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Magnetic properties of 4 f adatoms on graphene: Density functional theory investigations
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Rare-earth atoms on top of 2D materials represent an interesting platform with the prospect of tailoring the
magnetic anisotropy for practical applications. Here, we investigate the ground state and magnetic properties of
selected 4 f atoms deposited on a graphene substrate in the framework of the DFT + U approach. The inherent
strong spin-orbit interaction in conjunction with crystal field effects acting on the localized 4 f shells results
in a substantial magnetic anisotropy energy (tens of meVs), whose angular dependence is dictated by the C6v

symmetry of the graphene substrate. We obtain the crystal-field parameters and investigate spin-flip events via
quantum tunneling of magnetization in the view of achieving a protected quantum-spin behavior. Remarkably,
the large spin and orbital moments of the open 4 f shells (Dy, Ho, and Tm) generate a strong magnetoelastic
coupling which provides more flexibility to control the magnetic state via the application of external strain.

DOI: 10.1103/PhysRevB.108.174431

I. INTRODUCTION

Graphene (Gr) was the first 2D material to be discovered
and stimulated interest at the technological and fundamental
research levels. A multitude of fascinating electronic phenom-
ena can be tailored in different 2D materials by tuning the
chemical composition and structural properties [1–6]. The ex-
perimental realization of these nanostructured systems might
lead to the next generation of efficient spintronics devices [7].
In this material class, magnetic rare-earth (R) atoms deposited
on surfaces represent a promising pathway to achieve mag-
netic remanence and hence design stable memory devices.
The R localized 4 f electrons carry large spin and orbital
moments, generating strong spin-orbit coupling (SOC) effects
[8] and magnetocrystalline anisotropy, which, combined with
a relatively low magnetic damping [9] results in stable nano-
metric scale magnets. More exotic magnetic phenomena can
be generated and controlled when these R atoms are deposited
on 2D materials.

Also, at the experimental level, single-ion magnets de-
posited on top of 2D-material substrates are under scrutiny.
These might serve as building blocks for quantum computer
“qubits,” where the central desired property is a long coher-
ence time, which translates into a large magnetic anisotropy in
conjunction with a low damping of the magnetic excitations,
thus reducing the quantum fluctuation [10,11]. This raises
the prospect of employing the 4 f elements as a quantistic
information carrier [12,13], since the magnetic unit emerges
from strongly localized 4 f electrons, well separated from the
surrounding itinerant spd-electron cloud. In fact, the chem-
ical and magnetic interactions of R atoms on 2D materials,
and how to exploit the protection of R atoms from quantum
tunneling of magnetization, are currently attracting a lot of
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attention [14–19]. Specifically, combining scanning tunneling
microscopy with x-ray magnetic circular dichroism (XMCD)
measurements allows for the determination of adsorption,
chemical diffusion, and orbital occupation characteristics of
individual R atoms on the 2D material. By recording the
XMCD signal while varying the external magnetic field, it
is possible to reveal magnetic hysteresis, shedding light on
magnetic anisotropy properties. These properties are further
analyzed using multiplet calculations to assess magnetic sta-
bility from a quantum perspective [20–26].

For practical applications, tailoring the magnetic
anisotropy is a fundamental aspect. For instance, Herman
et al. [27] investigated the possibility of modifying the
magnetic anisotropy of a Dy/Ir surface alloy by a lifting
skyhook effect of the Dy atoms from the Ir surface when
brought in contact with a graphene sheet. Here, the f d
hybridization of the Dy electrons generates long tails of the
charge distribution that overlap with the Ir(111) orbitals.
When graphene is deposited on top of Dy/Ir(111), the f d
states of Dy also hybridize with the π orbitals arising from the
carbon structure, and this interaction results in an increased
separation of the Dy atoms from the Ir(111) surface due to
the Dy-Gr interaction. This effect leads to a redistribution of
the charge density that enhances the magnetic anisotropy.

Concerning single R atoms on surfaces, a graphene sheet
is often introduced as a decoupling layer between a metallic
or insulating surface and the R atoms to decouple the mag-
netic source from any possible scattering events, for example,
of conduction electrons or phonons. In addition, graphene
presents a C6v symmetry which can be exploited to tune the
quantum states of the R atom to achieve further stabilization
of the magnetization, since the respective hexagonal crystal
field (CF) removes the degeneracy of the magnetic states in
a free atom and thus can generate an energy dispersion that
is protected against magnetization reversal. This magnetic
stabilization strictly depends on the properties of the chosen R
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atom, i.e., its orbital and spin angular momentum, which are
coupled by the SOC that determines the number and nature of
magnetic states interacting with the CF.

Recently, several theoretical investigations have been
carried out. From this perspective, the presence of strongly lo-
calized 4 f orbitals enhances the complexity of first-principles
approaches, since common approximations to describe the
exchange and correlation energy such as local density ap-
proximations (LDAs) fail to provide an accurate description.
To properly account for the strong Coulomb effects in the
4 f atoms, methods going beyond the standard approxima-
tions to density functional theory (DFT), including strongly
correlated electron methods such as the Hubbard-I approxi-
mation [28–31] or dynamical mean-field theory [32], are often
adopted. A simpler alternative for the treatment of 4 f elec-
trons is the LDA + U approach [33], which incorporates the
local Coulomb repulsion in the form of a Hubbard correction
in addition to the LDA exchange-correlation.

In the present paper, we perform an analysis of magnetic
properties of three heavy R atoms, namely Dy, Ho, and Tm.
The choice of these candidates is motivated by preceding
experimental investigations [15,17,20,23–25]. Using a super-
cell approach, we determine the electronic structure of these
4 f atoms deposited on a free-standing graphene sheet. We
employ the GGA + U method parameterized following the
formulation of Ref. [34]. The magnetic anisotropy constants
are determined by fitting the total energy for different mag-
netization orientations relative to the crystal lattice. We then
propose an analytical method which permits us to reverse en-
gineer the crystal field parameters (CFPs) from the anisotropy
constants. The calculated CFPs are employed to construct the
C6v CF matrix for each R atom, which is diagonalized to ob-
tain the Jz multiplet spectrum of the R/Gr complexes. We then
examine the magnetoelastic coupling in terms of magnetic
anisotropy constants by simulating an external stress acting
on the samples with magnetizations aligned along different
orientations and determine the frequency of the respective
vibrational mode. Finally, we underline the importance of an
accurate theoretical description of the 4 f electrons by analyz-
ing deviations of the magnetic anisotropy following different
orbital occupations in the 4 f shell.

II. STRUCTURAL AND ELECTRONIC PROPERTIES

A. Computational details

The presented results are obtained using DFT as imple-
mented within the full-potential-linearized augmented plane
wave (FLAPW) method using the FLEUR code [35,36]. All
the simulations have been performed in a

√
3 × √

3 supercell
containing one magnetic atom and six carbon (C) atoms (see
Fig. 1), with lattice constant equal to the experimental value
of 2.46 Å, respectively, multiplied by

√
3. The selection of the

simulation cell is guided by both experimental and theoretical
findings, as documented in Refs. [37,38]. These suggest that
Eu atoms, which share chemical characteristics with other R
elements lacking an external 5d electron in the valence shell,
tend to form a

√
3 × √

3 superstructure on graphene. After the
investigation of the magnetoelastic properties of the R atoms
in this unit cell, in Sec. VII we will revisit a discussion on the

FIG. 1.
√

3 × √
3 supercell including six carbon atoms (gray

spheres). The three possible adsorption sites of the rare-earth atom
on graphene are depicted with red circles named H, T, and B,
respectively.

choice of the supercell with respect to the obtained magnetic
anisotropy properties.

The SOC was incorporated self-consistently adopting the
second variation [39] formulation on a 20 × 20 k-point mesh
and a cutoff for the plane-wave basis functions of Kmax =
4.5 a−1

0 and Gmax = 13.5 a−1
0 (a0 being the Bohr radius). The

muffin-tin radii have been set to 2.80 a0 for the R atoms
and 1.27 a0 for the C atoms. The upper limit of the angular
momentum inside the muffin tin is set to lmax = 10 for the R
atom and lmax = 6 for C. The exchange-correlation potential
is taken in the generalized gradient approximation (GGA)
following the parametrization PBE [40]. For the R’s correlated
4 f orbitals, a Hubbard correction is applied, both Coulomb U
and intratomic exchange interaction J are included, and the
double counting is taken in the fully localized limit [34].

We consider three heavy R prototypes, namely, Dy, Ho,
and Tm. The values of the DFT + U parameters are set to
U = 7.0, 7.03, 7.1 eV and J = 0.87, 0.83, 0.86 eV, re-
spectively. These parameters are chosen following Ref. [29]
for Ho and Ref. [30] for Dy. The values for Tm are chosen
according to the interpolation formula given in Ref. [41].
Moreover, the values of U ∼ 7 eV are also chosen on the basis
of the work conducted in Ref. [42], where it is shown that
it is able to accurately reproduce the electronic and cohesive
properties of R bulk systems. We study a situation in which
the electrons of the magnetic atoms relax into 4 f occupations
that reflect Hund’s rules, i.e., total angular momentum J = 8
for Dy, J = 15/2 for Ho and J = 7/2 for Tm. For these
systems on graphene, we assume that Hund’s rule dominates
over the graphene CF, and therefore an occupation control in
combination with the LDA + U approach [43,44] is not fur-
ther pursued. We note, however, that a deeper analysis shows
that for Dy/Gr a solution deviating from Hund’s rules with a
total angular momentum of J = 7 is found to be energetically
more favorable. We present a detailed analysis of this state in
Sec. VI.

B. Structural details

To identify the lowest energy adsorption site, three possible
positions are taken into account: the hollow site (H) at the
center of the hexagonal ring, on top of a C atom (T), and in the
middle of a C–C bonding (B). These positions are illustrated
in Fig. 1 and the respective adsorption energies (in eV) are
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TABLE I. Adsorption energies (eV), for the different rare-earth
atoms on graphene for each considered adsorption site. The calcula-
tions have been performed including SOC self-consistently following
the formulation in Eq. (1).

Site Dy Ho Tm

H −0.545 −0.476 −0.399
T −0.074 −0.339 −0.280
B −0.086 −0.344 −0.286

summarized in Table I. The adsorption energies have been
obtained considering the total energy difference between the
total interacting system and the individual components as

Eads = ER/Gr − ER − EGr (1)

to capture the energy involved in the formation of the com-
plex, compared to the energy of the sum of the isolated R
atom and graphene monolayer. In Eq. (1) ER/Gr is the total
energy of the R/Gr complex, while ER and EGr correspond
to the total energy of the isolated R atom and graphene
monolayer, respectively. The results show that for all three
R atoms, the H site is energetically the most favorable, in
agreement with several other theoretical and experimental
studies [15,16,20,24,25,45], and the adatoms on graphene are
described by the point group C6v . The bonding strengths ap-
pear to be reduced on the T and B sites for Ho and Tm, and
negligible for Dy.

In the following, we focus on the H site and perform
structural relaxations allowing the 4 f atom to adjust its height
along the c axis (z direction with respect to the graphene) until
reaching minimization of total energy and forces acting on the
R atom, with the SOC included self-consistently. The obtained
ground-state properties including the f and d occupations,
spin, and orbital moments are provided in Table II.

C. Electronic properties

The 5d and 4 f occupations shown in Table II clearly show
that R atoms undergo a semi-atomic-like behavior, where the
4 f shell follows Hund’s rules while acquiring some d oc-
cupation. This semi-atomic picture can be visualized in the
spin-resolved density of states (DOS) shown in Figs. 2(a)–
2(c), where the f occupation is shown in red and the d
occupation in blue. The DOS of the pristine graphene is given
in Fig. 2(d) and is compared to the doped graphene DOS. We
only show Ho/Gr as it looks identical for the Dy and Tm

TABLE II. Perpendicular distance from the graphene monolayer
(Å), d and f occupation, magnetic moment and orbital moment (μB)
of the rare-earths atoms on graphene in the H site. Calculations have
been performed in presence of SOC.

Rare Distance
earth d0 (Å) docc focc mR

s (μB) mR
l (μB) mtot

s (μB)

Dy 2.49 0.262 9.891 4.040 5.876 4.174
Ho 2.50 0.250 10.881 3.045 5.905 3.150
Tm 2.47 0.237 12.867 1.027 3.000 1.072

impurities. Figure 2(d) shows that the R/Gr systems exhibit
a metallic behavior due to the n doping coming from the
lanthanide impurities. The magnitude of the doping can be
estimated from the energy difference between the pristine
graphene and the doped one, which is of the order of 1.4 eV, in
agreement with the charge transfer calculations carried out in
Ref. [46]. This charge transfer is driven by the hybridization
between the graphene pz orbitals and the magnetic atom’s d
orbitals.

A clear correlation between the adsorption energies in the
H site and the d occupation appears with Dy having the
highest d occupation (Table II) and showing also the strongest
bonding towards the substrate (Table I). Moreover, we observe
that the small bonding energy at the T and B sites discussed
previously is reflected in a low d occupation of the R atoms,
indicating the major role played by the d electrons in the
chemical bonding. The LDOS of the 4 f atoms, depicted in
Figs. 2(a)–2(c), shows that the f states are hybridized and
spread over a large energy window. These states exhibit an
insulating character featuring a gap between the occupied and
unoccupied states, with the occupied states lying close to the
Fermi energy.

D. Magnetic moments

The orbital (mR
l ) and spin (mR

s ) moments of the R’s pro-
vided in Table II closely follow Hund’s rules. Nonetheless,
the mR

s values are slightly higher than the R2+ ionic atom
case due to the spin polarization of d occupation via an intra-
atomic f − d exchange interaction. This d spin polarization
is about 0.04 μB for Dy, 0.03 μB for Ho, and 0.01 μB for
Tm, respectively. This decay reflects the decreasing value of
mR

s from Dy to Tm. The muffin-tin C spin polarization has a
very small induced moment of ∼0.001 μB. The total magnetic
moment of the system mtot

s is naturally dictated by the 4 f ,
which is inversely proportional to the f occupation for late-
series R’s as shown in Table II. The interstitial region of the
structure (space between the atoms) is mostly represented by
the delocalized π orbitals of graphene and d electrons of the
R atom. These π and d electrons carry a small spin moment
�m = mtot

s − mR
s induced by the presence of the R atom. The

induced magnetization is proportional to the R’s atom spin
moment and is given by 0.125 μB for Dy/Gr, 0.094 μB for
Ho/Gr, and 0.036 μB for Tm/Gr.

III. MAGNETIC ANISOTROPY AND CRYSTAL
FIELD COEFFICIENTS

The adsorption of an atom on a surface leads to physical
properties that drastically differ from the isolated atom. As
the R atoms are in contact with the surface, they experience
the electric field produced by the surrounding atomic charges.
This CF [47] results in a lowering of the symmetry of the
spherical potential in an isolated atom. The form of this field
is dictated by the lattice symmetry and local chemical envi-
ronment and determines the angular dependence of the total
energy upon rotation of the magnetization, i.e., the magnetic
anisotropy. The conventional anisotropy energy functional de-
scribing the angular dependence of the magnetic anisotropy
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FIG. 2. Spin-polarized density of states of the d (blue) and f (red) electrons of (a) Dy, (b) Ho, and (c) Tm, on top of graphene. The upper
half of the plots display the majority states, while the lower panel is relative to the minority states. The value E − EF = 0 corresponds to the
Fermi energy. (d) DOS of n-doped graphene (shown is the contribution of the carbon atoms) in the Ho/Gr system (red) and DOS of bare
graphene (grey). All calculations where performed including SOC self-consistently.

energy for a hexagonal system reads [48]

Ean = K1 sin2 θ + K2 sin4 θ + K3 sin6 θ

+ K4 sin6 θ cos 6ϕ.
(2)

Ki are the magnetic anisotropy constants, θ is the polar angle
between the magnetization and z axis, while ϕ is the azimuthal
angle between the magnetization and the x axis. In the fol-
lowing, we compute the anisotropy constants Ki by fitting
the changes in the total energy upon rotation of the magnetic
moment relative to the crystal lattice. The results are given in
Fig. 3 and are obtained self-consistently with DFT + U and
SOC as discussed in Sec. II. The dotted data represent the
ab initio results which are then fitted with the continuous lines
using Eq. (2).

Figure 3(a) displays the total energy change within the
(xz) plane by steps of 10◦. An alternative visualization of
the out-of-plane curves in terms of a polar plot is given in
panel (b). Figure 3(c) displays the basal anisotropy within the
graphene plane with an azimuthal rotation angle ϕ away from
the x axis. The fitted values of Ki are summarized in Table III
for the investigated systems. The lowest order constants are
an order of magnitude bigger than the third one. The in-plane
constants K4 are again one order of magnitude weaker than K3

with the exception of Tm. In all three systems, the magnetic
anisotropy energy is dominated by the K1 and K2 constants
and deviates from sin2 θ , indicating the crucial role of higher
order anisotropies in an open 4 f shell.

The green curve in Fig. 3 shows the anisotropy energy
for Dy/Gr, for which an in-plane easy axis is obtained (θ =
90◦, ϕ = 0◦). The energy difference between the easy and the
z axis is �E � 2 meV, while the energy barrier to overcome
to switch the magnetization is about 5.3 meV. Ho/Gr (blue
curve) has an intermediate easy axis with the configuration
(θ = 42.67◦, ϕ = 30◦), indicating a canted magnetization
with respect to the graphene sheet. The positive sign of K4

leads to a nonzero basal angle ϕ = 30◦ for the minimal
energy.

In Tm/Gr (red curve), the magnetic anisotropy curve is
qualitatively similar to Ho/Gr with lower energy barriers and
the ground state corresponds to a tilted magnetic configu-
ration (θ = 39.08◦, ϕ = 0◦). The direction of the easy axis
for each system can be explained by examining the values
Ki. The overall shape of the energy curves can be derived
by calculating the second derivative of Eq. (2), neglecting
K3 and K4 and considering sin2 θ = −K1/2K2, which leads
to ∂2Ean

∂θ2 = −2K1( 2K2+K1
K2

). For all the R/Gr systems, the term
in parenthesis is positive and thus the behavior is fully deter-
mined by K1, giving rise to an energy valley if K1 < 0 or an
energy hill if K1 > 0. Computing ∂2Ean

∂θ2 for θ = 0◦, 90◦ permits
us to determine the behavior at the extrema. For systems with
K1 > 0, such as Dy/Gr, the curve at θ = 0 exhibits a convex
trend, whereas for Ho/Gr and Tm/Gr, with K1 < 0, the curve
shows a concave shape. Similarly, the curvature at θ = 90◦ is
governed by ∂2Ean

∂θ2 |θ=90◦ = −2K1 − 4K2, producing a concave
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FIG. 3. (a) Out-of-plane θ = 0◦ to in-plane θ = 90◦ magnetic anisotropy energy curves for Dy (green), Ho (blue), and Tm (red) on
graphene: the total energy is plotted as function of the polar angle. (b) Alternative representation of the DFT + U data in a polar plot for
the computed systems. (c) In-plane magnetic anisotropy energy curves for Dy, Ho, and Tm on graphene: the total energy is plotted as function
of the azimuthal angle ϕ. Full dots indicate the DFT + U data, while the full lines display the fitting curves.

trend for Ho/Gr and Tm/Gr and a convex shape for Dy/Gr.
The in-plane curves in Fig. 3(c) reflect the in-plane sixfold
(C6v) symmetry. The functional form of the energy is therefore
∝ cos 6ϕ. The amplitude of the oscillation is highest for Dy,
followed by Ho and Tm in accordance with the values of K4

given in Table III.
Nevertheless, the classical formulation described above

does not take into account effects at the quantum level
that favor magnetization reversal, thus we proceed with a
quantum-mechanical description. The CF indeed splits the
(2J + 1)-fold degeneracy of an isolated atom into sublevels
[8]. For the adatoms, the actual form of the CF Hamiltonian
depends on the specific point group of the adsorption site.
Focusing on the H site of graphene which has a C6v symmetry,
the CF Hamiltonian reads [49,50]

ĤCF = C0
2 Ô0

2 + C0
4 Ô0

4 + C0
6 Ô0

6 + C6
6 Ô6

6, (3)

where Cm
l are the CFP, and the Ôm

l are the Stevens operators
[8,47] given in Appendix A. l and m represent the angular and
magnetic quantum numbers, respectively, which arise from
the formulation of the CF potential in terms of spherical
harmonics. These spherical harmonics are then converted in
Stevens operators adopting the Stevens operator-equivalent
method [51]. The operators of Eq. (3) act on the atomic Jz

eigenstates, removing their degeneracy and mixing the differ-
ent magnetic states. The first three terms contain powers of J
and Jz which split the Jz states generating a specific energy
landscape of the quantum levels depending on the CFP mag-
nitude and determine the difference between the highest and
lowest states, i.e., the energy barrier to overcome to reverse

TABLE III. Magnetic anisotropy constants obtained via fitting of
DFT +U data depicted in Fig. 3 for Dy, Ho, and Tm on graphene.
Units are in meV.

R/Gr K1 K2 K3 K4

Dy/Gr 15.355 −18.918 1.536 −0.441
Ho/Gr −27.734 32.218 −2.591 0.360
Tm/Gr −13.285 16.720 0.146 −0.158

the magnetization. The last term in Eq. (3) contains the ladder
operators Ĵ± = Ĵx ± iĴy in the form Ô6

6 = 1/2(Ĵ6
+ + Ĵ6

−),
which mixes the Jz states differing by �Jz = ±6,±12, and
can thus possibly generate tunnel-split doublets (symmetric
and antisymmetric linear combinations) with quenched 〈Jz〉
value that can significantly reduce the energy barrier for a
spin-flip event inducing quantum tunneling of magnetization.
Indeed, when quantum states at 〈Jz〉 = 0 are formed, the
system does not necessarily need to overcome the whole en-
ergy barrier extending from the ground state to the highest
lying state to exhibit magnetization reversal, but can tunnel
through this barrier towards the opposite magnetization state,
for example, via thermal excitation. In this picture, the CFPs
determine how the Ôm

l split the Jz states and are thus an essen-
tial ingredient to understand the mechanisms which determine
the magnetic stability of single-atom magnets. Therefore, the
knowledge of the CFP is highly demanded and helps iden-
tify possible systems protected from magnetization-reversal
events that could be an appealing choice for stable magnetic
units.

In the following, we proceed by providing a simple ap-
proach to evaluate the CFP: Using first-order perturbation
theory, we compute the classical CF energy [52]. Assum-
ing that the magnetic anisotropy energy (MAE) contributions
come fully from the 4 f orbitals, we then extract the CF co-
efficients as linear combinations of the Ki constants obtained
from the above-discussed fitting. In the limit where the CF
effects are small in comparison to the magnetic exchange
field, one can focus on the CF contribution to the atomic
Hamiltonian and apply first-order perturbation theory. The
energy change ECF attributed to ĤCF then reads [53]

ECF =
∑

l=2,4,6

C0
l

〈
Ô0

l

〉 + C6
6

〈
Ô6

6

〉
,

〈
Ôm

l

〉 = 〈J, M|Ôm
l |J, M〉

= fl (J )F m
l (θ )Gm(ϕ). (4)

M = +J for heavy R’s and fl = 2−l (2J )!/(2J − l )!. The an-
gular functions F m

l (θ ) and Gm(θ ) are determined in Ref. [53]
and listed in Appendix B. By equating Eqs. (2) and (4), we ob-
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TABLE IV. Crystal field coefficients obtained via Eq. (5) for Dy, Ho, and Tm on graphene. Results are shown in meV.

C0
2 C0

4 C0
6 C6

6

Dy/Gr 0.025 −1.717×10−4 −7.381×10−8 −4.895×10−6

Ho/Gr −0.039 3.904×10−4 1.992×10−7 6.394×10−6

Tm/Gr −0.190 9.229×10−3 −8.026×10−6 –2.006×10−3

tain a linear relation between the CFP and the Ki coefficients
of the MAE:

K1 = −3 f2C
0
2 − 40 f4C

0
4 − 168 f6C

0
6 ,

K2 = 35 f4C
0
4 + 378 f6C

0
6 ,

K3 = −231 f6C
0
6 ,

K4 = f6C
6
6 .

(5)

Using the coefficients Ki and Eq. (5), the CFP can be deter-
mined for the ground-state configurations for Dy (J = 8), Ho
(J = 15/2), and for Tm (J = 7/2). The results are summa-
rized in Table IV. The sign of C0

2 determines the orientation
of the parabolic dispersion around Jz = 0 since it multiplies
Ô0

2 = 3Ĵ2
z − J (J + 1), thus it determines the easy axis of the

system considering a first-order anisotropy, i.e., when only K1

is nonzero. A negative C0
2 corresponds then to an out-of-plane

easy-axis (K1 > 0), while a positive C0
2 is associated to an

in-plane easy-axis (K1 < 0).
Considering Dy/Gr with integer J = 8, we find the C0

2
coefficient is positive, leading to a single ground state with
〈Jz〉 = 0, as evidenced in the multiplet splitting shown in
Fig. 4. Here, states with the same color represent a mixture
of different states differing by �Jz = ±6,±12, and therefore
can slightly deviate from the expectation values 〈Jz〉 of pure
states. The strength of this mixing is dictated by the value of
the C6

6 parameter. In particular, for Dy/Gr, several of these
linear combinations form and of these two sets—one being
a mixture of |Jz = −3〉 and |Jz = +3〉 (shown in red) and
one of |Jz = −6〉, |Jz = 0〉, |Jz = +6〉 (orange, the state at
∼8 meV corresponds to a doublet, better resolved in the
inset of Fig. 4)—appear at quenched 〈Jz〉 = 0 value. These
kinds of states, in general, can compromise the stability of the
magnetization inducing quantum tunneling of magnetization.
Nevertheless, in the present case there is a single energy
minimum and magnetization reversal is not possible.

We compare the values for Dy/Gr with Ref. [30], where
the CFPs are reported in the standard notation Am

l 〈rl〉 =
Cm

l /θl (J ), with θl (J ) the Stevens factors for a total an-
gular momentum J . For the Dy with the configuration
J = 8 (for Dy2+), the Stevens factors are (θ2, θ4, θ6) =
(−0.222 × 10−2,−0.333 × 10−4,−1.3 × 10−6) (these are
the values associated with Ho3+). The resulting values are
(A0

2, A0
4, A0

6, A6
6) = (−11.287, 5.156, 0.057, 3.765) meV. The

largest coefficients, namely, A0
2 and A0

4, are in good agreement
with the values obtained in Ref. [30] using the Hubbard-I
approximation, while deviations in magnitude are observed in
A0

6 and A6
6. These different values might be a consequence of

the supporting Ir substrate included in Ref. [30]. The energy
required to overcome the energy barrier from the lowest- to
the highest-lying Jz state in the quantum picture is associated
to the classical first-order magnetic anisotropy, i.e., the energy

involved in the magnetization reversal from out-of-plane to
in-plane. Comparing the quantum and classical models, it can
be seen that the quantum approach corresponds qualitatively
to the classical magnetization rotation, with a in-plane mag-
netic ground state for Dy/Gr.

Concerning Ho/Gr and Tm/Gr systems, the CFP lead to
a degenerate ground state with nonminimal 〈Jz〉 [Figs. 10(a)
and 10(b) in Appendix E, respectively]. The energy trend
favors a canted magnetic ground state as determined in the
MAE curves. Both magnetic atoms are characterized by a
half-integer J value and are protected against the formation of
states at 〈Jz〉 = 0 by Kramers degeneracy and, consequently,
against quantum tunneling of magnetization via those states,
such that, in principle, the system has to overcome the whole
energy barrier from the lowest multiplet to the highest-lying
multiplet to exhibit spin flip. Nonetheless, based on the values
of the higher order CF coefficients, the dispersion of the Jz

states can have different nonmonotonic shapes in which a
faster way for a spin-flip event might be favored, for exam-
ple, first-order transitions at finite temperature via phonon or

FIG. 4. Multiplet splitting of Dy/Gr adopting the CFP values
obtained from reverse engineering via the magnetic anisotropy con-
stants. States in the same color correspond to linear combinations of
|Jz〉 differing by �Jz = ±6, ±12. Inset shows the ∼50μeV energy
splitting of the |Jz = −6〉, |Jz = 0〉, |Jz = +6〉 doublet
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electron scattering events, that can be followed by quantum
tunneling of magnetization.

IV. TEMPERATURE EFFECTS

In this section, we discuss the effect of temperature
on magnetization reversal or stability. We distinguish two
mechanisms in two different temperature regimes. At finite
temperatures, magnetization reversal can occur through ther-
mal activation, enabling the system to overcome the minimal
energy barrier when the temperature is sufficiently high. This
leads to an Arrhenius-like relationship for the magnetic life-
time under the condition that no external magnetic field is
present. At lower temperatures, although the thermal energy
may not be sufficient to overcome the energy barrier, it can
prompt excitations to metastable higher-energy states that
enable thermally assisted quantum tunneling of the magne-
tization [54]. This phenomenon involves scattering processes,
such as interactions with substrate phonons. The mathematical
representation employs operators Ĵz, Ĵ+, and Ĵ−, enabling tran-
sitions between states characterized by angular momentum
changes of �Jz = 0,±1. Hence, in this first-order perturba-
tion scenario, the operator Ô6

6 facilitates the coupling between
states of equal energy having angular momentum differences
of �Jz = 0 ± 6k,−1 ± 6k, 1 ± 6k. Here, the parameter k as-
sumes integer values depending on J [20]. This process thus
involves the transition to a higher-energy state, from which
subsequent quantum tunneling can take place.

Within the scope of the systems under investigation, the
Dy/Gr system does not display a magnetic bistability. Instead,
it maintains a singular nondegenerate ground state at 〈Jz〉 = 0,
consequently ruling out the possibility of magnetization rever-
sal. However, when considering the half-integer spin system
Ho/Gr, the two degenerate ground states manifest at 〈Jz〉 =
±11/2. The energy barrier separating these two ground states
is substantial, approximately ∼14 meV, which corresponds
to an activation barrier of U = 162 K in the expression for
the relaxation time τ ∝ eU/kBT , where kB is the Boltzmann
constant and T the temperature. However, interactions with
substrate phonons can establish a connection between these
two states and the closest accessible states via thermal exci-
tation. Specifically, these accessible states are characterized
by 〈Jz〉 = ±13/2 and are positioned at an energy gap of
roughly �E ∼ 1.8 meV (21 K), from which assisted quantum
tunneling is possible. Shifting focus to the Tm/Gr system,
the doubly degenerate ground states possess an expectation
value of 〈Jz〉 ∼ ±5/2. Overcoming the entire energy barrier
separating these ground states would require an energy of
209 K (equivalent to 18 meV). Furthermore, there exists an
energy gap of 95 K (approximately ∼8.2 meV) to the first
excited state at 〈Jz〉 = ±3/2, which is inherently protected
against quantum tunneling. Although the exact determination
of life times goes far beyond this paper, from these arguments
we conclude that among the two systems studied with out-
of-plane anisotropy, Tm/Gr is probably the most stable with
respect to magnetization reversal.

V. MAGNETOELASTIC COUPLING

The particularly large MAE found in these materials is
a consequence of the localized and partially filled 4 f shells

together with the surrounding CF of the graphene substrate. In
the case of a half-filled 4 f shell with a vanishing total orbital
moment L (Eu and Gd), the SOC contribution of the 4 f elec-
trons is tiny and hence the MAE is drastically reduced [55,56].
The different values of L correspond to specific shapes of the
charge cloud [57,58] (see Fig. 8) that interact with the neigh-
boring sites as the spin moment S rotates. Given the strong
dependence of the MAE on the shape of 4 f -charge distribu-
tion, strong changes in the MAE can occur due to mechanical
deformations. The induced strain might, for instance, induce
a displacement of the charge density inside the structure and
through SOC effect lead to a change in the orientation of S.
Here, we simulate the effect of strain on the MAE by changing
the height of the R atoms with respect to the graphene sheet
and analyze magnetoelastic coupling. From an experimental
perspective, this shift in distance can be realized, for instance,
by modifying the chemical reactivity or the charge state of
the graphene sheet through intercalation of dopands between
graphene and the substrate [59–61]. Figures 5(a)–5(c) show
the change of the out-of-plane MAE, while Figs. 5(d)–5(f)
depict the in-plane MAE. Three different distances were
considered, d/d0 = {0.96, 1.0, 1.04}, where d/d0 = 1.0 rep-
resents the initial relaxed position of the adatom, d being the
shifted height, and d0 the equilibrium height. The MAE is
once more obtained from total energy self-consistent calcu-
lations (dotted data) and fitted with Eq. (2) (continuous line).

First, we focus on the out-of-plane MAE which increases,
in terms of modulus of the Ki constants, as the adatom is
compressed towards the surface for all cases. The dependence
of the MAE constants Ki as a function of the distance is shown
in Figs. 5(g)–5(i), where the systematic increase of the Ki is
due to the enhancement of the CF as the impurity gets closer to
the substrate. We also note that the complex shapes once more
require more coefficients, K2 and K3, which result in canted
minimum energy solutions for Ho and Tm. As also discussed
in Sec. III, the sign of K1 is reflected in the generation of
an energy hill or valley in the MAE curve, which are more
pronounced for higher absolute values of K1. In general, K2

exhibits an opposite sign when comparing Dy/Gr to Ho and
Tm/Gr and a slightly bigger absolute value than K1 for all the
systems. The contribution of K2 leads to a tilted easy (hard)
axis for Ho, Tm (Dy). Also, K3 exhibits an opposite sign when
comparing Dy/Gr with Ho/Gr and Tm/Gr. Nevertheless, the
major difference shows up in the module of this constant,
which assumes a higher value in the case of Dy (6.821 meV
compared to −3.434 meV and −1.032 meV for Ho/Gr and
Tm/Gr, respectively) at d/d0 = 0.96, and hence has larger
influence on the MAE curve, causing a change in the easy
axis from in plane for d/d0 = 1.0 and d/d0 = 1.04 to out of
plane for d = 0.96.

The in-plane anisotropies in Figs. 5(d)–5(f) display similar
behavior as discussed in Sec. III with a periodicity of ϕ = 60◦.
The amplitudes of the oscillations are given in terms of K4

and, similarly to the out-of-plane coefficients, it is enhanced
by the reducing d/d0. The only exception appears for Tm/Gr,
for which d/d0 = 1.04 seems slightly larger than d/d0 =
1.0. A more detailed analysis for the latter is reported in
Appendix C.

Comparing the different R’s, Tm/Gr shows the smallest
|K4| value; Ho and Dy instead have the same order of mag-
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FIG. 5. MAE curves (out-of-plane and in-plane) for different distances, namely, d/d0 = 0.96, 1.0, 1.04 (blue, green, and red, respectively)
of the rare-earth adatoms from the graphene monolayer. (a), (d) correspond to the out-of-plane and in-plane curves of Dy/Gr; (b), (e) correspond
to the out-of-plane and in-plane curves of Ho/Gr; (c), (f) correspond to the out-of-plane and in-plane curves of Tm/Gr. Note the different scales
for the energies of the out-of-plane and in-plane results. For each system, the last column [(g)–(i)] shows the respective magnetic anisotropy
constants Ki (i = 1, 2, 3, 4) obtained via the fitting of the MAE curves. Specifically, (g) shows the Ki for Dy/Gr, (h) for Ho/Gr, and (i) for
Tm/Gr. Points correspond to DFT + U data while lines to the fitting curves.

nitude K4 ∼ 1 meV for d/d0 = 0.96, which might reflect a
modulation of the charge distribution in the xy plane com-
pared to Tm. Overall, a stronger MAE emerges when the
R atom is pressed against the graphene sheet, since the 4 f
and 5d electrons of the impurity feel a stronger electrostatic
repulsion from the carbon atoms. Figure 6(a) shows the energy
difference �E = E‖ − E⊥, with E‖ being the total energy
when the magnetization is aligned along the x axis (parallel to
the graphene), while E⊥ represents the total energy with mag-
netization along the z axis (perpendicular to the graphene), as
a function of d/d0. We scan the values of the MAE for values
ranging in d/d0 = [0.9, 1.04] using a step of 0.01. Positive
values of the �E indicate that an out-of-plane magnetization
is favored compared to an in-plane magnetization.

For Ho/Gr and Tm/Gr, �E decreases when the adatom
is compressed towards the graphene from d/d0 = 1.04 to
smaller distances, going via a minimum and then increasing
steeply for high compression of around 10%. In contrast,
Dy undergoes a switch of the favored magnetization direc-
tion, since in the case of high compression an out-of-plane
is more stable, while the in-plane direction appears lower in
energy for larger distances from the graphene. Such a mu-

table magnetic behavior might find interesting applications
in engineering magnetomechanical nanodevices that rely on
pressure-induced magnetization transitions [62–64].

We show in Fig. 6(b) the evolution of the total energy,
reported with respect to the energy minimum (placed at 0 eV),
as a function of d/d0 considering an out-of-plane orientation
of the moment for Ho/Gr (we obtain very similar curves for
Dy/Tm). The same calculations have also been performed
with in-plane magnetization for each system and in total six
energy curves have been obtained and fitted adopting a Morse
potential. The Morse fit is shown in a continuous line and
has been performed using Eq. (D1), given in Appendix D.
The fit provides the dissociation energy De with respect to
the minimum at the equilibrium distance and the width b of
the curve. These values are then employed to calculate the
force constant ke at the equilibrium position of the oscillator as
ke = 2b2De, which defines the stiffness against deformation.
The vibrational frequency ν of the displacement is evaluated
following Eq. (D2). Table V summarizes the results obtained
for the R/Gr systems: ke and ν calculated for the two direc-
tions of the magnetization, namely, parallel to the Gr plane
(‖) and perpendicular (⊥). There is a slight dependence of
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FIG. 6. (a) Magnetic anisotropy energy as a function of the dis-
tance of the R with respect to graphene for Dy (green), Ho (blue), and
Tm (red) calculated with DFT + U . (b) Total energy as a function of
the distance of the Ho adatom from the graphene sheet calculated
with DFT + U (full dots) and the respective fit with a Morse-like
potential (line).

the vibrational frequencies on the magnetization orientation
changes. For Dy, the force constant ke at equilibrium is big-
ger for an out-of-plane magnetization, meaning the material
is more resistant against deformation when perpendicularly
magnetized, which reflects in a slightly higher vibrational
frequency of the mode [see Eq. (D2) in Appendix D]. Ho
and Tm have a higher ke and ν for the in-plane magnetization
direction. Lastly, among the systems at hand, Tm/Gr displays
the lowest ke values, which determines the weakest bonding
towards the substrate and makes it the most malleable 2D
material in the set.

Taking into account the bistability observed in the multi-
plet spectra of Ho/Gr and Tm/Gr (Fig. 10), there exists a
separation between the two ground states with energy gaps
of approximately �E ∼ 14 meV and �E ∼ 18 meV, respec-
tively. When converting the vibrational frequencies of the

TABLE V. Elastic force constants ke (N/m) and the respective vi-
bration frequencies ν (s−1) calculated with perpendicular and parallel
magnetization for each R/Gr system.

R/Gr ke⊥ ke‖ ν⊥ × 10−13 ν‖ × 10−13

Dy/Gr 1155.54 1118.13 1.879 1.848
Ho/Gr 1029.05 1076.14 1.769 1.809
Tm/Gr 784.72 908.63 1.539 1.656

FIG. 7. Out-of-plane (blue) and in-plane (red) magnetic
anisotropy energy curves for Dy/Gr with Dy with orbital momentum
mR

l = 5 μB. The blue dots indicate the DFT + U energies, while the
line corresponds to the fitting.

R atoms’ modes into vibrational energies, we obtain values
ranging from hν = 60 − 70 meV. This implies that mag-
netization reversal due to adatom vibrations, which would
necessitate �E = hν, is unlikely.

VI. DYSPROSIUM ON GRAPHENE: DEVIATION
FROM HUND’S RULES

The calculations presented above are based on the oc-
cupation of 4 f shells following a Hund-like ground state.
Nonetheless, further analysis shows that for Dy/Gr, an or-
bital occupation can be obtained, where one majority spin
electron moves from the orbital with quantum number ml = 1
to ml = 0, partially quenching the orbital moment to mR

l =
4.9μB. This indicates that for this particular case of Dy/Gr,
the CF effects are strong enough to compete with the Hund’s
exchange. This re-arrangement affects mainly the orbital mo-
ment as it leaves unaltered mR

s = 4.03μB, hence only breaking
Hund’s second rule (maximizes L) and leading to a total
angular momentum J = 7. Next, we investigate the behavior
of the magnetic anisotropy in this new orbital configuration.
We will refer to this 4 f occupation as the J = 7 state and
to the Hund’s rules orbital occupation as the J = 8 state.
Specifically, the energy difference calculated between the two
observed magnetic states is 0.28 eV in favor of the J = 7
situation.

Given the close link between the orbital moment and the
MAE, we expect a deviation from the angular dependence
determined for the J = 8 state shown in Fig. 3. This distinct
angular form is attributed to the new shape of the 4 f charge
cloud in the J = 7 state with respect to the J = 8 state as
depicted in Fig. 8. Indeed, the angular dependence of the
MAE curve is driven by the interplay of the charge cloud’s
geometry and the CF symmetry: a rotation of the magne-
tization corresponds to a rotation of the anisotropic charge
distribution through SOC interaction and can thus lead to
stronger/weaker electrostatic repulsion if the charge cloud lies
closer/farther away from the point charges defining the CF.
Figure 7 shows the respective out-of-plane and in-plane MAE
curves, where the dots (full lines) represent the DFT + U data
(fits). The fitted MAE coefficients Ki using Eq. (2) are given
in Table VI, the out-of-plane anisotropy has a minimum at a
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FIG. 8. Total charge density of the R and Gr atoms of the spin-down channel of Dy/Gr with in-plane magnetization for the two different
orbital moments: (a) ml = 6 μB (J = 8), (b) ml = 5 μB (J = 7). For atom positions, compare with Fig. 1 with the Dy atom in the H site.

canted angle θ � 51.82◦, while the basal-anisotropy favors an
angle ϕ = 30◦ ± π

3 .
For the out-of-plane case, the shape of the MAE curve is

drastically different when comparing the J = 7 state (Fig. 7)
with the J = 8 state [Fig. 3(a)]. Here, instead of an energy bar-
rier between the perpendicular magnetization (θ = 0◦) and the
in-plane magnetization (θ = 90◦), there is an energy valley.
These trends are reflected in the Ki coefficients, which have
opposite signs when comparing the two orbital configurations
(see Table VI).

Interestingly, the in-plane MAE shown in red in Fig. 7 is
boosted and reaches values of the same order of magnitude
as its out-of-plane counterpart. It is the largest in-plane MAE
observed for all systems at hand and this enhancement is
reflected in the K4 coefficient which causes a global min-
ima ( ∂Ean

∂θ
|ϕ=30◦ ) at (θ, ϕ) = (57.93◦, ϕ = 30◦ ± π

3 ). We note
that this energy minimum does not coincide with minimum
defined by the purely out-of-plane MAE ( ∂Ean

∂θ
|ϕ=0◦ ) located

at θ = 51.82◦. Qualitatively, this large K4 can be understood
due to the shape of the 4 f charge density in Fig. 8 that
shows the spin-down charge density computed for the in-plane
magnetization ‖ x axis. Indeed, for the J = 7 state there is a
larger spin-down density in the xy plane (‖ to the substrate)
in contrast to the J = 8 state, for which the charge density
displays smaller poles in the xy plane.

These findings demonstrate the necessity of a careful as-
sessment of the 4 f -orbital occupation when dealing with
R-based systems in low dimensions. This is also important
if one wants to use the above-proposed reverse-engineering
method to determine the CFP, since it holds only valid in
the context of a Hund’s rule occupation, i.e., when the in-
terelectronic repulsion and SOC effects dominate and the CF
can be treated as a perturbation. Further advanced methods
such as the Hubbard-I approximation [31] will be consid-
ered in the future along with a comparison to experimental
data.

TABLE VI. Magnetic anisotropy constants Ki for the J = 7 and
J = 8 states in Dy/Gr. Results are in meV.

State K1 K2 K3 K4

J=7 −14.29 13.10 −1.76 1.16
J=8 15.36 −18.92 1.54 −0.44

VII. REVISITING THE CHOICE OF SUPERCELL SIZE

Since the magnetic properties of R atoms on graphene or
similar substrates primarily arise from the behavior of the
highly localized 4 f electrons, the relatively compact

√
3 ×√

3 supercell is expected to adequately capture the magnetic
anisotropy. As expressed in Sec. II A, the choice of the super-
cell was motivated by the experimentally observed coverage
of Eu on graphene [37,38]. In light of the fact that numer-
ous experiments and theoretical studies [16,20,25,26,30,65]
involve more diluted coverage of R atoms, we conducted a
comparison of the ground-state properties between a 4 × 4
supercell and a

√
3 × √

3 cell for the R/Gr complexes, both
at the same perpendicular distance of the R atom and using
the same computatonal parameters. The results, including the
d and f occupations, as well as the spin and orbital magnetic
moments of the R atoms, are presented in Table VII.

In comparison to the
√

3 × √
3 results (Table II), the

change in the orbital moment mR
l is minimal, amounting to

less than 50 mμB, while the spin moment mR
s undergoes a

change of approximately 100 mμB. The variation of the spin
moment is caused by the reduction of hybridization among the
delocalized valence 6s, 6p, and 5d electrons, as a consequence
of the larger separation between the R atoms. In this atomic
limit, there is a shift in the population of states from 5d to
6sp, leading to a slightly increase in the magnetic moment
primarily originating from the spin-polarized 6s electrons.
This slight enhancement in the spin magnetic moment may
have an impact on magnetic anisotropy, but generally, the con-
tribution of valence electrons to the MAE is a small fraction,
approximately 10%, of the total interaction energy between
the R atom and the CF. Conversely, the magnetic anisotropy
can be in first approximation explained as originating from the
electrostatic interaction between the nonspherical charge den-

TABLE VII. Ground-state properties of R/Gr in a 4 × 4 su-
percell: d and f occupations, spin mR

s , and orbital mR
l magnetic

moments. Calculations are performed with SOC in presence of a
perpendicular spin-quantization axis.

Rare earth docc focc mR
s (μB) mR

l (μB)

Dy 0.181 9.915 4.156 5.916
Ho 0.165 10.913 3.159 5.936
Tm 0.155 12.901 1.163 2.989
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sity, primarily determined by the orbital magnetic moment,
and the CF of graphene. Given the minor changes observed
in the orbital moments, significant deviations in the magnetic
anisotropy are not expected.

From another perspective, the electron redistribution
within the valence orbitals observed in the 4 × 4 case can alter
the interaction between the R atom with graphene, resulting
in a small change in the perpendicular distance between the
R atom and graphene. Consequently, this affects the CF gen-
erated by Gr and experienced by the R atom. Nonetheless, as
illustrated in Figs. 5 and 6(a), it is evident that the magnetic
anisotropy (and the respective constants Ki) trend remains
approximately linear in the vicinity of d/d0 = 1.

VIII. CONCLUSION

In this paper, we investigated the electronic structure of a
selected subset of 4 f adatoms (Dy, Ho, and Tm) deposited
on graphene and treated the localized 4 f electrons using the
DFT + U approach. The R/Gr complexes display a metallic
behavior due to n doping originating from the R’s d orbitals.
In all the analyzed R/Gr systems, the R atoms adopt a divalent
configuration R2+ in which the orbital occupation of Ho and
Tm is consistent with a maximal orbital moment, while Dy
displays a lower energy for a J = 7 configuration instead
of J = 8 (Hund’s rules). This deviation originates from the
competition between the CF and intra-atomic exchange. The
f states maintain a localized behavior and carry a high orbital
moment which results in a consequently large single-ion mag-
netic anisotropy. The self-consistent total energy calculations
show barriers of several meV upon variation of the magneti-
zation direction.

From the MAE curves, we extracted the magnetic
anisotropy constants which are then reverse engineered to
CFP in the Stevens convention. The obtained CFP are then
adopted in the diagonalization of the CF Hamiltonian matrix
in the C6v symmetry to calculate the multiplet structure of each
system. Half-integer spin systems (Ho/Gr and Tm/Gr) do not
present tunnel-split doublets at 〈Jz〉 = 0 and are thus protected
against quantum tunneling of magnetization via such states,
while in Dy/Gr in the J = 8 state, we find that the high-order
CFP C6

6 generates potential states at quenched 〈Jz〉 that might
reduce the energy barrier for spin reversal. Nevertheless, in the
latter case we find a single magnetic ground state at 〈Jz〉 = 0
with no possibility of reversal. Further studies to determine
systems with high magnetic anisotropy energies and protec-
tion against magnetization reversal might involve the analysis
of the effect of the symmetry of different substrates on the
multiplet splittings as well as the impact of the chemical
composition of the CF, i.e., inducing stronger SOC and/or
orbital hybridizations to the adsorbed R atom.

The analysis of the magnetic anisotropy is then further
extended to inspect magnetoelastic effects. The application of
a perpendicular strain compressing the adatom towards the
graphene enhances the magnetic anisotropy, thus providing
another mechanism to amplify the magnetic stability of these
4 f adatoms. Increasing the adatom-substrate distance leads to
a decoupling from the substrate, driving the atom to a quasi-
isolated state, ultimately reducing the magnetic anisotropy.
A deviation from this behavior has been observed for the

in-plane anisotropy constant K4 in the case of Tm/Gr, where a
non-monotonous trend is found as a function of the strain. For
the particular case of Dy/Gr, the mechanical strain induces a
change in the sign of the energy difference �E = E‖ − E⊥ in
the J = 8 magnetic state, indicating the possibility to tailor the
favored magnetization direction by application of an external
stress.

Although the magnetic anisotropy energies of R atoms are
studied using

√
3 × √

3 supercells, we expect small quantita-
tive but no significant qualitative changes for the anisotropy
energies of individual R atoms calculated in larger supercells.
For higher R atom densities, as simulated in a 1 × 1 unit cell,
we expect both larger quantitative and qualitative differences.

Finally, our first-principles investigation emphasizes the
necessity of a detailed analysis of the orbital occupations
within these 4 f systems, as it can lead to qualitatively and
quantitatively different magnetic anisotropies.
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APPENDIX A

The Stevens operators Ôm
l for a C6v CF read

Ô0
2 = 3Ĵ2

z − X,

Ô0
4 = 35Ĵ4

z − (30X − 25)Ĵ2
z + 3X 2 − 6X,

Ô0
6 = 231Ĵ6

z − (315X − 735)Ĵ4
z

+ (105X 2 − 525X + 294)Ĵ2
z

− 5X 3 + 40X 2 − 60X,

Ô6
6 = 1

2 [Ĵ6
+ + Ĵ6

−], (A1)

where X = J (J + 1), Ĵ+ = Ĵx + iĴy, Ĵ− = Ĵx − iĴy. The se-
lection rules for nonzero elements of the lm expansion are
dictated by the lattice symmetry. For the 4 f shell in C6v

symmetry, the expansion of ĤCF is defined by the quantum
numbers l = {0, 2, 4, 6} and m = 0, 6.

APPENDIX B

In the following, the angular functions appearing in Eq. (4)
are defined:

F 0
2 (θ ) = −3 sin2 θ,

F 0
4 (θ ) = 35 sin4 θ − 40 sin2 θ,

F 0
6 (θ ) = −231 sin6 θ + 378 sin4 θ − 168 sin2 θ,

F 6
6 (θ ) = sin6 θ,
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FIG. 9. |K4| of Tm/Gr for distances ranging from d = 0.96 to
d = 1.08 from the graphene sheet, i.e., from −4% to +8% of per-
pendicular strain.

G0(ϕ) = 1,

G6(ϕ) = cos ϕ. (B1)

The F m
l functions define pure out-of-plane rotation and the

Gm functions are related to in-plane rotations.

APPENDIX C

In Fig. 9, the modulus of the magnetic anisotropy con-
stant K4 for Tm/Gr is plotted against different perpendicular
strains d/d0 from the graphene monolayer. Overall, the mod-
ulus |K4| displays a nonlinear behavior first increasing from
d/d0 = 1.08 until a maximum is reached at d/d0 = 1.03, then
the module shows a decreasing trend until d/d0 = 1.0, after
which |K4| grows again for small distances.

APPENDIX D

The potential energy function adopted in the fitting of the
data in Fig. 6(b) of Sec. V reads [66,67]

V (r) = De(1 − e−b(d−d0 ) )2, (D1)

where De corresponds to the depth of the potential with re-
spect to the dissociation energy, d is the distance between R
and Gr, and d0 is the equilibrium distance. b determines the
width of the potential well. The frequency of the vibrational
modes in the R/Gr complexes is evaluated as in a diatomiclike
system,

ν = 1

2π

√
ke

μ
, (D2)

ke being the force constant of the R-Gr interaction and μ the
reduced mass μ = mGrmR

mGr+mR
of the R/Gr complex, with mR the

atomic mass of the R atom and mGr the mass of graphene in the
considered simulation cell involving six carbon atoms, equal
to 72.066 amu.

TABLE VIII. Character table of the C6v symmetry group and of
the rotational invariant Tm atom with total angular momentum J =
7
2 .

C6v E Ē C2 2C3 ¯2C3 2C6 ¯2C6 3σd 3σv

C̄2 3σ̄d 3σ̄v


1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 −1 −1

3 1 1 −1 1 1 −1 −1 1 −1

4 1 1 −1 1 1 −1 −1 1 1

5 2 2 −2 −1 −1 1 1 0 0

6 2 2 2 −1 −1 −1 −1 0 0

7 2 −2 0 1 −1

√
3 −√

3 0 0

8 2 −2 0 1 −1 −√

3
√

3 0 0

9 2 −2 0 −2 2 0 0 0 0
Tm Kh 8 −8 0 1 −1 −√

3
√

3 0 0

APPENDIX E

For the determination of the multiplet structures, we fol-
low the tables in Ref. [47] for the calculation of the matrix
elements of the CF Hamiltonian in Eq. (3). In the follow-
ing, the CF matrix for Tm is provided as an example. From
the DFT + U calculations, it is understood that in Tm/Gr
the 4 f electrons closely follow Hund’s rules, providing a
total angular momentum J = 7

2 , and hence Jz taking values
{− 7

2 ,− 5
2 ,− 3

2 ,− 1
2 , 1

2 , 3
2 , 5

2 , 7
2 }. The respective 8 × 8 CF ma-

trix is given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 0 0 0 0 E 0
0 B 0 0 0 0 0 E
0 0 C 0 0 0 0 0
0 0 0 D 0 0 0 0
0 0 0 0 D 0 0 0
0 0 0 0 0 C 0 0
E 0 0 0 0 0 B 0
0 E 0 0 0 0 0 A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E1)

and the matrix elements 〈Jz = i|ĤCF|Jz = j〉 are defined as

A = 〈
7
2

∣∣ĤCF

∣∣ 7
2

〉 = 〈− 7
2

∣∣ĤCF

∣∣ − 7
2

〉
= 21C0

2 + 420C0
4 + 1260C0

6 ,

B = 〈
5
2

∣∣ĤCF

∣∣ 5
2

〉 = 〈− 5
2

∣∣ĤCF

∣∣ − 5
2

〉
= 3C0

2 − 780C0
4 − 6300C0

6 ,

C = 〈
3
2

∣∣ĤCF

∣∣ 3
2

〉 = 〈− 3
2

∣∣ĤCF

∣∣ − 3
2

〉
= −9C0

2 − 180C0
4 + 11340C0

6 ,

D = 〈
1
2

∣∣ĤCF

∣∣ 1
2

〉 = 〈− 1
2

∣∣ĤCF

∣∣ − 1
2

〉
= −15C0

2 + 540C0
4 − 6300C0

6 ,

E = 〈
7
2

∣∣ĤCF

∣∣ − 5
2

〉 = 〈− 7
2

∣∣ĤCF

∣∣ 5
2

〉 = 〈
5
2

∣∣ĤCF

∣∣ − 7
2

〉
= 〈− 5

2

∣∣ĤCF

∣∣ 7
2

〉 = 360
√

7C6
6 , (E2)

where the Cm
l are the CF parameters. The exact values in

front of each CFP correspond to the matrix element of the
respective Stevens operator between the same states (i = j)
for the diagonal terms, for example, 〈 7

2 |Ô0
2| 7

2 〉 = 21, while
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the only nonzero terms of 〈Jz = i|Ô6
6|Jz = j〉 with i �= j are

those between Jz states differing by 6. Hence, the matrix is
symmetric and presents nonzero off-diagonal terms for the
Jz state differing by �Jz = ±6, which are mixed by the C6

6
operator. The CF matrix is set up by inserting the Cm

l values
obtained via DFT + U calculations and diagonalized, lead-
ing to eight eigenvectors in the case of Tm. Concerning the
degeneracy of the states, it can be worked out following the
orthogonality theorem to determine how the energy levels of
an isolated spherically symmetric (Kh) Tm atom split into
a sum of irreducible representations (IRs) of the C6v point
group:

n∑
ν=1

χ (α)(gν )[χ (β )(gν )]∗ = nδαβ. (E3)

Here, χ (α) and χ (β ) are the characters of the two compared
representations α and β, and the index ν sums over the num-
ber n of symmetry operations, which is n = 24 for the C6v

case. The character table of the two space groups is shown in
Table VIII.

To obtain the splitting, one multiplies the character of each
operation of the Kh group with the respective character of the
C6v group and sums this value over all symmetry operations
for each IR in the C6v group separately. The characters are
orthogonal, which means that either this sum gives 0 and
thus the respective IR of the C6v group is not included or the
sum is an integer, n, which tells us how many times the IR
is included. In the case of Tm/Gr, Eq. (E3) gives rise to a
splitting of four sets of double degenerate state, two sets of
which belong to the same IR, namely, 
8:

K7/2
h = 
7 + 2
8 + 
9. (E4)

The multiplets for Tm/Gr and Ho/Gr are shown in Fig. 10.

FIG. 10. Multiplet splitting of (a) Ho/Gr and (b) Tm/Gr adopt-
ing the CFP values obtained from reverse engineering via the
magnetic anisotropy constants. States in the same color correspond
to linear combinations of |Jz〉 differing by �Jz = ±6, ±12.
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P. Gambardella, and H. Brune, Magnetic remanence in single
atoms, Science 352, 318 (2016).

[24] M. Pivetta, S. Rusponi, and H. Brune, Direct capture and
electrostatic repulsion in the self-assembly of rare-earth atom
superlattices on graphene, Phys. Rev. B 98, 115417 (2018).

[25] R. Baltic, M. Pivetta, F. Donati, C. Wäckerlin, A. Singha, J.
Dreiser, S. Rusponi, and H. Brune, Superlattice of single atom
magnets on graphene, Nano Lett. 16, 7610 (2016).

[26] T. Miyamachi, T. Schuh, T. Märkl, T. Bresch, C.and Balashov,
A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann,
S. Geilhufe, M. ans Ostanin, W. Hergert, I. Mertig, G. Schön,
A. Ernst, and W. Wulfhekel, Stabilizing the magnetic moment
of single Holmium atoms by symmetry, Nature (London) 503,
242 (2013).

[27] A. Herman, S. Kraus, S. Tsukamoto, L. Spieker, V. Caciuc,
T. Lojewski, D. Günzing, J. Dreiser, B. Delley, K. Ollefs,
T. Michely, N. Atodiresei, and H. Wende, Tailoring magnetic
anisotropy by graphene-induced selective Skyhook effect on
4f-metals, Nanoscale 14, 7682 (2022).

[28] L. Peters, I. Di Marco, P. Thunström, M. I. Katsnelson, A.
Kirilyuk, and O. Eriksson, Treatment of 4 f states of the rare
earths: The case study of TbN, Phys. Rev. B 89, 205109 (2014).

[29] A. B. Shick, D. S. Shapiro, J. Kolorenc, and A. I. Lichtenstein,
Magnetic character of holmium atom adsorbed on platinum
surface, Sci. Rep. 7, 2751 (2017).

[30] A. B. Shick and A. Y. Denisov, Magnetism of 4f-atoms ad-
sorbed on metal and graphene substrates, J. Magn. Magn.
Mater. 475, 211 (2019).
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