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Domain wall statics and dynamics in nanowires with arbitrary Dzyaloshinskii-Moriya tensors
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The influence of different Dzyaloshinskii-Moriya interaction (DMI) tensor components on the static and
dynamic properties of domain walls (DWs) in magnetic nanowires is investigated using one-dimensional
collective coordinates models and micromagnetic simulations. It is shown how the different contributions of the
DMI can be compactly treated by separating the symmetric traceless, antisymmetric, and diagonal components
of the DMI tensor. First, we investigate the effect of all different DMI components on the static DW tilting in
the presence and absence of in plane (IP) fields. We discuss the possibilities and limitations of this measurement
approach for arbitrary DMI tensors. Secondly, the interplay of different DMI tensor components and their effect
on the field driven dynamics of the DWs are studied and reveal a nontrivial effect of the Walker breakdown
field of the material. It is shown how DMI tensors combining diagonal and off-diagonal elements can lead to a
nonlinear enhancement of the Walker field, in contrast with the linear enhancement obtainable in the usual cases
(interface DMI or bulk DMI).
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I. INTRODUCTION

Recent years have seen an increased interest in the study
of magnetic domain wall (DW) dynamics in perpendicu-
larly magnetized nanowires as these are at the core of many
emerging spintronic device concepts in memory storage [1,2],
sensing [3,4], and logic [5–7]. To this day, many challenges
still need to be addressed in order to make such technologies
viable for the industry. Among the challenges to be faced
is the phenomenon of Walker breakdown [8] field, which
sets a strong upper limit to the velocity a DW can be ef-
ficiently moved through a nanowire. It is a well-established
fact that magnetic DWs can be moved through a magnetic
nanowire either via applied magnetic fields or spin transfer
torque induced by spin polarized currents [9,10]. For small
enough values of the driving force, the shape anisotropy of the
material (which in thin film geometries favors Bloch walls)
is able to counter act the torque on the magnetization that
would cause precessional motion [11]. In the steady-state
regime, the DW is able to move rigidly and its peak veloc-
ity displays a linear dependence from the driving force. As
the driving force increases, the competing torque becomes
too strong and cannot be compensated by the effective field
inside the DW: once that threshold, called Walker break-
down (WB) field, is reached, the domain wall begins the
so called precessional motion regime [11,12], in which the
peak velocity of the DW drastically reduces. Several strategies
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have been tried to counteract this phenomenon and increase
the maximum attainable DW velocity [13,14]. For instance,
the choice of materials displaying chiral interactions such
as the Dzyaloshinskii-Moriya interaction (DMI) [15,16] in
perpendicularly magnetized nanowires is known to greatly en-
hance the domain wall Walker breakdown [12] because of the
effective field component providing an additional restoring
torque for the moving DW. While the effects of interface
DMI (iDMI) are well known and understood, the effects of
different, more exotic types of DMI [17–19] found in lower
symmetry magnetic crystals are, to our knowledge, not stud-
ied in detail. The study of the possible effects induced by these
additional DMI forms is becoming increasingly relevant as
new deposition techniques are making the production of thin
films with the required low symmetries a reality [20–22]. In
the following we propose a micromagnetic study to analyze
the DW statics and dynamics with additional terms accounting
for arbitrary DMI tensors in magnetic nanowires. The paper
is organized as follows: in Sec. II A we describe the en-
ergy contributions of our system and show how to compactly
treat more exotic DMI tensors by decomposing them in anti-
symmetric, symmetric traceless, and diagonal contributions.
In Sec. II B, we introduce the collective coordinate models
(CCMs) and derive the DW energy density for arbitrary DMI
tensors both in the q − χ − φ model [23] and the q − φ model
[12,24]. In Secs. III A and III B we show how the derived
energy densities correctly predict the DW tilting both with
an without applied in-plane (IP) fields. In Sec. III C, we ex-
plore the applicability of the canting angle method to measure
forms of the DM tensor going beyond the iDMI discussed
in Ref. [23]. Finally, in Sec. III D we derive the dynamical
equations for the DW in the q − φ model and show how the
presence of certain combinations of DMI tensor components
can lead to nontrivial changes in the DW Walker breakdown
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FIG. 1. DMI tensor components for all 21 noncentrosymmetric
crystallographic point groups as imposed by the Neumann principle
[27]. The 11 centrosymmetric point groups have a vanishing DMI
tensor and are not shown. The components Da, Ds, Db, Dt are the
ones shown in the decomposition of Eq. (2), while terms of the form
Di j are combinations of Da, Ds, Db, Dt .

field. The derived analytical results are compared throughout
with micromagnetic simulations performed with the MuMax3
[25] software. We conclude by summarizing our results and
providing an outlook for future investigations in Sec. IV.

II. THEORETICAL BACKGROUND

A. Energy density in the presence of arbitrary DMI tensors

We consider a magnetic ultrathin film of volume �V grown
on a substrate and a capping layer of a different material so
that the symmetry is broken along the normal to the plane.
In addition to the usual energy terms, we add a contribution
relative to an arbitrary DMI tensor yielding a total density of
the form [26,27]

E =
∫

�V

{
A|∇m|2 − Qi jM ji − 1

2
μ0Msm · Hd

− Ku(m · ûz )2 − μ0Msm · Hz

}
d3r, (1)

where m(x, t ) = M(x, t )/Ms is the normalized magnetization
vector, A is the symmetric exchange coefficient (in this case
a constant), Hd is the magnetostatic field, Hz is the Zeeman
field, and Ku is the uniaxial anisotropy constant with the
easy axis directed along z. Finally, Qi j represents the DMI
tensor and M ji = ∑

k εik (mz∂ jmk − mk∂ jmz ) is the chirality
of the magnetic configuration [26]. We remark how both the
chirality M ji and the DMI tensor Qi j treated here are already
restricted to a two-dimensional system, i.e., M ji, Qi j ∈ R2×2

and are reported in Fig. 1. In the following we briefly outline
some of the consequences of the symmetry properties of the
DMI tensor. First of all, we remark that the DMI tensor, much
like any other rank-2 tensor, can be decomposed in a sum of
symmetric traceless, antisymmetric, and diagonal components
as follows:

Q̂ =
(

0 Da

−Da 0

)
︸ ︷︷ ︸

Antisymmetric

+
(

Db Ds

Ds −Db

)
︸ ︷︷ ︸
Symmetric-traceless

+
(

Dt 0
0 Dt

)
︸ ︷︷ ︸

Diagonal

. (2)

A purely antisymmetric DMI tensor (QA)i j = ∑
k Dkεki j

yields Lifshitz invariant energy density terms of the form

EA;DMI = −2D · [m(∇ · m) − (∇ · m)m], (3)

which correspond to the interface DMI (iDMI) term often
studied in the literature [12,28]. The symmetric component
of the DMI tensor, on the other hand, yields an energy
contribution of the form

ES;DMI = −m · (Q̂S∇ × m), (4)

where Q̂S∇ = ∑
j (QS )i j∂ j . A DMI of this form is related to

the so called “anisotropic DMI” in the discrete microscopic
treatment [29–31]. The special case of a purely diagonal ma-
trix yields an energy term of the form

ES;DMI = −2(QS )ii(m · ∂im)i, (5)

which, in the case of a single independent component Qii = D
yields

ES;DMI = −2D m · (∇ × m). (6)

This energy contribution corresponds to a bulk DMI (bDMI)
term responsible for stabilizing bulk chiral structures [32].
We emphasize that, since the micromagnetic DMI tensor
is related to the microscopic DMI vector via the following
expression [26]

Qi j = 1

V

∑
rb∈N.N ra

[ra − rb]iDab, j, (7)

where Qi j corresponds to the micromagnetic DMI tensor and
Dab, j represents the jth component of the microscopic DMI
vector on bond a − b, V represents the volume of the unit cell,
and the sum runs over all nearest neighbors of the reference
atom a. As can be seen, even though Dab comes from the

antisymmetric components of the exchange tensor
↔
J ab in

H =
∑
〈i, j〉

Si
↔
J i j S j, (8)

the corresponding micromagnetic DMI tensor Q̂ is not con-
strained to being antisymmetric.

B. Collective coordinate models with arbitrary DMI

Since the contributions of the iDMI terms [i.e., the Da part
of Eq. (2)] and bDMI [i.e., the Dt part of Eq. (2)] to ordinary
collective coordinate models (CCMs) are known [23,33] to
account for the complete DMI tensor we just have to compute
the energy density terms relative to the symmetric Ds and
traceless Db components. To this end, we consider a DMI
tensor compatible with the S4 point group symmetry, which
has the form

Q̂S4
=

(
Db Ds

Ds −Db

)
. (9)

Plugging this DMI tensor in Eq. (1) and writing the
magnetization in spherical coordinates m = M/Ms =
( sin θ cos ϕ, sin θ sin ϕ, cos θ )

T
we can write the S4 DMI

energy density as follows:

EDMI,S4 = Db(sin ϕ ∂x θ + cos ϕ ∂yθ )

+ Ds(sin ϕ ∂yθ − cos ϕ ∂xθ ). (10)
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FIG. 2. (a) Scheme of the system used in the micromagnetic simulations. We show the dimensions Lx = 1 µm, Ly = 160 nm, and Lz = 0.6
nm as well as the internal DW angle φ and the DW tilt angle χ . (b) φ and χ angles in the case of χ > 0 (i) φ and χ angles in the case of χ > 0
(ii). (c) Schematic representation of the internal DW angle (the colored arrows in the middle of the domain wall indicate the orientation of the
magnetization in the x-y plane) stabilized by the presence of the different DMI tensor components of Eq. (17) in the presence of an applied IP
field.

To derive the CCM we must now substitute θ and φ with the
Ansatz for the tilted DW [23]

tan

(
θ (q, χ )

2

)
= exp

(
P

(x − q) cos χ + y sin χ

	

)
, (11)

ϕ(t ) = φ(t ), (12)

where q represents the DW position along the x axis, χ rep-
resents the DW tilting angle, 	 the DW width and P = ±1
represents the sense of rotation of angle θ [i.e., P = ±1 ⇒
mz(−∞) = ±1 and mz(+∞) = ∓1]. For a schematic of the
system and the angles, refer to Fig. 2(a). Noticing that the
Ansatz of Eq. (11) allows us to compactly compute the deriva-
tives of Eq. (10) as

∂xθ = P
sin θ cos χ

	
, (13)

∂yθ = P
sin θ sin χ

	
, (14)

we can write the energy density EDMI,S4 of Eq. (10) as

EDMI,S4 = P
sin θ

	
[Db sin(φ + χ ) − Ds cos(φ + χ )]. (15)

To obtain the DW surface energy, we integrate out the x-
degree of freedom of Eq. (15) [36]

σDW,S4 =
∫ +∞

−∞
EDMI,S4 dx

= πP
[
Db sin(φ + χ ) − Ds cos(φ + χ )

]
. (16)

We can now add this DW energy component to the other
energy terms already used in [23] to obtain a generalized DW
energy density as a function of all the DMI tensor components

σDW (φ, χ ) = 2
A

	
+ πP[Da cos(φ − χ ) − Ds cos(φ + χ ) − Dt sin(φ − χ ) + Db sin(φ + χ )]

+ 2	(K0 + K sin2(φ − χ )) − π	Ms(Hy sin φ + Hx cos φ), (17)

with K0 = Ku + Msμ0

2 (Nx − Nz ) and K = Msμ0

2 (Ny − Nx ) be-
ing the effective and shape anisotropy constants, respectively.
Nx, Ny, Nz are the demagnetizing factors, which depend on
the geometry of the sample [34,35]. If the phenomenon of
DW tilting is not to be considered, the properties of the DW
can be studied by considering the more simple q − φ model

[12,24], which can be obtained by setting χ = Hx = Hy = 0
in Eq. (17),

σDW (φ) = 2
A

	
+ πP[(Da − Ds) cos(φ) + (Db − Dt ) sin(φ)]

+ 2	(K0 + K sin2(φ)). (18)
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III. RESULTS

A. In plane field driven DW titling in the presence
of arbitrary DMI tensors

It is a well-established fact that the presence of iDMI
induces a tilt in the DW profile [23,37] under the application
of an external in-plane (IP) transverse field. The origin of this
phenomenon is explained by considering the relative energy
balance of the DW in presence of chiral interactions and
Zeeman fields. In the absence of applied IP fields, the DW
reaches an internal equilibrium angle dictated by the relative
strength of DMI and demagnetizing contributions. If we apply
an external IP field along the positive y direction, the DW
magnetization is going to feel the added competing interac-
tion requiring it to align along the direction of the external
field. At the same time, the iDMI produces an effective field
component that stabilizes Néel walls. To try and accommodate
both torques, the DW tilts by an angle χ increasing the DW
energy by a factor 1/ cos χ . In the following we try and extend
what is known about DW tilting in the presence of iDMI to the
case of arbitrary DMI tensors (see Fig. 1). As a first step, we
analyze the new DMI energy terms of the χ = 0 case

σDMI = π [(Da − Ds) cos(φ) + (Db − Dt ) sin(φ)] (19)

and of the χ 
= 0 case

σDMI = π [Da cos(φ − χ ) − Ds cos(φ + χ )

− Dt sin(φ − χ ) + Db sin(φ + χ )], (20)

where we have set P = 1 for convenience. In the untilted case
χ = 0, Eq. (19) suggests that the different DMI tensor com-
ponents all simply induce either Néel or Bloch wall stabilizing
effective fields; however, this intuitive picture is only valid as
long as no tilting is observable. If tilting is present [Eq. (20)] in
the system, we need to take in account the fact that the Ds and
Db components minimize the energy of the DW as a function
of φ + χ as opposed to φ − χ . As a first step to understand
the implications of this difference, we discuss the equilibrium
angles stabilized by all the different DMI tensor components
of Eq. (17). The values of the physical parameters used in
the micromagnetic simulation for the statics and dynamics
of the DW represent the values measured in Pt/Co/AlOx
nanowires [28]. We set the exchange constant A = 10−11J/m,
the saturation magnetization Ms = 1.09 MA/m, the effec-
tive anisotropy constant K0 = 1.25 MJ/m3, and the damping
coefficient α = 0.5. The chosen nanowire dimensions are
Lx = 1 μm, Ly = 160 nm, and Lz = 0.6 nm [see Fig. 2(a) for
the schematics of the setup]. By observing the Fig. 2(b)(i),
(assuming χ > 0) we notice how φ − χ represents the DW
magnetization angle in the reference frame of the tilted DW.
φ + χ on the other hand, represents the DW magnetization
in the reference frame of a mirrored image of the tilted DW,
i.e., with a canting angle of −χ [see Fig. 2(b)(ii)]. As ob-
tained from [33] and [23], the Da and Dt components of the
DM tensor stabilize, respectively, Néel and Bloch DWs in
the reference frame of the tilted DW [see Figs. 2(c)(i) and
2(c)(ii)]. On the other hand, the dependence from the φ + χ

angle of Ds and Db components results in the stabilization of
Néel or Bloch DWs in a reference located in a mirror image
version of the DW itself [see Figs. 2(c)(iii) and 2(c)(iv)].

FIG. 3. [(a)–(c)] Internal DW magnetization (the orange arrows
in the middle of the domain wall indicate the orientation of the
magnetization in the x-y plane) angle stabilized by three different
representative DMI tensors in the absence of an applied IP field.
[(d),(e)] Internal DW magnetization angle stabilized by two different
representative DMI tensors in the presence of an applied IP field. The
mirrored image of the tilted domain wall in (d) and (e) is included for
clarity. The DMI tensor components are expressed in MJ/m2.

To emphasize how the effect of the Ds and Db components
can only be distinguished from the Da and Dt contributions
in the presence of DW tilting (i.e., χ 
= 0), we analyze the
equilibrium configurations obtained from the minimization
of the untilted case and compare them with micromagnetic
simulations performed with a version of the MuMax3 code
[25] suitably modified to account for the new components
of the DMI tensor of Eq. (15). By observing Eq. (18), it is
immediately apparent that in the case χ = 0, the effect of Ds

and Da (or Db and Dt ) cannot be untangled as all these energy
terms contribute to the stabilization of an untilted Néel (Ds

and Da) or an untilted Bloch wall (Db and Dt ). This effect
is clearly visible in Fig. 3(a), where a DM tensor composed
only of a Da part stabilizes a Néel wall [Fig. 3(a)(ii)] while
a DM tensor composed of a Ds part stabilized a Néel wall
with opposite chirality [Fig. 3(a)(i)]. In the presence of DW
tilting (induced, e.g., by the presence of an applied IP field
along the y axis), the different energy contributions become
distinguishable as can be seen in Figs. 3(b)(i) and 3(b)(ii),
where the DW magnetization in the presence of Ds = ±1.5
MJ/m2, Da = Db = 0 and an IP field of Hy = 100 mT points
in a direction compatible with a Néel wall in a reference frame
tilted in the opposite direction −χ [see the dotted line in
Figs. 3(d) and 3(e)]. In summary, all DMI-tensor contribu-
tions that depend on cos(φ + χ ) [or sin(φ + χ )], rather than
cos(φ − χ ) [or sin(φ − χ )], generate a tilting of the DW in
order to maintain a Néel [or Bloch] configuration, but use a
fictitious DW tilted in the opposite direction [see the light blue
dashed line in Figs. 3(d) and 3(e)] as a reference instead of
the DW itself. The simultaneous presence of all the different
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FIG. 4. Comparison of micromagnetic simulations [25] and numerical minimization of the energy density of Eq. (17). (a) The tilting angle
χ as a function of the D21 DMI tensor component of in the case of a C2v symmetric DMI. (b) Tilting angle χ as a function of the Ds DMI tensor
component of in the case of a S4 symmetric DMI in the case of Db = 0. (c) Tilting angle χ as a function of the Ds DMI tensor component of
in the case of a S4 symmetric DMI in the case of Db = 1.5 MJ/m2. (d) Tilting angle χ as a function of the Db DMI tensor component of in the
case of a T symmetric DMI with an IP applied field in the y direction of magnitude μ0Hy = 100 mT. (e) Tilting angle χ as a function of the
Db DMI tensor component of in the case of a T symmetric DMI with an IP applied field in the x direction of magnitude μ0Hx = 100 mT.

DMI contributions as well as their relative importance is more
complex and is studied both numerically, via the minimization
of Eq. (17) and with micromagnetic simulations. In Fig. 4(a)
we observe the tilting angle χ of the DW in the presence of a
DMI tensor compatible with C2v crystal symmetry [17], i.e.,

Q̂C2v
=

(
0 D12

D21 0

)
. (21)

By observing the value of χ for D21 = 0 we notice a van-
ishing of the DW tilting while a form of DMI (D12 
= 0)
is still present. This phenomenon can be understood using
the intuitive picture of competing effective fields. As can be
observed in the untilted model of Eq. (18), the term stabilizing
Néel walls has the form (Da − Ds) cos(φ). In the C2v case
of Eq. (21), we have Da = (D12 − D21)/2 and Ds = (D12 +
D21)/2 and therefore

⇒ Da − Ds = D21, (22)

implying that the component of the DMI tensor that stabilizes
Néel walls (and is responsible for tilting since it competes
with the Hy torque) is the D21 component. In Figs. 4(b) and
4(c) on the other hand, we observe the behavior or the DW
tilting angle χ in the presence of a DMI tensor compatible
with S4 crystal symmetry [17,18] in two different cases. In
Fig. 4(b) we have

Q̂S4
=

(
0 Ds

Ds 0

)
, (23)

while in Fig. 4(c) we have

Q̂S4
=

(
Db Ds

Ds −Db

)
. (24)

By comparing the two graphs we can observe how the pres-
ence of Db terms emphasizes the canting effect. This can be
understood by recalling how the Db terms energetically favors
the formation of Bloch walls. In the presence of a transverse
field along the y direction, the effective field coming from
Db acts constructively and exacerbates the canting one would
normally observe without Db. In Figs. 4(d) and 4(e) we ex-
plore the canting angle χ in the presence of a DMI tensor
compatible with the point group symmetry T (or others [27]),
i.e.,

Q̂T =
(

Dt 0
0 Dt

)
. (25)

In Figs. 4(d) and 4(e) we study the behavior of χ as a function
of Dt in the presence of a transverse field along the y direction
[Fig. 4(d)] and in the presence of a transverse field along the
x direction [Fig. 4(e)]. We observe how tilting is only present
in the case of an applied transverse field applied along the
x direction. This can be explained observing Eq. (17) where
we notice that the DMI associated to Dt tends to stabilize
Bloch walls [Fig. 3(c)(ii)]: as a consequence a transverse Hx

field tries to change the internal DW magnetization to a Néel
configuration. Much like in the case of the Da and Ds [see
Figs. 2(c)(i) and 2(c)(iii)], the DW responds by tilting to try
and accommodate both the Zeeman and the Dt effective field.
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FIG. 5. (a) DW angle φ + χ as a function of the off-diagonal DMI tensor components Ds in the S4 symmetric case. (b) DW angles as a
function of the diagonal DMI tensor components Db(Db/Ds � 1 limit) in the S4 symmetric case. (c) Intrinsic DW tilting in the presence of
simultaneous presence of Ds and Db for three representative cases.

B. Intrinsic DW tilting in the presence of Db and Ds

As mentioned in the discussion of Sec. III A, the appear-
ance of DW tilting in perpendicularly magnetized nanowires
is a consequence of the internal equilibrium of torques trying
to orient the DW magnetization some preferred configuration.
According to Eq. (17), if the DMI tensor of the system dis-
plays both diagonal and off diagonal components, the conflict
of Néel- and Bloch-wall stabilizing torques is expected to
be present even in the absence of an applied IP field. By
observing Fig. 5(c), we can in fact see how the presence of a
DMI tensor compatible with the S4 point group symmetry [see
Eq. (24)], DW tilting occurs even in the absence of IP fields.
In the thin film limit, considering a situation where the DMI
strength dominates the demagnetizing field, the magnetization
angle in the reference frame of the DW (i.e., φ + χ ) can
be easily derived by minimizing the simplified DW energy
density

σDW (φ, χ ) = 2
A

	
+ π [Db sin(φ + χ ) − Ds cos(φ + χ )],

(26)

which yields the simple solution [Fig. 5(a)]

φ + χ = arctan

(
−Db

Ds

)
. (27)

To obtain an approximate solution for the tilting angle χ in
the Ds/Db � 1 limit as a function of the material parameters,
we can follow the procedure outlined in Ref. [23] making
the analogy between the Db DMI field and an applied field
along the y axis. As discussed in Sec. II A, DW tilting is the
result of an energy balance between satisfying the internal
constraints of the DW and the energy cost due to its surface
area increase. We imagine a scenario where the initial state

of the DW is a Néel configuration (large Ds hypothesis), i.e.,
σ0 = 2A/	 + πDs + 2	K0. The energy of the DW surface
scales with ∼1/ cos χ , while the energy gain of the Db DMI
component in the DW scales approximately with sin χ . If
we assume a small Db contribution (Db/Ds � 1), we can
approximate the DW energy in the Néel configuration as fixed
and the energy of the DW as

σDW ≈ σ0 − πDb sin χ

cos χ
, (28)

which is minimized by

sin χ = πDb

σ0
= πDb

2A/	 + πDs + 2	K0
. (29)

As we can see from Fig. 5(b), the above formula fits the
simulations data reasonably well for small Db, where the
dependency of the tilting angle χ from the Db component is
approximately linear.

C. Measuring Da and Ds DMI contributions with IP fields

According to the discussion of Sec. III A and Fig. 3, it
might seem impossible to use the canting angle as a function
of applied IP fields to measure Da and Ds since in the untilted
case of Eq. (18), the Ds energy density component simply
contributes to the stabilization of a Néel wall and can either
collaborate or compete with the Da contribution depending
on the relative sign. We can in fact observe how in Fig. 6(a),
the response of the tilting angle χ to an IP Hy field in the
case of Ds 
= 0 is identical to the case −Da and cannot be
distinguished. However, according to Eq. (17), Figs. 3(b)(i)
and 3(b)(ii), even when the canting angle χ is identical, the
equilibrium angle φ inside the DW in the presence of Ds is
different when compared to a system with Da. This implies
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FIG. 6. (a) DW tilting angle χ response to an Hy field sweep from
−200 mT to +200 mT in the case of pure Da (blue dots) and pure
Ds (orange squares) contributions to DMI. As can be seen the 2 re-
sponses overlap almost completely. (b) DW tilting angle χ response
to a rotating IP field with Hy and Hx components [see Eq. (30)] in
the case of pure Da and pure Ds contributions to DMI. The dashed
curves are obtained by fitting the energy minimum of Eq. (17) onto
the results obtained via micromagnetic simulations using Da and Ds

as the fitting parameters.

that the simultaneous action of Hy and Hx IP fields should
induce a different response of the DW canting angle χ in
the nanowire. In Fig. 6(b), we show how the canting angle
χ responds differently in the presence of Da or Ds under the
application of a rotating IP field of the form

μ0H = μ0H0

⎛
⎝cos(ωt )

sin(ωt )
0

⎞
⎠, (30)

where t ∈ [0, T ], ω = 2π/T , and μ0H0 = 100mT . We stress
the fact that the variable t does not have the unit of a physical
time, since in the simulation the canting angle χ in response
to the applied field is recorded after the system has had time
to relax and not after a fixed time interval. In the x axis of
Figs. 6(a) and 6(b) we refer to this variable as “steps”. In
Fig. 6(b) also shows how the form of these curves could in
principle be fitted to Eq. (17) to extract the Da, Ds coefficients,
potentially allowing for the magneto-optical measurements
of different DMI tensor components with the canting angle
method. The fit is performed by calculating χ from a con-
strained minimization of the DW energy density of Eq. (17)
using Hx, Hy as variables and Da and Ds as fitting parameters.

D. Domain wall dynamics in the presence of arbitrary
DMI tensors

After having studied the effects of the different components
of the DMI tensor on the static configurations of magnetic
domain walls in nanowires, we now focus on the effects on the
dynamics. Given that in the field driven, steady-state regime

the magnetization angle in the reference frame of the DW
is only dependent on the IP torques exerted by the driving
field Hz, the anisotropy contributions Hk , and the various
components of the DMI tensor, we can avoid considering χ as
a collective coordinate in the dynamical equations and work
with the simpler q − φ model [23,36] whose DW energy den-
sity σDW (q, φ) with the generalized chiral interaction tensor
from Eq. (2) can be written as

σDW (φ) = 2
A

	
+ π [(Da − Ds) cos(φ) + (Db − Dt ) sin(φ)]

+ 2	(K0 + K sin2(φ)) − π	Ms(Hy sin φ

+ Hx sin φ). (31)

By explicitly writing the Lagrangian of the DW as L = σDW +
(Ms/γ )φθ̇ sin θ and the Rayleigh dissipation function to cor-
rectly account for damping effects F = (αMs/2γ ) ṁ, we
can derive the equations of motion from the Euler-Lagrange-
Rayleigh equation [24],

∂L
∂X

− d

dt

(
∂L
∂Ẋ

)
+ ∂F

∂Ẋ
= 0, X ∈ {q, φ,	}, (32)

obtaining the following equations of motion:

q̇ = 	γ0

1 + α2

[
αHz + HK

sin 2ϕ

2
− π

2
f̃ ′
DMI(ϕ)

− π

2

(
Hy cos ϕ − Hx sin ϕ

)]
, (33)

ϕ̇ = γ0

1 + α2

[
Hz − α

(
HK

sin 2ϕ

2
− π

2
f̃ ′
DMI(ϕ)

− π

2

(
Hy cos ϕ − Hx sin ϕ

))]
, (34)

	̇ = 12γ0

μ0Msαπ2

[
A

	
− 	

(
K0 + K sin2 ϕ

)
+ μ0Ms	

π

2

(
Hx cos ϕ + Hy sin ϕ

)]
, (35)

where we define

HK = 2K

Msμ0
, f̃ ′

DMI(φ) = 1

2	Msμ0

∂ fDMI(φ)

∂φ
(36)

and fDMI(φ) represents the trigonometric function with all the
different DMI contributions (antisymmetric Da, symmetric
Ds, traceless Db, and diagonal Dt )

fDMI(φ) = (Da − Ds) cos φ + (Dt − Db) sin φ. (37)

If we assume an up-down initial configuration (P = +1) and
an in-plane (IP) field-free stationary case (i.e., Hx = Hy = 0),
imposing the stationary conditions φ̇ = 	̇ = 0 yields the con-
ditions [8,13] for rigid motion of the DW magnetization

Hz = α

(
Hk

sin 2φ

2
− π

2

(
(HDMI,a − HDMI,s) sin φ

+ (HDMI,b − HDMI,t ) cos φ
))

, (38)

where HDMI,i∈{a,s,b,t} = Di/2	μ0Ms is the effective field
strength associated to the different DMI components. In order
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FIG. 7. Comparison of micromagnetic simulations [25], numerical maximization of Eq. (40), and analytical estimate [see Eq. (42)] for the
DW Walker breakdown HW . (a) DW velocity vDW as a function of an applied out-of-plane field Hz. The different curves show the velocity
profile for different values of the symmetric component of a C2v symmetric DMI tensor [see inset of (c)]. (b) DW velocity vDW as a function
of an applied out-of-plane field Hz. The different curves show the velocity profile for different values of the antisymmetric component of a C2v

symmetric DMI tensor [see inset of (d)]. (c) Comparison of simulation results, numerical maximization of Eq. (40) and analytical estimate
[see Eq. (42)] of the Walker breakdown as a function of the symmetric component of a C2v symmetric tensor. (d) Comparison of simulation
results, numerical maximization of Eq. (40) and analytical estimate [see Eq. (42)] of the Walker breakdown as a function of the antisymmetric
component of a C2v symmetric tensor.

to make the notation more compact, we define

κ := K

K0
, D̃′ := π (Da − Ds)

μ0HK Ms	0
, D̃′′ := π (Dt − Db)

HKμ0Ms	0
, (39)

where 	0 =
√

A
K0+K sin2 φ

represents the equilibrium DW
width that can be obtained by setting 	̇ = 0 in Eq. (35). These
definitions allow us to rewrite Eq. (38) in the form

Hz = αHk

2

[
(D̃′′ cos φ − D̃′ sin φ)

√
1 + κ sin2 φ

κ
+ sin 2φ

]
.

(40)

For fixed κ, D̃′′, D̃′, the Walker field is identified as the largest
Hz fulfilling Eq. (40) and is obtained by maximizing the right-
hand side of Eq. (40) [33], i.e.,

HW := αHk

2
max

φ∈[0,2π )

[
(D̃′′ cos φ

− D̃′ sin φ)

√
1 + κ sin2 φ

κ
+ sin 2φ

]
. (41)

The maximization of (41) is not possible in closed analytical
form; however, one can treat the thin film limit, where the
perpendicular magnetic anisotropy dominates over the shape
anisotropy, i.e., Nz � Nx, Ny implying the condition κ � 1
on Eq. (41). The asymptotic solution in that case has the

following form:

HW ∼

⎧⎪⎨
⎪⎩

D̃′′ |D̃′′ |+|D̃′| D̃′

κ
√

(D̃′′ )2+(D̃′ )2
if sign(D̃′′ · D̃′) = 1

D̃′′ |D̃′′ |−|D̃′| D̃′

κ
√

(D̃′′ )2+(D̃′ )2
if sign(D̃′′ · D̃′) = −1

(as κ → 0). (42)

We validate the assumption of κ � 1 approximation in our
case by pointing out how the demagnetizing factors in the case
of a slab geometry can be calculated analytically [35] and our
geometry Lx = 1 µm, Ly = 160 nm, and Lz = 0.6 nm yields
the following values for the demagnetizing factors:

Nx = 0.0013, Ny = 0.0082, Nz = 0.990. (43)

We now proceed and discuss the obtained analytical result
by comparing them with numerical simulations. By observing
Eq. (42), we first of all notice how in the limit of D̃′ → 0
(i.e., a DMI tensor with only elements on the diagonal) or the
limit D̃′′ → 0 (i.e., a DMI tensor with only elements on the
off-diagonal) the asymptotic behavior of Eq. (42) becomes

HW (D̃′ → 0) ∼ D̃′′/κ, (44)

HW (D̃′′ → 0) ∼ D̃′/κ, (45)

which shows a linear behavior compatible both with our
numerical results (see Fig. 7) and, in the HW (D̃′ → 0)∼D̃′′/κ
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FIG. 8. (a) 3D plot of Eq. (42). (b) Plot of the analytical formula for the WB field HW as a function of the off-diagonal D̃′ component [see
Eq. (42)]. The different curves represent the behavior of the WB field for different diagonal DMI Db values. At Db = 0 (i.e., the blue curve)
we recover the linear behavior. The peak velocities are reported on the second y axis shown in red. (c) Comparison of WB field calculated
from a micromagnetic simulation with a DMI tensor compatible with S4 symmetry (Dl = 1.3 MJ/m2 and free Db) and the analytical estimate
of Eq. (42). The peak velocities are reported on the second y axis shown in red.

case, with the results shown in [33]. We emphasize how
these limiting cases show a linear dependence of the WB
field only in the case of exclusive presence of diagonal or
off-diagonal elements, but not both at the same time. By
observing Figs. 8(a) and 8(b) we point out how the pres-
ence of both a diagonal and off-diagonal component of the
DMI tensor results in a departure from the linear behavior
described by Eq. (44) and Eq. (45) hinting at the fact that the
components of the effective field counteracting precessional
motion do not cooperate additively but in a nonlinear way.
Furthermore, we emphasize how this behavior of the WB field
directly translates in the attainable peak DW velocity since, in
the κ � 1 limit,

vmax ∼ 	0γ0α

1 + α2
HW (46)

= 	0γ0α

1 + α2

⎧⎪⎨
⎪⎩

D̃′′ |D̃′′|+|D̃′| D̃′

κ
√

(D̃′′ )2+(D̃′ )2
if sign(D̃′′ · D̃′) = 1

D̃′′ |D̃′′|−|D̃′| D̃′

κ
√

(D̃′′ )2+(D̃′ )2
if sign(D̃′′ · D̃′) = −1

(as κ → 0). (47)

In Fig. 8(c) we report the peak velocities calculated
with Eq. (47) and show how with Ds = 1.5 MJ/m2 and
Db = −1.5 MJ/m2 even peak velocities as high as vmax ≈
1200 m/s are theoretically achievable. Furthermore, using
experimentally measured [20] parameters for the S4

symmetric Schreibersite compound Fe1.9Ni0.9Pd0.2P

(A = 8 pJ/m, Ku = 31 kJ/m3, Ms = 417 kA/m) while
keeping the nanowire dimensions unchanged, Eq. (47)
predicts how peak velocities vmax ≈ 1700 m/s can be
achieved even with much smaller DMI tensor components
(i.e., Ds = Db = 0.2 MJ/m2).

IV. CONCLUSION

In this paper we modified to the existing CCMs [23,24,37]
to include and study the effects of arbitrary DMI tensor
on the statics and dynamics of domains walls in magnetic
nanowires. We discuss how the effects of a DMI tensors
can be described by inspecting how its symmetric traceless
(Ds, Db), antisymmetric (Da), and diagonal (Dt ) components
act on the effective field inside the DW. We first show how
DW canting is well described by the energy density of the
q − φ − χ model (see Fig. 4) and discuss how the canting
angle method is able to distinguish diagonal (Db, Dt ) DMI
contributions and off-diagonal DMI contributions (Da, Ds).
We also observe how measuring the response of the canting
angle χ to the simultaneous application of an IP field with
both Hx and Hy components could potentially be a means
to magneto-optically measure symmetric (Ds) and antisym-
metric (Da) contributions (see Fig. 6) to DMI. Other IP field
applications schemes could be studied to further enhance the
resolution power of this technique. We then proceed and show
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how, in the presence of both Ds and Db DMI components,
DW tilting can be present even in the absence of IP fields. We
derive a simple analytic formula for the canting angle χ as a
function of Db valid in the Ds/Db � 1 limit (see Fig. 5). We
then study the effect of the different DMI tensor components
on the the field-driven dynamic properties of DWs in mag-
netic nanowires. We discover that the effects of the interplay
of the Néel- and Bloch-stabilizing DMI components on the
magnitude of the WB field is not trivial and determines a
departure from the simple linear dependency [Fig. 8(a)] in the
case of pure interface [12] of bulk DMI [33]. We then derive
an analytic formula describing the dependency of the WB
field on the different DMI tensor components [Eq. (42)] in the
thin film limit, comparing its predictions with micromagnetic
simulations [Fig. 8(b)]. The very high theoretically achievable

DW velocities in the order km/s [Fig. 8(c)] are confirmed by
simulation and could open the way to a wave of experimental
investigations in low-symmetry magnetic thin films. These
results indeed hint at the fact that materials displaying these
more exotic forms of DMI combining both Bloch- and Néel-
stabilizing effective fields, could be interesting candidates for
DW motion-based technology concepts.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie Grant Agreement No.
860060 “Magnetism and the effect of Electric Field”
(MagnEFi).

[1] S. Parkin and S.-H. Yang, Nat. Nanotechnol. 10, 195
(2015).

[2] D. Kumar, T. Jin, R. Sbiaa, M. Kläui, S. Bedanta, S. Fukami, D.
Ravelosona, S.-H. Yang, X. Liu, and S. Piramanayagam, Phys.
Rep. 958, 1 (2022).

[3] G. Masciocchi, M. Fattouhi, A. Kehlberger, L. Lopez-Diaz,
M.-A. Syskaki, and M. Kläui, J. Appl. Phys. 130, 183903
(2021).

[4] F. Klingbeil, S. D. Stölting, and J. McCord, Appl. Phys. Lett.
118, 092403 (2021).

[5] Z. Luo, A. Hrabec, T. P. Dao, G. Sala, S. Finizio, J. Feng, S.
Mayr, J. Raabe, P. Gambardella, and L. J. Heyderman, Nature
(London) 579, 214 (2020).

[6] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit,
and R. P. Cowburn, Science 309, 1688 (2005).

[7] J. A. Currivan, Y. Jang, M. D. Mascaro, M. A. Baldo, and C. A.
Ross, IEEE Magn. Lett. 3, 3000104 (2012).

[8] S. Glathe, R. Mattheis, and D. V. Berkov, Appl. Phys. Lett. 93,
072508 (2008).

[9] A. Thiaville, Y. Nakatani, J. Miltat, and N. Vernier, J. Appl.
Phys. 95, 7049 (2004).

[10] D. Bhowmik, M. E. Nowakowski, L. You, O. Lee, D. Keating,
M. Wong, J. Bokor, and S. Salahuddin, Sci. Rep. 5, 11823
(2015).

[11] A. Mougin, M. Cormier, J. P. Adam, P. J. Metaxas, and J. Ferré,
Europhys. Lett. 78, 57007 (2007).

[12] A. Thiaville, S. Rohart, É. Jué, V. Cros, and A. Fert, Europhys.
Lett. 100, 57002 (2012).

[13] M. Fattouhi, F. Garcia-Sanchez, R. Yanes, V. Raposo, E.
Martinez, and L. Lopez-Diaz, Phys. Rev. Appl. 18, 044023
(2022).

[14] J.-Y. Lee, K.-S. Lee, and S.-K. Kim, Appl. Phys. Lett. 91,
122513 (2007).

[15] T. Moriya, Phys. Rev. 120, 91 (1960).
[16] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[17] A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255

(1994).
[18] A. O. Leonov, T. L. Monchesky, N. Romming, A. Kubetzka,

A. N. Bogdanov, and R. Wiesendanger, New J. Phys. 18,
065003 (2016).

[19] M. Hoffmann, G. P. Müller, C. Melcher, and S. Blügel, Front.
Phys. 9, 769873 (2021).

[20] K. Karube, L. Peng, J. Masell, X. Yu, F. Kagawa, Y. Tokura, and
Y. Taguchi, Nat. Mater. 20, 335 (2021).

[21] P. Swekis, J. Gayles, D. Kriegner, G. H. Fecher, Y. Sun, S. T.
Goennenwein, C. Felser, and A. Markou, ACS Appl. Electron.
Mater. 3, 1323 (2021).

[22] K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, Nat.
Rev. Mater. 3, 244 (2018).

[23] O. Boulle, S. Rohart, L. D. Buda-Prejbeanu, E. Jué, I. M. Miron,
S. Pizzini, J. Vogel, G. Gaudin, and A. Thiaville, Phys. Rev.
Lett. 111, 217203 (2013).

[24] J. M. A. Thiaville and J. M. García, J. Magn. Magn. Mater. 242-
245, 1061 (2002).

[25] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. García-
Sánchez, and B. V. Waeyenberge, AIP Adv. 4, 107133 (2014).

[26] M. Hoffmann, B. Zimmermann, G. P. Müller, D. Schürhoff,
N. S. Kiselev, C. Melcher, and S. Blügel, Nat. Commun. 8, 308
(2017).

[27] A. D. Pietro, P. Ansalone, V. Basso, A. Magni, and G. Durin,
Europhys. Lett. 140, 46003 (2022).

[28] I. M. Miron, T. Moore, H. Szambolics, L. D. Buda-Prejbeanu,
S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A.
Schuhl, and G. Gaudin, Nat. Mater. 10, 419 (2011).

[29] Y. Ga, Q. Cui, Y. Zhu, D. Yu, L. Wang, J. Liang, and H. Yang,
Npj Comput. Mater. 8, 128 (2022).

[30] L. Camosi, S. Rohart, O. Fruchart, S. Pizzini, M. Belmeguenai,
Y. Roussigné, A. Stashkevich, S. M. Cherif, L. Ranno, M. de
Santis, and J. Vogel, Phys. Rev. B 95, 214422 (2017).

[31] Q. Cui, Y. Zhu, Y. Ga, J. Liang, P. Li, D. Yu, P. Cui, and H.
Yang, Nano Lett. 22, 2334 (2022).

[32] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899
(2013).

[33] M. Li, B. Xi, Y. Liu, and J. Lu, Phys. Rev. B 105, 014440
(2022).

[34] J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge
University Press, Cambridge, 2001).

[35] A. Aharoni, J. Appl. Phys. 83, 3432 (1998).
[36] A. Thiaville and Y. Nakatani, Domain-wall dynamics in

nanowires and nanostrips, in Topics in Applied Physics, edited
by B. Hillebrands and A. Thiaville (Springer, Berlin, 2006),
Vol. 101, pp. 161-205.

[37] S. A. Nasseri, E. Martinez, and G. Durin, J. Magn. Magn. Mater.
468, 25 (2018).

174427-10

https://doi.org/10.1038/nnano.2015.41
https://doi.org/10.1016/j.physrep.2022.02.001
https://doi.org/10.1063/5.0069661
https://doi.org/10.1063/5.0037128
https://doi.org/10.1038/s41586-020-2061-y
https://doi.org/10.1126/science.1108813
https://doi.org/10.1109/LMAG.2012.2188621
https://doi.org/10.1063/1.2975181
https://doi.org/10.1063/1.1667804
https://doi.org/10.1038/srep11823
https://doi.org/10.1209/0295-5075/78/57007
https://doi.org/10.1209/0295-5075/100/57002
https://doi.org/10.1103/PhysRevApplied.18.044023
https://doi.org/10.1063/1.2789176
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0304-8853(94)90046-9
https://doi.org/10.1088/1367-2630/18/6/065003
https://doi.org/10.3389/fphy.2021.769873
https://doi.org/10.1038/s41563-020-00898-w
https://doi.org/10.1021/acsaelm.0c01104
https://doi.org/10.1038/s41578-018-0036-5
https://doi.org/10.1103/PhysRevLett.111.217203
https://doi.org/10.1016/S0304-8853(01)01353-1
https://doi.org/10.1063/1.4899186
https://doi.org/10.1038/s41467-017-00313-0
https://doi.org/10.1209/0295-5075/aca0ba
https://doi.org/10.1038/nmat3020
https://doi.org/10.1038/s41524-022-00809-4
https://doi.org/10.1103/PhysRevB.95.214422
https://doi.org/10.1021/acs.nanolett.1c04803
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1103/PhysRevB.105.014440
https://doi.org/10.1063/1.367113
https://doi.org/10.1016/j.jmmm.2018.07.059

