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Regulation of magnon-phonon coupling by phonon angular momentum in two-dimensional systems
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The coupling between magnons and phonons modulates the transport properties of magnons, resulting in
magnon polarons and magnon Seebeck effects, etc. Magnons possess well-defined angular momentum, while
phonons are usually composed of linear atomic oscillations lacking angular momentum. However, in chiral
systems, phonons become elliptical or circular; thus they will carry angular momentum. In this paper, we
emphasize angular momentum and its role in the magnon-phonon coupling. Using a coupled-magnon-phonon
model on the hexagonal lattice, we investigate the coupling of achiral and chiral phonons with three types of
magnons, namely a magnon on one sublattice, ferromagnetic magnons, and antiferromagnetic magnons. We
calculate the magnon-phonon dispersion relations and the strength of magnon-phonon coupling in the reciprocal
space. We are particularly interested in the K and K ′ points at the corner of the first Brillouin zone where the
normal modes involve circular rotations of magnetization and displacement. We find a selective coupling wherein
the coupling between magnons and phonons vanishes either when the magnitude of the magnon or phonon modes
is zero or when the circular motion of magnetization is opposite to that of the displacements. These findings pave
the way towards manipulating magnon polaron devices based on phonon angular momentum.
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I. INTRODUCTION

Both magnons and phonons are bosonic collective excita-
tions in magnetic materials. When they are in the resonant
condition with coincidence in both their wavelength and
frequency, the precession of the magnetic moments stimu-
lates the vibration of the lattice, and the lattice vibration
also excites the spin wave, which results in magnon-phonon
coupling [1–3]. The magnon-phonon coupling is usually
characterized by the avoided crossing in their energy disper-
sions. When the magnon-phonon coupling strength is larger
than the lifetimes of magnons and phonons, the coupled
magnon and phonon form a composite quasiparticle dubbed
the magnon polaron [4–6]. The large Berry curvature within
the avoided crossing region contributes to the thermal Hall
effect [6–9], which provides a routine to tune the thermal
and spin currents in magnetic materials. Magnetoacoustic
coupling gives the nontrivial topological properties of the
magnon, which play an important role in magnon transport
characteristics, such as the spin Nernst effect [10] and spin
Seebeck effect [11].

Magnons possess quantized spin angular momentum. The
interaction between magnons and phonons has been discussed
from the perspective of angular momentum. The relaxation
process of a single magnetic moment within a lattice shall
conserve the total angular momentum [12], and so do the
interactions between magnons and phonons [13]. Mutual
conversion between magnons and phonons is accompanied
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by the angular momentum transfer between lattice and spin
[8,14–16].

Phonons were also demonstrated to carry intrinsic angu-
lar momentum in chiral systems. The angular momentum of
phonons is associated with rotations of atoms around their
equilibrium positions. Chiral phonons, proposed by Zhang
and co-workers [17–19], exist in inversion-symmetry-broken
systems, such as triangular [20], Kekulé [21], honeycomb
[22], and kagome lattices [23]. Inversion symmetry in the
hexagonal lattice can be broken by isotopic doping and a stag-
gered sublattice potential [24,25]. Phonons can also acquire
angular momentum through coupling with the magnetism in
time-reversal-symmetry-breaking systems [18]. Time-reversal
symmetry can be broken by an external magnetic field
[1,26,27] or Coriolis force in rotating systems [28–30]. The
dispersion relation of magnons and phonons in chiral systems
is nonreciprocal [31], and this is attributed to magnon-phonon
coupling.

Magnon-phonon coupling has been observed in two-
dimensional (2D) magnetic materials, including FePS3 [32],
FePSe3 [33], and CrI3 [34]. Magnon-phonon coupling in a
honeycomb lattice has been theoretically studied [6]. Zhang
and Niu [17] demonstrated the existence of chiral phonons
with quantized pseudoangular momentum in the honeycomb
lattice. In this paper, we study the magnon coupling with achi-
ral and chiral phonons in a honeycomb lattice, especially the
role played by phonon angular momentum in determining the
magnon-phonon coupling strength. Our results demonstrate
a selective magnon-phonon coupling that vanishes at some
high-symmetry points. The results are analyzed in terms of
the phonon angular momentum of each sublattice, instead of
the total phonon angular momentum.
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The remainder of this paper is organized as follows. Our
calculation method is presented in Sec. II. Combining the
Landau-Lifshitz equation [35,36] and Newton’s second law,
we derive the equations of motion (EOMs) for coupled
magnons and phonons, which serve as a unified theoretical
framework to describe the motion of atoms and the preces-
sion of magnetic moments in magnetic insulators. In Sec. III,
we discuss the results for three types of honeycomb lattices,
namely (1) a honeycomb lattice in which only one sublattice
is magnetic, (2) a honeycomb lattice in which two magnetic
sublattices are in the ferromagnetic state, and (3) a honeycomb
lattice in which two magnetic sublattices are in the antifer-
romagnetic state. The vanishing magnon-phonon coupling at
high-symmetry points is analyzed based on the phonon polar-
ization of sublattices. Our conclusions are given in Sec. IV.

II. METHODS

A. Equations of motion

Consider a magnetic insulator possessing both lattice vi-
brations and spin waves simultaneously. The motion of atoms
is described by Newton’s second law; we take the Landau-
Lifshitz equation [35,36] to describe the precession of local
magnetic moments. The former is a second-order differential
equation, while the latter is first order; their different orders
prevent unified equations of motion for both lattice and spin
dynamics. Alternatively, one can take both the displacements
and velocities of atoms as variables, which decomposes New-
ton’s equation into two first-order differential equations. The
equations of motion for magnons and phonons have been
derived in our previous work [37]. In this paper, we rewrite
the equations of motion in a matrix form; therefore the dis-
persion relation can be easily solved by diagonalizing the
corresponding dynamic matrix. The state of a coupled spin-
lattice system is characterized by three vector variables: the
velocity of atoms (dubbed V ), the displacement of atoms
from their equilibrium positions (U ), and the deviation of
local magnetic moments from their equilibrium directions (S).
The equations of lattice and spin motions are a first-order
differential equation of these variables.

Forces on atom j (Fj) and the effective local magnetic field
(Bj) can be calculated from the derivative of the total energy
H with respect to Uj and S j . That is, Fj = −∂H/∂Uj , Bj =
−∂H/∂S j . It is the torque on a local magnetic moment that
determines its dynamics, which is defined as Tj = γ h j × S j ,
where γ is the gyromagnetic ratio.

The equations of motion for V , U , and S (omitting their
dependence on the time t and their atomic index j) can be
expressed as

d

dt

⎛
⎝V

U
S

⎞
⎠ =

⎛
⎝F/m

V
T

⎞
⎠ =

⎛
⎝0 D A

1 0 0
0 B C

⎞
⎠ ·

⎛
⎝V

U
S

⎞
⎠, (1)

where D ≡ d (F/m)/dU and C ≡ dT /dS describe the lat-
tice interaction and the spin-spin interaction, respectively.
The coupling between spin and lattice is represented by
A ≡ d (F/m)/dS and B ≡ dT /dU . The form of these ma-
trix blocks is determined by the form of the total energy
H ; in practice, they are calculated using the finite difference

method in this paper. For example, when an atom moves in
the ±x direction with a displacement of �U , we can get the
energy difference (Hx+ − Hx− ) in the x direction. Using the
finite difference, we can calculate the force on atoms along
the x direction as Fx = (Hx+ − Hx− )/(2�U ). Then, rotating
the magnetic moment S in the ±x or ±y direction with a
displacement of δS and using the finite difference, we can
solve matrix A. Each element of matrix A can be represented
as Aαβ

i j = (Fα
i − Fβ

j )/(2δS). Here, i, j is the number of atoms,
and α, β represent the direction of x, y, and z, respectively. In
the same way, we can obtain matrices B, C, and D. So the
big matrix on the right side in Eq. (1) is the dynamic matrix,
which plays essentially the same role as the Hamiltonian in
the Schrödinger equation. For a finite system, the frequencies
of excitations multiplied by the imaginary number i are equal
to the eigenvalues of the dynamic matrix.

For an extended crystal, one can take the Fourier transfor-
mation of Eq. (1). For a given k point, Eq. (1) becomes

d

dt

⎡
⎢⎣V (t ; �k)

U (t ; �k)
S(t ; �k)

⎤
⎥⎦ =

⎡
⎣0 D(�k) A(�k)

1 0 0
0 B(�k) C(�k)

⎤
⎦ ·

⎡
⎢⎣V (t ; �k)

U (t ; �k)
S(t ; �k)

⎤
⎥⎦, (2)

where the dependences on the time t and the k point are
included.

We seek solutions in the form of⎡
⎣V (t ; k)

U (t ; k)
S(t ; k)

⎤
⎦ =

⎡
⎢⎣V0(�k)

U0(�k)
S0(�k)

⎤
⎥⎦eiωt , (3)

which are the solutions of the eigenproblem of⎡
⎣ 0 D(�k) A(�k)

1 0 0
0 B(�k) C(�k)

⎤
⎦ ·

⎡
⎢⎣V0(�k)

U0(�k)
S0(�k)

⎤
⎥⎦ = iω

⎡
⎢⎣V0(�k)

U0(�k)
S0(�k)

⎤
⎥⎦. (4)

B. Sublattice polarizations of phonon modes

Chiral phonons are characterized by rotations of atoms
around their equilibrium positions [17,23,38]. The displace-
ment of one atom within the sublattice α can be written as

�uα (�k, �R, t ) = CαRe
[
e−i�k· �Reiωt �εα (�k)

]
, (5)

where Cα is the amplitude of displacement and �k and ω are
the phonon wave vector and frequency. �R is the position of the
unit cell where the atom resides. Suppose that the atom ro-
tates around the z axis; �εα (�k) is a normalized two-component
vector. Analogously to circularly polarized photons, one can
decompose the polarization �εα (�k) into clockwise (CW) and
counterclockwise (CCW) rotations,

�εα = a√
2

(
1
i

)
+ b√

2

(
1
−i

)
≡ a|R〉 + b|L〉, (6)

where the dependence on �k is omitted for clarity. The state |R〉
corresponds to CCW rotation, while |L〉 is the CW rotation.
One can define an operator P̂, |R〉 is its eigenvector with
eigenvalue of +1, and |L〉 is its eigenvector with eigenvalue
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FIG. 1. Schematics of a honeycomb lattice with two atoms, atom
A (red) and atom B (green): (a) one magnon, (b) ferromagnetic, and
(c) antiferromagnetic. Here, “a” and “b” are the lattice vectors shown
by black arrows. The interatomic bond length is 1, and the lattice
constant is

√
3. The red arrows indicate the spin direction.

of −1,

P̂ = |R〉〈R| − |L〉〈L| =
(

0 −i
i 0

)
. (7)

One can then define the polarization of sublattice α as

Pz
α = (�εα )†P̂�εα, (8)

which is a real number between −1 and +1. The CW circular
rotation has a polarization of Pz

α = −1, while the CCW circu-
lar rotation has a polarization of Pz

α = +1. The linear motion
with the atom moving back and forth along a line corresponds
to Pz

α = 0. Elliptic rotations have a noninteger polarization.
The sublattice polarization can be used to express the an-

gular momentum of phonons, as discussed by Zhang and Niu
[17]:

Lz =
∑

α

CαmαPz
α, (9)

where mα is the atomic mass of sublattice α and Cα is the
amplitude of displacement.

III. RESULTS

In this paper, we focus on a magnetic insulator with local
spins on a two-dimensional honeycomb lattice. We study the
magnon-phonon coupling in three different systems as de-
picted in Fig. 1, namely a honeycomb lattice in which only
one sublattice carries local spins while the other does not
[Fig. 1(a)], a honeycomb lattice in which both sublattices are
magnetic and they are ferromagnetically coupled [Fig. 1(b)],
and a honeycomb lattice in which both sublattices are mag-
netic and they are antiferromagnetically coupled [Fig. 1(c)].
The total energy has three components,

H = Hm + Hp + Hc, (10)

where Hm describes the coupling between local magnetic mo-
ments, Hp is the energy due to the lattice interactions, and Hc

represents the magnon-phonon coupling.
The term Hm consists of isotropic Heisenberg interactions

between localized magnetic moments,

Hm = −J
∑
〈i j〉

�Si · �S j . (11)

For the model shown in Fig. 1(a), Hm describes the magnetic
interactions between nearest neighbors within the magnetic

sublattice. For the models in Figs. 1(b) and 1(c), Hm represents
the magnetic interactions between different sublattices, J > 0
corresponds to the ferromagnetic (FM) state, and J < 0 is the
antiferromagnetic (AFM) state.

The term Hp consists of kinetic and potential energies of
the lattice,

Hp =
∑

j

1

2
mjV

2
j + k1

2

∑
〈i< j〉

[( �Ui − �Uj
) · R̂0

i j

]2

+ k2

2

∑
〈i< j〉

[( �Ui − �Uj
) · R̂0

i j

]2
, (12)

where mj , �Vj , and �Uj are the mass, velocity, and position of the
jth atom and k1 and k2 are the spring constants for longitudi-
nal and transverse distortions. The unit vector pointing from
the equilibrium position of the atoms i to atom j is denoted as
R̂0

i j .
The magnetic interactions depend on the instant position

of magnetic ions. Within the linear spin wave theory, lattice
modulations are caused by both the isotropic interaction and
the Dzyaloshinskii-Moriya interaction (DMI) [39–41]. The
DMI has in-plane and out-of-plane components. The out-of-
plane component modifies the magnon dispersion relation.
The in-plane component introduces coupling between the
magnon and phonon. In this paper, we only consider the in-
plane component with an in-plane DMI vector for studying
the magnon-phonon coupling. We adopt the form given by
Zhang et al. in Ref. [8] (see Kittel [42]). The in-plane DMI
has the form of D‖(Ri j ) = −D‖ẑ × R̂i j . The magnon-phonon
coupling term can be written as

Hc = −D‖
∑

i j

ẑ × ( �Ui − �Uj ) · (�Si × �S j ), (13)

where the summation is taken within sublattices i and j. D‖ is
the coupling coefficient. The spin operator �Si can be described
as �Si = Sẑ + δ �Si, where δ �Si are the fluctuations around spin
operators �Si.

A. Sublattice polarization of phonons

Before discussing the magnon-phonon coupling, we first
analyze the polarization of phonons. The phonon dispersion
relation and normal modes are calculated in Eq. (12). The hon-
eycomb lattice shown in Fig. 1 consists of two nonequivalent
atoms per primitive cell, dubbed atoms A (red) and B (green).

The case of equal mass. Setting atoms A and B with the
same mass mA = mB, we computed the phonon normal modes
by diagonalizing the dynamic matrix in Eq. (2). The phonon
dispersion relation and the normal modes at the K and K ′
points within the home primitive cell are shown in Fig. 2.
In other primitive cells, the normal mode has extra phase
factors. Figures 2(i) and 2(j) show four phonon bands, where
the other two bands involving out-of-plane vibrations have
vanishing frequencies. The four bands are denoted as bands
1–4 according to their frequencies.

We first discuss the normal modes at the K point as shown
in Figs. 2(a)–2(d). For the lowest acoustic band, band 1, its
normal mode comprises the circular rotations of both atom A
and atom B. The trajectories of the atoms correspond to the
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FIG. 2. Phonon vibration modes for atoms A and B in one hon-
eycomb lattice with mA = mB. [(a)–(d)] The phonon modes for bands
1–4 at the K point, respectively. [(e)–(h)] The phonon modes for
bands 1–4 at the K ′ point, respectively. (i) The phonon polarization
of atom A. (j) The phonon polarization of atom B. In [(a)–(h)], atoms
A and B are shown in red and green, respectively. In (i) and (j), the
color indicates the direction of Pz

A and Pz
B, and the thickness of the

curves represents the amplitudes CA and CB.

red and green circles in Fig. 2(a), where the arrows stand for
the direction of rotation and the spheres on the trajectories
stand for the positions of the atoms at time t = 0. The rota-
tions of atoms A and B have a phase difference of π . Atoms
A and B rotate in opposite directions: For the normal mode at
the K point, atom A rotates CCW while atom B rotates CW.
The radius of the trajectory of atom A is equal to that of atom
B (CA = CB). In addition, the normal modes of band 4 are the
same as those of band 1, as shown in Fig. 2(d).

Bands 2 and 3 are degenerate at the K point. In the normal
modes of bands 2 and 3, atoms rotate in an opposite pattern
to that of bands 1 and 4; that is, atom A rotates CW while
atom B rotates CCW [see Figs. 2(b) and 2(c)]. The rotations
of atoms A and B have a phase difference of 3π/4 and π/4
for bands 2 and 3, respectively. The normal modes at the K ′
point [Figs. 2(e)–2(h)] are related to those at the K point by
time-reversal symmetry; that is, atoms move in the opposite
direction compared with the normal mode at the K point. The
phonon polarization of each sublattice Pz

α calculated using
Eq. (8) is denoted by the pseudocolor in Figs. 2(i) and 2(j).
The value of Pz

A is opposite to that of Pz
B at each point. As a

result, the total angular momentum of the phonons defined as
Eq. (9) vanishes.

The case of different masses. By setting different masses
for atoms A and B, the inversion symmetry breaks, and the
honeycomb lattice becomes chiral. We set mA = 1.4 mB in
the calculations, and the results are shown in Fig. 3. The
degeneracy at the K and K ′ points is lifted, and the dispersion
relation is depicted in Figs. 3(i) and 3(j). Band 2 possesses a
sublattice polarization of Pz

A = −1 (+1) at the K (K ′) point,
while sublattice B is frozen at its equilibrium position with
a displacement amplitude CB of zero. The angular momentum

FIG. 3. Phonon vibration modes for atoms in one honeycomb
lattice with mA = 1.4 mB. [(a)–(d)] The phonon modes for bands 1–4
at the K point, respectively. [(e)–(h)] The phonon modes for bands
1–4 at the K ′ point, respectively. (i) The phonon polarization of atom
A. (j) The phonon polarization of atom B. In [(a)–(h)], atoms A and
B are shown in red and green, respectively. In (i) and (j), the color
indicates the direction of Pz

A and Pz
B, and the thickness of the curves

represents the amplitudes CA and CB.

of band 2 at the K (K ′) point is solely contributed by sublattice
A. Similarly, sublattice B is the only contributor to the angular
momentum of band 3 at the K (K ′) point. The emergence of
finite phonon angular momentum agrees with the findings of
Zhang and Niu [17,18].

The normal modes shown in Figs. 3(a)–3(h) are also dif-
ferent from the normal modes in the case of equal mass in
Fig. 2. The trajectories of atoms A and B no longer have the
same radius. For bands 1 and 4, the trajectory of atom A has
a larger radius than the trajectory of atom B. For band 2 at
the K and K ′ points, the normal mode consists of a rotation
of atom A, while atom B stays at its equilibrium position
with CB = 0; see Figs. 3(b) and 3(f). For band 3, only atom
B moves. The calculated dispersion relation of phonons is
shown in Figs. 3(i) and 3(j). The color in Fig. 3(i) represents
the phonon polarization on sublattice A (Pz

A), and the color in
Fig. 3(j) represents the phonon polarization on sublattice B
(Pz

B); the thickness of the curves stands for the amplitudes CA

and CB.

B. Magnon-phonon coupling

1. The case of only one magnetic sublattice

We first study the model shown in Fig. 1(a) with a magnetic
sublattice A and a nonmagnetic sublattice B. In the ground
state, local spins on sublattice A point to the +z direction. The
precession of local spins corresponds to a CCW rotation of
the deviation of local spin S. The magnon-phonon dispersion
is calculated by diagonalizing the dynamic matrix in Eq. (2).
Figure 4(a) shows the case of mA = mB, where the pseudo-
color stands for the weights of magnons and phonons in the
normal modes. The red color corresponds to pure magnon,
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FIG. 4. Hybrid magnon-phonon modes in one magnetic ion.
(a) Energy bands of magnon-phonon coupling with J = 1.5 and
mA = mB. (b) Enlarged view near the K ′ point in (a). (c) Near the
K point the enlarged view in (a). (d) The one magnon coupled with
phonon band 2 with mA = 1.4 mB and J = 1.4. (e) The magnon-
phonon coupling in phonon band 3 with mA = 1.4 mB and J = 1.6.

while blue is for pure phonon. When a magnon band crosses
a phonon band, they usually hybridize to form a magnon
polaron, which is represented by the green color. As shown in
Fig. 4(a), whenever the magnon band crosses a phonon band,
their colors turn to green, indicating a hybridization between
them. However, looking at the K point with an energy of about
1.35, the magnon band remains red, and the phonon band
remains blue, as shown in Fig. 4(c). The phonon acoustic
band (labeled as band 2) and the optical band (labeled as
band 3) form a Dirac cone; there is no signature of band
anticrossing. The magnon-phonon coupling vanishes at the K
point. In contrast, at the K ′ point [see Fig. 4(b)], the magnon
and phonon are strongly coupled: The green color means that
these states have mixed magnon-phonon features. In addition,
the Dirac cone formed by acoustic and optical phonon bands
at the K ′ point disappears. There is a finite magnon-phonon
coupling strength at the K ′ point. The magnon-phonon inter-
action strengths as a function of phonon angular momentum
are shown in Fig. 5. Therefore we know that the coupling of
magnons with phonons is selective.

The selective magnon-phonon coupling shall be attributed
to the difference in the phonon modes at the K and K ′ points,
since the magnon normal mode always consists of CCW rota-
tion of spin on atom A with Sz

A = +1. As shown in Figs. 2(b)
and 2(c), at the K point the normal mode of phonon bands
2 and 3 consists of CW rotation of atom A; so both bands
are characterized by phonon polarization of sublattice A with
Pz

A = −1. However, at the K ′ point, atom A in phonon bands
2 and 3 involves CCW rotation, and Pz

A is +1; see Figs. 2(f)
and 2(g).

Recalling that the magnon couples with phonons at the
K ′ point but not with phonons at the K point, we speculate
that the phonon polarization of sublattice A determines the
magnon-phonon coupling strength: The phonon mode with
Pz

A = +1 is strongly coupled to the magnon of Sz
A = +1.

Figures 4(d) and 4(e) show the calculated dispersion relation
when the masses of atom A and atom B are different. We tune
the magnetic exchange parameter J in Eq. (11), such that the

FIG. 5. The magnon-phonon interaction strengths as a function
of phonon angular momentum. (a), (b), (c), and (d) The coupling of
phonon bands 1, 2, 3, and 4 with the magnon, respectively.

magnon band coincides with the phonon band 2 at the energy
E = 1.2. Figure 4(d) shows that the magnon and phonon
band 2 have a strong coupling; it can be characterized by an
obvious band anticrossing at the K ′ point, but the coupling
disappears at the K point. This case is quite similar to the case
of mA = mB shown in Fig. 4(a). The speculation in terms of
Pz

A also applies to this case: Figs. 3(b) and 3(f) show that Pz
A is

−1 at the K point but Pz
A is +1 at the K ′ point. So the coupling

between magnons and phonons at the K ′ point and K point is
inconsistent.

For the normal modes of phonon band 3 at both the K
and K ′ points, atom A is frozen at its equilibrium position
(CA = 0) as shown in Figs. 3(c) and 3(g). The special normal
modes provide an opportunity to test our previous speculation
based on Pz

A, which states that the magnon only couples with
phonon modes with CCW rotations of atom A. As a result,
the coupling between the magnon band and these phonon
bands is expected to vanish. We set J = 1.6, which makes the
magnon band coincide with phonon band 3 at E = 1.35. The
calculated dispersion relation as shown in Fig. 4(e) confirms
the absence of magnon-phonon coupling at both the K and K ′
points.

Finding the band anticrossing feature in the dispersion
relation is not a convenient approach for studying the magnon-
phonon coupling, especially for magnons and phonons in
nonresonant conditions. The coupling strength is the absolute
value of off-diagonal elements of the dynamic matrix based on
uncoupled phonon and magnon normal modes. The calculated
coupling strengths for the cases of mA = mB and mA 	= mB

are shown in Figs. 6(a) and 6(b), respectively; they share
some common features. The coupling strength between the
magnon band and all phonon bands is zero at the � point.
This is because the Hc term in the total energy involves the
DMI between next-nearest neighbors, i.e., for sublattices i
and j, it can be written as Hc = D‖

∑
i j (�ui(k,R) − �u j(k,R) ) ·

(
−→
δSi(k,R) − −→

δS j(k,R) ). At the � point, one has both �ui = �u j

and �δSi − �δS j = 0; so the magnon-phonon coupling vanishes
[Hc(�) = 0].
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FIG. 6. The magnon-phonon coupling strength on a highly sym-
metric path with D|| = 0.01 in the one-magnetic-sublattice system.
(a) The coupling strength of the acoustic magnon with four phonon
bands at mA = mB. (b) The coupling strength between the acous-
tic magnon and the four phonon bands with mA = 1.4 mB. Black
squares, phonon band 1; red circles, phonon band 2; blue triangles,
phonon band 3; cyan inverted triangles, phonon band 4.

The magnon-phonon coupling strength as a function of
phonon angular momentum is shown in Fig. 5. From Eq. (5)
we can write the displacement �ui(k,R) and δS j(k,R) in the form
of amplitude and polarization. So the coupling term is Hc ∝
D‖ · CpDm · ∑

k �ε+
m (k) · �εp(k), where Cp and εp(k) are the am-

plitude and polarization of the phonon. Dm and εm(k) are
the amplitude and polarization of the magnon, and D‖ is a
constant. We suppose that the polarization of the magnon is
rotated CCW with �εm(k) = a(1

i ) and the polarization of the

phonon is �εp(k) = a(1
i ) + b( 1

−i). Here, a2 + b2 = 1; accord-
ing to Eq. (8) we can know that the phonon polarization of
sublattice α is Pz

α = �ε+
α P̂�εα = a2 − b2. So the phonon po-

larization multiplied by the magnon polarization becomes
�ε+

m (k) · �εp(k) ∝ 1 + Pz
α . The coupling strength can be sim-

plified as Hc ∝ CαDα · (Sz
α + Pz

α ). Thus the coupling strength
is related to the sublattice amplitude and polarization of the
magnon and phonon.

We first look at the case of mA = mB as shown in Fig. 6(a).
Some phonon modes at high-symmetry points are coupled
with the magnon band, e.g., phonon bands 2 and 3 at the
K ′ point, as well as phonon bands 1 and 4 at the K point.
These phonon modes possess phonon polarization of Pz

A =
+1. However, phonon bands 2 and 3 at the K point and
phonon bands 1 and 4 at the K ′ point are decoupled from
the magnon band; these phonon modes have Pz

A = −1. From
the coupling strength Hc ∝ CαDα · (Sz

α + Pz
α ), we can under-

stand the finite or vanishing coupling strength as mentioned
above. When Pz

A + Sz
A = 0 (with Sz

A = +1 and Pz
A = −1), the

coupling strength vanishes.
The coupling strength difference between the case of mA 	=

mB and the case of mA = mB is the vanishing coupling be-
tween the magnon band and phonon band 3 at the K ′ point,
as shown in Fig. 6(b). This phonon mode involves a frozen
sublattice A with the displacement amplitude CA = 0. The
amplitude of the magnon is DA = 1. So the coupling strength
of phonon band 3 is zero at the K ′ point. The explicit cal-
culations of magnon-phonon coupling strength confirm that
the magnon mode on the sublattice A is not coupled with the

FIG. 7. The magnon-phonon coupling in a FM honeycomb
lattice. (a) The magnon-phonon dispersion relation at mA = mB.
(b) Enlarged view near the K ′ point in (a). (c) Near the K point the
enlarged view in (a). (d) The magnon-phonon coupling dispersion
relation for chiral phonons with mA = 1.4 mB. (e) and (f) Enlarged
views near the K ′ and K points in (d); the insets show the band
without magnon-phonon coupling.

phonon modes either with Pz
A = −1 or with the displacement

amplitude of CA = 0.

2. The case of FM-coupled sublattices

In this section, we consider the case where both sublattices
carry local spins and the ground state is ferromagnetic. The
antiferromagnetic case will be discussed in the next section.
In this case, both sublattices A and B possess local spins as
depicted in Fig. 1(b). All the spins align with the +z direction
in the ground state with Sz

A = +1 and Sz
B = +1. There are two

magnon bands, namely acoustic and optical bands. The two
magnon bands join at both the K and K ′ points to form a Dirac
cone therein.

We first study the case of mA = mB; the case of different
masses will be discussed later. The magnon-phonon disper-
sion relation calculated along the high-symmetry path in the
first Brillouin zone is plotted in Fig. 7(a). The red pseudocolor
corresponds to pure magnon states, and blue corresponds to
pure phonon states. We focus on the regions near the K and
K ′ points, where degenerate acoustic and optical magnon
bands form Dirac cones by themselves. We tune the exchange
strength of the magnon [J in Eq. (11)] so that one phonon band
coincides with the magnon Dirac cone at E = 0.75; the aim
is to maximize the anticrossing between magnon and phonon
bands. Figures 7(b) and 7(c) zoom out the regions near the
magnon Dirac cones. Both magnon bands are repelled by the
phonon band, and the magnon Dirac cones disappear at both
K and K ′ points. The pseudocolors of these bands indicate
strong coupling between magnons and phonons. Comparing
Figs. 7(b) and 7(c), one observes that the splitting of magnon
bands at the K ′ point is identical to that at the K point,
indicating that the magnon-phonon coupling at the K point
is the same as that at the K ′ point. This is distinct from the
case of having only one magnetic sublattice; see Figs. 4(b)
and 4(c). We invoke the phonon polarization to understand
the magnon-phonon coupling in this case. As we have learned
above, magnons only couple to phonon modes with the same
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polarization. For the lower acoustic phonon mode, at the K
point, the phonon polarization of sublattice A is Pz

A = +1,
while that of sublattice B is Pz

B = −1. Therefore magnon-
phonon coupling occurs within the A sublattice. At the K ′
point, Pz

A = −1 and Pz
B = +1, and the magnon-phonon cou-

pling occurs in the B sublattice. More importantly, in both
cases, the magnitude of phonon modes on the A sublattice
is the same as that on sublattice B. Therefore the strength
of magnon-phonon coupling is the same on the K and K ′
points. The same argument can be applied to the higher optical
phonon mode.

The preceding discussion indicates that the magnon-
phonon coupling at the K point would be no longer equal
to that at the K ′ point if the symmetry between sublattice A
and sublattice B breaks. We set different masses for atoms A
and B: mA = 1.4 mB to break the inversion symmetry of the
lattice. The calculated magnon-phonon dispersion relation is
shown in Figs. 7(d)–7(f). Even if we turn off magnon-phonon
coupling, the two phonon bands labeled as bands 2 and 3 in
Figs. 7(e) and 7(f) no longer join each other at the K and
K ′ points shown in the insets. The normal mode of phonon
band 2 at the K ′ point involves solely circular motion of
sublattice A with Pz

A = +1, while sublattice B remains frozen,
as shown in Fig. 3. As expected, this phonon mode hybridizes
with both magnon modes opening a gap at the magnon Dirac
cone; Fig. 7(e) shows the splitting of the three bands between
E = 1.05 and E = 1.20. At the K point, sublattice A solely
contributes to the normal mode and has Pz

A = −1. As a re-
sult, this phonon band fails to hybridize with magnon bands
forming the Dirac cone; see Fig. 7(f). We observe a selective
coupling between magnon and chiral phonons.

Figures 7(e) and 7(f) show the coupling between phonon
band 3 and the optical magnon band. The coincidence of
phonon and magnon band energy occurs at about the 0.9K
and 0.9K ′ points. The anticrossing magnitude proportional to
the magnon-phonon coupling strength is larger at 0.9K than
at 0.9K ′. At these points, the phonon normal modes for each
sublattice involve elliptical instead of circular movements.
The total phonon angular moment at the 0.9K point is positive,
while the phonon angular moment is negative at the 0.9K ′
point, which explains the stronger magnon-phonon coupling
at the 0.9K point.

The calculated magnon-phonon coupling strength between
the four phonon bands and the two magnon bands is shown in
Fig. 8. The coupling strength is consistent with the dispersion
relations displayed in Fig. 7. All the magnon-phonon coupling
vanishes at the � point, because �Ui = �Uj and �Si = �S j always
hold in Eq. (13). For the case of mA = mB, Figures 8(a) and
8(b) show that the magnon-phonon coupling strength along
the �-K path is the same as that along the �-K ′ path; the same
goes for the M-K and M-K ′ paths. This phenomenon reflects
the symmetry of the lattice in this case. The inversion oper-
ation keeps the system unchanged, equivalent to exchanging
sublattice A with sublattice B. The inversion operation also
exchanges the K point with K ′, which explains the abovemen-
tioned symmetry of the magnon-phonon coupling strength.

In FM-coupled sublattices with mA = mB, the magnons
have equal amplitude and polarization (DA = DB = 1 and
Sz

A = Sz
B = 1). This coupling strength is always nonzero at

the K and K ′ points. Taking the K ′ point as an example, the

FIG. 8. The strength of magnon-phonon coupling in a FM sys-
tem with D|| = 0.01. (a) The coupling strength between the optic
magnon and the four phonon bands at mA = mB. (b) The strength
of the acoustic magnon and the phonon on four energy bands at
mA = mB. (c) The optic magnon coupled with the four phonon
bands at mA = 1.4 mB. (d) The coupling strength between the acous-
tic magnon and phonons at mA = 1.4 mB. Black squares, band 1;
red circles, band 2; blue triangles, band 3; cyan inverted triangles,
band 4.

polarizations of phonon bands 1 and 4 have Pz
A = −1

and Pz
B = +1, the term of (Pz

A + Sz
A) is zero, and hence

the magnon-phonon coupling of sublattice A vanishes; the
coupling between phonons and magnons is conducted by sub-
lattice B. Phonon bands 2 and 3 have Pz

A = +1 and Pz
B = −1,

and similarly, (Pz
B + Sz

B) = 0; these phonon modes couple
with the magnons via sublattice A.

Figures 8(a) and 8(b) also show that at the M point, the
acoustic (optical) magnon modes are not coupled with optical
(acoustic) phonon modes. This can be explained by the phase
difference between the two sublattices of these normal modes.
For acoustic magnon and phonon modes, the phase difference
is zero, while optical modes have a phase difference of π .

For the case of mA 	= mB, the symmetry between K and
K ′ points no longer holds, as shown in Figs. 8(c) and 8(d).
The asymmetry can also be understood using the proposed
coupling strength Hc. At the K ′ point, phonon band 2 has
Pz

A = +1 and CB = 0, which results in Hc = 2CA 	= 0; phonon
band 3 has CA = 0 and Pz

B = −1, such that Hc = 0, and the
coupling between phonon band 3 and the magnons disappears.
At the K point, in contrast, phonon band 2 has Pz

A = −1 and
CB = 0, and the coupling strength Hc is zero. Phonon band 3
has CA = 0 and Pz

B = +1, which implies that Hc = 2CB 	= 0.
Figures 8(c) and 8(d) tell us that both magnon bands are
coupled with phonon band 3, but not phonon band 2.

3. The case of AFM-coupled sublattices

Lastly, we discuss the case of AFM-coupled sublattices. At
the ground state, the spin on atom A points in the +z direction,
while the spin on atom B points in the −z direction. The
two magnon modes are degenerate in the absence of external
magnetic fields. The normal mode of the magnon at the center
of the first Brillouin zone involves the precessions of both
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FIG. 9. Hybrid magnon-phonon modes in an AFM system.
(a) Energy bands of magnon-phonon coupling with J = 1.5 and
mA = mB. (b) Enlarged view near the K ′ point in (a). (c) Near the
K point the enlarged view in (a). (d) The α-magnon mode coupling
with the second phonon at mA = 1.4 mB, J = 1.4. (e) The β-magnon
mode coupling in phonon band 3 with mA = 1.4 mB, J = 1.6.

spins on sublattices around their equilibrium directions. For
one of the modes, the precession of spins on sublattice A is
along the CCW direction, but spins on sublattice B are along
the CW direction, which is called the α mode. The β mode
involves spin precession in the opposite direction to that of the
α mode. In the linear regime, the deviation of spins is small,
and the spins can be described by their transverse components.
For the α (β) magnon mode, transverse components of spins
on both sublattices rotate in the CCW (CW) direction. This
is distinct from the case of FM-coupled sublattices in which
the deviations of both spins rotate along the same direction.
Figure 9(a) shows the calculated magnon-phonon dispersion
relation for the case of mA = mB. Magnon bands denoted as
a red curve in Fig. 9(a) are almost always degenerate, except
in the region near the K ′ point where strong coupling with
phonons occurs. The magnon-phonon dispersion relation near
the K ′ point, as depicted in Fig. 9(b), differs from all previ-
ously discussed cases. The two magnon modes are no longer
degenerate, and the Dirac cone formed by two phonon bands
is also gapped out.

The joining and repulsing patterns of these bands may
suggest that the optical phonon only couples with one of
the magnon modes, while the acoustic phonon couples with
the other magnon mode; the uncoupled magnon and phonon
modes remain degenerate at the K ′ point. However, this is
not the case, as we discuss later. At the K point as shown in
Fig. 9(c), in contrast, there is no sign of band repulsion, which
indicates that the couplings between the magnon bands and
the two phonon bands vanish.

We also studied the case with mA 	= mB. Two calculated
band structures with different J are shown in Figs. 9(d) and
9(e). In Fig. 9(d), the value of J is delicately tuned such that
the magnon bands coincide with the higher acoustic phonon
band at the K and K ′ points. The magnon-phonon coupling
is characterized by the band repulsion and the reduction of
the magnon component in the normal modes (no longer red
in pseudocolor). The β magnon mode is decoupled from the

FIG. 10. The strength of magnon-phonon coupling on a highly
symmetric path with D|| = 0.01. (a) The coupling strength of the
α magnon mode with the four phonon at mA = mB. (b) The cou-
pling strength between the β magnon mode and the phonons with
mA = mB. (c) The strength of the α magnon mode and phonons with
mA = 1.4 mB. (d) With mA = 1.4 mB, the magnon-phonon coupling
strength between the β magnon mode and phonons. Black squares,
band 1; red circles, band 2; blue triangles, band 3; cyan inverted
triangles, band 4.

phonon mode since its pseudocolor remains red, while the α

magnon mode is coupled with the phonon since its pseudo-
color turns yellow, as shown in the inset of Fig. 9(d).

The two magnon modes are not coupled with the phonon at
the K point. We also tune the value of J to make the magnon
bands join the lower optical phonon bands at the K and K ′
points. The calculated band structure in Fig. 9(e) shows the
same characteristics as in Fig. 9(d): At the K ′ point, only
one magnon is coupled with the phonon, whereas there is no
magnon-phonon coupling at the K point. At first sight, the
band structure of the mA 	= mB case is quite similar to the case
of mA = mB in band 1 and band 4. However, they are not the
same as bands 2 and 3, and we will discuss their differences
below.

The calculated magnon-phonon coupling strength between
the four phonon bands and two degenerate magnons is shown
in Fig. 10. At the � point, all the coupling vanishes. From
Figs. 10(a) and 10(b), one can observe that at the K point,
phonon bands 2 and 3 are decoupled from both magnon bands;
this is consistent with the band structure in Fig. 9(c).

At the K ′ point, the coupling strengths between these
two phonon bands and both magnon bands have the same
magnitude. This disproves our initial guess that the optical
phonon couples with the α magnon mode and the acoustic
phonon couples with the β magnon mode. Next, we discuss
how to understand the band degeneracy at the K ′ point in
Fig. 9(b). We consider a four-band model of the two magnon
modes and two phonon modes; its diagonal elements are the
frequencies of magnon and phonon modes in the absence of
magnon-phonon coupling. As mentioned before, we deliber-
ately choose the magnetic exchange parameter so as to make
the Dirac cone of the magnon coincide with the Dirac cone of
the phonon, so the diagonal elements of the four-band model
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are the same, denoted as ω. The off-diagonal elements are the
coupling strength between magnon and phonon modes. The
results in Figs. 10(a) and 10(b) put a constraint on the off-
diagonal elements: They shall have the same absolute value
(denoted as g > 0). The Hamiltonian in the subspace of two
magnon modes and two phonon modes can be written as a real
symmetric matrix,⎛

⎜⎜⎝
ω 0 ±g ±g
0 ω ±g ±g

±g ±g ω 0
±g ±g 0 ω

⎞
⎟⎟⎠, (14)

where the diagonal elements are the frequencies of noninter-
acting magnons and phonons: They are the same when the
coupling between them is not permitted. The first two columns
and rows correspond to the two magnon modes, and the other
two correspond to the two phonon modes. The plus and minus
signs can be chosen arbitrarily as long as the matrix remains
symmetric.

We have tried all the different choices of the plus and minus
signs, and we found that when the matrix has a form of⎛

⎜⎜⎝
ω 0 g −g
0 ω g −g
g g ω 0

−g −g 0 ω

⎞
⎟⎟⎠ or

⎛
⎜⎜⎝

ω 0 −g g
0 ω −g g

−g −g ω 0
g g 0 ω

⎞
⎟⎟⎠,

(15)
the calculated eigenfrequencies are ω − √

(2)g and ω +√
(2)g; both of them are doubly degenerate, consistent with

the double degeneracy at the K ′ points as shown in Fig. 9(b).
Next, we explain the strength of the magnon-phonon coupling
in the AFM lattice. The normal mode of the AFM magnon is
different from that of the FM case. The magnitude of trans-
verse deviations of spins on sublattice A is always equal to
that on sublattice B. For the magnon modes in AFM, however,
the magnitudes are different on the two sublattices. Hereafter,
we use Dz

γ to refer to the magnitude of the magnon on the
sublattice γ (γ = A, B). Sz

γ is the polarization of the magnon.
The magnon modes at the K , K ′, and M points are shown

in Fig. 11. The α magnon mode at the K point is shown
in Fig. 11(a). Only the spins on sublattice A rotate CCW
corresponding to Sz

A = +1, while the spins on sublattice B
keep their equilibrium direction with the amplitude equal to
zero (Dz

A = 0). For the β magnon mode, one has Sz
B = −1

and Dz
A = 0 according to Fig. 11(b). The magnon modes at

the M point [Figs. 11(e) and 11(f)] are an example of general
K points. At general K points the α (β) mode corresponds to
Sz

A = Sz
B = +1 (−1) with finite amplitudes Dz

A and Dz
B.

From Figs. 10(a) and 10(b) one can infer that when mA =
mB, the coupling strength with four phonon bands is the same
for α and β magnon modes. At the K ′ point, phonon bands
1 and 4 are not coupled with any magnon modes, because
these phonon modes have Pz

A = −1 and Pz
B = +1. In contrast,

phonon bands 2 and 3 are strongly coupled with both magnon
modes; these phonon modes instead have Pz

A = +1 and Pz
B =

−1. We list the characteristics of these magnon and phonon
modes in Fig. 11(g) for convenience. Using the data shown in
Fig. 11(g), one can calculate the coupling strength for a given
magnon mode and phonon mode. For the α magnon mode
with DA = 1, DB = 0, and Sz

A = +1, the coupling strength is

FIG. 11. The two magnon modes in AFM-coupled sublattices.
(a) and (b) The α and β magnon modes at the K point. (c) and (d) The
two modes at the K ′ point. (e) and (f) The α and β magnon modes
at the M point. (g) The amplitudes and polarizations of magnons and
phonons at the K ′ point.

(Pz
A + 1)/2. One can prove that Hc = 0 for both phonon mode

1 and phonon mode 4 because they have Pz
A = −1. However,

Hc 	= 0 for phonon modes 2 and 3, because they have Pz
A =

+1. Hc = (Pz
B − 1)/2, for the β magnon mode with DA = 0,

DB = 1, and Sz
B = −1. Therefore the α magnon mode is not

coupled for phonon modes 1 and 4 but has finite coupling for
phonon modes 2 and 3.

From the K ′ point to the K point, the magnon polarizations
(Sz

A and Sz
B) and magnon amplitudes (DA and DB) remain

unchanged; however, the phonon polarizations Pz
A and Pz

B
change their signs (see Fig. 2). Therefore this is equivalent to
exchanging phonon bands 1 and 4 with phonon bands 2 and
3. So one has Hc 	= 0 for phonon bands 1 and 4 at the K point
and Hc = 0 for phonon bands 2 and 3, which is consistent with
the calculated magnon-phonon coupling at the K point.

The calculated magnon-phonon coupling for the case of
mA 	= mB is shown in Figs. 10(c) and 10(d). Compared with
the case of mA = mB, the only difference occurs at the K ′
point: The coupling between phonon band 3 and the α magnon
vanishes; so does the coupling between phonon band 2 and
the β magnon. The α magnon has DA = 1 and DB = 0, while
phonon band 3 has CA = 0 and CB = 1; therefore we have
the vanishing coupling between them. Notably, the data listed
above also mean that the magnon mode and the phonon mode
are carried by different sublattices; naturally, they are not
coupled. The same analysis can also be applied to the coupling
between phonon band 2 and the β magnon.

The curves of coupling strength as shown in Figs. 8 and
10 have distinct behaviors near the � point, reflecting that
the acoustic (optical) magnons have a stronger coupling with
acoustic (optical) phonons than optical (acoustic) phonons.
The difference in coupling strength is attributed to the phase
difference of normal modes within one primitive unit cell. For
the normal modes of acoustic phonon and magnon bands, the
phase difference is near zero; while the phase difference is
near π for optical magnon and phonon bands. Finally, we
analyze what we learn from the magnon-phonon coupling
strength. The product DγCγ with γ = A, B appearing in the
Hc means that it is possible for a phonon mode to couple
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with a magnon mode only when both of them involve the
same sublattice. The summation of Pz

γ + Sz
γ appearing in the

expression of Hc means that a magnon with Sz = +1 (−1) is
not coupled with a phonon Pz = −1 (+1). In this sense, the
Pz of the phonon and the Sz of the magnon can be interpreted
as the angular momentum. Besides the honeycomb lattice, the
selective coupling between magnons and chiral phonons also
exists in the kagome lattice. The Supplemental Material [43]
shows the coupling of magnons with both achiral and chiral
phonons in the ferromagnetic kagome lattice.

IV. CONCLUSIONS

In this paper, we have studied the coupling of magnons
with chiral phonons in honeycomb lattices. We emphasize
the role played by the angular momentum of chiral phonons
in determining the magnon-phonon coupling strength. We
thoroughly investigated the coupling between two different
types of phonons (achiral and chiral) and three types of
magnons (magnons living on one sublattice, FM magnons,
and AFM magnons). The results reveal that the angular
momentum of the phonons regulates the magnon-phonon cou-
pling strength. The method and analysis presented in this
paper are also applicable to the first-principles calculation
of magnon-phonon coupling strengths in specific materials.
The dispersion relation of magnons becomes nonreciprocal,
i.e., ω(k) 	= ω(−k) when coupled with chiral phonons, so the
magnon transport also becomes nonreciprocal. At the same
time, the phonon dispersion and its transport also exhibit
nonreciprocality. For instance, the nonreciprocality in the dis-
persion relations of magnons and phonons can be tested in

experiments via inelastic neutron scattering. The nonrecip-
rocal magnon has applications in the fields of spintronics
and magnonics. The thermal transport properties of materi-
als can be manipulated by nonreciprocal phonons. Both the
magnons and chiral phonons have finite angular momentum.
The coupling strength between magnons and chiral phonons
is controlled by their angular momentum. Based on this
principle, one can design chiral materials or heterostructures
to exhibit strong magnon-phonon coupling. In addition, the
conservation of angular momentum during the interaction
between magnons and phonons provides a route to carry
the angular momentum of a magnon system by long-lived
phonons. The asymmetric magnon-phonon coupling at the K
and K ′ points of a hexagonal lattice is an analog of the valley
splitting in electronic systems. The magnon couples with the
phonon at one of the high-symmetry points but not the other.
The resulting magnon-polarons would occupy only one valley
and not the other. If there is a coupling channel between
the magnon-polaron and electronic states, the presence of
magnon-polarons at one valley would cause valley splitting
in the electronic system and lead to the valley Hall effect.
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