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Magnetic Weyl semimetals can reveal a renowned electronic transport phenomenon, i.e., the anomalous Hall
effect due to the intrinsic Berry curvature promoted by the Weyl fermions. Here, the layered kagome compound
Rh3Sn2S2 is identified as a ferromagnetic Weyl semimetal by first-principles calculations. When the spin-orbit
coupling is absent, three sets of nontrivial Weyl nodal lines emerge in the spin-up channel, while the spin-down
bands are fully gapped. The obtained magnetocrystalline anisotropy energy indicates that Rh3Sn2S2 has an
in-plane canted magnetic order with a 30◦ angle to the a axis. As a consequence, the spin-orbit coupling breaks
the time-reversal symmetry, and the broken Weyl nodal lines give birth to one pair of Weyl points near the
Fermi level. The chiral Weyl nodes, protected by the space inversion and the C3z-rotation symmetry, act as the
monopole source and sink of the Berry curvature and boost a large anomalous Hall conductivity approaching
580 �−1 cm−1. This work unveils the magnetic, electronic, and topological properties as well as the anomalous
Hall effect of Rh3Sn2S2, which will facilitate future research on the unexplored topological phenomena in
Rh3Sn2S2.
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I. INTRODUCTION

Kagome materials consisting of corner-sharing triangles
have attracted much interest due to their fertile electronic
and topological properties [1–20]. One of the most intrigu-
ing features is the anomalous Hall effect (AHE) [21,22],
which usually accompanies the time-reversal symmetry (TRS)
breaking. As an important electronic transport phenomenon,
the emergent AHE can be driven by an external magnetic
field [23,24] or be introduced by the intrinsic magnetic or
charge order. Referring to the source of the intrinsic AHE,
the widely accepted scenarios are the Berry curvature of the
occupied Bloch bands [25], the topological orbital moment
originating from the spin chirality [22,26–28], and the charge
order stemming from the charge density wave (CDW) [29,30].
Moreover, these factors might entangle with each other and
can be further tuned by the strain [31,32], pressure [33,34],
magnetic order [35,36], and element substitution [37–42],
which paves the way for potential applications in spintronics.

In addition, recent work reveals that the anomalous Hall
conductivity (AHC) varies from dozens to thousands of S/cm
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for kagome magnets, in which the magnetism arises from the
transition metals Mn [22,43–46], Fe [2,46], and Co [47,48] or
the rare-earth metals (Nd [49,50], Gd [41,44], Tb [41,51,52],
Dy [40,41], Ho [40,41], Er [41,53], and U [35]). Noticeably,
as for the kagome lattice, there might be an interplay between
the geometric frustration, electronic correlation, and topologi-
cal character, and hence kagome magnets provide a feasible
playground to manipulate the AHE and then realize low-
power-dissipation spintronics devices [46,54,55]. One notes
that the mechanism of the AHE in rare-earth metal kagome
magnets is obscure due to the complicated band structure from
the strong spin-orbit coupling (SOC) and strong electron cor-
relation [35,40,41,44,49–53], which increases the difficulty
of manipulation and the threshold of application. Then, the
remaining suitable candidates are transition metal kagome
magnets, and one may ask whether there is any material with
an intrinsic AHE where the kagome lattice and the magnetism
come from a transition metal other than Mn, Fe, and Co.
Here, we point out that Rh3Sn2S2 is an ideal kagome Weyl
semimetal with Rh atoms contributing the ferromagnetism
and constructing the kagome lattice (Fig. 1).

Here, we propose Rh3Sn2S2 as a kagome ferromagnetic
Weyl semimetal (WSM) on the basis of first-principles calcu-
lations. The calculated magnetic moment without or with the
SOC effect is 0.35 µB/Rh atom. The Curie temperature is es-
timated to be 61 K via the mean field theory (MFT) [56]. The
calculated easy magnetization axis lies in the ab plane (Fig. 3).
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FIG. 1. Crystal and band structure without SOC. (a) Unit cell of
Rh3Sn2S2 where the Rh atoms constitute the kagome lattice with C3z-
rotation symmetry. (b) The first BZ with high-symmetry points and
the projected (100) surface. (c) and (d) Band structure for the spin-up
(c) and spin-down (d) directions. For the spin-up dispersion (c), the
band crossing points are highlighted by the gray, orange, and green
solid circles. The labels indicate the irreducible representations for
the bands forming the band crossing points.

With the SOC effect, the nontrivial Weyl nodal lines (WNLs)
(Fig. 2) are broken, and six Weyl points (WPs) emerge near
the Fermi level (EF ; Fig. 4). Moreover, the chiral WPs give
birth to the intrinsic Berry curvature and bring in a large AHC
approaching 580 �−1 cm−1 (Fig. 4). When the magnetization
direction rotates to the (0 0 1) direction, the AHC reaches
616 �−1 cm−1. This work unlocks the magnetic, electronic,
and topological features of Rh3Sn2S2 and provides a veritable
real kagome magnet to study the AHE and promising applica-
tions in the near future.

II. COMPUTATIONAL METHODS

In this paper, the first-principles calculations were per-
formed using the Vienna ab initio simulation package (VASP)
in the framework of density functional theory (DFT) [57,58].
We adopted the strongly constrained and appropriately
normed (SCAN) generalized gradient approximation (GGA)
as the exchange-correlation functional [59–61]. The plane-
wave truncation energy was selected as 500 eV, and the
convergence accuracy of the self-consistent iteration was
set as 1 × 10−6 eV/atom. The force convergence criterion
for structural relaxation is −1 × 10−2 eV/Å. The Brillouin
zone (BZ) was sampled with a 14 × 14 × 14 k mesh for
the structural optimization and self-consistent calculation. To
better describe the electronic structures, the repulsive on-
site Coulomb interaction U for the Rh-3d orbital was set
to be 3.4 eV by matching the bands from the DFT+U
method to those of the Heyd-Scuseria-Ernzerhof (HSE)
approach [62,63]. The Green’s function iterative method
implemented in the WANNIERTOOLS software package was
adopted to demonstrate the surface electronic properties [64].
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FIG. 2. Topological properties without SOC. (a)–(c) The WNLs
in the first BZ (WNL-I, WNL-II, and WNL-III) echo the band cross-
ings labeled in orange, gray, and green in Fig. 1(c), respectively.
(d)–(f) The edge states calculated using WANNIERTOOLS [64] for
WNL-I (d), WNL-II (e), and WNL-III (f) on the (100) surface,
respectively. The dashed lines and solid arrows signify the band
dispersion and the edge states, respectively.

We first calculated the band structure of Rh3Sn2S2 us-
ing the Perdew-Burke-Ernzerhof (PBE) method [59,65], and
a flat band emerged near the Fermi level (Fig. S1 of
the Supplemental Material (SM) [66]), suggesting a mag-
netic instability [4,67,68]. Then we performed the total
energy calculation for the primitive cell using the HSE ap-
proach [62,63], and the ferromagnetic (FM) state had a lower
energy (134.4 meV) than the nonmagnetic (NM) state, imply-
ing potential magnetism in Rh3Sn2S2. To describe the possible
strong on-site Coulomb interaction, the PBE+U [69] method
and the SCAN+U [70,71] method were both introduced to
calculate the band structure, and the test results indicated
that the bands from the SCAN+U method with a 3.4-eV
repulsive on-site Coulomb interaction agreed well with the
band dispersion from the HSE calculation (Fig. S2 [66]).
Then, the SCAN+U (U = 3.4 eV) method was adopted for
all the calculations in the main text. We further calculated
the total energies of the four magnetic states [NM, FM, an-
tiferromagnetic 1 (AFM1), and antiferromagnetic 2 (AFM2)]
in Fig. S3 [66]. The calculated results indicated that the total
energy of the 1 × 1 × 2 supercell for NM, AFM1, and AFM2
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order was 645.9, 417.0, and 142.2 meV higher than that of
the FM state, respectively. Thus the ferromagnetic state was
identified as the ground state of Rh3Sn2S2. To demonstrate
the nontrivial band topology, the maximally localized Wannier
functions (MLWFs) [72,73] were constructed (Fig. S5 [66]).

III. RESULTS AND DISCUSSION

The shandite-type Rh3Sn2S2 has a rhombohedral crystal
structure with space group R-3m (No. 166), in which Rh
atoms are octahedrally coordinated by two S and four Sn
atoms and form perfect kagome layers stacking along the
c axis [74] [Fig. 1(a)]. Although previous work suggests a
magnetic instability [74], the magnetic ground state and the
topological properties have not been uncovered for Rh3Sn2S2.
To figure out this issue, the experimental structure with
a = 5.6268 Å and c = 13.3067 Å [74] is adopted to perform
the DFT calculations. Our calculation results indicate that
Rh3Sn2S2 adopts a FM ground state and the partially filled
Rh-d orbital contributes 0.35 µB magnetic momentum (see
Figs. S1– S4 [66]). Then, the Curie temperature is roughly
estimated to be 61 K by Tc ≈ 2�(EFM − EAFM2)/3kB within
the MFT framework [56]. As shown in Figs. 1(c) and 1(d),
the bands with spin polarization cross the EF , suggesting a
metallic character. One also notes that there are multiple band
crossings in the spin-up channel (labeled by solid circles),
while the valence and conduction bands are fully gapped in
the spin-down state.

To further interpret the band characters, the irreducible
representations (irreps) are obtained for the R-3m space
group [75]. As shown in Fig. 1(c), the intersections of bands
Y1 and Y2, bands C1 and C2, and bands SM1 and SM2 form
the doubly degenerate Weyl nodes along the L-S (gray), �-L
(orange), and �-W (green) paths, respectively. Besides, the
eigenvalues of the mirror symmetry are opposite for the irreps
Y1 and Y2, C1 and C2, and SM1 and SM2, respectively; that
is, considering the mirror symmetry and the C3z-rotation sym-
metry of space group R-3m [76], six WNL-I’s, six WNL-II’s,
and one WNL-III echoing the nodes labeled by orange, gray,
and green in Fig. 1(c) would emerge in the BZ, respectively
[see Figs. 2(a), 2(b), and 2(c)]. Moreover, the nontrivial topol-
ogy of the WNLs can be evaluated by the Berry phase [77]

γn =
∮

C
dR · An(R), (1)

where C stands for a closed path encircling a generic point
of the WNL and the vector An(R) is the Berry connection.
Remarkably, each WNL generates a Berry phase of π , sug-
gesting that there are the nontrivial topological elements [77]
in Rh3Sn2S2. Besides, the nontrivial edge states correspond-
ing to WNL-I, WNL-II, and WNL-III were obtained and are
clearly displayed in Figs. 2(d), 2(e), and 2(f), respectively (see
also Fig. S5 [66]).

Since Rh is a 4d transition metal, the SOC contribution to
the magnetic, electronic, and topological properties should be
considered. The magnetocrystalline anisotropy energy (MAE)
is first calculated to obtain the easy magnetization axis by
varying the magnetic moment in the xy, yz, and xz planes,
respectively [Fig. 3(a)]. One notes that Rh3Sn2S2 has a large
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FIG. 3. Magnetic and electronic structure with SOC. (a) Angular
dependence of the MAE and the canted magnetic order along the
(
√

3 1 0) direction. The included angles refer to the positive axis and
are indicated by α, β, and γ in the top left, top right, and bottom left
panels, respectively. The energy along the (

√
3 1 0) direction is set as

the reference point for the specific magnetization in the three planes.
(b) The band structure (left panel) and the projected density of states
(DOS; right panel) for the easy magnetization direction.

MAE up to 223 µeV/Rh atom and the energy of the Rh3Sn2S2

unit cell is minimized when the magnetization lies in the
xy (ab) plane and forms a 30◦ angle to the x (a) direction
[Fig. 3(a)]. Then, this specific in-plane canted magnetic or-
der with 0.35 µB for the Rh atom (see also Fig. S4 [66])
is employed for the subsequent calculations, and Fig. 3(b)
illustrates the corresponding band structure. Noticeably, the
band crossings in Fig. 1(c) vanish, and one can find that six
chiral WPs with topological charge ±1 survive in WNL-I
[Fig. 4(a)]. In view of the space inversion and the C3z-rotation
symmetry [47,76,78], one can map one WP to another, and
hence these six WPs can be categorized as one pair.

We also note that these WPs are just 0.19 eV below the EF

[Fig. 4(a)], and distinct phenomena in terms of the topological
Fermi arc and AHE might be observed. Figure 4(b) displays
a clear and long Fermi arc connecting the chiral WPs, which
finding will be of benefit for the future experimental obser-
vations, such as angle-resolved photoemission spectroscopy
(ARPES) measurements. Besides, the chiral negative and
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FIG. 4. Topological features, Berry curvature, and AHC with SOC. (a) The SOC breaks the WNLs and leaves WPs in WNL-I, which locate
0.19 eV below the EF . The positions of WP+ and WP− are (−0.102, 0.247, −0.103) and (0.102, −0.247, 0.103), respectively. A cut from

∑
1

to
∑

2 connecting the Weyl nodes is displayed. (b) Calculated edge states with (left panel) and without (right panel) displaying the bulk states
along the

∑
1 -

∑
2 path. The solid circles and black arrows highlight the band crossing points and the surface states, respectively. (c) Berry

curvature distribution projected to the ky-kz plane (kx = 0). The Weyl nodes with opposite chirality are indicated by the magenta (+) and black
(−) solid circles, respectively. The color bar is in arbitrary units. (d) The energy dependence of the AHC computed using WANNIER90 [72,73].

positive WPs, possessing the opposite topological charges of
−1 (WP−) and +1 (WP+) [Fig. 4(a)], can act as a monopole
source and sink of the Berry curvature (Fig. S6), respectively.
Since the easy magnetization axis lies in the ab plane and
is close to the a axis [Fig. 3(a)], it is convenient to calcu-
late the Berry curvature �x(k) that would be larger than the
components �y(k) and �z(k) [25,79]. Significantly, Fig. 4(c)
reveals that the hot spot of the integrated Berry curvature
�x(k) in the kx = 0 plane corresponds to the distribution of the
WPs, suggesting that the WPs boost the intrinsic Berry curva-
ture [47,78]. Moreover, such a clean and large Berry curvature
will produce an evident spin electron transport behavior, i.e.,
an intrinsic AHE. Then, the energy-dependent AHC σ x

yz can
be acquired by integrating the Berry curvature of the occupied
Bloch states based on the Kubo formula derivation [25,79]

σ x
yz(E ) = −e2

h̄

∫
BZ

d3k

2π3
�x

n(k), (2)

�x
n(k) =

∑
m �=n

−2 Im〈unk|∂yH (k)|umk〉〈umk|∂zH (k)|unk〉
[En(k) − Em(k)]2 . (3)

The obtained AHC is displayed in Fig. 4(d), and σ x
yz reaches

−580 �−1 cm−1, which is comparable to the large AHC
of the kagome magnet LiMn6Sn6 (380 �−1 cm−1) [45],
Mn3Ge (500 �−1 cm−1) [43], Fe3Sn2 (1100 �−1 cm−1) [2],
and Co3Sn2S2 (1130 �−1 cm−1) [47]. Similarly, the AHCs
σ z

xy and σ
y
zx are also calculated and displayed in Fig. 4(d),

where σ z
xy and σ

y
zx reach −192 and −348 �−1 cm−1, respec-

tively, in the energy range of EF ± 0.2 eV, which values
are comparable to those of the kagome magnets Mn3Sn
(140 �−1 cm−1) [22], Mn3Rh (284 �−1 cm−1) [37], Mn3Ir

(312 �−1 cm−1) [37], GdMn6Sn6 (226 �−1 cm−1) [44],
TbMn6Sn6 (250 �−1 cm−1) [40], and YMn6Sn6 (300
�−1 cm−1) [38].

Now, we proceed with a brief discussion. The magnetic
momentum of Rh (0.35 µB) is close to that in Heusler
alloys Rh2MnAl (0.32 µB) and Rh2MnGa (0.31 µB) [80],
suggesting that the calculated magnetic momentum is rea-
sonable. Besides, the FM order is confirmed as the ground
state of Rh3Sn2S2, which is similar to the isostructural
kagome ferromagnetic Weyl semimetal Co3Sn2S2 [47]. Al-
though Rh3Sn2S2 and Co3Sn2S2 adopt the same space group
R-3m, they reveal diverse properties. First, the easy magne-
tization direction is in the ab plane for Rh3Sn2S2 (Fig. 3),
while Co3Sn2S2 has an out-of-plane easy magnetization di-
rection along the c axis [47]. Second, three sets of WNLs
emerge for Rh3Sn2S2 without considering SOC (Fig. 2),
while there is only one set of WNLs for Co3Sn2S2 [47].
Third, the main source of the Berry curvature is distributed
in the vicinity of the WPs for Rh3Sn2S2 (Fig. 4), while the
WNLs dominate the contribution to the Berry curvature for
Co3Sn2S2 [47]. Besides, we should point out that the WPs
in Rh3Sn2S2 and Co3Sn2S2 are protected by the same space
inversion and C3z-rotation symmetry [47,76,78], indicating
that the AHE of Rh3Sn2S2 might be tuned in an analogous
way to Co3Sn2S2, i.e., by strain [32], pressure [33,34], dop-
ing [39,42,81], and rotating the magnetization direction [82].
For simplicity, we rotate the magnetization direction to the
c axis. Consequently, the AHCs σ z

xy, σ x
yz, and σ

y
zx reach

−616, −275, and −170 �−1 cm−1 around the Fermi level
(EF ± 0.2 eV), respectively (Fig. S7 [66]), implying the
presence of a tunable AHE in Rh3Sn2S2 and the possible
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evolution of Weyl nodes from the magnetization alterna-
tion, similar to that reported in Co3Sn2S2 [82] and the CrN
monolayer [83]. Remarkably, the exotic transport features
were found in Co3Sn2S2 nanoflakes [54,55], and a high-
Chern-number three-dimensional quantum AHE topological
phase was proposed in Co3Sn2S2 under tension [32], which
will stimulate further research on undiscovered topological
phenomena in Co3Sn2S2 and Rh3Sn2S2 and the potential ap-
plications in energy-efficient spintronics devices based on the
AHE [84–86].

Noticeably, the AHE in kagome magnets and other sys-
tems [87–95] can be quantized in the magnetic WSMs with
the broken TRS and the two-dimensional (2D) limit [96–98].
Following this scheme, one can realize the quantum anoma-
lous Hall effect (QAHE) with nondissipative chiral edge
states, which has promising applications in low-energy-
consumption quantum devices [98]. For instance, the QAHE
has been proposed in HgCr2Se4 [96], Co3Sn2S2 [97,99],
Mn3Sn [99], Fe3Sn2 [99], and Mn3(C6O6)2 [100], where the
WPs are gapped through the breaking of periodic boundary
conditions along one direction [97]. In other words, since the
QAHE tends to emerge in 2D systems [98], layered magnetic
WSMs are favored materials candidates [97]. Actually, the
abovementioned intrinsic magnetic materials [96,97,99,100]
all have the layered lattice structures, and most of them are
layered kagome magnets [97,99,100]. As for Rh3Sn2S2, Rh
atoms construct the layered kagome lattice and contribute
0.35 µB magnetic moments; such lattice structure and mag-
netism are similar to those of Co3Sn2S2 [47]. Moreover, the
calculated MAE of Rh3Sn2S2 is 0.223 meV/Rh atom, imply-
ing a moderate magnetic anisotropy that is comparable to that
of those kagome magnets that are QAHE candidates [99,100].
In summary, Rh3Sn2S2 possesses all the hallmarks of QAHE

candidates, i.e., the layered lattice structure, the intrinsic
WPs stemming from the broken TRS, the moderate mag-
netic anisotropy, and the tunable AHC, and we can infer that
Rh3Sn2S2 might be a promising material to obtain the QAHE
phase in the extreme 2D limit [96–98].

IV. CONCLUSION

Rh3Sn2S2 is identified as a kagome ferromagnetic Weyl
semimetal by DFT calculations. In the absence of SOC,
Rh3Sn2S2 exhibits three sets of nontrivial WNLs and clear
topological surface states. Upon considering SOC, one of the
WNLs transforms into WPs, and a distinct Fermi arc con-
nects the WPs with opposite chirality. Then, the chiral WPs
act as the monopole source and sink of the Berry curvature,
yielding a large AHC around the Fermi level. These results
demonstrate the nontrivial topological nature of Rh3Sn2S2

and the influence of WPs on electron scattering. Overall, our
findings highlight the magnetic, electronic, and topological
properties as well as the tunable AHC of the kagome Weyl
semimetal Rh3Sn2S2, and this material provides a potential
platform to realize the QAHE that has promising applications
in energy-efficient spintronics devices.
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