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Edge and corner skin effects of chirally coupled magnons characterized
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We investigate a long-ranged coupled and non-Hermitian two-dimensional array of nanomagnets, fabricated
on a thin magnetic substrate and subjected to an in-plane magnetic field. We predict topology-driven edge and
corner skin effects of magnetic eigenmodes with the localization position at boundaries precisely characterized
by a topological winding tuple (WV;, W»). By varying the direction of the in-plane field, all magnon states
pile up either at different edges of the array with OV, = £1, W, = 0) or W, = 0, W, = %1), or at different
corners characterized by (W, = £1, W, = +£1). Exploiting the non-Hermitian topology is potentially helpful

for designing useful magnonic metasurfaces in the future.

DOLI: 10.1103/PhysRevB.108.174421

I. INTRODUCTION

The discovery of the one-dimensional non-Hermitian skin
effect, yielding a localization of a macroscopic number of
bulk eigenstates at the edge [1-6], stimulated the recent ex-
plorations of open systems, achieving useful functionalities
such as funneling of light [7], unidirectional amplification
[8,9], nonlocal response [10], and enhanced device sensitiv-
ity [11-14]. The winding number of the frequency spectrum
w(k), defined for periodic boundary conditions, was found
to form a loop in the presence of a skin effect when the
wave number k evolves by one period. In one dimension, this
winding number characterizes the skin effect’s topological
origin and precisely determines on which edge the eigenstates
localize [15-26]. Extending the non-Hermitian skin effect
from one to higher dimensions yields rich and diverse man-
ifestations of skin modes including edge, corner, surface, or
hinge localization [27-38], which have been experimentally
observed in acoustics [39] and topoelectrical circuits [40,41],
but not yet in magnonics [6,13,37,42].

Magnonic systems exploit magnetic excitations, i.e.,
magnons, as potential low-energy-consumption information
carriers [43—48]. The edge skin effect of magnons was pre-
dicted in different magnetism systems [13,37], with which
the sensitivity in the detection of the magnetic field can be
significantly enhanced [13]. The corner skin effect allows
almost all the bulk modes to aggregate at the corner, which has
not yet been predicted for magnons. A magnonic device that
allows the observation of the edge and corner skin effects with
flexible tunability is thereby potentially helpful for designing
useful magnonic metasurfaces in the future.
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The rapid progress in the field also raised theoretical chal-
lenges and urgent issues in the topological characterization
of the different skin modes [29,34,49,50]. In the nonrecipro-
cal two-dimensional non-Hermitian systems, the two winding
numbers defined along two normal directions, i.e., a topolog-
ical winding tuple, may precisely distinguish different edge
and corner skin effects, i.e., a precise prediction of the edge
or corner on which the modes localize, which is a straightfor-
ward generalization of the one-dimensional winding number
[29]. However, it may not apply to the reciprocal systems such
as the higher-order corner skin effect that originates from spe-
cific geometry [30] and the geometry-dependent skin effect
that depends on the boundaries [34]. Kawabata et al. showed
that the nonzero Wess-Zumino term leads to the presence of
(higher-order) corner skin modes in non-Hermitian systems
[29]. Zhang et al. proposed a general theorem to character-
ize the existence of a non-Hermitian skin effect in higher
dimensions in terms of spectra area in the complex plane [34],
viz. the non-Hermitian skin effect appears when the spectra
under periodic boundary conditions cover a finite area. In
this work, we predict different edge or corner skin effects
of magnons in ferromagnetic heterostructures composed of a
regularly shaped two-dimensional (2D) array of nanomagnets
that are fabricated on a thin magnetic substrate and biased
by an in-plane magnetic field. The system is illustrated in
Fig. 1. Mediated by the propagating magnons in the sub-
strate, the indirect interaction between Kittel magnons [51] in
the nanomagnet is long-range and chiral [52,53], driving the
boundary skin effect. Here the frequency spectrum w(ky, k2)
under periodic boundary conditions is a function of two real
wave numbers k| and k7, which allows us to define a winding
tuple W, W) by fixing one of the wave numbers. We use
such winding tuples to fully characterize different edge and
corner aggregations of bulk eigenstates that precisely predict
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nanomagnet A
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FIG. 1. Regularly shaped two-dimensional array of nanomagnets
fabricated on a finite area of a magnetic substrate. By varying the
direction 6 of the in-plane applied magnetic field Hy, all magnon
eigenstates in the nanomagnets pile up either at the edge or at
the corner of the array. The red mode profile implies the local-
ization at one corner. The geometric parameters are given in the
text.

which edge or corner the modes localize on, which can be
varied by varying the direction of the in-plane field in our
model. The winding tuple shows that all of the magnonic
bulk eigenstates pile up either at different edges of the array
with W, = £1, W, =0) or W, = 0, W, = %1), or at dif-
ferent corners characterized by (W, = 1, W, = £1). These
predictions can be tested experimentally with conventional
metallic nanomagnets on a high-quality thin magnetic sub-
strate such as yttrium iron garnet (YIG).

II. NON-HERMITIAN MAGNONIC EDGE
AND CORNER EIGENSTATES

We consider a finite-sized 2D square array of regular shape
composed of N, X N; nanomagnets, e.g., CoFeB, Py, Ni, or
Co, of width w ~ O(100) nm, length [ ~ O(100) nm, and
thickness d ~ O(10) nm, fabricated on the finite area of a
magnetic substrate such as YIG thin film of thickness s ~
O(10) nm, as illustrated in Fig. 1. The distance between
neighboring nanomagnet is A, and A, respectively, in the
¥- and 2-directions, and (a, b) indicates the nanomagnet in
the ath column and bth row. An in-plane magnetic field Hy
with an angle 6 with respect to the Z-direction biases the
saturated magnetization M and M, of the substrate and nano-
magnets. For soft YIG magnetic substrates, M is parallel to
H,. M, is larger than M, and, due to the shape anisotropy, it
has an angle # # 0 with respect to the z-direction. We refer
to the Supplemental Material (SM) [54] for the calculation
of 6.

When A, > {w,!,d} is of micrometer size, the direct
dipolar interaction between the nanomagnets is suppressed to
be negligibly small. The nanomagnet then couples dominantly
with the magnetic substrate via the dipolar interaction, assum-
ing that the interlayer exchange interaction is suppressed by
inserting a thin insulator layer [55]. So the ferromagnetic reso-
nance (FMR) modes or Kittel magnons Ba, » [51] of frequency
Q in the (a, b)th nanomagnets couple indirectly via the dipolar
interaction with the traveling magnons 7y of wave vector
k = (ky, k;) in the substrate [52,56] with the coupling constant

(a,b)

given by g,"” = gie'@MTPhA) where gy is real (refer to the

SM [54] for detailed derivations). The total Hamiltonian

A= (2 —isp)B] Bas+ Y _(k — idn)irin

a,b k

+ D2 g, + He. 1)

a,b k

describes coupled harmonic oscillators, where g = @GS
and §,, = agwy with the damping constants &s and g
for the magnons in the nanomagnet and substrate and
wp = oy (Hy + aexM,k?) is the dispersion of the exchange
magnons in the substrate with the vacuum permeability 1,
the modulus of electron gyromagnetic ratio y, and the ex-
change stiffness oex.

The Kittel magnons in the nanomagnets couple effec-
tively via virtually exchanging magnons in the substrate
[13,52,56]. The effective coupling between magnons in
the (a,b)th and (&, b')th nanomagnet is ['(ry—y piy) =
iy grel@@hMFb=tDkAL /(@) — ay +i8,,). In polar co-
ordinates k = (k, ¢) and Yoo bt = (Ta—a' b—b's ¢a7a’,b7b’)’
performing the contour integral over k with the on-shell ap-
proximation w — 2 yields [54]

L.L. (¥ &k
o= f do—2g (ka, ),
0 ng

F(ra—a’,b—b’ =0)= 4

L.L Gud bt/ T 5 k
T(Ca py £ 0) = %f do—= ke, ¢)
JT é ng

H—a/Ah—h/_%
x expligara—a b—tr COS(Q — Pa—a p—i )]s
2

where the lengths of substrate L, and L, are along the §-
and Z-directions, kg = /(2 — oy Hp)/((oy @exMy) is the
wave number of the resonant magnon to the FMR frequency
2 that propagates with group velocity vy, = (dwi/9k)|i, =
2oy dexMskq, and gq = kq(1 + icg/2). Therefore, the el-
ements of the effective Hamiltonian matrix of nanomagnet
magnons read

Moty poyy = 2 — i85 = IT(Xa—wr by = 0),
Het |y s or iy = =10 Camar bty 7 0). 3)

The substrate, on the one hand, adds an extra dissipation
I'(rg—a p—» = 0) to the Kittel magnons g, and, on the other
hand, mediates an effective coupling I'(r,—y »—r» # 0) be-
tween different nanomagnets. The matrix (3) is non-Hermitian
such that its diagonalization requires, in general, different
left ne and right ¥ eigenvectors, where the state index § =
{1,2,...,NyN;}. The left and right eigenvectors obey the
biorthonormal condition r;g Ve = 8z [1,57,58].

Here we illustrate the results with the dimensions used
in experiments Refs. [55,59,60] by considering an array of
30 x 30 CoFeB nanomagnets of thickness d = 30 nm, width
w = 100 nm, and length / = 200 nm with the neighboring
distance Ay = A; =2.2 um that are fabricated on the thin
YIG film of thickness s = 10 nm, biased by the in-plane
magnetic field uoHy = 0.05 T. The saturated magnetization
of CoFeB uoM; = 1.6 T [61] is much larger than that of
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TABLE 1. Modulus of the effective coupling I'(r) between Kittel magnons in the nanomagnets [(a)—(d)], corresponding edge or corner
aggregations of the magnon eigenstates [(e)—(h)], and spectral windings [(i)—(p)] in different magnetic configurations 6 = {0, w, 7w /4, —m /4}.
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YIG puoM; = 0.177 T [55]. For the ultrathin YIG substrate,
the Gilbert damping coefficient ag ~ 1073 [59,60] and ex-
change stiffness aex = 3 x 10716 m? [55]. Besides, uo =
47 x 1077 H/mand y = 1.82 x 10" s7! . T,

The modulus of effective coupling |I'(r)| under differ-
ent magnetic configurations 8 = {0, &, —m /4, w /4} and 0=
{0, 0, —0.056m, 0.0567} are plotted in Tables I(a) to 1(d),
which show tunable chiralities or nonreciprocities. In the
parallel configuration 6 = 0, |I'(r)| is symmetric in the Z-
direction, but is stronger when y > 0, implying that the
Kitte] magnon tends to interact with the substrate magnons
propagating to the right. The chirality becomes opposite in
the antiparallel configuration 6 = m. The chirality is altered
strongly when 6 = £ /4 as shown in Tables I(c) and I(d),
where |I'(r)| is asymmetric in both the §- and Z-directions.

These chiralities drive different aggregations of magnonic
eigenstates. To show such boundary skin effects, we plot in
Tables I(e) to I(h) the spatial distributions of all eigenstates
W(r.,) = [1/(N,N;)] Zg [ Ve (r,,,b)lz. In the collinear parallel
and antiparallel configurations, the chirality only drives the
skin effect at one edge: as in Table I(e) with 6 = 0, all the
eigenstates pile up at the right edge, but in Table I(f) with 8 =
7, they aggregate at the left edge. While in the noncollinear
configuration with & = £ /4 as in Tables I(g) and I(h), all
the magnonic eigenstates become skewed to the lower-right
and upper-right corners, respectively, showing two kinds of
non-Hermitian skin effects. These non-Hermitian skin modes
are of first order since the inversion symmetry is broken [29],
different from the higher-order corner skin modes that need
specific symmetry [29,34,49,50].
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pen system

periodic system

FIG. 2. Mapping of the open system with a finite array to the
periodic system via repeating the array on the substrate an infinite
number of times.

III. WINDING TUPLE AND TOPOLOGICAL
CHARACTERIZATION

As addressed, the winding tuple is a convenient tool to
topologically distinguish the edge and corner skin modes in
the 2D non-Hermitian skin effect of the nonreciprocal systems
[29,34,49,50]. To this end, we address a topological charac-
terization of the aggregations of magnon eigenstates in terms
of the winding tuple of the complex frequency spectra under
periodic boundary conditions.

However, before we can turn to this winding tuple, we
need to deal with the long-range coupled system rendering
the construction of periodic boundary conditions nontrivial
since every two magnets couple, differently from the short-
range coupled system [21,24,62]. To solve this issue we
propose to map the system with a finite array on the substrate
under open boundary conditions to the periodic system by
repeating the finite array on the substrate an infinite number of
times and requesting the magnon operator in the ath column
and bth row to satisfy periodic condition Bap) = Biain, s =
,B(a,b+N,_), as addressed in Fig. 2 for the one-dimensional sit-
uation. Good agreement is obtained in the one-dimensional
system, which allows an analytical treatment, where our nu-
merical results agree with the analytical one [13]. We refer to
the SM [54] for a detailed comparison.

The translational symmetry is recovered when we re-
peat the block of the nanomagnet array along the §-
and Z-directions indefinitely. We label every block by
{ny,n;} € (—o00,00) and every nanomagnet in the block
by {a, b}. The magnons in the substrate then interact with
the Kittel magnons in all nanomagnets, leading to the
Hamiltonian

Hy/h = ZZZ(Q isp)B .y By

ny,n; a=1 b=1

- Yo - zsm>mkmk+(zzzzgkmk

k ny.n; a=1 b=1

X B;T‘gvnz)Tei((llﬁ-n}-N)v)l(_vAy+(b+nzl\];)k7/\;) + H.C.) , (4)

where the phase in the coupling term records the position
of the nanomagnet. Due to the periodicity, we only need to
focus on one block such as the {n, = 0, n, = 0} block. Below

we denote ,3fl0,;0) by Ba,h for short notation. By Langevin’s

equation [63,64] and using the effective coupling (2), we find

((,() -Q+ 18/3 )Ba,b: —i Z Z 1—‘(ra,b - rLl’JrnyI\/y.b’JrnzNZ )Ba’,b’

a' b ny,n;

=—iy TP(tep—tep)Bay, )

a.b

where r,;, = aA,y + bA.Z is the position of the (a, b)th
nanomagnet and in the second line we impose the periodic

condition ,8("‘ ") ,3;0,;0),

1_‘p(ra,b - ra’,b’) = Z l—1(1'L/1,b - ra’+n}.Ny,b’+nZN1)

ny,n;

is periodic in both the §- and Z-directions since I'’(r) =
I'P(r 4+ NyA,§) =TP(r + N;AZ).

We then find from Eq. (5) the elements of the Hamiltonian
matrix of the periodic system, which under the on-shell ap-
proximation w — 2 read

Hgff|a:a/,b:b’ = Q - 18ﬁ - iFl)(r = O),

H,, —ilP(rep — Yo p). (6)

eff las#a’ or b#b =

Due to the periodicity of I'”(r) the eigenfunctions of matrix
Iy are the plane waves

p _ ;(ei(K‘-A}»+KZAZ) ei(K}-Ay‘FZK:A:) L.

Ky, Kz s s )
e /NN,

ei(K)»A)v#»NZKZAZ)’ ei(ZK)»A]v+KZAZ)’ .

X ei(A/,\'K,\'A¥‘+MKZAZ))T (7)
where «, = 27l /(N,A,) and k, = 21, /(N, A ) are real with
integers [, ={1,2,...,N,} and [, = {1,2,...,N;}. It obeys
HE Wl . = P (ky, k)Y ., where the eigenfrequency

Ny—1N,—1
@ (kyo k) =Q—i8g —i Y Y TP(—ah§ — bA2)
a=0 b=0
ei((lK}vA}-+bKZAZ). (8)

Since the complex spectra w”(k,, k;) are functions of
two real wave numbers k, and k;, they have a compli-
cated distribution on the complex plane. The conventional
spectra topology with the winding number in the one-
dimensional system is still convenient to characterize the
topological origin of the skin effect. Here we use it to char-
acterize the 2D non-Hermitian skin effect by fixing one
component of (kyAy, k;A;) at any (convenient) value and
monitor the evolution of w?(k,, k;) on the complex plane
when the other wave number evolves by a period. Accord-
ingly, we define the topological winding tuple (OV,, W;) by
fixing, respectively, x;A; and «,A, for the entries of the
tuple

| if Voo, 0; =0,
Wi if w9, O; # 0,

— 0’
i={y,z} — {—Q1/|Q1|9 (9)
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where with respect to the reference frequency wy

2
Qizyg = /0 i) argla” (ky, k;) — wold (ki A;).
When the spectra do not form a loop, W; = 0; otherwise
W; = 1(—1) for the clockwise (anticlockwise) evolution of
the frequency spectra, which can be computed by properly
choosing wy on the complex plane.

The winding tuple (W,, W.) precisely characterizes dif-
ferent edge or corner localization in the 2D non-Hermitian
skin effect of the nonreciprocal or chiral systems. When
both two indexes vanish, no 2D non-Hermitian skin effect
occurs; when only one of them is nonzero, the magnon
eigenmodes are localized on one of the edges, i.e., the
upper, lower, left, and right skin modes that are charac-
terized, respectively, by {W,, W.} = {0, 1}, {0, —1}, {-1, 0},
and {1, 0}; when both exist, the skin modes pile up at one
of the corners, with the upper-left, lower-left, upper-right,
and lower-right corner modes characterized, respectively, by
Wy, W} = {1, 1}, {—1, =1}, {1, 1}, and {1, —1}. This is
justified by the numerical calculation in Tables 1(i) to I(p)
with Ny = N, = 250 for the spectra winding when fixing one
of k, and k.. For the edge skin effect when 6 = {0, w} one
component of the winding numbers vanishes; while for the
corner skin effect when 6 = +m /4, both winding numbers
are nonzero that governs the position that the magnonic eigen-
states localize.

IV. DISCUSSION

In conclusion, we predict the edge or corner skin ef-
fects of magnons in the nanomagnetic array that act as
magnetic dipoles on a high-quality magnetic insulating sub-
strate and fully characterize their topological origin in terms
of winding tuples. Such an approach can be extended
to the three-dimensional case with a winding three-tuple
and so on for a long-range coupled system of regular
shape. The insights obtained in magnonics, where mag-
netic dipoles are exploited, should straightforwardly apply
to analogous electric dipoles that are coupled in a long-
range way, for instance in chiral photonics [65-68] or
plasmonics [69,70].
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