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Statistical analysis of magnetic domain wall dynamics to quantify Dzyaloshinskii-Moriya interaction
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We utilize statistical tools to analyze the magnetic domain wall dynamics in a nanostrip, which can quantify the
magnitude and reveal the effects of interfacial Dzyaloshinskii-Moriya interaction (DMI). We find that two peaks
in the velocity frequency spectrum exist, the magnitude ratio of which can be used to determine the DMI strength.
Our approach is validated by the collective-coordinate model and is demonstrated to be robust against thermal
noise and material impurities. Moreover, the third-order cumulant and third-order time-dependent correlation
function of velocity are calculated and yield valuable information regarding the asymmetry induced by DMI.
Our findings offer efficient analysis tools to understand the physical process of domain wall dynamics under
DMI and exotic magnetic phenomena.
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I. INTRODUCTION

Dzyaloshinskii-Moriya interaction (DMI) plays a funda-
mental role in the stabilization of exotic spin structures, such
as spin spirals [1,2], chiral domain walls [3,4], and magnetic
skyrmions [5–7]. These spin structures can be driven by elec-
tric current or external magnetic field with a high level of
efficiency and thus are particularly attractive as promising
information carriers for future spintronics technologies [5,8].
Therefore, accurately and reliably quantifying the DMI in
magnetic materials is of utmost importance for identifying
potential materials for spintronic-based devices.

One particularly interesting and commonly studied mag-
netic system is a thin magnetic film with perpendicular
magnetic anisotropy due to the fast domain wall motion driven
by the electric current or magnetic field [9–12]. In these
multilayers consisting of an ultrathin ferromagnetic film in
contact with a heavy metal, interfacial DMI can be induced
at the interface due to the broken inversion symmetry and the
large spin-orbit coupling of the heavy metal atoms [13,14]. It
has been demonstrated that DMI strongly affects the domain
wall internal spin texture, domain wall dynamics, and spin
wave propagation [15,16]. In return, by exploiting the unique
properties and peculiar phenomena induced by DMI, such as
the Walker breakdown in field-driven domain wall motion
and nonreciprocity in spin wave propagation, different ex-
perimental techniques have been developed to quantify DMI
strength in combination with a simple analytical theoretical
model [17]. For example, using Brillouin light spectroscopy,
the DMI strength can be obtained by monitoring nonrecip-
rocal propagation in the Damon-Eshbach geometry [18,19].
In the creep regime of domain wall motion, the asymmetric
expansion of a magnetic bubble under in-plane magnetic field
and in the presence of DMI can also be utilized as a measure
of DMI strength [17,20]. Even though different experimental
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techniques have been developed to quantify the DMI, each
technique has its own advantages and disadvantages and of-
ten produces contradictory values even for the same system.
Moreover, most of the experimental techniques also require
either high-precision imaging of the domain wall structure or
a high-quality magnetic material [17].

Here, we introduce statistical tools to analyze the domain
wall dynamics in a magnetic nanostrip in the presence of DMI.
We show that, rather than simple averaging of instantaneous
velocity [21,22], statistical analysis reveals more detailed in-
formation concealed in the noisy data of magnetic domain
wall dynamics. By fast Fourier transformation of time-varying
domain wall velocity, we observe the emergence of two peaks
in the velocity frequency spectrum in the presence of inter-
facial DMI. By combining the micromagnetic simulation and
analytical analysis based on the collective-coordinate model,
we show that, in the precessional regime, the magnitude ratio
of the low-frequency mode to the high-frequency mode in
the velocity frequency spectrum is linearly proportional to the
DMI strength but is independent of external magnetic field.
This ratio can thus be utilized to experimentally quantify the
DMI strength in ferromagnetic films. Further, this method
for the velocity frequency spectrum is demonstrated to be
robust even in the presence of external noise and magnetic
pinning disorder, which is crucial for accurately measuring
the strength of DMI in real materials. Moreover, the third-
order cumulant and third-order time-dependent correlation
function of velocity are calculated and shown to yield valu-
able information regarding the asymmetry induced by DMI.
The proposed statistical analysis provides a robust method
for quantifying micromagnetic parameters and uncovers more
detailed information about DMI.

The remainder of this paper is structured as follows.
In Sec. II, we present the theoretical model for domain
wall (DW) motion in ferromagnetic films with interfacial
Dzyaloshinskii-Moriya interaction and introduce the ve-
locity frequency spectrum that can be used to quantify
DMI strength. Subsequently, in Sec. III, we introduce the
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collective-coordinate model to verify the simulation results
and explain the underling physics of the velocity frequency
spectrum. In Sec. IV, we demonstrate the robustness of the
velocity frequency spectrum by considering the domain wall
dynamics in the presence of external noise and pinning dis-
order. Moreover, in Sec. V, we show that considering the
third-order cumulant and third-order time-correlation function
can reveal the intrinsic asymmetry induced by DMI. To com-
plete our study, in Sec. VI, we provide the results of domain
wall dynamics driven by electric current. Finally, we conclude
with a brief discussion and summary of the key results in
Sec. VII.

II. MODEL AND METHOD

A. Model and setup

We start by considering the field-driven domain wall dy-
namics of a thin magnetic film with perpendicular magnetic
anisotropy. The film is patterned into a long strip which pro-
vides an ideal setup to study domain wall propagation. We
use the GPU accelerated micromagnetic simulation program
MUMAX3 to simulate the DW dynamics [23]. This program
solves the space- and time-dependent reduced magnetization
m(r, t ) in the Landau-Lifshitz-Gilbert (LLG) equation,

∂m
∂t

= −γ m × Heff + αm × ∂m
∂t

. (1)

Here, γ is the gyromagnetic ratio, α is the dimensionless
damping parameter, and Heff is the effective field, consisting
of the externally applied field, magnetostatic field, Heisenberg
exchange field, and anisotropy field. In the simulation, we
choose thickness Lz = 3 nm, width Ly = 20 nm, and length
Lx = 4096 nm. Micromagnetic parameters are chosen to be
the typical experimental values [22]: saturation magnetiza-
tion Ms = 9.1 × 105 A/m, exchange stiffness Aex = 1.4 ×
10−11 J/m, first-order uniaxial anisotropy constant Ku =
8.4 × 105 J/m3, and damping parameter α = 0.27. The DW
width is roughly given by � = √

Aex/Keff , where Keff is the
effective anisotropy, which includes the magnetocrystalline
anisotropy Ku and the shape anisotropy. The discretization
cell dimensions are dx = dy = 2 nm and dz = 0.5 nm, smaller
than the exchange length Lex = √

Aex/(μ0M2
s ) ≈ 3.7 nm [24].

Periodic boundary conditions are used in the y direction to
avoid boundary effects [25]. The LLG equation is then solved
using the Dormand-Prince solver (RK45) with an adaptive
time step.

The system is initialized in a configuration with two an-
tiparallel out-of-plane (up and down) domains separated by a
DW with an internal magnetization in the negative y direction,
as shown in Fig. 1(a). The behavior of the DW in response to
an external perpendicular magnetic field Bext features unique,
nonlinear dynamics that is understood very well [16]. Before
the Walker breakdown, the average velocity increases linearly
with external magnetic field, and after that, the velocity sud-
denly drops, signaling the onset of precession of the DW [26].
In the simulation, one can record the information about time-
varying quantities mx,y,z(t ), from which the DW dynamics
can be further investigated. The average 〈mi〉 (i = x, y, z) is
taken over a range extending 20 discretization cells around

(a)

(e)

(c)

(d)

D=0.0 mJ/m2 D=0.05 mJ/m2(b)

FIG. 1. (a) Schematic illustration of field-driven DW motion in a
magnetic nanostrip. (b) and (c) Frequency spectra of 〈my(t )〉 without
and with DMI, respectively. (d) and (e) Frequency spectra of v(t )
without and with DMI, respectively. The red and blue points cor-
respond to the LFM and HFM peaks, respectively. Insets: 〈my〉(t )
(red dotted line) and vDW(t ) (blue dotted line) signals. External field
Bext = 200 mT.

the DW. The instantaneous domain wall velocity is obtained
as v(t ) ∝ d〈mz〉/dt [27].

B. Method: Velocity frequency spectrum

In the precessional regime with zero DMI strength D = 0,
we observe that both 〈mx,y(t )〉 and v(t ) oscillate periodically
with time, as shown in the insets of Figs. 1(b) and 1(d).
However, they have different oscillating frequencies. The dif-
ference can be seen more clearly from the frequency spectrum
of 〈my(t )〉 and v(t ). After a long time interval T , we carry out
the fast Fourier transform of the instantaneous velocity v(t ):

v(ω) = 1√
Tm

∫ Tm

0
eiωtv(t )dt . (2)

A similar Fourier transform is also performed for 〈my(t )〉.
In Figs. 1(b) and 1(d), we plot the magnitude of the Fourier
transform |〈my(ω)〉 and |v(ω)| for the case of D = 0. It is clear
that there is only a single peak in the frequency spectrum of
my(t ) and v(t ). However, the peak frequency of the velocity is
doubled that of my.

An interesting phenomenon appears when we introduce
nonzero DMI. In the presence of DMI, the time-varying sig-
nal 〈my(t )〉 is almost the same as D = 0, and the oscillation
frequency remains unchanged [inset of Fig. 1(c)]. However,
the behavior of the velocity signal v(t ) changes radically, as
shown in the inset of Fig. 1(e). Figures 1(c) and 1(e) plot
the frequency spectra of 〈my〉 and v(t ) with nonzero DMI.
While there is only one peak in the frequency spectrum of
〈my〉, two spectral peaks with different magnitudes emerge in
|v(ω)|. For convenience, we label the two oscillatory modes as
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(a) (b)

(c) (d)

FIG. 2. Frequency spectrum of DW velocity v(t ) for different
values of (a) D and (b) Bext. Dependence of the ratio of LFM to
HFM on (c) D and (d) Bext. Squares are results from micromagnetic
simulation, and the solid line shows results from the CCM.

the low-frequency mode (LFM) and the high-frequency mode
(HFM).

We further investigate the influence of DMI strength D on
the two emerging oscillating peaks in the velocity frequency
spectrum. We first fix the external magnetic field Bext and
gradually increase the DMI strength D. As shown in Fig. 2(a),
there are always two peaks in the velocity frequency spectrum
with the frequencies remaining unchanged. However, with
increasing DMI strength, the magnitude of the LFM peak
increases, while the magnitude of the HFM peak remains
unchanged. If we extract the LFM/HFM ratio from the fre-
quency spectral data and plot it as a function of DMI intensity
[Fig. 2(c)], we can see that the ratio increases linearly with the
DMI strength D. We also study the velocity frequency spec-
trum under different external magnetic fields Bext when the
DMI strength is fixed, as shown in Figs. 2(b) and 2(d). Even
though the oscillating frequency increases with increasing
Bext, the magnitude ratio of LFM/HMF remains unchanged
as long as the DMI strength D is fixed.

This result confirms that the magnitude ratio of the two
peaks in the velocity frequency spectrum is solely dependent
on DMI and thus can be utilized as a measure of DMI strength.
Later, we will show that this frequency spectrum analysis re-
mains robust in the presence of external noise and pinning. In
real experiments, one may encounter nanostrips with a wider
width, for example, of the order of 1 µm. In this situation,
some other dissipative effects would take place, such as pairs
of vertical Bloch lines. Therefore, it would be interesting to
discuss whether the appearance of Bloch lines would affect
the accuracy of the approach. We leave the discussion to
Appendix A.

III. COLLECTIVE-COORDINATE MODEL

To understand the underling physics of the above results
obtained from the micromagnetic simulation, we resort to
the collective-coordinate model, which can provide a semi-
analytical solution to domain wall dynamics. Assuming that
the DW remains a rigid object with constant width, the DW
dynamics can be described by two independent variables, the
DW position q and its conjugate momentum, the DW magne-
tization angle ϕ. The one-dimensional collective-coordinate
model (CCM) reads [28–34]

v(t ) ≡ dq

dt
= γ ′�(αHa − HK sin 2ϕ + HD sin ϕ), (3)

dϕ

dt
= γ ′(Ha + αHK sin 2ϕ − αHD sin ϕ), (4)

with γ ′ = γ

α2 + 1
. Here, HK = 2K/(μ0Ms), with K being

the effective anisotropy energy, Ha is the external magnetic
field applied along the easy axis, and HD = πD/(2μ0Ms�).
Despite its simplicity, the CCM provides a quite accurate
description of DW motion in a nanowire. It is also easy to
generalize the equations to cases with external thermal noise
or pinning disorder and to the system driven by electric current
(see Sec.VI). Now we use Eqs. (3) and (4) to explain the
emergence of two peaks in the velocity frequency spectrum
in the presence of nonzero DMI.

Note that without external noise or disorder, the average
magnetization 〈my(t )〉 is almost sinusoidal, as depicted in the
insets of Figs. 1(b) and 1(c). Since 〈my(t )〉 is proportional to
sin ϕ, sin ϕ is also almost perfectly sinusoidal, with only a
slight deviation. Actually, we can see this point simply from
Eq. (4), which can be analytically solved if one of the two
terms containing HK and HD vanishes. If HK = 0, the solution
of ϕ(t ) is given by

tan
ϕ

2
= sin(t ′/2)

cos(t ′/2 + θ )
, (5)

with t ′ = γ ′Ha

√
1 − (αHD/Ha)2 and θ = − arcsin(αHD/Ha).

The solution shows that if θ 	 1, i.e., αHD 	 Ha, then sin ϕ

is very close to a sine function of time t , and the DW mag-
netization angle ϕ(t ) can be considered to increase almost
linearly with time t . Indeed, direct calculations of the Fourier
coefficients of sin ϕ show that a small deviation from linearity
only results in the appearance of peaks at the nth harmonic
frequency, but with a small amplitude that is of the order
θn−1 (see Appendix B for a detailed discussion). A similar
discussion can be had for the case with nonzero HK .

Under this consideration, we can qualitatively understand
the previously observed phenomena from micromagnetic sim-
ulations. First, for the case of HD = 0, the time-dependent part
of the velocity in Eq. (3) is proportional to sin 2ϕ, leading
to a peak at the second harmonic frequency in the frequency
spectrum. As we increase the DMI strength D, and thus HD,
an additional component proportional to sin ϕ appears and
gives rise to a LFM in the velocity frequency spectrum. More
importantly, in the limit that ϕ is almost linear in time t , the
magnitude ratio of LFM to HFM is given from Eq. (3) by

η = HD

HK
= πD

4�K
. (6)
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Therefore, we conclude that the magnitude of the DMI
strength D can easily be obtained once we get the ratio η.
The accuracy of this approach is guaranteed by αHD/Ha 	 1
and αHK/Ha 	 1, which can easily be achieved by increasing
external field Ha.

IV. EXTERNAL NOISE AND PINNING DISORDER

We now proceed to verify the robustness of the frequency
spectrum method and the accuracy of Eq. (6) in quantifying
the DMI strength in the presence of external noise and pinning
disorder. In this case, the time-varying velocity v(t ) is no
longer a well-defined sinusoid. However, we can repeat the
measurement many times during a short time interval and take
the average of the fast Fourier transform v(ω). This method
of data processing eliminates the effects of noise and disorder
and provides the true information about the DMI strength.

We first investigate the effect of external noise on the
velocity frequency spectrum. Without loss of generality, we
consider the Gaussian white noise [35–38]. This type of noise
commonly originates from experimental apparatuses [39],
such as detectors [40], amplifiers [41], and ambient electro-
magnetic interference [35]. In the micromagnetic simulation,
the effect of external noise can be introduced by the random
field vector h j on each site j, giving rise to an additional
Zeeman energy −Ms

∑
j h j · m j . Taking the average over

all possible random field configurations, we have 〈h j〉 = 0
and 〈hiαh jβ〉 = R2δi, jδα,β , where δi, j is the Kronecker delta
function, α, β = x, y, z, and R measures the disorder strength,
i.e., the standard deviation of the employed random field dis-
tribution. In this paper, we adopt the Gaussian distribution
[35] ρ(h) = exp(−h2/2R2)/(

√
2πR). Extensive simulations

are conducted on system sizes up to Lx = 2048 for suffi-
ciently strong noise R = 10 mT. The total time of simulation
is 10−5 s, with 106 data points taken. To obtain the frequency
spectrum, we divide the total time series into relatively short
time intervals, with each time interval consisting of 104 data
points. We then Fourier transform each short time interval
and take the average of the Fourier transform |v(ω)| over all
the time intervals. Figure 3(a) plots the velocity frequency
spectrum, and the inset shows a snapshot of the time-varying
velocity v(t ) with 200 data points. We can see that the velocity
is strongly disturbed and is no longer a well-defined sinusoid.
It is therefore hard to discern the information about DW
dynamics simply from the profile of velocity. Nevertheless,
after a sufficiently long time average, we can still obtain two
peaks, identified as HFM and LFM in the velocity frequency
spectrum, similar to the clean system. Here, the only dif-
ference is that, due to the external white noise, a nonzero
background appears. Figure 3(c) plots the magnitude ratio of
LFM to HFM as a function of DMI strength D when external
noise is added. We find that for larger values of DMI, external
noise has a more significant impact on vDW, resulting in larger
errors in the ratio. We conclude that the method of the velocity
frequency spectrum in determining the DMI strength is robust
against external noise

We now consider the effect of intrinsic material defects
in a real ferromagnetic nanostrip, which can significantly
impact the behavior of domain walls [42–44]. These defects
create potential wells in the micromagnetic energy landscape,

(a) (b)

(c) (d)

with disorderwith noise

FIG. 3. Velocity frequency spectrum and magnitude ratio of
LFM/HFM in the presence of external noise and pinning disor-
der. (a) and (b) The velocity frequency spectra with external noise
and pinning disorder, respectively. Parameters are D = 0.05 mJ/m2,
R = 10 mT, and r = 0.03. The insets are the corresponding velocity
signals. (c) and (d) The corresponding magnitude ratio vs DMI
strength D. The error bars on the simulated data correspond to the
uncertainties in the averaged magnitude of the frequency spectrum.

which can be characterized by the saturation magnetization
and anisotropy between grains [45–47]. In this study, we
investigate the properties of defects and propose a method
to realistically incorporate their influence in two-dimensional
numerical simulations. Our findings shed light on the com-
plex behavior of domain walls in realistic nanostrips and
highlight the need for a more comprehensive understanding
of the impact of intrinsic material defects on their dynam-
ics. For thin films with thicknesses of only a few atoms,
a natural source of disorder is the thickness fluctuations of
the film [48]. In order to account for the effect of quenched
disorder, we construct “grains” with a linear size of 20 nm
(defining the disorder correlation length) by Voronoi tessella-
tion. Each grain has a normally distributed random thickness
tG = h + Norm(0, r)h, with r being the relative magnitude of
the grain-to-grain thickness variations and h being the mean
thickness of the sample. Norm(0, r) denotes a normal distri-
bution function with mean 0 and standard deviation r. These
thickness fluctuations are then modeled using an approach
proposed in Ref. [25] by modulating the saturation magnetiza-
tion and anisotropy constant according to MG

s = MstG/h and
KG

u = KutG/h. Figures 3(b) and 3(d) present the velocity v(t )
over time, its frequency spectrum, and the ratio LFM/HFM as
a function of DMI strength D in the presence of disorder. We
can see that the profile of the velocity v(t ) is also perturbed,
leading to a nonzero background and larger peak width in
the frequency spectrum. However, the ratio η still linearly
increases with DMI strength D, verifying the robustness of
the frequency spectrum method.

The calculations with noise and disorder are also per-
formed using the CCM. In the CCM, the effect of external
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noise can be introduced by the random field vector h on the
external field Ha, and the effect of disorder can be included
by introducing a pinning field Hpin(x) which depends on the
position x. The pinning field can be derived from an effective
spatially dependent pinning potential Vpin(x):

Hpin(x) = − 1

2μ0MsLyLz
∂Vpin/∂x. (7)

The pinning potential can be chosen to be periodic with
strength described by V0:

Vpin(x) = V0 sin

(
πx

p

)
, (8)

where p is the spatial period.

V. SKEWNESS AND THIRD-ORDER CORRELATION

While the average, variance, and second-order correlation
of physical quantities can provide much information about
domain wall dynamics, more detailed information is actually
concealed in the seemingly useless noisy data. Applying sta-
tistical methods to the noisy data, such as the distribution
of the fluctuations, their moments, and the autocorrelation
function, can yield a wealth of information about the under-
lying dynamics [49,50]. Here, we show that considering the
third-order cumulant and third-order time-correlation function
can reveal the intrinsic asymmetry induced by DMI. In full
counting statistics, one can consider all orders of cumulants
of a physical quantity, here, δv(t ) = v(t ) − 〈v〉:

cn = 〈δvn〉, (9)

with the average taken over a long period of time. By def-
inition, the first-order c1 = 0. The second-order cumulant,
i.e., the variance, describes the magnitude of fluctuation. The
third-order cumulant c3 is a measure of the asymmetry of the
probability distribution of a real-valued random variable about
its mean. To quantify the asymmetry, one can further define
the skewness as

s = c3/c3/2
2 (10)

to renormalize the third-order cumulant by the variance. This
skewness value can be positive, zero, negative, or undefined.
In our case, as shown in Figs. 4(a) and 4(b), we can see that the
skewness is always negative, and the magnitude of skewness
increases in a roughly linear manner with D.

More detailed dynamical information can be revealed by
studying the time-dependent correlation function [51,52].
Here, we consider the second-order and third-order correla-
tion functions of velocity v(t ):

g2(τ ) = 〈δv(0)δv(τ )〉, (11)

g3(τ1, τ2) = 〈δv(0)δv(τ1)δv(τ1 + τ2)〉/c3/2
2 . (12)

The Fourier transformation of the second-order correlator
g2(τ ) provides information similar to the frequency spectrum
of v(ω). The third-order correlator g3 normalized by the vari-
ance c2 depends on two time variables and is expected to
provide valuable information. In Figs. 4(c) and 4(d), g3(τ1, τ2)
is plotted for the cases with D = 0 and D 
= 0, respectively.
While g3 is very small for the case with D = 0 (note the scale

FIG. 4. Skewness and third-order correlator. The standard vari-
ance (blue) and skewness (red) in (a) the clean system and (b) a
system with disorder. (c) and (d) The normalized third-order cor-
relator g3(τ1, τ2) in the clean system for D = 0 mJ/m2 and D =
0.05 mJ/m2, respectively.

of the color bar), it becomes nonzero at finite time for the case
with D 
= 0. More importantly, it displays a strong asymmetry
with respect to τ1 and τ2, which should be a strong indication
of the effect of DMI.

VI. DOMAIN WALL DYNAMICS DRIVEN
BY ELECTRIC CURRENT

In ferromagnetic nanowires, the DW can also be driven
by spin-polarized electrical currents due to the spin transfer
torque (STT) exerted on the local magnetization. Including
the STT, the LLG equation can be written as [31]

∂m
∂t

= −γ m × Heff + αm × ∂m
∂t

+ bJ ( ĵ · ∇)m − cJm × ( ĵ · ∇)m. (13)

The first and second terms have been introduced in Sec. II A
the main text. The third term is the adiabatic STT bJ =
PμB j/eMs, with e being the electron charge, P being the
spin polarization, μB being the Bohr magneton, j being the
magnitude of the current, and Ms being the saturation magne-
tization. Here, ĵ is the unit vector of the local current density.
The fourth term is the nonadiabatic STT, with cJ being the
magnitude of nonadiabticity. Usually, one introduces a dimen-
sionless parameter ξ = cJ/bJ to represent the nonadiabaticity.

In Fig. 5, we plot the frequency spectrum of 〈my(t )〉 and
v(t ) for the cases with and without DMI. In the precessional
regime with zero DMI strength D = 0, we observe that both
〈mx,y(t )〉 and v(t ) oscillate periodically with time, as shown
in the insets of Fig. 5. However, they have different oscillating
frequencies. In Figs. 5(a) and 5(c), we plot the magnitude of
the Fourier transform |〈my(ω)〉 and |v(ω)| for the case with
D = 0. It is shown that there is only one single peak in the
frequency spectrum of my(t ) and v(t ). However, the peak
frequency of the velocity is double that of my.
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D=0.0 mJ/m2 D=0.05 mJ/m2(a) (b)

(c) (d)

FIG. 5. Frequency spectra of 〈my(t )〉 (a) without and (b) with
DMI. Frequency spectra of v(t ) (c) without and (c) with DMI.
The red and blue points correspond to the LFM and HFM peaks,
respectively. Insets: 〈my〉(t ) (red dotted line) and v(t ) (blue dotted
line) signals. Electric current j = 3 × 1012A/m2, spin polarization
P = 0.8, and nonadiabaticity ξ = 0.04.

In the presence of DMI, the time-varying signal 〈my(t )〉
is almost the same as D = 0, and the oscillation frequency
remains unchanged [inset of Fig. 5(b)]. However, the behavior
of the velocity signal v(t ) changes radically, as shown in the
inset of Fig. 5(d). Figures 5(b) and 5(d) plot the frequency
spectra of 〈my〉 and v(t ) with nonzero DMI. Two spectral
peaks with different magnitudes in |v(ω)| emerge.

We further investigate the influence of DMI strength D on
the two emerging oscillating peaks in the velocity frequency
spectrum. We first fix the magnitude of the electric current
J and gradually increase the DMI strength D. As shown in
Fig. 6(a), there are always two peaks in the velocity fre-
quency spectrum with the frequencies remaining unchanged.
However, with increasing DMI strength, the magnitude of the
LFM peak increases, while the magnitude of the HFM peak
remains unchanged. If we extract the LFM/HFM ratio from
the frequency spectral data and plot it as a function of DMI
intensity [Fig. 6(c)], we can see that the ratio linearly increases
with the DMI strength D. We also study the velocity frequency
spectrum under different electric currents J when the DMI
strength is fixed, as shown in Figs. 6(b) and 6(d). Even though
the oscillating frequency increases with increasing J , the mag-
nitude ratio of LFM/HMF remains unchanged as long as the
DMI strength D is fixed.

In the current-driven case, we can also introduce the
collective-coordinate model as follows:

dϕ

dt
+ α

1

�

dq

dt
= cJ

�
, (14)

α
dϕ

dt
− 1

�

dq

dt
= bJ

�
+ γ HK sin 2ϕ − γ HD sin ϕ. (15)

Compared with the magnetic field driven case, the difference
is the substitution of γ Ha by cJ/� and an additional term of
bJ/�. Figure 6 shows that the results of the CCM agree well
with those of micromagnetic simulation.

(a) (b)

(c) (d)

FIG. 6. Frequency spectrum of DW velocity v(t ) for different
values of (a) D and (b) current j. Dependence of the ratio of LFM
to HFm on (c) D and (d) J . Squares are results from the micro-
magnetic simulation, and the solid line shows results from the CCM.
Parameters are P = 0.8, ξ = 0.04, and j = 3 × 1012A/m2 in (a) and
D = 0.1mJ/m2 in (b).

VII. DISCUSSION AND CONCLUSION

We demonstrated that statistical analysis of the domain
wall dynamics can be a powerful tool for quantifying DMI
strength and can provide more detailed information about the
effects induced by DMI. Since our approach takes a long time
average of the domain wall dynamics, the velocity frequency
spectrum method is robust against external noise and pinning
disorder. Moreover, the third-order cumulant and third-order
time-dependent correlation function of the velocity were cal-
culated and shown to yield valuable information regarding
the asymmetry induced by DMI. Our findings offer a com-
prehensive understanding of the dynamics of domain walls in
the presence of DMI and provide important insights for the
development of novel DW-based devices.

For the experimental application of our approach, one
could resort to the optical spin noise spectroscopy technique,
which utilizes the rotation of a linearly polarized laser light
beam by Faraday rotation or the Kerr effect and has matured
into an effective and versatile technique to extract the full
spin dynamics even at thermal equilibrium. Recently, it was
shown that combining ultrafast laser spectroscopy with the
spin noise spectroscopy technique enables one to extend the
detectable frequencies up to 16 GHz of spin dynamics [53]. It
was also reported that high-sensitivity spin noise spectroscopy
has the resolution of a single central spin in a quantum dot
and is capable of measuring the extremely long spin coher-
ence of single-spin dynamics enclosed in individual quantum
dots [54]. Therefore, we expect that in the near future, it
will be possible to apply spin noise spectroscopy with high
time resolution and spatial resolution to the study of domain
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time71 ns 75 ns74 ns73 ns72 ns

FIG. 7. Snapshots of the wider strips’ domain wall (with disorder).

wall dynamics. Moreover, there may be other new experimen-
tal techniques that could be applied to the study of domain
dynamics. For example, the nitrogen vacancy center based
superresolution quantum magnetometer can achieve a spatial
resolution of 30 nm [55] and a time resolution of 20 ns [56].
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APPENDIX A: DOMAIN WALL DYNAMICS OF A WIDE
NANOSTRIP WITH BLOCH LINES

In the main text, we discussed the robustness of our ap-
proach against disorder and pinning for a nanostrip with a
width up to 20 nm. In real experiments, one may encounter
a nanostrip with a larger width, for example, of the order of
1 µm. In this situation, some other dissipative effects would
take place, such as pairs of vertical Bloch lines [57]. There-
fore, it would be interesting to discuss whether the appearance
of Bloch lines would affect the accuracy of our approach. For
this purpose, we performed a micromagnetic simulation on a
nanostrip with a width up to Ly = 1024 nm. Figure 7 shows
that in the presence of disorder, vertical Bloch lines appear,
which will affect the domain wall dynamics. We then record
the velocity signals and calculate the velocity frequency spec-
trum for different strip widths Ly. In Fig. 8, we can see that
the width of the strip indeed affects the velocity profile, which
is no longer a very well defined sinusoid. However, after a
long time average, in the velocity frequency spectrum, there
are still two peaks, and more importantly, the ratio of the
two peaks agrees well with the case with narrow width. This
means that our approach is also robust against the appearance
of Bloch lines. The underlying reason may be that our ap-
proach is basically an averaging result of a long time dynamics
during which the pinning effect or the effect of Bloch point
does not play an important role in the total process.

(a) (b)

(c) (d)

Ly =512 nm Ly =1024 nm  

FIG. 8. Wider strips’ velocity signals and velocity frequency
spectrum in the presence of disorder with different strip widths Ly.
Parameters are D = 0.05 mJ/m2 and B = 200 mT.

APPENDIX B: EXACT SOLUTION OF ϕ IN THE
COLLECTIVE-COORDINATE MODEL AND ITS FOURIER

COEFFICIENTS

From the equations of motion in the collective-coordinate
model

dϕ

dt
+ α

1

�

dq

dt
= γ Ha, (B1)

1

γ

(
α

dϕ

dt
− 1

�

dq

dt

)
= HK sin 2ϕ − HD sin ϕ, (B2)

we can obtain the equation for ϕ:

dϕ

dt
= γ

1 + α2
(Ha + αHK sin 2ϕ − αHD sin φ). (B3)

We will show that if αHK 	 Ha and αHD 	 Ha, our approach
has high precision in quantifying the DMI strength. This
equation is analytically solvable if HK = 0 or HD = 0. We
first consider the case with HK = 0 and study the following
reduced equation:

ϕt = 1 + a sin ϕ, (B4)

which can be obtained by making the time rescale t → (1 +
α2)t/(γ Ha) and setting a = −αHD/Ha. Equation (B4) can be
solved analytically. Its solution is given by

tan
ϕ

2
= sin(t ′/2)

cos(t ′/2 + θ )
, (B5)

with θ = arcsin a and t ′ = √
1 − a2t . Therefore,

sin ϕ = sin(t ′ + θ ) − sin θ

1 − sin(t ′ + θ ) sin θ
(B6)

and

sin(2ϕ) = 4 cos θ cos(t ′ + θ )[sin(t ′ + θ ) − sin θ ]

[1 − sin(t ′ + θ ) sin θ ]2
. (B7)
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We can see that sin ϕ is a periodic function of rescaled time
t ′ with period 2π . Now we can calculate the Fourier series of
sin ϕ and sin 2ϕ. For sin ϕ, the Fourier coefficients are given
by

A(1)
n =

∫
dt ′

2π
sin[ϕ(t ′)]eint′ , (B8)

with n = 1, 2, 3, . . .. This integral can be performed in the
complex plane by introducing z = eit ′

, and the integration
contour is along the unit circle. Using the residual theorem,
this integration can be performed exactly:

A(1)
1 = i

cos θ

1 + cos θ
, (B9)

A(1)
2 = −4 cos θ

sin4(θ/2)

sin3 θ
. (B10)

In the limit of small a 	 1, and thus θ 	 1, we can see
that |A(1)

1 | ∼ 1/2, while |A(1)
2 | ∼ a/4, which is much smaller

than |A(1)
1 |. Similarly, the magnitude of higher-order harmon-

ics |A(1)
n | with n > 1 is of the order of an−1.

For sin[2ϕ(t )], its Fourier series are quite different. The
coefficients can be obtained similarly:

A(2)
1 = − sin

θ

2

cos θ

cos3(θ/2)
, (B11)

A(2)
2 = i

2
cos θ (2 cos θ − 1) sec4(θ/2). (B12)

For small θ , |A(2)
1 | ∼ θ/2, and |A(2)

2 | ∼ 1/2. This means that
sin[2ϕ(t )] has the largest Fourier component at the second
harmonic frequency.

For the case with HD = 0 but HK 
= 0, we encounter a
differential equation as follows:

ϕt = 1 + a sin(2ϕ), (B13)

which can be solved as before by making variable changes:
ϕ → ϕ/2 and t → t/2. The solution is given by

tan ϕ = sin(t ′)
cos(t ′ + θ )

, (B14)

with θ = arcsin a and t ′ = √
1 − a2t . Further,

sin ϕ = sin t ′
√

1 − sin(2t ′ + θ ) sin θ
, (B15)

sin(2ϕ) = sin(2t ′ + θ ) − sin θ

1 − sin(2t ′ + θ ) sin θ
. (B16)

In this case, the largest Fourier coefficient of sin ϕ is at the
basic harmonic frequency, and its amplitude is approximately
1/2 if θ is small. The magnitude of higher-order harmonics is
of the order of o(θn). For sin(2ϕ), the Fourier coefficients can
be obtained analytically, and the largest coefficient is at the
second harmonic frequency, with amplitude given by cos θ

1+cos θ
,

which reduces to 1/2 in the limit of θ → 0.
The above analysis shows that in the presence of either

HK or HD, the largest Fourier component of sin ϕ is always
at the basic harmonic frequency, while the largest Fourier
component of sin(2ϕ) is at the second harmonic frequency.
Therefore, according to the equation of motion of the velocity
v(t ), the ratio of LFM to HFM in the frequency spectrum is a
good estimation of the ratio of coefficients of the sin ϕ term to
the sin(2ϕ) term, as long as αHK 	 Ha and αHD 	 Ha. This
condition can be easily satisfied by increasing the external
magnetic field by Ha.

We can also use perturbation theory to study the case
with both HK and Hd being nonzero. Now we encounter the
following equation:

ϕt = 1 + a1 sin ϕ + a2 sin(2ϕ), (B17)

with a1 	 1 and a2 	 1. Integrating this equation, we have

t =
∫

dϕ
1

1 + a1 sin ϕ + a2 sin(2ϕ)

∼
∫

dϕ[1 − a1 sin ϕ − a2 sin(2ϕ)]

= ϕ + a1 cos ϕ + a2 cos(2ϕ). (B18)

To zeroth-order perturbation of a1 and a2, we have simply ϕ =
t . To first-order perturbation, we have

ϕ = t − a1 cos t − a2 cos(2t ). (B19)

Inserting this back into the equation for the velocity, we have,
up to first order of a1 and a2,

v(t ) ∼ γ ′Ha[1 + a1 sin t + a2 sin(2t )]. (B20)

Its Fourier coefficients at basic and second harmonic frequen-
cies are γ ′Haa1 and γ ′Haa2, respectively. The ratio of the two
is simply HD/HK .

[1] L. Wang, N. Chepiga, D.-K. Ki, L. Li, F. Li, W. Zhu, Y. Kato,
O. S. Ovchinnikova, F. Mila, I. Martin, D. Mandrus, and A. F.
Morpurgo, Controlling the topological sector of magnetic soli-
tons in exfoliated Cr1/3NbS2 Crystals, Phys. Rev. Lett. 118,
257203 (2017).

[2] K. von Bergmann, A. Kubetzka, O. Pietzsch, and R.
Wiesendanger, Interface-induced chiral domain walls, spin
spirals and skyrmions revealed by spin-polarized scanning
tunneling microscopy, J. Phys.: Condens. Matter 26, 394002
(2014).

[3] X. Li, C. Collignon, L. Xu, H. Zuo, A. Cavanna, U. Gennser,
D. Mailly, B. Fauque, L. Balents, Z. Zhu, and K. Behnia, Chiral

domain walls of Mn3Sn and their memory, Nat. Commun. 10,
3021 (2019).

[4] A. Brataas, Chiral domain walls move faster, Nat. Nanotechnol.
8, 485 (2013).

[5] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances
in physics and potential applications, Nat. Rev. Mater. 2, 17031
(2017).

[6] G. Finocchio, F. Büttner, R. Tomasello, M. Carpentieri, and M.
Kläui, Magnetic skyrmions: Advances in physics and potential
applications, J. Phys. D 49, 423001 (2016).

[7] X. Zhang, Y. Zhou, K. M. Song, T.-E. Park, J. Xia, M. Ezawa,
X. Liu, W. Zhao, G. Zhao, and S. Woo, Skyrmion-electronics:

174416-8

https://doi.org/10.1103/PhysRevLett.118.257203
https://doi.org/10.1088/0953-8984/26/39/394002
https://doi.org/10.1038/s41467-019-10815-8
https://doi.org/10.1038/nnano.2013.126
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1088/0022-3727/49/42/423001


STATISTICAL ANALYSIS OF MAGNETIC DOMAIN WALL … PHYSICAL REVIEW B 108, 174416 (2023)

Writing, deleting, reading and processing magnetic skyrmions
toward spintronic applications, J. Phys.: Condens. Matter 32,
143001 (2020).

[8] S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. von
Molnár, M. Roukes, A. Y. Chtchelkanova, and D. Treger, Spin-
tronics: A spin-based electronics vision for the future, Science
294, 1488 (2001).

[9] S. Li, H. Nakamura, T. Kanazawa, X. Liu, and A. Morisako,
Current-induced domain wall motion in TbFeCo wires with per-
pendicular magnetic anisotropy, IEEE Trans. Magn. 46, 1695
(2010).

[10] P. Shepley, A. Rushforth, M. Wang, G. Burnell, and T. Moore,
Modification of perpendicular magnetic anisotropy and domain
wall velocity in Pt/Co/Pt by voltage-induced strain, Sci. Rep. 5,
7921 (2015).

[11] T. Koyama, G. Yamada, H. Tanigawa, S. Kasai, N. Ohshima, S.
Fukami, N. Ishiwata, Y. Nakatani, and T. Ono, Control of do-
main wall position by electrical current in structured Co/Ni wire
with perpendicular magnetic anisotropy, Appl. Phys. Express 1,
101303 (2008).

[12] T. Ha Pham, J. Vogel, J. Sampaio, M. Vaňatka, J.-C. Rojas-
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