain [20–23], the S = 1/2 two-leg ladder
[24–27], the S = 1/2 three-leg spin ladder and tube [28–32],
the S = 1/2 and S = 1 skewed systems [33,34], the mixed
spin chain [35–41], the p-leg ladder [28], and the polymerized
chain [42,43].

For the S = 1 chain case, when the unit cell is composed
of one S = 1 spin, the magnetization plateau at half of the
saturation is impossible with Q = 1 because Eq. (1) cannot
be satisfied with S = 1 and m̃ = 1/2. Thus, the unit cell
should be composed of two (more generally, an even number
of) S = 1 spins (namely, dimerization) for the realization of

this half plateau. In this case the parameter set S = 2 and
m̃ = 1 satisfies Eq. (1) with Q = 1. In fact, half magnetization
plateaus were experimentally observed in several S = 1 chain
materials with dimerization [44,45]. A phase diagram on the
plane of the dimerization parameter versus the magnetization
was numerically obtained by Yan et al. [46].

The translational symmetry broken plateau for Q � 2 also
was revealed to appear in the following systems: the S = 1/2
frustrated bond-alternating chain [47], the S = 1/2 zigzag
chain [48–50], the S = 1 frustrated chain [51], the S = 1/2
frustrated spin ladder [24–26,52–55], and the S = 1 frustrated
spin ladder [56–59]. In most cases, the mechanism of the Q �
2 plateau has been based on the frustration. Recently, a nu-
merical diagonalization study on the S = 2 antiferromagnetic
chain indicated that the competing anisotropies possibly yield
the Q = 2 plateau at half the saturation magnetization [60], as
well as the Q = 1 plateau. Thus, the competing anisotropies
are expected to give rise to the Q = 2 plateau, even without
frustration.

However, the half magnetization plateau of the S = 1 chain
without dimerization (namely, Q = 2, S = 1, and m̃ = 1/2)
has not been observed so far [45] as far as we know. Thus,
we think that it is important to clarify the condition for the
realization of the half plateau in S = 1 spin chains with Q = 2,
S = 1, and m̃ = 1/2.

Considering the above situation, in this paper we investi-
gate the S = 1 antiferromagnetic chain with XXZ coupling
and single-ion anisotropies competing with each other and
clarify the condition for the Q = 2 plateau at half the satu-
ration magnetization. This may reveal the reason why such
a plateau has not been experimentally observed, as well as
provide a guide for finding or synthesizing materials showing
such a plateau. Using numerical diagonalization of finite-size
clusters and level spectroscopy analysis, the phase diagram
at half the saturation magnetization is presented. In addition
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the density matrix renormalization group (DMRG) calcula-
tion indicates that the Q = 2 plateau actually appears on the
magnetization curve. We also show the phase diagram of the
magnetization process.

II. MODEL

We investigate the magnetization process of the S = 1
antiferromagnetic Heisenberg chain with the exchange and
single-ion anisotropies, denoted by λ and D, respectively. The
Hamiltonian is given by

H = H0 + HZ , (2)

H0 = ∑L
j=1

[
Sx

j S
x
j+1 + Sy

j S
y
j+1 + λSz

jS
z
j+1

] + D
∑L

j=1

(
Sz

j

)2
,

(3)

HZ = −H
L∑

j=1

Sz
j . (4)

The exchange interaction constant is set to be unity as the
unit of energy. For L-site systems, the lowest energy of H0 in
the subspace where

∑
j Sz

j = M is denoted as E (L, M ). The
reduced magnetization m is defined as m = M/Ms, where Ms

denotes the saturation of the magnetization, namely, Ms = L.
E (L, M ) is calculated by the Lanczos algorithm under the pe-
riodic boundary condition (SL+1 = S1). We consider the case
in which λ is Ising-like and D is XY -like, namely, λ > 1 and
D > 0. Thus, easy-axis λ and easy-plane D compete with each
other. If the magnetization plateau appears at m = 1/2, the
translational symmetry should be spontaneously broken, and
twofold degeneracy of the ground state should occur, namely,
Q = 2.

III. PHASE DIAGRAM AT m = 1/2

In this section using numerical diagonalization for finite-
size clusters, the phenomenological renormalization group,
and level spectroscopy analyses, we show that the magneti-
zation plateau appears at m = 1/2 for sufficiently large λ and
D and present the phase diagram at m = 1/2.

A. Phenomenological renormalization group

In order to confirm that the magnetization plateau really
appears at m = 1/2, we apply the phenomenological renor-
malization group [61] for the plateau width W , defined as

W = E (L, M − 1) + E (L, M + 1) − 2E (L, M ), (5)

where M = L/2. Since W should be proportional to 1/L in the
no-plateau case, the scaled width LW should be independent
of the system size L, while W should increase with L in the
presence of a plateau. Let us set D = 5.0 as an example.
With fixed D = 5.0, LW calculated for L = 10, 12, 14, and
16 is plotted versus λ in Fig. 1. Figure 1 shows that the
plateau obviously appears for sufficiently large λ. However, it
is difficult to determine the precise phase boundary with this
method.

Next, we apply the phenomenological renormalization
group analysis [61] for the excitation gap with momentum

FIG. 1. Scaled plateau width LW plotted versus λ for L = 10, 12,
14, and 16 in the case of D = 5.0.

k = π in the subspace m = 1/2, defined as �π . The size-
dependent fixed point λc(L + 1) is determined by the equation

L�π (L, λ) = (L + 2)�π (L + 2, λ). (6)

The scaled gaps L�π for D = 5.0 are plotted versus λ for L =
10, 12, 14, and 16 in Fig. 2. The size-dependent fixed points
λc(L) for L = 11, 13, and 15 are plotted versus 1/L for D =
5.0 in Fig. 3. The phase boundary in the thermodynamic limit
is estimated as λc = 2.50 ± 0.01. We repeat this procedure for
various fixed D or for fixed λ to estimate the phase boundary.
Actually, the phase boundary for D � 3.0 was obtained using
the fixed D method, while that for λ � 3.5 is estimated using
the λ method. The present result suggests that the translational
symmetry is spontaneously broken and the ground state has a
twofold degeneracy in the plateau phase. A Néel order like
| · · · 101010 · · · 〉 is expected to be realized. Thus, we call this
plateau the “Néel plateau.”

FIG. 2. Scaled gap L�π plotted versus λ for L = 10, 12, 14, and
16 in the case of D = 5.0.
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FIG. 3. Size-dependent fixed points λc(L) obtained using the
phenomenological renormalization group method for L = 11, 13,
and 15 are plotted versus 1/L for D = 5.0. The phase boundary in
the thermodynamic limit is estimated as λc = 2.50 ± 0.01.

B. Level spectroscopy

One of the more precise methods to determine the phase
boundary is level spectroscopy analysis [62,63]. Based on this
method, comparing the single magnon excitation gap �1 ≡
W/2 and �π , the gap �1 is smaller in the no-plateau phase,
while �π is smaller in the plateau phase. Thus, �1 = �π

gives the size-dependent phase boundary. �1 and �π for
D = 5.0 are plotted versus λ for L = 12, 14, and 16 in Fig. 4.
Figure 4 shows the L dependence is quite small, and the
size correction is predicted to be proportional to 1/L2. The
extrapolation of λc to the thermodynamic limit gives λc =
2.401 ± 0.001, as shown in Fig. 5. Although there is a small
discrepancy in the extrapolated phase boundary between the
phenomenological renormalization and the level spectroscopy
because of a finite-size effect, the latter method is expected to
be more precise because it is based on the essential nature
of the Berezinskii-Kosterlitz-Thouless transition [1,62–66].
Namely, the lowest-order contributions of the logarithmic size

FIG. 4. �1 and �π for D = 5.0 are plotted versus λ for L = 12,
14, and 16.

FIG. 5. The extrapolation of λc to the thermodynamic limit,
assuming the size correction is proportional to 1/L2, gives λc =
2.401 ± 0.001.

corrections each other out in the level spectroscopy method
[62,63].

C. Magnetization jump

Apart from the no-plateau and magnetization plateau
phases, there is a parameter region where the m = 1/2 mag-
netization is not realized due to the magnetization jump, like
the spin flop transition. A typical case for the “missing” region
can be seen in the magnetization curve for λ = 8.0 and D =
0.0 in Fig. 8 below. There is a magnetization jump from about
m = 0.04 to m = 0.55, which means that the m = 1/2 situa-
tion is not realized in this curve. If the m = 1/2 magnetization
is included in the magnetization jump, we say that the system
is in the missing region. The boundary of the missing region
Dm for λ = 8.0 is plotted versus 1/L in Fig. 6. Assuming the
size correction is proportional to 1/L, Dm in the infinite-length

FIG. 6. The boundary of the missing region Dm for λ = 8.0 is
plotted versus 1/L. Assuming the size correction is proportional to
1/L, Dm in the infinite-length limit is estimated as Dm = 1.64 ±
0.01.
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FIG. 7. Phase diagram at m = 1/2 for the present model. The no-
plateau and Néel plateau phases are shown, along with the missing
region, which is surrounded by green triangles.

limit is estimated as Dm = 1.64 ± 0.01. The boundary of the
missing region is determined with this method.

D. Phase diagram

We present the phase diagram at half the saturation mag-
netization with respect to the easy-axis coupling anisotropy λ

and the easy-plane single-ion one D in Fig. 7. It consists of the
no-plateau and Néel plateau phases and the missing region,
which is surrounded by green triangles. In the Néel plateau
phase the translational symmetry is spontaneously broken,
and Q = 2 is realized.

IV. MAGNETIZATION CURVES

In order to confirm that the 1/2 magnetization plateau
actually appears, we performed a DMRG calculation with
L = 100 to obtain the magnetization curves in the ground
state. The calculated magnetization curves for (λ, D) =
(4.0, 4.0), (5.0, 3.0), (6.0, 2.0), (7.0, 1.0), and (8.0, 0.0) are
shown in Fig. 8 by black circles, red squares, green pluses,
blue crosses, and brown stars, respectively. The curves for
(5.0, 3.0) and (6.0, 2.0) in the plateau phase obviously exhibit
the 1/2 magnetization plateau. On the curve for (8.0, 0.0) the
m = 1/2 state is skipped due to the magnetization jump. For
the case with (7.0,1.0) the m = 1/2 state is realized, although
there is a magnetization jump.

The magnetization curves using the DMRG method
for (λ, D) = (4.0, 4.0), (3.0, 5.0), (2.0, 6.0), (1.0, 7.0), and
(0.0, 8.0) are shown in Fig. 9 by black circles, red squares,
green pluses, blue crosses, and brown stars, respectively. The
curves for (0.0, 8.0), (1.0, 7.0), and (2.0, 6.0) in the no-
plateau phase have no plateau, while the ones for (3.0, 5.0)
and (4.0, 4.0) in the plateau phase exhibit the 1/2 plateau.
These magnetization curves are all consistent with the phase
diagram in Fig. 7.

The saturation field Hs can be calculated from the en-
ergy difference between the energy of the ferromagnetic state
and that of the one-spin-down state of the Hamiltonian (2).

FIG. 8. The magnetization curves calculated by DMRG for
(λ, D) = (4.0, 4.0), (5.0, 3.0), (6.0, 2.0), (7.0, 1.0), and (8.0, 0.0)
are shown by black circles, red squares, green pluses, blue crosses,
and brown stars, respectively.

A simple calculation leads to

Hs = 2λ + D + 2. (7)

All the magnetization curves in Figs. 8 and 9 were calculated
under the condition λ + D = 8, which leads to

Hs = λ + 10. (8)

This well explains all Hs in Figs. 8 and 9.

V. SPIN STRUCTURE

In order to investigate the spin structure at the 1/2 mag-
netization plateau, we calculated the magnetization at each
site using the DMRG. The site magnetization 〈Sz

j〉 at m =
1/2 for (λ, D) = (4.0, 4.0) in the plateau phase is shown in
Fig. 10. Figure 10 illustrates that the translational symmetry is

FIG. 9. The magnetization curves calculated by DMRG for
(λ, D) = (4.0, 4.0), (3.0, 5.0), (2.0, 6.0), (1.0, 7.0), and (0.0, 8.0)
are shown by black circles, red squares, green pluses, blue crosses,
and brown stars, respectively.
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FIG. 10. Site magnetization 〈Sz
j〉 for (λ, D) = (4.0, 4.0) in the

Néel plateau phase by DMRG with L = 100. We can see the Néel-
type structure | · · · 101010 · · · 〉.

spontaneously broken and the periodicity Q = 2 is realized.
This is consistent with the physical picture of the Néel plateau.

VI. EFFECTIVE THEORY

Let us start with the isolated spin limit to construct an
effective theory. For the case of m = 1/2, the |Sz = 0〉 state
and the |Sz = 1〉 state have the same energies, which are
lower than the energy of the |Sz = −1〉 state by 2D. We can
construct an effective theory by picking only the |Sz = 0〉 state
and the |Sz = 1〉 state when D is sufficiently larger than the
interactions, namely,

D � λ. (9)

We introduce the pseudospin operator T with T = 1/2, where
|T z = 1/2〉 and |T z = −1/2〉 represent |Sz = 1〉 and |Sz = 0〉,
respectively. In this restricted basis, we see

Sz = T z + 1

2
, S± =

√
2T ±. (10)

Therefore, we obtain the effective Hamiltonian:

Heff =
L∑

j=1

{
2
(
T x

j T x
j+1 + T y

j T y
j+1

) + λT z
j T z

j+1

}

+ (λ + D − H )
L∑

j=1

T z
j + L

λ + D + H

4
. (11)

The condition
∑

j T z
j = 0 corresponds to m = 1/2 of the orig-

inal model. From the exact solution [1], the ground state of
Heff for

∑
j T z

j = 0 is either the Tomonaga-Luttinger liquid
state [1] (no plateau in the original model) or the Néel state
(plateau with the Néel mechanism in the original model),
depending on whether λ � 2 or λ > 2. We note that there is a
factor of 2 in front of T x

j T x
j+1 + T y

j T y
j+1 in Eq. (11). Thus, the

behavior of the boundary between the plateau and no-plateau
phases λ → 2 as D → ∞ in Fig. 7 is well explained. The
magnetic field H1/2 corresponding to m = 1/2 can be obtained

from the condition that the effective field for the T system is
zero, namely, λ + D − H1/2 = 0, resulting in

H1/2 = λ + D. (12)

For the magnetization curves in Figs. 8 and 9, we set λ + D =
8. Then DMRG results H1/2 	 8 for all the curves in Fig. 9
are also well explained by this effective theory. For the mag-
netization curves in Fig. 8, this effective theory does not hold
because Eq. (9) is not satisfied.

In the phase diagram in Fig. 7, we see two features in the
λ → ∞ limit. (i) The first is that the plateau-no-plateau line
and the missing boundary line are going to merge, and (ii) the
second is that the critical value of D tends to Dc 	 2. Liu et al.
[67] investigated the phase diagram of the S = 1 Ising chain

H =
L∑

j=1

Sz
jS

z
j+1 + D0

L∑

j=1

(
Sz

j

)2 − H
L∑

j=1

Sz
j (13)

to obtain the phase diagram on the D0-H plane. Feature (i) is
consistent with the phase diagram of Liu et al., but feature (ii)
cannot be explained by it since the transverse coupling is not
included their Hamiltonian (13).

VII. PHASE DIAGRAM OF THE
MAGNETIZATION PROCESS

In order to consider some realistic experiments, it would
be useful to obtain the phase diagram of the magnetization
process summarizing the spin structure. In the gapless phase
of the magnetization process, the system is expected to be in
the Tomonaga-Luttinger liquid phase. It is characterized by
the power-law decay of the spin correlation functions, which
have the asymptotic forms

〈
Sz

0Sz
r

〉 − m2 ∼ cos(2kFr)r−ηz , (14)

〈
Sx

0Sx
r

〉 ∼ (−1)rr−ηx (15)

in the infinite-r limit. 2kF is π (1 − m) in the present model.
The first equation corresponds to the spin density wave (SDW)
spin correlation parallel to the external field, and the second
one corresponds to the Néel-like spin correlation perpen-
dicular to the external field. The smaller exponent between
ηz and ηx determines the dominant spin correlation. In the
conventional magnetization process the canted Néel-like spin
correlation is dominant, namely, ηx < ηz. However, in some
frustrated systems the magnetization region where ηz < ηx

is realized appears, and the incommensurate spin correlation
parallel to the external field is dominant there [68]. Then we
consider the possibility of a similar interesting behavior in the
present model. According to the conformal field theory, these
exponents can be estimated by [69]

ηx = E (L, M + 1) + E (L, M − 1) − 2E (L, M )

Ek1 (L, M ) − E (L, M )
, (16)

ηz = 2
E2kF (L, M ) − E (L, M )

Ek1 (L, M ) − E (L, M )
(17)

for each magnetization M, where k1 is defined as
k1 = L/2π . Since the relation ηxηz = 1 is satisfied in the
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FIG. 11. Exponent ηx estimated by the numerical exact diago-
nalization of the 16-spin system for λ = 4.0 plotted versus m for
D = 0.0 (black circles), 1.0 (red squares), 2.0 (green diamonds), 3.0
(blue triangles), 4.0 (brown crosses), 5.0 (violet pluses), and 6.0 (pink
stars).

Tomonaga-Luttinger liquid phase, we have to calculate only
one of these two exponents to determine the dominant spin
correlation. We estimate the exponent ηx here because the
calculation of ηz meets the larger finite-size correlation due to
the incommensurate correlation expressed by the cosine factor
in Eq. (15). The estimated exponent ηx from the numerical
exact diagonalization for L = 16 and λ = 4.0 is plotted versus
the magnetization m for several values of D in Fig. 11. In
the case of D � 3.0, the magnetization region where ηx is
larger than 1 appears around m ∼ 1/2. This indicates that the z
component dominant Tomonaga-Luttinger liquid phase takes
place. Using the numerical exact diagonalization for L = 16,
ηx can be calculated for M = 1, 2, . . . , 15. Then we estimate
the crossover line ηx = 1, linearly interpolating the calculated
values of ηx at M and M + 1 between which ηx = 1 would
occur. In addition, we estimate the critical point Dc where
the magnetization jump begins at each M using the numerical
exact diagonalization for L = 16. The estimated crossover
line between the z component dominant Tomonaga-Luttinger
liquid (zTLL) phase and the xy component dominant one
(xyTLL) and the critical line of the magnetization jump are
shown in the D and magnetization phase diagram for λ = 4.0
in Fig. 12. In order to confirm whether the crossover line
really exists even in the thermodynamic limit, we also calcu-
late 〈Sx

j S
x
j+r〉 for the central region of an L = 100 chain with

DMRG and then estimate the exponent of its power-law decay
for r = 1–30. The crossover lines estimated by the numerical
exact diagonalization and by the DMRG are shown as blue
crosses and blue circles, respectively, in Fig. 12. They are con-
sistent with each other, which suggests that the zTLL phase
is realized even in the infinite-length limit. In conclusion, it
is found that the present competing anisotropies give rise to
the 1/2 translational symmetry broken magnetization plateau
and the incommensurate parallel spin correlation dominant
Tomonaga-Luttinger liquid (zTLL) phase around the plateau.
Even for different λ, qualitatively similar phase diagrams
would be obtained.

FIG. 12. Phase diagram with respect to the anisotropy D and
the magnetization m. The crossover lines between the incommen-
surate parallel spin correlation dominant Tomonaga-Luttinger liquid
(zTLL) phase and the Néel-like perpendicular correlation dominant
one (xyTLL) are estimated using the numerical exact diagonalization
(ED; blue crosses) and the DMRG (blue circles). The phase boundary
of the missing region that results from the magnetization jump is
estimated using numerical exact diagonalization for L = 16 (green
circles). The Néel plateau is realized just on the red line.

VIII. SUMMARY

The magnetization process of the S = 1 antiferromag-
netic chain with easy-axis coupling anisotropy and easy-plane
single-ion anisotropy was investigated using numerical diag-
onalization for finite-size clusters and DMRG calculations.
It was found that the translational symmetry broken magne-
tization plateau appears at half the saturation magnetization
for very large anisotropies (both of λ and D). This explains
why this plateau has not yet been found in the S = 1 chain
compounds without dimerization [45]. Several typical magne-
tization curves were also presented. Thus, the effective theory
constructed for D � λ well explains the numerical results in
Fig. 7. Nevertheless, an effective theory for the D � λ case
and the magnetization jump is a future problem. In addition, it
was shown that the unconventional incommensurate parallel
spin correlation dominant (ηx > ηz) Tomonaga-Luttinger liq-
uid phase also appears around the 1/2 plateau as in Fig. 12.
This situation is very natural because the condition for the
realization [1] of the Néel state (| · · · 101010 · · · 〉) is both
ηx > ηz and the commensurability, which is satisfied only at
m = 1/2.

In a previous work [60] we investigated the half-plateau
problem of a similar model but with S = 2 to obtain the phase
diagram, which was much richer than Fig. 7 in this paper. In
fact, the Haldane plateau phase and the large-D plateau phase
appeared in the S = 2 case. This is because the half plateau
is possible without spontaneous breaking of the translational
symmetry for the S = 2 case. Namely, the condition (1) can
be satisfied by Q = 1, S = 2, and m̃ = 1 (note that m̃ = 1 for
the half plateau of the S = 2 chain).

From the experimental point of view, one can usually ex-
pect a weak interchain interaction, which may induce the spin
order corresponding to the most dominant correlation at a low,
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but finite, temperature. The phase diagram in Fig. 12 sug-
gests that the incommensurate-SDW order associated with the
zTLL can be realized around the m = 1/2 plateau in the broad
parameter region. Thus, such an enhancement of the SDW
order could be a signature of the m = 1/2 plateau due to the
Néel-type mechanism, even if the width of the plateau is very
narrow. We believe that the phase diagrams in Figs. 7 and 12
will be a powerful guideline for searching for or synthesizing
quasi-one-dimensional materials with S = 1 which exhibit the
half plateau without dimerization.
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