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We study the ground state and spin excitations in Ba3MnSb2O9, an easy-plane S = 5/2 triangular lattice
antiferromagnet. By combining single-crystal neutron scattering, electric spin resonance (ESR), and spin wave
calculations, we determine the frustrated quasi-two-dimensional spin Hamiltonian parameters describing the
material. While the material has a slight monoclinic structural distortion, which could allow for isosceles-
triangular exchanges and biaxial anisotropy by symmetry, we observe no deviation from the behavior expected
for spin waves in the in-plane 120◦ state. Even the easy-plane anisotropy is so small that it can only be detected
by ESR in our study. In conjunction with the quasi-two-dimensionality, our study establishes that Ba3MnSb2O9

is a nearly ideal triangular lattice antiferromagnet with the quasiclassical spin S = 5/2, which suggests that it
has the potential for an experimental study of Z- or Z2-vortex excitations.

DOI: 10.1103/PhysRevB.108.174424

I. INTRODUCTION

In geometrically frustrated systems, the complicated in-
terplay between electrons, lattice, spins and orbitals can
lead to macroscopic degeneracy in the low-energy states.
Qualitatively new states of matter can emerge from such
nontrivial state manifold, which has been the subject that
attracts huge experimental and theoretical interests over the
past decades [1–6]. The ground state manifold can be more
complex than unfrustrated systems, giving rise to a possibility
of hosting unconventional topological defects and associated
topological transitions [7].

The two-dimensional (2D) triangular-lattice antiferromag-
netic Heisenberg model (TLAHM) is one of the simplest
prototypical models that exhibit typical 2D properties at low
temperatures [8,9]. For small spin S, the combination of
reduced dimensionality, geometric frustration, and the en-
hanced quantum fluctuations can stabilize exotic quantum
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states [10,11]. For example, the transition from the non-
collinear 120◦ state to the up-up-down state is a quantum
order by disorder phenomenon in which the state is se-
lected by quantum fluctuations from a degenerate manifold
in a magnetic field [12]. Even the semiclassical 120◦ state
has profound consequences of strong quantum fluctuation in
the magnon spectrum: the magnon dispersion can display
strong band renormalization and the excitation continuum
with anomalously large spectral weights due to the magnon-
magnon interaction [13]. Although these established quantum
effects may be observed only for relatively small spins, such
as S = 1/2 or S = 1 [14–16], several recent experimental
studies reported similar anomalous behaviors in presumably
more classical spin systems with relatively large S, such as a
rotonlike minimum, a flat mode, and magnon linewidth broad-
ening in LuMnO3 (S = 2) [17]. Meanwhile, these effects
are mostly suppressed in the isostructual material HoMnO3

(S = 2) [18]. Except for the possible enhanced magnon damp-
ing effect due to the non-collinear nature of the magnetic
order [13,19,20], the precise mechanism of such pseudo-
quantum behaviors in relatively large spin systems is unclear
and it is imperative to find new materials and perform further
investigation using high-quality single-crystal samples.

Triple-perovskite materials Ba3MM ′
2O9 (M = Co, Ni, Mn,

M ′ = Sb, Nb) comprise triangular lattice layers of magnetic
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FIG. 1. (a) Schematic crystal structure of Ba3MnSb2O9. (b) Tri-
angular lattice of Mn2+ ions in the ab plane. (c) Elastic magnetic
scattering in the HK plane at 20 K (bottom) and the data at T = 1.5 K
with the background subtraction (BS) of the 20 K data (top). (d) The
elastic magnetic scattering along (2H , −H − 0.5, 1) and the fitting
result. [(e) and (f)] Comparison between the observed magnetic
Bragg peak intensities at 5 K on the HB-3A DEMAND and the
simulated ones based on the 120◦ structure in the (e) ab and (f) ac
planes, respectively, with the insets showing the schematic magnetic
structures. The solid lines are guides to the eye.

M ions separated by nonmagnetic buffer layers of M ′ ions
and Ba ions, thus providing an ideal platform for exploring
exotic magnetism of quasi-2D TLAHM [21]. Ba3CoSb2O9

(S = 1/2) is known for the up-up-down state stabilized by
quantum order by disorder [14,22–27] and the anomalous
zero-field magnetic excitations [28–34]. The triple-perovskite
family also includes interesting high-spin materials, such as
the multiferroic material Ba3MnNb2O9 (S = 5/2) [35]. The
diversity of the triple-perovskite family allows for detailed
comparative studies between materials with different S, and
different lattice symmetries, and various degrees of quasi-
two-dimensionality [36–38]. However, previous experimental
studies on the large-S triple-perovskite family have been
largely limited to polycrystalline samples, and studies using
high-quality single-crystal samples are desired for more de-
tailed assessments of their physical properties.

In this paper, we report the synthesis and the characteriza-
tion using single crystal of the spin-5/2 quasi-2D TLAHM
material Ba3MnSb2O9 (Fig. 1). Ba3MnSb2O9 consists of
corner-sharing MnO6 octahedra and face-sharing Sb2O9

bi-octahedra. The interlayer exchange interaction is expected
to be much smaller than the intralayer exchange interaction
in Ba3MnSb2O9, similar to Ba3CoSb2O9. Our detailed elastic
and inelastic neutron scattering (INS) measurements confirm
that the material has the 120◦ magnetic order in the ab plane

in zero field, in agreement with the previous result of the
polycrystalline sample [21]. We find that the INS dataare
well described by the quasi-2D TLAHM for S = 5/2 with
nearly isotropic interactions, where the interlayer exchange
interaction Jc is about 5% of the intralayer nearest-neighbor
exchange interaction J1.

The crystal structure of Ba3MnSb2O9 is monoclinic [space
group C2/c (No. 15)], rather than hexagonal. Compared with
Ba3CoSb2O9, the replacement of Co2+ ions (ionic radius:
0.745 Å) by Mn2+ ions with the larger ionic radius (0.830 Å
for the high-spin state) induces a lattice distortion, causing one
edge of the triangular l1 to be 5.881 Å and the other two edges
l2 to be 5.877 Å, Fig. 1(b) [21,39]. The spin Hamiltonian
for such a system might have isosceles-triangular exchanges
and biaxial anisotropy Dx(Sx )2 + Dz(Sz )2. However, our study
confirms no deviation from the behavior of the in-plane
120◦ state expected in an equilateral TLAHM system. As
expected for Mn2+ (3d5), even the magnitude of the easy-
plane anisotropy Dz is very small (about 0.3% of J1), which
is detected in ESR measurements instead of INS experiments.
Therefore, in conjunction with the quasi-two-dimensionality,
Ba3MnSb2O9 is suggested to be a nearly ideal realization of
the TLAHM with the quasiclassical spin S = 5/2.

For such a system, the nature of topological excitations and
the possibility of having a Kosterlitz-Thouless like transition
have been a long-debated subject [7,40–46]. On one hand,
topological excitations in the 120◦ ordered state are relatively
unconventional Z2 vortices in an ideal isotropic TLAHM with
SU(2) symmetry, because the SO(3) order parameter manifold
is isomorphic to the three-dimensional real projective space
RP3 and π1(RP3) = Z2 [7]. On the other hand, when the spin
symmetry is reduced to Z2 × U (1) by uniaxial anisotropy,
topological excitations are Z vortices (π1(S1) = Z , where the
circle S1 corresponds to the manifold of the in-plane rotation),
i.e., conventional vortices with integer charge, in addition to
chiral domain walls. In such context, the close proximity of
Ba3MnSb2O9 to the ideal isotropic TLAHM due to the very
small anisotropy makes it a promising material for the study
Z- or Z2-vortex excitations experimentally [7,40–46].

II. EXPERIMENTS

Ba3MnSb2O9 single crystal was synthesized by using the
floating zone method and a commercial physical property
measurement system (PPMS, Quantum Design) was applied
to obtain the specific-heat, DC magnetic susceptibility, and
DC magnetization. Elastic neutron scattering data were col-
lected at 5 K with the wavelength of 1.54 Å by the Four-Circle
Diffractometer (HB-3A) at the High Flux Isotope Reactor
(HFIR), Oak Ridge National Laboratory (ORNL) [47] and the
structure refinements were performed using FULLPROF [48].
The INS experiments were carried out with the use of both
Cold Neutron Triple-Axis Spectrometer (CG-4C) at HFIR
and the high-resolution time-of-flight spectrometer Cold Neu-
tron Chopper Spectrometer (CNCS) at the spallation neutron
source (SNS), ORNL. The final neutron energy of CG-4C
was fixed as 5 meV with an instrumental energy resolution of
about 0.15 meV and the incident neutron energy of CNCS was
fixed to 3 meV with an instrumental resolution of 0.07 meV,
respectively. Our INS measurements were performed at T =
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FIG. 2. [(a) and (b)] Temperature-dependent (a) specific heat and
(b) DC magnetic susceptibility of Ba3MnSb2O9. (c) DC magneti-
zation at 2 K for H ‖ ab and H ‖ c with the inset showing the full
curves up to 9 T. (d) dM/dH , where the vertical dashed line indicates
a field-induced transition near 1.3 T for H ‖ ab.

1.5 and 20 K. The entire four-dimensional set of the CNCS
data was analyzed using the software package DAVE. Finally,
the pulsed-field ESR data were collected at Wuhan National
Pulsed High Magnetic Field Center using a pulsed magnetic
field of up to 20 T.

A. Thermodynamic measurements

The specific heat and the DC susceptibility for
Ba3MnSb2O9 indicate an antiferromagnetic transition at
around 7 K, Figs. 2(a) and 2(b), which is slightly lower
than the reported one for polycrystalline samples (TN =
10.2 K) [49]. Moreover, the shape of the specific heat peak
shows a more rounded feature, while the previous polycrys-
talline data exhibits λ-type anomaly [21,49]. The isothermal
DC magnetization at T = 2 K is shown in Fig. 2(c). The
magnetization does not saturate in the investigated field
region (Hsat = 49 T is reported in the literature [50]). A
closer examination confirms that the magnetization process
behaves slightly differently depending on the direction of the
magnetic field in the range of 0–3 T. For H ‖ ab, a small
peak is observed in dM/dH at around 1.3 T [Fig. 2(d)]. An
inspection of the model discussed later suggests that this may
correspond to a field-induced spin-flop transition.

B. Neutron scattering results

The elastic scattering map in the HK0 plane at 1.5 K
with the subtraction of the data at 20 K is presented
in Fig. 1(c). Hereafter, since the monoclinic distortion
of the perovskite structure is very small (|amono| ≈ |ahex|,
|bmono| ≈ √

3|ahex|, |cmono| ≈ |chex|, and βmono ≈ 90.3◦), we
adopt a hexagonal unit cell. The elastic scattering map
reveals the magnetic Bragg peaks at K points, indicating
a magnetic order [Fig. 1(d)]. To determine the magnetic
structure of Ba3MnSb2O9, the neutron diffraction data are

refined using FULLPROF. According to the Rietveld analysis,
there is slight Sb-deficiency (≈4%) in this compund owing
to the low melting point of Sb. Depending on easy-plane
or easy-axis anisotropy, the 120◦ structure expected for the
TLAHM can be in the plane parallel or perpendicular to
the ab plane, respectively [51]. Although the same set of
magnetic Bragg peaks are generated, a close examination
of the scattering intensity distribution can distinguish these
two cases. The 120◦ structure in the ab plane [Fig. 1(e)]
is more consistent with the experiment than one in the ac
plane [Fig. 1(f)], suggesting easy-plane anisotropy, and the
ordered magnetic moment is 4.9 μB. The monoclinic crystal
distortion may allow for isosceles-triangular exchanges [39]
and biaxial anisotropy [50], possibly leading to small devia-
tions from the ideal 120◦ structure, such as long-wavelength
incommensuration or a commensurate deformation within the
three-sublattice structure. However, our experiments detect
no deviation from the in-plane 120◦ state, e.g., the fitting
result of the ordering wave vector is Q = (0.334(7),
−0.667(3), 1). The ordered moments in even and odd lay-
ers are in a staggered orientation along the c axis, which
indicates that the interlayer exchange interaction Jc is antifer-
romagnetic. Thus, experimentally, the magnetic structure of
the ground state is consistent with the 120◦ spin structure in
the ab plane with the magnetic propagation vector (1/3, 1/3,
1), similar to Ba3CoSb2O9 [52].

To investigate the spin dynamics in Ba3MnSb2O9, INS
scattering data were collected at 1.5 K. The energy-
momentum map of the scattering intensity along the high-
symmetry directions in the reciprocal plane L = 0 is shown
in Fig. 3(a). The overall bandwidth of the single-magnon
dispersion is around 2.0 meV. The largest intensity of the
inelastic scattering is found near the magnetic Bragg wave
vectors K1,2. The L dependence of the scattering intensity
along the c axis is shown in Figs. 3(b) and 3(c) for q =
(−1, 1/2, L) and (1/3,−2/3, L), respectively. Although the
dispersion along (−1, 1/2, L) is nearly flat, the magnon ex-
citation for (1/3,−2/3, L) is clearly dispersive, pointing to a
small but nonnegligible antiferromagnetic interlayer exchange
interaction Jc. In Fig. 4, we summarize the line shapes of the
scattering intensity at selected momenta as well as the peak
positions estimated by using Gaussian fitting, which will be
used in our theoretical analysis (see Sec. III).

The evolution of the scattering intensity with increasing
energy is highlighted in constant-energy slices in Figs. 3(g)–
3(i). The constant-energy profile at 0.6 meV displays sharp
magnon excitations at around the K points. With increasing
energy, the position of the strong scattering intensity shifts
towards M2, while the intensity at the K2 point decreases. For
the larger energy 1.25 meV, we find that the intensity pattern
forms triangular shapes around the Brillouin zone corners. In
addition, a nearly flat magnon excitation is observed along the
M2M3 line. Both features are known to be characteristics of
the spin-wave dispersion in the TLAHM [33,53]. At a higher
energy, E = 2 meV, the spin excitations form hexagonal ring-
like patterns around the � point.

C. ESR results

To obtain the magnetic excitation at the magnetic zone
center q = (0, 0, 0), the electron spin resonance (ESR)
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FIG. 3. Excitation spectra of Ba3MnSb2O9 measured at T = 1.5 K (BS: 20K). [(a)–(c)] Energy-momentum maps of the scattering intensity
along (a) the in-plane high-symmetry directions at L = 0 [see the inset in (d)], (b) q = (−1, 1/2, L), and (c) (1/3, −2/3, L). The dashed lines
are the fitted dispersion relations using the LSW theory. (d)–(f) Intensity plots of the dynamical structure factor calculated by the LSW theory
along the same symmetry lines in (a)–(c). The instrumental energy resolution (0.07 meV) is used for the Gaussian broadening factor. [(g)–(i)]
INS intensity maps as a function of the momentum in the HK plane (L = 0) at (g) 0.6, (h) 1.25, and (i) 2.0 meV.

spectra, f (H ), were measured at 2 K, as shown in Fig. 5. With
increasing the frequency f , the resonance peak shifts toward
a higher field. Some excitation splitting at high frequency are
likely due to the crystal misalignment relative to the mag-
netic field, however, the uncertainty associated with different
peaks does not affect our estimates of the coupling constants
including anisotropy parameters (see below). A small non-
linear feature in the f (H ) curve due to anisotropy can be
seen most prominently for H ‖ c. We obtain the zero-field
frequency f0 = 28(4) GHz = 0.12(2) meV and the g-factor
gc = 2.11(2) by using the linear spin wave (LSW) theory to
fit the ESR data (see Sec. III). For H ‖ a and H ‖ b, ga and gb

are 2.03(2) and 2.02(5), respectively.

III. SPIN WAVE THEORY

We discuss our LSW calculation applied to different phases
in Ba3MnSb2O9. Since the lattice distortion is small and there
is no evidence in our INS experiments indicating that the
magnetic order is incommensurate, the spin Hamiltonian in
the quasi-2D equilateral triangular lattice is considered. As
the difference in terms of the crystalline field between the
two Mn2+ (3d5) ions in the unit cell [aligning along the c
axis as shown in Fig. 1(a)] is expected to be negligible, we
consider the model with one site per unit cell, where the
primitive lattice vectors are a1 = x̂, a2 = − 1

2 x̂ +
√

3
2 ŷ, and

a3 = c
2 . In practice, this merely means to consider −1 � q3 �

1 in unit of 2π/c as the range of the first Brillouin zone
for the third component of a wave vector q. The spin-5/2
Hamiltonian in Eq. (1) has the antiferromagnetic intralayer

nearest-neighbor exchange interaction J1 > 0, the intralayer
next-nearest-neighbor exchange interaction J2, the interlayer
exchange interaction Jc, and the uniaxial single-ion anisotropy
term Dz,

H = J1

∑
〈r,r′〉NN

Sr · Sr′ + J2

∑
〈r,r′′〉NNN

Sr · Sr′′

+ Jc

∑
r

Sr · Sr+ c
2
+ Dz

∑
r

(
Sz

r

)2
. (1)

Here, J2 is included for better fitting, but the estimated
strength turns out to be relatively small as shown below. The
Fourier transformation of the exchange interaction, J (q), is
minimized at q = Q with Q = ( 2π

3 , 2π
3 , 2π ) when J2

J1
� 1

8 and

Q = (π, π, 2π ) for 1
8 < J2

J1
< 1 (see Appendix). The experi-

mentally observed 120◦ magnetic structure is consistent with
the former case.

To derive the LSW Hamiltonian HLSW, the standard ap-
proach is used by first considering the local spin rotation S →
S̃ to set the local z axis to the orientation of the local ordered
moment in the classical ground state, which is followed by the
truncated Holstein-Primakoff transformation,

S̃z
r = S − b†

rbr, S̃+
r ≈

√
2Sbr, S̃−

r ≈
√

2Sb†
r. (2)

For a single-Q state, the site-dependent SO(3) transformation
can be chosen as⎛⎜⎝Sx

r

Sy
r

Sz
r

⎞⎟⎠ =

⎛⎜⎝− sin Q · r 0 cos Q · r
cos Q · r 0 sin Q · r

0 1 0

⎞⎟⎠
⎛⎜⎝S̃x

r

S̃y
r

S̃z
r

⎞⎟⎠. (3)
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FIG. 4. [(a)–(h)] INS intensity-energy data for selected momenta used in our χ2 analysis. The black and red lines show Gaussian fitting
curves for individual peaks and the sum, respectively. The green line represents the LSW spectra convoluted with the instrumental energy
resolution (0.07 meV). The vertical solid (dashed) lines indicate the peak positions estimated by the Gaussian fitting (LSW theory). (i) Contour
plot of χ 2 on the Jc/J1 and J2/J1 plane for J1 = 0.26 meV. The rectangular indicates the confidence interval mentioned in the text, which is
the region completely encompassing 95% of the cumulative χ2 distribution.

By using the Fourier transformation br = N−1/2 ∑
k eik·rbk,

where the summation runs over the first Brillouin zone,

HLSW =
∑

k

1

2

(
b†

k b−k
)(Ak Bk

Bk Ak

)(
bk

b†
−k

)
, (4)

where the coefficients Ak and Bk are given in Appendix. By
performing the Bogoliubov transformation [54], bk = ukαk +
vkα

†
−k with u2

k − v2
k = 1, uk = u∗

k = u−k, and vk = v∗
k = v−k,

the LSW Hamiltonian can be diagonalized as

HLSW =
∑

k

εk

(
α

†
kαk + 1

2

)
, εk =

√
A2

k − B2
k. (5)

We calculate the dynamical structure factor, Sμμ(k, ω)
with μ = x, y, z, at T = 0 (see Appendix) and perform the
χ2 analysis to fit the theory with the INS data. In relation
with εk in Eq. (5), Sxx(k, ω) and Syy(k, ω) have peaks at
the energy ω = εk±Q with the amplitudes proportional to
Ak±Q + Bk±Q while Sxx(k, ω) has a peak at ω = εk with the
amplitude proportional to Ak − Bk [55]. In the χ2 analysis,
we include the following peaks as references, namely, the
dominant peak (ε1) and the secondary one (ε2) at the M point,
the dominant peak at the K point (ε3), and dominant peaks
at other low symmetry points, ε4 at q = (− 2

3 , 1
3 ,±0.4), ε5 at

q = (−0.1,−0.45, 0), and ε6 at q = (−0.2,−0.4, 0) (Fig. 4).

In addition, the information on the saturation field Hsat for a
powder sample is included into the χ2 analysis to constrain
the fitting more strictly in terms of the overall energy scale.
In theory, gcμBHsat = (9J + 4Jc + 2Dz )S for H ‖ c. Experi-
mentally, Hsat ≈ 49 T is reported [50], for which we include
the uncertainty of 1 T as the magnetization measurements in
Ref. [50] did not reach the region where M(H ) is entirely flat.
Here, except for the scattering data at M, the secondary INS
peaks are not included in our χ2 analysis due to relatively
larger errors in the Gaussian fitting. Nevertheless, the result
discussed below is mostly consistent also for these secondary
INS peaks (Fig. 4).

In the analysis, we perform an iteration loop for the param-
eter estimation until convergence is achieved. Initially, we set
Dz = 0 and estimate J1, J2, Jc, and gc. In fact, the INS result in
the available momentum region has almost no sign of Dz �= 0.
Although a gapped mode due to the anisotropy is expected at
q = (1/3, 1/3, 1), this is outside of the momentum coverage
in our INS measurements. Alternatively, we may use ε�±Q ∝√

Dz/J1 at � point, but the INS signal at this momentum is
too weak to extract any information reliably from the INS
measurements. Moreover, the gap turns out to be too small
for our INS measurements.

To obtain the complementary information on Dz, the ESR
measurements were refered. As a very sensitive probe for

174424-5



MINGFANG SHU et al. PHYSICAL REVIEW B 108, 174424 (2023)

FIG. 5. [(a)–(c)] ESR spectra of Ba3MnSb2O9 measured at 2 K for (a) H ‖ a, (b) H ‖ b, and (c) H ‖ c. [(d)–(f)] Resonance frequency f
as a function of the magnetic field H for (d) H ‖ a, (e) H ‖ b, and (f) H ‖ c, the red circles are other peaks that split out at high frequencies.
And the error bars are much smaller than the datapoint size. The solid (dashed) lines show the LSW theory for Dz �= 0 (Dz = 0), respectively,
where the vertical dashed lines in (d) and (e) indicate the spin flop transition predicted by the theory (as also suggested by dM/dH shown in
Fig. 2). The inset in (f) shows the LSW theory of f (H ) for H ‖ c when small biaxial anisotropy is considered (Dx/J1 = −0.0025).

magnetic anisotropy [56,57], the ESR absorption intensity
is proportional to the imaginary part of the dynamical mag-
netic susceptibility, χ ′′

αα (k = �,ω) = 1
2 (1 − e−βω )Sαα (k =

�,ω) [56–58]. For H ‖ c, the field-induced phase is the
canted 120◦ state with the uniformly canting angle θ =
cos−1 hc

(4Jc+9J1+2Dz )S with hc = gcμBHc [Fig. 6(a)]. The reso-
nance frequency ω±(hc) is independent of J2 and given by
(see Appendix) [59]

ω±(hc) =
√√√√(

4Jc + 9

2
J1

)[
2DzS2 + 4Jc + 9

2 J1 − 2Dz

(4Jc + 9J1 + 2Dz )2 h2
c

]

∓ 9J1

2(4Jc + 9J1 + 2Dz )
hc. (6)

Thus the χ2 analysis of the INS data is followed by an evalua-
tion of gc and Dz/J1 based on the ESR measurements using
Eq. (6). We then return to the χ2 analysis of the neutron
scattering again, and the iterative process is repeated until the
estimate of gc converges. We thus obtain J1 = 0.26(1) meV,
Jc/J1 = 0.048(16), J2/J1 = 0.027(15) with the 95% confi-
dence intervals (χ2 ≈ 0.6 with four degrees of freedom). For
reference, a contour plot of χ2 on the plane of J2/J1 and
Jc/J1 for J1 = 0.26(1) meV is shown in Fig. 4(i). We also
obtain gc = 2.11(2) and Dz/J1 = 0.0034(9) and the com-
parison against the ESR experiment for H ‖ c is shown
in Fig. 5(c). Compared with f (H ) for Dz = 0, the LSW

theory for Dz �= 0 can reproduce the subtle nonlinear field-
dependence of f (H ), which allows for the precise determina-
tion of the small easy-plane anisotropy.

In Figs. 4(d)–4(f), the corresponding INS profiles are com-
puted by the LSW theory based on the estimated coupling
constants, which demonstrates a good agreement with the
experiments shown in Figs. 4(a)–4(c). We also compute the
ESR spectra for H ⊥ c, for which the model undergoes a spin-
flop transition from the in-plane coplanar (distorted 120◦)
state in the ab plane to a distorted umbrellalike noncopla-
nar phase [Figs. 6(c) and 6(d)]. The transition takes place at
around H sf

⊥ ≈ 4S
√

J1Dz/(g⊥μB) = 1.3(2) T [59]. Indeed, the
signal of this spin-flop transition can be seen as a small peak
in dM/dH , Fig. 2(d), as mentioned before. Our ESR data for
H ⊥ c belongs to the high-field noncoplanar phase above the
spin-flop transition, which displays an even milder nonlinear-
ity than the case for H ‖ c. As shown in Figs. 5(a) and 5(b),
our LSW theory for H ⊥ c (see Appendix) can reproduce the
magnetic field dependence of the resonance frequency also in
this case.

Finally, from the crystalline field symmetry of a mono-
clinic system, the biaxial anisotropy may be expected [50].
The space group is C2/c and Mn2+ is at the symmetry center
of MnO6, which can lead to Dx(Sx

r )2 in addition to Dz(Sz
r )2 due

to the distortion of regular octahedron MnO6. By examining
the effect of the biaxial anisotropy due to small Dx �= 0 with
the LSW, we find that this causes a splitting of the degenerate
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FIG. 6. Schematic spin configurations of the classical ground
states. The sublattice indices 1–6 are shown in the inset of (d).
(a) Uniformly canted (umbrella) 120◦ state towards the direction of
H ‖ c for Dx = 0 (Dz �= 0) in comparison with the in-plane 120◦ state
in zero field. (b) Distorted in-plane and umbrella 120◦ states due to
biaxial anisotropy (Dx, Dz �= 0) with and without a magnetic field
H ‖ c. To illustrate the deformation clearly, the assumed anisotropy
is considerably larger than the reality. (c) Distorted 120◦ state due to
the in-plane magnetic field H ⊥ c. (d) High-field noncoplanar state
for H ⊥ c.

zero-field ESR resonance frequency [see the inset of Fig. 5(f)].
However, the zero-field frequency f0 = 28(4)GHz is so small
that the possible small splitting is inaccessible in our ESR
measurements.

IV. CONCLUSIONS

In summary, we have presented a comprehensive experi-
mental and theoretical study on Ba3MnSb2O9, an easy-plane
S = 5/2 quasi-2D TLAHM with a small monoclinic crystal
distortion. We have obtained a reliable set of estimates for the
coupling constants of the spin Hamiltonian by analyzing our
INS and ESR data using the LSW theory, thereby established
very close proximity of Ba3MnSb2O9 to the ideal isotropic
TLAHM. The easy-plane anisotropy is so small that it can
only be detected by ESR in our study.

The observed linewidth in the INS experiment is much
broader than the instrument resolution. Although it is rather
difficult at the current stage to make a conclusive state-
ment about the origin of the broadening, given that the
LSW calculation is performed at T = 0, the broadening
might be due to thermal fluctuation where frustration-induced
low-energy states may give rise to a strong contribution.
The broadening may also be caused by a multiple domain
effect, especially if the true magnetic order turns out to be
incommensurate, although the monoclinic lattice distortion is
so small that the possible deviation, if any, of the ordering

wave vector from the K point is beyond our experimental
resolution. Another possible source of the broadening is the
Sb deficiency ≈4% in our sample. Although such deficiency
may be safely regarded as very small, it might induce small
exchange randomness through local deformation, causing
the broadening. In the meantime, we could safely exclude
quantum-mechanical magnon decay effects as the source of
the broadening because the magnetic moment 4.9 μB obtained
by single-crystal diffraction fitting is quite close to the classi-
cal value gabSμB � 5.05 μB. In fact, as discussed by Mourigal
et al., the line-broadening and the spectral renormalization
in the 2D TLAHM are known to be much smaller than the
quantum limit S = 1/2 already for S = 3/2 [53].

It is interesting to note that the peak near TN of the specific
heat of our high-quality single-crystal samples [Fig. 2(a)] is
much rounder than that of the polycrystalline data reported
in the literature [49], which is opposite to what one would
normally expect. Furthermore, TN ≈ 7 K for our samples
is significantly lower than one for the polycrystalline data,
10.2 K [49].

While the Sb deficiency due to the low melting point may
be the possible origin, it is also possible that the high quality
of our samples makes the intrinsic frustration effect come into
play, yielding a higher degree of nearly degenerate low-energy
manifold than in polycrystalline samples.

Because of the extremely small anisotropy, Ba3MnSb2O9

may have the potential to study Z- or Z2-vortex exci-
tations experimentally. According to the structure of the
120◦ ordering ground state, a homotopy analysis shows
that the 2D TLAHM bears topologically-stable Z-vortices
for the TLAHM with uniaxial anisotropy and Z2 vortices
for the isotropic Heisenberg model [7]. The close proxim-
ity of Ba3MnSb2O9 to the isotropic model may allow for
studying phenomena associated with these vortices exper-
imentally, such as the conjectured Kosterlitz-Thouless-like
transition due to vortex-pair (un)binding [7] and crossover
phenomena between Z or Z2 vortices [42]. As a poten-
tial signature of Z2 vortices, it has been discussed in the
literature that the Kosterlitz-Thouless-like transition may in-
duce a divergent spin-current conductivity [40]. In addition,
the dynamical spin structure factor may yield a character-
istic central peak [43,45,46], as discussed experimentally in
the quasi-2D TLAHM material with easy-axis anisotropy
NaCrO2 [41,60]. Because of the difference in the anisotropy
type, Ba3MnSb2O9 will provide a distinct experimental plat-
form to explore topological defects in a triangular lattice
system. Compared with another material well-studied re-
garding Z2-vortices is the S = 1 triangular lattice material
NiGa2S4, the easy plane anisotropy relative to the largest
exchange coupling, Dz/J1 = 0.0034(9), is even smaller in
Ba3MnSb2O9 (Dz/J3 ≈ 0.035 in NiGa2S4) [45,61,62]. In
addition, with S = 1, quantum fluctuation in NiGa2S4 is
believed to play an important role, whereas in Ba3MnSb2O9

with S = 5/2, one could focus on thermal physics of topolog-
ical defects.

We hope that our work establishing Ba3MnSb2O9 as
a promising candidate model material in this context will
trigger similar efforts towards more challenging experi-
ments in search for signatures of unconventional topological
excitations.
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APPENDIX: DETAILS OF THE LSW THEORY

1. Zero magnetic field (Dx = 0)

At zero magnetic field, the classical ground state for Dx = 0 can be obtained by minimizing the Fourier transform of
the exchange interaction, J (q) = 2J1(cos q1 + cos q2 + cos(q1 + q2)) + 2J2(cos(2q1 + q2) + cos(q2 − q1) + cos(q1 + 2q2)) +
2Jc cos(q3/2). The wave vector q = q1b1 + q2b2 + q3

2 b3 is expressed as (q1, q2, q3), where bi are reciprocal unit vectors. For a
single Q state, the coefficients Ak and Bk in Eq. (4) are

Ak

S
= J1[(1 + cos Q1) cos k1 + (1 + cos Q2) cos k2 + (1 + cos(Q1 + Q2)) cos (k1 + k2)]

− 2J1(cos Q1 + cos Q2 + cos(Q1 + Q2)) + 2Jc + 2J2[cos(2k1 + k2) + cos(k2 − k1) + cos(k1 + 2k2) − 3] + Dz,

Bk

S
= −J1[(1 − cos Q1) cos k1 + (1 − cos Q2) cos k2 + (1 − cos(Q1 + Q2)) cos (k1 + k2)] − 2Jc cos(k3/2) − Dz. (A1)

The dynamical spin structure factor T = 0 is

Sαβ (k, ω) =
∫ ∞

−∞

dt

2π
eiωt 1

N

∑
i j

e−ik·(ri−r j )〈0|Sα
i (t )Sβ

j (0)|0〉, (A2)

where |0〉 is the vacuum of the Bogoliubov boson. We find

Sxx(k, ω) = Syy(k, ω) = S

8

∑
q

Aq + Bq

εq
δ(ω − εq)(δq,k+Q + δq,k−Q)

+
⎡⎣1

4
NS2 − 1

2
S

∑
q

B2
q

(Aq + εq)2 − B2
q

⎤⎦δ(ω)(δk,Q + δk,−Q),

Szz(k, ω) = S

2

Ak − Bk

εk
δ(ω − εk ). (A3)

2. H ‖ c (Dx = 0)

For nonzero magnetic field parallel to the c axis and Dx = 0, the classical ground state is the 120◦ state with the uniformly
canting angle θ = cos−1 hc

(4Jc+9J1+2Dz )S [Fig. 6(a)]. The corresponding LSW Hamiltonian is

HH‖c
LSW =

∑
k

1

2
(b†

k b−k )

(
AH‖c

k + CH‖c
k BH‖c

k

BH‖c
k AH‖c

k − CH‖c
k

)(
bk

b†
−k

)
, (A4)

with

AH‖c
k = J1S

[
3 − 9 cos2 θ + (

1
2 − 3

2 cos2 θ
)
(cos k1 + cos k2 + cos (k1 + k2))

]
+ 2J2S[cos (2k1 + k2) + cos (k2 − k1) + cos (k1 + 2k2) − 3]

+ JcS(−2 cos2 θ cos (k3/2) − 4 cos2 θ + 2) + DzS(1 − 3 cos2 θ ) + hc cos θ, (A5)

BH‖c
k = J1S(cos k1 + cos k2 + cos (k1 + k2))

( − 3
2 + 3

2 cos2 θ
) − DzS sin2 θ + JcS cos (k3/2)(2 cos2 θ − 2), (A6)

CH‖c
k = − cos θ

√
3J1S[sin k1 + sin k2 − sin (k1 + k2)]. (A7)

The spin wave dispersion is ε
H‖c
k =

√
(AH‖c

k )2 − (BH‖c
k )2 + CH‖c

k , from which the resonance energy in Eq. (6) can be obtained.
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3. H ⊥ c (Dx = 0)

The classical ground states discussed in the following cases are not a single-Q state. Thus we derive a general spin-wave
Hamiltonian for any six-sublattice order by performing the sublattice (1 � η � 6)-dependent SO(3) transformation R(η), where
the positions of sublattices are shown in the inset in Fig. 6(d). For every site i in the ηth sublattice, we consider⎛⎜⎝Sx

i

Sy
i

Sz
i

⎞⎟⎠ = R(η)

⎛⎜⎝S̃x
i

S̃y
i

S̃z
i

⎞⎟⎠. (A8)

The resulting LSW Hamiltonian is

Hgen
LSW =

∑
k

(
�

gen
k

)†
Hgen

k �
gen
k =

∑
k

1

2

(
�

gen
k

)†

(
Agen

k + Cgen
k Bgen

k(
Bgen

k

)†
Agen

k − Cgen
k

)
�

gen
k , (A9)

where �
gen
k = (b1,k, . . . , b6,k, b†

1,−k, . . . , b†
6,−k )T and

Agen
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ (2)
k(1) + γ (1)

k(3) γ (4)
k(1) γ (4)∗

k(3) γ (9)
k(1) 0 0

γ (4)∗
k(1) γ (2)

k(2) + γ (1)
k(1) γ (4)

k(2) 0 γ (9)
k(2) 0

γ (4)
k(3) γ (4)∗

k(2) γ (2)
k(3) + γ (1)

k(2) 0 0 γ (9)
k(3)

γ (9)
k(1) 0 0 γ (2)

k(4) + γ (1)
k(6) γ (4)

k(4) γ (4)∗
k(6)

0 γ (9)
k(2) 0 γ (4)∗

k(4) γ (2)
k(5) + γ (1)

k(4) γ (4)
k(5)

0 0 γ (9)
k(3) γ (4)

k(6) γ (4)∗
k(5) γ (2)

k(6) + γ (1)
k(5)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A10)

Bgen
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ (3)
k(1) γ (5)

k(1) + γ (6)
k(1) γ (5)∗

k(3) − γ (6)∗
k(3) γ (8)

k(1) 0 0

γ (5)∗
k(1) − γ (6)∗

k(1) γ (3)
k(2) γ (5)

k(2) + γ (6)
k(2) 0 γ (8)

k(2) 0

γ (5)
k(3) + γ (6)

k(3) γ (5)∗
k(2) − γ (6)∗

k(2) γ (3)
k(3) 0 0 γ (8)

k(3)

γ (8)
k(1) 0 0 γ (3)

k(4) γ (5)
k(4) + γ (6)

k(4) γ (5)∗
k(6) − γ (6)∗

k(6)

0 γ (8)
k(2) 0 γ (5)∗

k(4) − γ (6)∗
k(4) γ (3)

k(5) γ (5)
k(5) + γ (6)

k(5)

0 0 γ (8)
k(3) γ (5)

k(6) + γ (6)
k(6) γ (5)∗

k(5) − γ (6)∗
k(5) γ (3)

k(6)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A11)

Cgen
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ (7)
k(1) γ (7)∗

k(3) γ (10)
k(1) 0 0

γ (7)∗
k(1) 0 γ (7)

k(2) 0 γ (10)
k(2) 0

γ (7)
k(3) γ (7)∗

k(2) 0 0 0 γ (10)
k(3)

−γ (10)
k(1) 0 0 0 γ (7)

k(4) γ (7)∗
k(6)

0 −γ (10)
k(2) 0 γ (7)∗

k(4) 0 γ (7)
k(5)

0 0 −γ (10)
k(3) γ (7)

k(6) γ (7)∗
k(5) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A12)

Here, to define the matrix elements, we introduce the convention for the C3 rotation of sublattice indices as η+ (η+ = 2, 3, 1 for
η = 1, 2, 3 and η+ = 5, 6, 4 for η = 4, 5, 6) as well as one for the Z2 reflection exchanging the even and odd layers as η̄ (η̄ =
4, 5, 6 for η = 1, 2, 3 and ¯̄η = η). With these notations, we list the (components of) matrix elements appearing in Eqs. (A10)–
(A12):

γ (1)
k(η) = −3J1S

∑
v

Rv3(η)Rv3(η+),

γ (2)
k(η) = γ (1)

k(η) − 2JcS
∑

v

Rv3(η)Rv3(η̄) + DzS
(−2R2

33(η) + R2
31(η) + R2

32(η)
) + hcR33(η) + h⊥R13(η)

+ DxS
(−2R2

13(η) + R2
11(η) + R2

12(η)
) + 2J2S(cos (2k1 + k2) + cos (k2 − k1) + cos (k1 + 2k2) − 3),

γ (3)
k(η) = DzS

(
R2

31(η) − R2
32(η) + i2R31(η)R32(η)

) + DxS
(
R2

11(η) − R2
12(η) + i2R11(η)R12(η)

)
,

γ (4)
k(η) = J1

S

2
fk

∑
v

(Rv1(η)Rv1(η+) + Rv2(η)Rv2(η+)),

γ (5)
k(η) = J1

S

2
fk

∑
v

(Rv1(η)Rv1(η+) − Rv2(η)Rv2(η+)),
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γ (6)
k(η) = iJ1

S

2
fk

∑
v

(Rv1(η)Rv2(η+) + Rv2(η)Rv1(η+)),

γ (7)
k(η) = −iJ1

S

2
fk

∑
v

(Rv1(η)Rv2(η+) − Rv2(η)Rv1(η+)),

γ (8)
k(η) = JcS cos (k3/2)

∑
v

(Rv1(η)Rv1(η̄) − Rv2(η)Rv2(η̄)) + iJcS cos (k3/2)
∑

v

(Rv1(η)Rv2(η̄) + Rv2(η)Rv1(η̄)),

γ (9)
k(η) = JcS cos (k3/2)

∑
v

(Rv1(η)Rv1(η̄) + Rv2(η)Rv2(η̄)),

γ (10)
k(η) = −iJcS cos (k3/2)

∑
v

(Rv1(η)Rv2(η̄) − Rv2(η)Rv1(η̄)), (A13)

with fk = eik1 + eik2 + e−i(k1+k2 ). Hgen
LSW can be diagonalized by the general method for the Bogoliubov transformation for

bosons [54,63]. By checking the asymptotic behavior of Sαα (k, ω) as goes to the � point, we evaluate the ESR resonance
frequency as shown in Fig. 5.

4. Effect of biaxial anisotropy (Dx �= 0)

We examine the effect of Dx �= 0 for zero field and for nonzero field with H ‖ c. We obtain the classical ground states by a
numerically optimization of a six-sublattice ansatz of the classical mean-field energy. The main effect is distortion of the 120◦
structure towards the second principle axis (i.e., the x axis for Dx < 0) of the anisotropy [see Fig. 6(b)]. We find that the ground
state allows for setting, in terms of the spherical coordinates of the ordered moments, θ2 = θ3, θη̄ = θη, φ1 = 0, φ2 + φ3 = π ,
and φη̄ = φη + π without losing generality. The subsequent analysis can be carried out using the same LSW Hamiltonian as
above, Hgen

LSW.
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