
PHYSICAL REVIEW B 108, 174417 (2023)

Hidden superuniversality in systems with continuous variation of critical exponents
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Renormalization group theory allows continuous variation of critical exponents along a marginal direction
(when there is one), keeping the scaling relations invariant. We propose a superuniversality hypothesis (SUH)
suggesting that, up to constant scale factors, the scaling functions along the critical line must be identical to that
of the base universality class even when all the critical exponents vary continuously. We demonstrate this in the
Ashkin-Teller (AT) model on a two-dimensional square lattice where two different phase transitions occur across
the self-dual critical line: while magnetic transition obeys the weak-universality hypothesis where exponent ratios
remain fixed, the polarization exhibits a continuous variation of all critical exponents. The SUH not only explains
both kinds of variations observed in the AT model, it also provides a unified picture of continuous variation of
critical exponents observed in several other contexts.
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I. INTRODUCTION

Phase transition and critical phenomena [1–4] have been
emergent topics of research for several decades. Criticality
is associated with two basic features: (a) universality [5,6],
which states that the associated critical exponents and scaling
functions are universal up to symmetries and space dimen-
sionality, and (b) scaling theory [7], which describes the
general properties of the scaling functions and relates differ-
ent critical exponents. The divergence of correlation length
at the critical point of a second-order phase transition en-
sures that microscopic details of the system have no roles
to play—which explains the scale invariant and the universal
behavior observed there. However, several experimental sys-
tems [8–10] appear to violate this universality hypothesis and
exhibit continuous variation of critical exponents with respect
to the system parameters. A clear example is the eight-vertex
(8V) model, solved exactly by Baxter [1,11,12], where the
critical exponents of the ferromagnetic transition, β, γ , and ν,
change continuously but their ratios β/ν, γ /ν, and (2 − α)/ν
remain invariant. Later, Suzuki [10] proposed an explanation:
the critical exponents should rather be measured with respect
to the correlation length, an emergent length scale of the sys-
tem, instead of the distance from the critical point, which is an
external tuning parameter. This proposal, formally known as
the weak-universality scenario, explains several experimental
features where the continuous variation of exponents is similar
to that obtained in the 8V model. Now we know that weak
universality appears in interacting dimers [13], frustrated spin
systems [14,15], magnetic hard squares [16], Blume-Capel
models [17], quantum critical points [18], models of percola-
tion [19,20], reaction-diffusion systems [21], absorbing phase
transition [22], fractal structures [23], etc.

Most systems that exhibit continuous variation of critical
exponents obey weak universality [8–10] where exponents
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β, γ , and ν vary but their ratios β/ν and γ /ν and the
field-exponent δ remain invariant. Another kind of continuous
variation is when all critical exponents vary except the sus-
ceptibility exponent γ ; this is observed in models of fermion
mass generation [24] and in the magnetic transition of systems
coupled to strain fields [25]. Variation of exponents γ and ν

has been reported in micellar solutions [26,27], but a careful
study [28] revealed that it was only a crossover effect. In Ising
spin glasses [29], an initial study showed continuous variation
of the exponent η, but more recent and accurate results [30]
support universality with respect to the disorder distribution.

In all the above examples, one or the other critical exponent
remains invariant, whereas others vary continuously. Several
studies have claimed continuous variation of all the critical
exponents in magnetic phase transitions of chemically doped
materials [31–37]. In a recent work [38], Khan et al. reported
that in ferromagnetic transition in the Nd-doped single crys-
tal (Sm1−yNdy)0.52Sr0.48MnO3 all the critical exponents vary
continuously with y in the range (0.5, 1). They proposed a
scaling ansatz that the functional form of the variation must
be conditioned to follow the scaling relations. The functional
form deduced by this condition could explain the observed
variations quite well. They also showed that some of the scal-
ing functions are universal along the critical line. However, it
is not clear if the observed data collapse is only due to the
limitations of the data, which were collected in a very small
range of temperatures near the critical points. Thus, further
checks are called for, to assess the invariant nature of the
scaling functions along the critical line.

In this article, we propose a superuniversality hypothesis
(SUH): when all or some of the critical exponents vary along
a critical line parametrized by a marginal operator that re-
mains universal along the critical line and carries the features
of the parent universality that are the scaling functions. We
demonstrate this in the Ashkin-Teller (AT) model, which is an
ideal laboratory to test SUH numerically because in this model
the magnetic phase transition follows a weak-universality sce-
nario, whereas in the electric phase transition, all the critical
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exponents vary continuously with the interaction parameter.
In both cases, we show that the underlying scaling functions
are invariant up to multiplicative scale factors.

The article is organized as follows. For completeness,
in Sec. II, we define the AT model on the square lattice
and discuss the magnetic and electric phase transitions, the
equation of the critical line, and the critical exponents. A
generalized-universality hypothesis, namely, the SUH is pro-
posed in Sec. III. Here, we obtain several scaling functions of
both the transitions in the AT model and show that they remain
invariant along the critical line. The results are summarized in
Sec. IV.

II. EXACT RESULTS AND PHASE TRANSITION
OF THE ASHKIN-TELLER MODEL

The AT model [39–41] is a two-layer Ising system with a
marginal four-body interaction between the layers [42]. The
model on a square lattice can be mapped exactly [43] to the
well-known 8V model [1], where each site of a square lattice
is allowed to have nonzero stationary weights for only 8 out of
16 different possible vertices. The AT model naturally leads to
two different kinds of order parameters, namely, magnetic and
electric ones. The usual ferromagnetic phase transition clearly
belongs to a weak universality scenario, whereas the nature of
the critical behavior of the electric phase transition has been
debated. Recently Krčmár and Šamaj [44] have proposed that
the electric-phase transition in a symmetric 8V model (and
thus the electric transition in the AT model) is fully nonuni-
versal.

In the AT model on an L × L square lattice with periodic
boundary conditions in both directions, each site i of the lattice
carries two different Ising spins: σi = ± and τi = ±. The
neighboring spins interact following the Hamiltonian

H = −Jσ

∑
〈ij〉

σiσj − Jτ

∑
〈ij〉

τiτj − λ
∑
〈ij〉

σiσjτiτj. (1)

Here j is the nearest-neighboring site of i, and 〈ij〉 denotes
a pair of nearest-neighbor sites. Here Jσ > 0 and Jτ > 0 are
the strengths of the intraspin ferromagnetic interactions of σ

and τ neighboring spins, and λ represents interactions among
them. We consider only the isotropic case Jσ = Jτ = J , where
exact results are available from mapping of the model to the
8V model [1].

The Hamiltonian (1) is invariant under any of the following
transformations: σ → −σ , τ → −τ , or σ → τ . Thus, one
can treat 〈σ 〉 = 〈τ 〉, or 〈στ 〉, as the order parameter of the
system; the first one characterizes the ferromagnetic to para-
magnetic transition where 〈σ 〉 = 〈τ 〉 ≡ M takes a nonzero
value, whereas 〈στ 〉 ≡ P (formally known as the polarization)
becomes nonzero during the electric phase transition. Unlike
the magnetic phase transitions, the electric transitions are less
studied in this model [44]. A particular question is whether
this transition obeys the universality hypothesis.

A. The phase diagram

The phase diagram of the AT model on a square lat-
tice is known exactly from the duality transformations and
from renormalization group (RG) studies [45,46]. The phase

FIG. 1. Phase diagram of the AT model on a square lattice for
T = 1 and J � 0. Phase I: Paramagnetic and electrically disordered.
Phase II: Ferromagnetic and electrically ordered. Phase III: Paramag-
netic and electrically ordered. Phase IV: Paramagnetic and staggered
electrical ordered. A staggered magnetic order can also occur for
J < 0, which is not shown here. The critical line X − Z4 separates
phase I from phase II; the magnetic and electric phase transitions
occur simultaneously as one crosses this self-dual line. Continuous
variation of critical exponents along the X − Z4 line. The point Z2

where (λ, J ) = (0, JI ) is the Ising critical point, whereas the point
Z4 where (λ, J ) = (Jp, Jp) is the critical point of the four-state Potts
model.

diagram of the system at temperature T = 1 and J � 0 is
shown in Fig. 1, where λ is defined by the duality relation
sinh(2J ) = e−2λ.

λ = 0. For λ = 0, σ and τ spins are decoupled and Eq. (1)
reduces to two independent Ising systems on a square lattice.
Thus, the critical point is J = JI = 1

2 ln(1 + √
2) (marked as

Z2 in Fig. 1).
J = 0. For J = 0, the model reduces to the Ising model

with a redefined Ising-like spin variable si ≡ σiτi at every
site i which interacts with neighboring spins with interac-
tion strength λ. Thus, corresponding magnetization

∑
i si can

undergo a ferromagnetic transition when λ > λc = 1
2 ln(1 +√

2) or an antiferromagnetic transition λ < −λc. Note that λc

is the same as JI .
λ = J . For λ = J , the AT model has a Z4 symmetry be-

cause Hamiltonian (1) with Jσ = Jτ = λ is invariant under the
permutations of the four states ({σ = ±}, {τ = ±}). Thus, in
this case, we have the q = 4 Potts model with the critical point
located at Jp = λ = 1

4 ln(3) � 0.2746. This point is marked as
Z4 in Fig. 1.

λ → ∞. When λ is very large, the terms of σiσj and τiτj in
Eq. (1) must take the same value and their product becomes
unity. In this limit, the Hamiltonian reduces to a single-site
Ising model with coupling 2J . The corresponding ferromag-
netic Ising critical point is (J, λ) = (Jc/2,+∞).

The AT model has four different phases: phase I (paramag-
netic and electrically disordered), a paramagnetic phase where
the couplings are sufficiently weak and none of M and P
are ordered, 〈σ 〉 = 〈τ 〉 = 0 = 〈στ 〉; phase II (ferromagnetic
and electrically ordered), the ferromagnetic phase where the
couplings are sufficiently strong so that both M and P attain a
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nonzero value; and phases III and IV (paramagnetic and elec-
trically ordered), partial ferromagnetic ordering is observed,
where 〈στ 〉 is ordered ferromagnetically but 〈σ 〉 = 〈τ 〉 = 0.
Phase IV is similar to phase III except that 〈στ 〉 is ordered
antiferromagnetically.

B. Magnetic and electric critical exponents

The electric and magnetic transitions are characterized
by the respective order parameters, the magnetization M =∑

i τi = ∑
i σi and the polarization P = ∑

i φi, where φi =
σiτi. When the temperature of the system is close to the critical
value Tc,

〈M〉 ∼ �T βm , 〈P〉 ∼ �T βe , (2)

where �T = Tc − T , and βm and βe are the order parameter
exponents of the magnetic and electric transitions. The critical
exponents γm and γe are associated with the susceptibilities

χm = 〈M2〉 − 〈M〉2 ∼ �T −γm , χe = 〈P2〉 − 〈P〉2 ∼ �T −γe .

The correlation functions can be defined as Gm(r) =
〈σiσi+r〉 − 〈M〉2 = 〈τiτi+r〉 − 〈M〉2 and Ge(r) = 〈φiφi+r〉 −
〈P〉2. Near the critical point T = Tc,

Gm,e(r) ∼ 1

(r/ξ )ηm,e
e(−r/ξ ), (3)

where ξ , the correlation length, being an emergent length
scale of the system does not depend on other details. As one
approaches the critical point Tc, it diverges as

ξ ∝ (�T )−ν . (4)

Like ν, the specific heat exponent α of the system does not
carry subscripts e and m:

Cv = 〈E2〉 − 〈E〉2 ∼ (�T )−α. (5)

In the presence of the external applied fields h and h̃ that
couple to M and P, respectively, the Hamiltonian is modified
as follows:

H = −Jσ

∑
〈ij〉

σiσj − Jτ

∑
〈ij〉

τiτj − λ
∑
〈ij〉

σiσjτiτj

−h
∑

i

(σi + τi) − h̃
∑

i

σiτi. (6)

Now at T = Tc, M(h) and P(h̃) scale as

M(h) ∼ h1/δm when h̃ = 0,

φ(h̃) ∼ h̃1/δe when h = 0. (7)

All the critical exponents are not independent; they are related
by the scaling relations [1]

2 − α = dν = γ
δ + 1

δ − 1
= 2β + γ = γ d

2 − η
. (8)

We expect these scaling relations to be satisfied by the expo-
nents of magnetic and electric transitions, and they indeed are.
In fact, the critical exponents of the AT model are known from
its mapping to the 8V model introduced by Baxter [1,11,47]

and from renormalization group arguments [45,46]:

ν = 2(μ − π )

4μ − 3π
with cos μ = e2λ sinh(2λ); α = 2(1 − ν);

βe = 2ν − 1

4
; δe = 6ν + 1

2ν − 1
; γe = 1

2
+ ν; (9)

βm = ν

8
; δm = 15; γm = 7ν

4
. (10)

The universal amplitude ratios along the critical line are also
known from the equivalence of the model in the scaling limit
with the Sine-Gordon quantum field theory [48].

For the magnetic transition, the critical exponents satisfy
the following relations:

βm

ν
= β0

m,
γm

ν
= γ 0

m, δm = δ0
m, ηm = η0

m. (11)

Here β0
m = 1

8 , γ 0
m = 7

4 , δ0
m = 15, and η0

m = 1
4 are the critical

exponents of the parent universality class (which is the Ising
model in d = 2). This is the well-known weak-universality
scenario [10] observed in several experiments [8,9] where β,
γ , and ν vary continuously, keeping their ratios β/ν and γ /ν

fixed.
For the electric transition, however, all the critical expo-

nents vary with the marginal interaction parameter λ and
this transition breaks both the universality hypothesis and the
weak-universality hypothesis; it is not clear if the exponents
are related in any way to those of the parent universality class.
We propose a generic universality hypothesis (namely, SUH)
that predicts the functional form of the continuous variations;
we show explicitly that the variations observed in electric and
magnetic phase transitions of the AT model are consistent with
the SUH.

III. THE SUPERUNIVERSALITY HYPOTHESIS

The basic assumption of the SUH is that the continuous
variations of critical exponents, whenever they occur, must
vary following a functional form that obeys the generic scaling
relations (8) and, up to constant scale factors, the scaling
functions along the critical line must remain invariant. The
SUH suggests that, when critical exponents vary continuously,
the underlying universal features along the critical line can be
read from the universal scaling functions which are invariant
up to some constant scale factors.

A generic functional form of variation of the critical ex-
ponents can be determined by enforcing their obedience to
the scaling relations in Eq. (8). In any given dimension d ,
the variation of ν determines how α varies but it does not
uniquely specify how γ , or for that matter β, should vary.
In other words, the continuous variation of all the exponents
along a critical line (generated by a marginal parameter μ) can
be determined by two functions:

γ = γ0

f (μ)
; ν = ν0

g(μ)
. (12)
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Then, the other critical exponents are determined uniquely, in
two dimensions (d = 2),

2 − α = 2 − α0

g(μ)
,

δ + 1

δ − 1
= f (μ)

g(μ)

δ0 + 1

δ0 − 1
,

η = g(μ)

f (μ)
η0 + 2

(
1 − g(μ)

f (μ)

)
,

β = β0

g(μ)
+ γ0

2g(μ)

(
1 − g(μ)

f (μ)

)
. (13)

This is the most generic way critical exponents vary. An obvi-
ous spatial case, f (μ) = 1 = g(μ), gives universality which is
widely observed. Here, the exponents remain invariant along
the critical line. The two other special cases which are com-
monly observed are as follows:

Type I : f (μ) = g(μ), δ and η are invariant;

Type II : f (μ) = 1, γ is invariant. (14)

The Type I scenario is the well-known weak universality
observed both theoretically and experimentally [10]. In this
case, with g ≡ g(μ) we get

ν = ν0

g
, γ = γ0

g
, β = β0

g
, δ = δ0, η = η0. (15)

Here, exponents δ and η and the ratios β/ν and γ /ν are pinned
to the respective values of the base universality class. The
ferromagnetic phase transition of the AT model is an example
of weak universality with g(μ) = 4μ−3π

2(μ−π ) .
The Type II variation is also common. The critical expo-

nents can be written in this case [with g ≡ g(μ)] as

ν = ν0

g
; γ = γ0; β = β0

g
+ γ0

2g
(1 − g);

δ = 1 + δ0 + g(δ0 − 1)

1 + δ0 − g(δ0 − 1)
; η = gη0 + 2(1 − g). (16)

Some examples of Type II variations, where γ does not
change, include mass generation in QED [24] and magnetic
phase transition in the presence of long-ranged strain field
[25]. In these examples, the varying critical exponents violate
both the universality and the weak-universality hypothesis.

The most generic scenario is when all the exponents vary.
It is observed in ferromagnetic phase transitions of chemi-
cally doped magnetic materials [33–38]. The electric phase
transition in the AT model also belongs here, and thus, one
expects Eq. (13) to hold. To find the exact form of the func-
tions f (μ) = γ 0

e /γe and g(μ) = ν0
e /νe, we must know the

exponents γ 0
e and ν0

e , at λ = 0. The correlation length expo-
nent ν0

e = 1 is the same for both magnetic and electric phase
transitions. Since, at λ = 0, the spin variables σ and τ are in-
dependent of each other, the polarization P = 〈στ 〉 must vary
as P = 〈Mσ 〉〈Mτ 〉 ∼ (�T )1/4, as 〈Mσ,τ 〉 ∼ (�T )1/8. The cor-
responding variance is then χe = 〈M2

σ 〉〈M2
τ 〉 − 〈Mσ 〉2〈Mτ 〉2.

Since 〈M2
σ,τ 〉 = χσ,τ + 2〈Mσ,τ 〉2 and χσ,τ ∼ (�T )−7/4, we

get the dominant variation of χe as χe ∼ (�T )−
3
2 and thus

γ 0
e = 3

2 . Other exponents at λ = 0 can be determined fol-
lowing the scaling relation (8). Thus, the parent universality
class of the electric phase transition is characterized by the

following exponents,

ν0
e = 1; γ 0

e = 3/2; β0
e = 1/4; δ0

e = 7. (17)

Using this in Eq. (9), we obtain

f (μ) = γ 0
e

γe
= 3(4μ − 3π )

8μ − 7π
, g(μ) = 1

ν
= 4μ − 3π

2(μ − π )
, (18)

where cos μ = e2λ sinh(2λ).
We perform Monte Carlo simulations of the AT model near

the critical self-dual line parametrized by λ [49]:

Tc = 1, λc = λ, Jc = 1
2 sinh−1(e−2λ). (19)

For a large system (L = 1024) we calculate the critical ex-
ponents β and γ by varying T and calculating how the
order parameters and the susceptibilities vary as a function of
(Tc − T ). Exponents δm and δe are obtained from the varia-
tions of M and P with respect to the fields h and h̃. To calculate
βm/ν and βe/ν, we employ finite-size scaling. Details of the
Monte Carlo simulations and resulting critical exponents for
λ = −0.2, −0.1, 0, 0.1, and 0.2 are given in the Supplemental
Material [50]. The critical exponents compare quite well with
the exact values given in Eqs. (9) and (10). This ensures us that
the scaling functions obtained in the next section using similar
statistical averaging are quite accurate and that the system size
considered here is well within the scaling regime.

A. Invariant scaling functions along the critical line

Since all critical exponents can change along the line of
criticality, we look for the features that remain invariant and
ascertain that the superuniversality hypothesis is in effect.
Scaling functions are the natural choices.

First, we look at the Binder cumulants [51,52], which are
RG invariant. For the magnetic and the electric transitions they
are defined as

Bm = 1 − 〈M4〉
3〈M2〉 , Be = 1 − 〈P4〉

3〈P2〉 . (20)

Since Bm and Be are dimensionless quantities, they are ex-
pected to follow the finite-size scaling:

Bm = gm(�T L1/ν ), Be = ge(�T L1/ν ). (21)

The system has a dominant correlation length ξ which does
not depend on whether one looks at magnetic or electric
behavior, and it diverges as ξ ∼ �T −ν at the critical point.
In a finite L × L system, ξ is limited by the length L and
thus �T L1/ν can be regarded as (ξ/L)−1/ν . In Figs. 2(a) and
2(b), we have shown Bm and Be as a function of �T L1/ν

obtained for different values of λ and system sizes. All the
curves appear to collapse into a unique scaling curve.

Another RG-invariant quantity, the second-moment corre-
lation length [53], provides strong universality checks of the
scaling functions. Recently, this idea has been successfully
applied in other contexts [54]. In the AT model, the second-
moment correlation length ξ2 is defined as

(ξ2)2 =
∑

r r2Gm(r)∑
r Gm(r)

, (22)

where Gm(r) is the correlation function defined in Eq. (3).
We calculate ξ2 from the Monte Carlo simulations by taking
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FIG. 2. Binder cumulants Bm and Be for magnetic, electric tran-
sitions. (a) and (b) Bm and Be vs �T L1/ν . (c) and (d) Bm and Be vs
ξ2/L. We consider five different λ values {−0.2, −0.1, 0, 0.1, 0.2}
and several L values for each λ. ξ2 is the second-moment correlation
length defined in Eq. (22). In all four cases, the data appear to
converge into a unique scaling curve. Data are averaged over 107

samples. Error bars are the same size or smaller than the symbols
used.

r only along the x and y directions. In Figs. 2(c) and 2(d),
we have shown Bm and Be as functions of ξ2/L obtained for
several values of λ and system sizes. All the curves naturally
collapse to a single function. Note that the critical behavior of
the model at λ = log(3)/4 � 0.2746 belongs to the universal-
ity class of the Potts model with q = 4 (Z4 symmetry) and the
data have strong finite-size correction when λ approaches this
value. To avoid these ill effects, in Fig. 2, we consider the data
for larger L when λ is large.

The order parameters φm,e ≡ M, P also exhibit finite-size
scaling,

φm,e = Lβm,e/ν fm,e(�T L1/ν ). (23)

A plot of ML−βm/ν as a function of �T L1/ν is shown in
Figs. 3(a)–3(d) for λ = −0.2, −0.1, 0.1, and 0.2, respectively.
The data for different L collapse to a unique scaling function
for each λ. However, the scaling function for different λ val-
ues, shown in Fig. 3(e) for λ = −0.2, 0, and 0.2, turns out
to be different. This is because the scaling functions contain
nonuniversal (λ-dependent) scale factors. Thus, one expects
the individual scaling functions of different λ values to col-
lapse onto a single curve when the x and y axes are rescaled,
which is shown in Fig. 3(f). A similar data collapse of polar-
ization, i.e., PL−βe/ν versus �T L1/ν for individual λ values, is
shown in Figs. 4(a)–4(d). The individual scaling functions of
different λ values are then made to collapse to a single curve
by rescaling the axes, which is shown in Figs. 4(e) and 4(f). A
good data collapse obtained in both cases indicates that there
exists an underlying universal scaling function all along the
critical line. Note, that an additional rescaling of axes is not
required for Binder cumulant as, in the thermodynamic limit,
Bm and Be approaches a constant value: 2

3 when T < Tc and 0
when T > Tc [51,52].

Now we turn our attention to field-dependent scaling. For
a large system the order parameters φm,e in the presence of
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FIG. 3. Data collapses of MLβm/ν as a function of �T L1/ν across
various system sizes L = 25–29 to a unique scaling function observed
for (a) λ = −0.2, (b) λ = −0.1, (c) λ = 0.1, and (d) λ = 0.2. In
each case, the inset shows the plots of the order parameter M vs
T at corresponding λ. The scaling functions obtained for different
λ values are different [shown for λ = −0.2, 0, and 0.2 in panel (e)],
but they could be collapsed to a single curve, as shown in panel (f),
by rescaling the x and y axes.

their external field conjugates B ≡ h, h̃ follow the scaling
relation [2]

φm,e = �T βm,e Fm,e(�T B−1/(βm,e+γm,e ) ). (24)

For a large system, L = 1024 we obtain M as a function of h
for different values of T near the critical value Tc = 1 (here
h̃ = 0). A plot of �T M−1/βm as a function of �T h−1/(βm+γm )

is shown in Figs. 5(a) and 5(b), respectively, for λ = −0.2
and 0.2. The scaling functions obtained for different λ val-
ues are then compared in Fig. 5(c). The scaling functions
look different, but as expected, they could be collapsed to a
unique curve by rescaling the x and y axes. A similar plot of
�T P−1/βe versus �T h̃−1/(βe+γe ) for λ = −0.2 and 0.2 exhibits
data collapse in Figs. 6(a) and 6(b). The individual scaling
functions for different λ values, compared in Fig. 6(c), are
rescaled to obtain a unique scale function in Fig. 6(d). An
excellent match clearly indicates that the scaling properties of
both magnetic and electric phase transitions in the AT model
can be derived from those of the parent universality class.

IV. SUMMARY

Marginal operators, if present in a system, can generate
a line of critical points along which the critical exponents
may vary continuously. In this article, we introduce a supe-
runiversality hypothesis (SUH) for the continuous variation of
exponents: we propose that, up to constant scale factors, the
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FIG. 4. Data collapses of PLβe/ν as a function of �T L1/ν across
various system sizes L = 25–29 to a unique scaling function observed
for (a) λ = −0.2, (b) λ = −0.1, (c) λ = 0.1, and (d) λ = 0.2. In
each case, the inset shows the plots of the order parameter P vs T
at corresponding λ. (e) Resulting scaling functions are different for
different values of λ = −0.2, 0, and 0.2. (f) By rescaling the x and
y axes, we collapse all the scaling functions for λ �= 0 onto that of
λ = 0. Data are averaged over 107 samples or more.

scaling functions along the critical line must be identical to
those of the base universality class even when all the critical
exponents vary continuously along the marginal direction.
We demonstrate this in the Ashkin-Teller model, where the
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FIG. 5. Data collapses of �T M−1/βm as a function of
�T h−1/(βm+γm ) with different T values to unique scaling functions
observed for (a) λ = −0.2 and (b) λ = 0.2. In each case, the inset
shows the behavior of the magnetization M with the field h across
the temperature T for corresponding λ. (c) Scaling functions turn out
to be different for different λ values. (d) By rescaling x and y axes, we
collapse all the different scaling functions (symbols) onto the scaling
function for λ = 0 (red solid line).
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FIG. 6. Data collapses of �T P−1/βe as a function of
�T h̃−1/(βe+γe ) with different T values to unique scaling functions
observed for (a) λ = −0.2 and (b) λ = 0.2. In each case, the inset
shows the behavior of the polarization P with the field h̃ across the
temperature T for corresponding λ. (c) Scaling functions turn out to
be different for different λ values. (d) By rescaling x and y axes we
collapse all the scaling functions (symbol) for different λ onto the
curve corresponding to λ = 0 (red solid line).

critical exponents of the ferromagnetic phase transition vary
with the interaction parameter following the weak universality
scenario, whereas the polarization of the system exhibits a
continuous variation of all exponents. We calculate several
scaling functions and show explicitly that they are indeed uni-
versal along the critical line up to certain nonuniversal scale
factors. The scaling functions relating to the renormalization-
group-invariant quantities, like the Binder cumulants Bm and
Be, the ratio of the correlation length ξ ∼ (Tc − T )−ν to sys-
tem size L, and the ratio of the second-moment correlation
length ξ2 to L, do not require any additional scaling—they
naturally remain invariant along the critical line. However,
the hyperscaling relations between the critical exponents are
obeyed as long as the system has a unique diverging length
scale.

The SUH is helpful in identifying whether two sets of
critical exponents, both satisfying hyperscaling relations, be-
long to different universality classes or are only instances of
a superuniversality class generated by a marginal operator.
It suggests that if the change of exponents is caused by a
marginal operator, the underlying scaling functions must be
unique up to multiplicative scale factors. This question is quite
relevant in the study of phase transition in experimental sys-
tems, where there is only a limited set of measured exponents;
if they differ, more often than not, their critical behavior is
assigned to different universality classes.

In our opinion, the superuniversality hypothesis is quite
general and it can be applied to other systems where a
marginal parameter leads to continuous variation of critical
exponents. While the validity of hyperscaling relations pro-
vides a guideline on the functional form of the continuous
variation, the SUH suggests that, when all critical exponents
vary along a critical line, the invariant scaling functions are
the ones that carry forward the universal features of the parent
universality class.
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