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We discuss theoretically a ferromagnetic monolayer with an interfacial Dzyaloshinskii-Moriya interaction
(iDMI) and a small axial anisotropy. It is shown that the system has a long-period cycloid magnetic order slightly
distorted by the anisotropy whose modulation vector k can have several orientations. We find that due to iDMI-
induced umklapp terms in the Hamiltonian, the spectrum of long-wavelength magnons is essentially anisotropic:
it is linear and quadratic for momenta directed along and perpendicular to k, respectively. Due to such a quasi-1D
spectrum, the temperature correction to the mean spin value has a power-law singularity hampering the magnetic
ordering at T �= 0. We demonstrate that the umklapps lead to a peculiar band structure of the magnon spectrum
similar to electronic bands in solids. We discuss also the effect of vacancies and defect bonds on system properties
at T = 0. Owing to the quasi-1D character of the spectrum, the distortion of the cycloid structure by a single
defect bond is described at long distances by the field of a 1D electric dipole. As a result, even infinitesimal
concentrations of defects c destroy the long-range order and establish a short-range order whose correlation
length shows a power-law dependence on 1/c. Our findings should also be applicable to ultrathin films with
strong enough iDMI.
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I. INTRODUCTION

Noncollinear magnetic structures and corresponding mate-
rials are the subject of extensive research at the present time.
A variety of spin orderings, including topologically nontrivial
ones (see, e.g., Refs. [1–4]), can be stabilized, in particular, by
the antisymmetric Dzyaloshinskii-Moriya interaction [5–7].
Importantly, skyrmions and other types of magnetic solitons
have promising applications in memory devices [8] and even
in unconventional computing (see, e.g., Refs. [9–11] and ref-
erences therein).

It is well known [12,13] that due to the inversion-symmetry
breaking an interfacial Dzyaloshinskii-Moriya interaction
(iDMI) emerges at interfaces between magnetic and nonmag-
netic layers (the latter are usually made of heavy metals with
large spin-orbit coupling). The iDMI can stabilize magnetic
cycloid spirals. If the cycloid ordering in the system is equally
possible with several modulation vectors k, Néel skyrmions
can emerge [14–19]. Probably the most studied effect of the
iDMI on elementary excitations is related to the asymmetry
of magnon spectra in the collinear state arising in strong
enough magnetic field [20–23]. This can be used for exper-
imental quantification of the iDMI strength (see Ref. [24] and
references therein). To the best of our knowledge, the spin
dynamics of systems with iDMI in noncollinear states has not
been discussed in detail. It is well known that noncollinear
spin structures possess gapless low-energy magnons (some-
times called phasons) with a linear dispersion in phases having
a single vector of magnetic ordering k (see, e.g., Ref. [25]) and
a quadratic spectrum in a triple-k skyrmion lattice [26].

In the present paper, we analytically consider a ferromag-
netic monolayer with the iDMI and a small axial anisotropy.
This system has a long-period cycloid magnetic structure
slightly distorted by the anisotropy. This model should also
be relevant to ultrathin films. We show that the spectrum of
long-wavelength elementary excitations in this system is not
a simple linear function of the momentum. Due to iDMI-
induced umklapp terms in the Hamiltonian, the spectrum
acquires the form

εq ∝
√

k2q2
‖ + g2q4

⊥, q � k � 1, (1)

where k is the cycloid modulation vector, g ∼ 1 is a certain
constant, and q‖ and q⊥ are components of the momentum
q along and perpendicular to k, respectively. Noteworthy, a
similar form of the spectrum was observed in Ref. [27] in
cubic B20 helimagnets. One can see from Eq. (1) that the
spectrum is essentially anisotropic and quasi-one-dimensional
(quasi-1D) with the speed of spin waves being zero in the
direction perpendicular to k.

We obtain that the umklapp terms in the Hamiltonian
lead to strong hybridization of magnons with momenta
q‖ = ±k/2,±k,±3k/2, . . . and, as a consequence, to the
emergence of gaps in the spectrum inside the Brillouin zone.
Then, we observe a peculiar magnon band structure similar
to electronic bands in solids. We show that magnons from
different bands produce anomalies in dynamical spin suscep-
tibilities at a given momentum. Thus, our prediction of the
magnon band structure can be verified experimentally.
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We show that, despite the quasi-1D form of the spectrum,
the correction to the mean spin value diverges only at fi-
nite temperatures. However, this divergence is power law in
contrast to the logarithmic one in isotropic 2D systems. We
demonstrate that the correlation volume of the short-range
order at finite T should be essentially elongated along k.

As interfaces cannot be ideal in practice, we discuss the
effect of quenched disorder and consider in detail two partic-
ular examples of defects. The first one is related to disorder
in neighboring nonmagnetic layers which should lead to vari-
ations of parameters of the spin Hamiltonian (the so-called
bond disorder). The second type is represented by vacancies
in the magnetic material. We obtain that the cycloid distortion
caused by a single impurity is described by an electrostatic
field produced by a complex of charges (a dipole or several
dipoles) placed at the defect location. At a finite concentra-
tion c of impurities, the long-range order is suppressed and
a short-range order emerges due to the long-range influence
of defects on the ground state. A similar effect was recently
obtained in 2D frustrated helimagnets [28], where the correla-
tion length of the short-range order depends exponentially on
1/c. However, the influence of defects on the cycloid order
in the present model is stronger at large distances due to
the quasi-1D long-wavelength magnon spectrum. As a result,
we obtain a power-law dependence on 1/c of the correlation
length of the impurity-induced short-range order.

The rest of the present paper is organized as follows. In
Sec. II, we introduce the model under consideration and the
technique which eventually leads us to the bosonic Hamil-
tonian suitable for the derivation of the classical magnon
spectrum. The latter is discussed in Sec. III, where we also
consider the effect of finite temperature on the magnetic or-
der. Quenched disorder produced by vacancies and/or defect
bonds is discussed in Sec. IV. We present our conclusions in
Sec. V.

II. MODEL AND TECHNIQUE

A. Spin interactions and Hamiltonian

We start with the spin Hamiltonian on the square lattice
and set the lattice parameter equal to unity. The model to
be considered includes the dominant ferromagnetic exchange
coupling HEX, interfacial Dzyaloshinskii-Moriya interaction
(iDMI) HDM, and single-ion anisotropy HAN which is as-
sumed to be much smaller than the iDMI:

H0 = HEX + HDM + HAN,

HEX = −1

2

∑
i j

Ji j (Si · S j ),

HDM = 1

2

∑
i j

Di j · [Si × S j],

HAN = −B
∑

i

(
Sz

i

)2
, (2)

where Di j = −D ji. We consider both cases of the easy-axis
anisotropy B > 0 and the easy-plane one B < 0. Notice that
in the long-wavelength limit, there is an effective contribution
of the easy-plane type to HAN from the magnetodipolar

FIG. 1. Square-lattice magnetic monolayer which is assumed to
be sandwiched between different nonmagnetic materials. Due to the
broken inversion symmetry, the interfacial Dzyaloshinskii-Moriya
interaction (iDMI) arises. Directions of iDMI vectors among the
central ion and its nearest neighbors are shown by arrows.

interaction [29]. We neglect other symmetry-allowed
anisotropic interactions (e.g., the anisotropic exchange
and the square anisotropy) which are normally much smaller
in real systems than those presented above. However, these
interactions can lead to important subtle effects in spiral
magnets, e.g., preferable directions for the modulation vector
(see, e.g., Ref. [30] and below).

After the Fourier transform

S j = 1√
N

∑
q

Sqeiq·R j , (3)

where N is the number of the lattice sites and q is the two-
dimensional wave vector, we have from Eqs. (2)

HEX = −1

2

∑
q

JqSq · S−q,

HDM = 1

2

∑
q

Dq · [Sq × S−q],

HAN = −B
∑

q

Sz
qSz

−q. (4)

For the Fourier transform of the exchange interaction, we use
below its long-wavelength expansion

Jq
∼= J0 − Aq2

S
. (5)

The general expression for the iDMI Fourier transform
reads as

Dq = −i
∑

b

Db sin (q · b)[ẑ × b], (6)

where the summation includes all the lattice bonds b of
a certain lattice site. In the case of high-symmetry lattices
(e.g., square or triangular ones), Eq. (6) can be universally
rewritten in the long-wavelength limit as Dq

∼= −iD0[ẑ × q].
When iDMI is considered between the nearest-neighbor spins
only, D0 = 2D for the square-lattice monolayer (see Fig. 1)
and D0 = 3D for the triangular-lattice one. For definiteness,
below we consider the square-lattice monolayer and use the
following explicit form of iDMI in particular calculations:

Dq
∼= −2iD[ẑ × q]. (7)

There are also higher order in q corrections to Dq in Eq. (6),
which in the nearest-neighbor model on the square lattice have
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the form

δDq = − iD

3

(
x̂q3

y − ŷq3
x

)
. (8)

We show below that despite their smallness they can play an
important role in both static and dynamical properties of the
model.

B. Ground-state energy and magnetic ordering

1. B = 0

Let us neglect the anisotropy for a start. We assume a
planar ground-state spin ordering, adopt Kaplan’s description
of helical structures [27,31], and introduce the following local
Cartesian basis at each lattice site R:

ζ̂R = û cos(kR + φ) + b̂ sin(kR + φ),

η̂R = −û sin(kR + φ) + b̂ cos(kR + φ),

ξ̂R = ĉ, (9)

where φ is an arbitrary phase, k is the momentum of the mag-
netic ordering, û, b̂, and ĉ are unit vectors, and [û × b̂] = ĉ.
We obtain below a stable spectrum of excitations that justi-
fies our assumption about the coplanar spiral ordering. It is
convenient to use auxiliary vectors

C = û − ib̂

2
, C∗ = û + ib̂

2
, (10)

which have the following properties:

C · C = 0, C · C∗ = 1

2
, [C × C∗] = iĉ

2
, (11)

[C × ĉ] = −iC, [C∗ × ĉ] = iC∗. (12)

Then, one obtains from Eqs. (3), (9), and (10)

Sq = Ceiφ
(
Sζ

q−k + iSη

q−k

) + C∗e−iφ
(
Sζ

q+k − iSη

q+k

) + ĉSξ
q.

(13)

Substituting Eq. (13) to Eqs. (4) and putting Sζ
q =

S
√

Nδq,0, Sη
q = Sξ

q = 0, one obtains the classical energy of the
system

E

S2N
= −1

2
Jk − Dk · [ẑ × ĉ]. (14)

Equation (14) should be minimized with respect to k and
orientations of û, b̂, and ĉ with respect to the global coordinate
frame xyz shown in Fig. 1. Since Jk depends on |k| only [see
Eq. (5)], the iDMI energy in Eq. (14) is minimized when

k ↑↑ D[ẑ × ĉ] (15)

and |[ẑ × ĉ]| = 1. Thus, ĉ should lie in the xy plane and b̂ can
be directed along the z axis so that

b̂ = D

|D| ẑ, û = k
k
. (16)

As k lies in the plane of spin rotations (ub), the obtained spin
ordering is a cycloid. Different signs of D correspond to the
right- and to the left-handed cycloids. Also using Eq. (5), one

obtains as a result from Eq. (14)

E

S2N
= −1

2
J0 + A

2S
k2 − |D|k.

Minimization of this expression gives

k = S
|D|
A

(17)

and

E

S2N
= −1

2
J0 − A

2S
k2. (18)

Notice that the k direction remains arbitrary in the xy
plane. However, tiny corrections (8) from iDMI produce the
additional term in Eq. (14)

δE

S2N
= |D|

6k

(
k4

x + k4
y

)
, (19)

which sets the k direction to be parallel to square diago-
nals. The correction (19) is of the fourth order in spin-orbit
coupling [see Eq. (17)]. However, there are other small spin
interactions in this order in real systems that we do not con-
sider here and which can compete with correction (19) and fix
other k directions (e.g., square edges).

2. B �= 0

The small single-ion anisotropy gives the correction
−B(û2

z + b̂2
z )/2 to the right-hand side of Eq. (14). It is easy

to realize that taking into account this term does not change
Eqs. (16) and (17) if |B| � |D|k and the ground-state energy
acquires the form

E

S2N
= −1

2
J0 − A

2S
k2 − 1

2
B. (20)

However, we show below that the axial anisotropy distorts the
cycloid and gives rise to an additional correction to Eq. (20)
proportional to B2/Ak2. In our calculations, we concentrate on
the regime of a perturbative treatment of the anisotropy which
is possible when S|B| � Ak2.

The quantity Ak2 is the characteristic energy scale of the
cycloid structure. For example, the field of transition to the
fully polarized phase reads approximately as Ak2/gμB (see,
e.g., Ref. [32]). Upon |B| increasing, the cycloid becomes
further distorted according to the chiral soliton lattice scenario
(see, e.g., Refs. [33–35]) and the first-order transition to the
collinear spin structure takes place at B = Bc, where

|Bc| = π2

8

Ak2

S
. (21)

C. Transformation of spin Hamiltonian

Substituting Eq. (13) to Eqs. (4), we obtain for the ex-
change interaction

HEX = −1

2

∑
q

[
JqSξ

qSξ
−q + Jq,k

(
Sζ

qSζ
−q + Sη

qSη
−q

)

+ iNq,k
(
Sη

qSζ
−q − Sζ

qSη
−q

)]
, (22)
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where

Jq,k = Jq+k + Jq−k

2
∼= J0 − A(q2 + k2)

S
, (23)

Nq,k = Jq+k − Jq−k

2
∼= −2A(q · k)

S
. (24)

Contributions to the Hamiltonian from iDMI can be di-
vided into two classes: direct and umklapp terms. The former
provide terms in the bilinear part of the bosonic Hamilto-
nian in which the total momentum of created and annihilated
magnons is conserved, whereas the total momentum changes
by ±k in umklapp terms. After some calculations, we obtain
for the direct terms

Hd
DM = −|D|k

∑
q

(
Sζ

qSζ
−q + Sη

qSη
−q

)

− i|D|
k

∑
q

(q · k)
(
Sη

qSζ
−q − Sζ

qSη
−q

)
. (25)

The umklapps can be written as

Hu
DM = −i|D|

∑
q

(q · ĉ)
(
Sη

q+k + Sη

q−k

)
Sξ

−q

+ |D|
∑

q

(q · ĉ)
(
Sζ

q+kSξ
−q + Sξ

qSζ

−q−k

)
. (26)

The anisotropy also contains direct and umklapp terms.
However, the latter violate the momentum conservation law
by ±2k. Their explicit forms are the following:

Hd
AN = −B

2

∑
q

(
Sζ

qSζ
−q + Sη

qSη
−q

)
, (27)

Hu
AN = B

4

∑
q

(
Sζ

q−kSζ

−q−k − Sη

q−kSη

−q−k + Sζ

q+kSζ

−q+k

− Sη

q+kSη

−q+k

) + iB

4

∑
q

(
Sζ

q−kSη

−q−k + Sη

q−kSζ

−q−k

− Sζ

q+kSη

−q+k − Sη

q+kSζ

−q+k

)
. (28)

D. Bosonic Hamiltonian at B = 0

Using the Holstein-Primakoff representation [36], we write
the spin components in the local basis (9) as follows:

Sζ
q = S

√
Nδq,0 − 1√

N

∑
q1

a†
q1

aq1+q,

Sη
q

∼=
√

S

2

[
a†

−q + aq

− 1

4SN

∑
q1,q2

(a†
q1

aq2 aq+q1−q2 + a†
q1

a†
q2

aq+q1+q2 )

]
,

Sξ
q

∼= i

√
S

2

[
a†

−q − aq

+ 1

4SN

∑
q1,q2

(a†
q1

aq2 aq+q1−q2 − a†
q1

a†
q2

aq+q1+q2 )

]
. (29)

We need magnon interaction terms in the Hamiltonian for an
accurate calculation of the magnon spectrum.

Substituting Eqs. (29) to Eqs. (22), (25), (26), (27), and
(28) one obtains the bosonic analog of the spin Hamiltonian
(2). In this Hamiltonian, terms without Bose operators give the
system classical energy which has been discussed in Sec. II B.
As we treat the anisotropy as a perturbation, let us first dis-
cuss the bosonic Hamiltonian at B = 0. It can be checked
straightforwardly that terms in the Hamiltonian linear in Bose
operators vanish or cancel each other at k given by Eq. (17).
For the bilinear part of the Hamiltonian, we have

H(2) =
∑

q

[
Eqa†

qaq + Bq
a†

qa†
−q + aqa−q

2

+ Cq(a†
qaq−k + a†

qaq+k )

]
, (30)

where

Eq = Aq2 + Ak2

2
,

Bq = −Ak2

2
,

Cq = Ak(q · ĉ). (31)

We put φ = 0 for clarity in these and in subsequent umklapp
terms because our calculations show that the magnon spec-
trum does not naturally depend on φ.

For reasons discussed below, the most important terms de-
scribing magnon interaction are triple terms originating from
the iDMI umklapps (26)

H(3) = i|D|
√

S

2N

∑
q,q1

(q · ĉ)

× a†
q1

(a†
q+k − a−q−k − a†

q−k + ak−q)aq1+q. (32)

Noteworthy, direct triple terms exactly cancel each other, and
the quartic terms are not important for the present study.

E. Bosonic Hamiltonian at B �= 0

Both direct (27) and umklapp (28) terms of the anisotropy
provide the following contributions to the bilinear part of the
Hamiltonian:

Hd (2)
AN = SB

2

∑
q

[
a†

qaq − a†
qa†

−q + aqa−q

2

]
, (33)

Hu(2)
AN = −3SB

4

∑
q

(a†
qaq−2k + a†

qaq+2k )

− SB

4

∑
q

aqa2k−q + aqa−2k−q

2

− SB

4

∑
q

a†
qa†

2k−q + a†
qa†

−2k−q

2
. (34)
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Importantly, terms linear in Bose operators do not cancel
each other in Hu

AN. We have for them from Eq. (28)

H(1)
AN = i

(
S

2

)3/2

B
√

N (a−2k − a2k + a†
2k − a†

−2k ). (35)

These terms should be eliminated from the Hamiltonian by
the following shift in operators:

a2k ⇒ a2k + ρ+eiϕ+ , a−2k ⇒ a−2k + ρ−eiϕ− ,

a†
2k ⇒ a†

2k + ρ+e−iϕ+ , a†
−2k ⇒ a†

−2k + ρ−e−iϕ− , (36)

where ρ± and ϕ± are real numbers. Terms in the Hamiltonian
linear in Bose operators should cancel each other after this
shift. Thus, the following set of equations should hold:

−i

(
S

2

)3/2

B
√

N + E2kρ+e−iϕ+ + B2kρ−eiϕ− = 0,

i

(
S

2

)3/2

B
√

N + E2kρ−e−iϕ− + B2kρ+eiϕ+ = 0, (37)

where E2k and B2k are given by Eqs. (31). The solution of
Eqs. (37) reads as

ρ± =
(

S

2

)3/2 B

4Ak2

√
N, e−iϕ+ = eiϕ− = i. (38)

Then, one has from Eq. (36)

〈a2k〉 = 〈a+
−2k〉 = −iρ+, 〈a−2k〉 = 〈a+

2k〉 = iρ+. (39)

It is pertinent to discuss three main consequences of “conden-
sation” (39) of the bare bosons.

First, shift (36) leads to the correction to the classical
energy (20) having the form

δE

S2N
= − SB2

16Ak2
+ O(B3), (40)

which results in the following renormalization of the modula-
tion vector in the leading order in B (cf. Ref. [37]):

k′ = k − S2B2

8A2k3
, (41)

where k is given by Eq. (17). This correction is O(B2) and it
will be omitted below. Equality k′ = 0 provides a correct esti-
mation of the critical value |Bc| ∼ Ak2/S given by Eq. (21).

Second, Eqs. (36) lead to the elliptical distortion and to the
third harmonic in the cycloid structure (see, e.g., Ref. [38])
which can be obtained from Eqs. (13) and (29) with the result

S j = S

[
û

(
1 − SB

8Ak2

)
cos(kR j + φ)

+ b̂

(
1 + SB

8Ak2

)
sin(kR j + φ)

+ SB

8Ak2

(
û cos(3kR j + 3φ) + b̂ sin(3kR j + 3φ)

)]
.

(42)

Third, a plethora of new terms arise in the Hamiltonian
after shift (36). However, restricting ourselves to linear in B
contributions in the linear spin-wave theory analysis, we note
that most of these terms can be discarded. There are no terms
in the Hamiltonian linear in Bose operators if Eq. (38) holds.
Because ρ± ∼ B [see Eq. (38)], the contribution to the bilinear
part of the Hamiltonian from all terms containing more than
three Bose operators is O(B2) so they are negligible. Then,
we are left only with triple terms given by Eq. (32), where we
should “condense” one of the three operators in all possible
ways according to Eqs. (39). This procedure yields ±k and
±3k umklapps linear in B. The umklapps ±k read as

δHu = −Ak
SB

8Ak2

∑
q

(q · ĉ)(a†
qaq−k + a†

qaq+k ), (43)

whereas umklapps ±3k are negligible within the accuracy of
our further calculations in the leading order in B.

III. MAGNON SPECTRUM

A. General discussion

As seen from Eqs. (30), (31), (33), (34), and (43), umklapp
terms and anomalous terms (a†

qa†
−q and aqa−q) in the Hamilto-

nian contain small parameters: either k or B. Then, it is evident
from Eqs. (30) and (31) that the spectrum of short-wavelength
excitations with q � k almost coincides with the magnon
dispersion of an isotropic ferromagnet:

εq
∼= Aq2, q � k, (44)

where A plays the role of the spin-wave stiffness.
The opposite limiting case of q � k is much more subtle

because umklapps mix all the magnons with momenta q + nk,
where n is an integer. However, it is clear from the above
consideration that the classical spectrum should be gapless
because the phase φ introduced in Eq. (9) remains arbitrary
in our discussion of the ground state [a simultaneous rotation
of all spins in the ub plane by changing φ in Eq. (42) costs no
energy].

To find the spectrum at finite q � k, we introduce normal
and anomalous Green’s functions

Gn(q) = 〈aq+nk, a†
q〉ω,

Gn(q) = 〈a†
q+nk, aq〉ω,

F †
n (q) = 〈a†

−q−nk, a†
q〉ω,

Fn(q) = 〈a−q−nk, aq〉ω, (45)

where n is integer and q = (ω, q). There is an infinite set of
Dyson equations for them even in the harmonic (classical)
approximation in which one has to take into account only the
bilinear part of the Hamiltonian given by the sum of Eqs. (30),
(33), (34), and (43). To find Green’s functions and the magnon
spectrum, one has to truncate this set of equations at some ntr .
We find below that ntr = 2 is sufficient to obtain results in the
leading orders in small parameters Aq2 and B. It happens due
to the smallness of the umklapp terms in the Hamiltonian at
q � k.
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The set of the Dyson equations for ntr = 2 has the form

M̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G−2(q)
F−2(q)
G−1(q)
F−1(q)
G0(q)
F0(q)
G1(q)
F1(q)
G2(q)
F2(q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (46)

where the matrix M̂ reads as

M̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω − Ẽq−2k −B̃q−2k −C̃q 0 3SB
4

SB
4 0 0 0 0

B̃q−2k ω + Ẽq−2k 0 −C̃q − SB
4 − 3SB

4 0 0 0 0
−C̃q 0 ω − Ẽq−k −B̃q−k −C̃q 0 3SB

4
SB
4 0 0

0 −C̃q B̃q−k ω + Ẽq−k 0 −C̃q − SB
4 − 3SB

4 0 0
3SB

4
SB
4 −C̃q 0 ω − Ẽq −B̃q −C̃q 0 3SB

4
SB
4− SB

4 − 3SB
4 0 −C̃q B̃q ω + Ẽq 0 −C̃q − SB

4 − 3SB
4

0 0 3SB
4

SB
4 −C̃q 0 ω − Ẽq+k −B̃q+k −C̃q 0

0 0 − SB
4 − 3SB

4 0 −C̃q B̃q+k ω + Ẽq+k 0 −C̃q

0 0 0 0 3SB
4

SB
4 −C̃q 0 ω − Ẽq+2k −B̃q+2k

0 0 0 0 − SB
4 − 3SB

4 0 −C̃q B̃q+2k ω + Ẽq−2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

In Eq. (47) we omit self-energy parts (quantum and thermal
corrections), parameters have the form

Ẽq = Aq2 + Ak2

2
+ SB

2
, (48)

B̃q = −Ak2

2
− SB

2
, (49)

C̃q = Ak(q · ĉ)

(
1 − SB

8Ak2

)
, (50)

and we use the equality C̃q = C̃q+nk which follows from
Eq. (15).

The spectrum is given by the roots of the equation

det M̂ = 0, (51)

where M̂ is given by Eq. (47). One obtains in the leading order
in Aq2 and B

εq =
√

(Ak2 + SB)Aq2
‖ + A2 f (q), (52)

q⊥ = (q · ĉ), (53)

q‖ = (q · k)/k. (54)

Here we take into account Eq. (16) and introduce

f (q) = q4
‖ − 4q2

‖q2
⊥ + 3

8
q4

⊥, (55)

which is of the fourth order in q. Evidently, the term with f (q)
in Eq. (52) becomes important at small q‖ only so that we can
rewrite Eq. (52) in a more compact form

εq =
√

(Ak2 + SB)Aq2
‖ + 3

8
A2q4

⊥. (56)

Almost the same result was obtained in Ref. [27] for cubic
B20 helimagnets (without the uniaxial anisotropy). Straight-
forward calculations with ntr = 3 do not change Eq. (56) in
the leading order in Aq2 and B.

The main feature of the obtained spectrum (56) is that it
is essentially anisotropic. The speed of spin waves is propor-
tional to | cos ϕ|, where ϕ is the angle between momentum
q and the cycloid vector k. In the limit of ϕ → π/2, the
spectrum becomes quadratic, εq ∝ Aq2

⊥. This happens due
to the cancellation of terms proportional to (Ak2 + SB)q2

⊥ in
Eq. (56) so that higher order in q⊥ terms come into play. That
is why one has to reconsider the above derivation based on
Eqs. (5) and (7) taking into account further O(q4) terms in Jq
and O(q3) terms (8) in iDMI. The result for the square-lattice
monolayer has the form

εq =
√

(Ak2 + SB)Aq2
‖ + g2A2q4

⊥, (57)

which differs from Eq. (56) by g2 = 13/24. Besides, small
terms of the order of A2k4q2

⊥ also emerge in ε2
q which are

of the further order in the spin-orbit coupling and which can
come into play at q⊥ � k2 only. However, careful accounting
for such terms requires consideration of other anisotropic
interactions in further orders in the spin-orbit coupling that
exist in real systems and which we omit in the present study.
Thus, we can safely use Eq. (57) below, bearing in mind that
it is valid at k � q � k2.

B. Magnon band structure

An interesting feature of the considered system is the
appearance of the Bragg (resonant) scattering due to the umk-
lapps which leads to the emergence of magnon bands similar
to electronic bands in solids (see, e.g., Ref. [39]). Indeed,
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FIG. 2. Magnon energy as a function of the momentum compo-
nent q‖ parallel to the cycloid modulation vector k for two values of
the transverse component of the momentum q⊥ � k. In both cases,
the gap at q‖ = k is due to the single-ion anisotropy, whereas at
q⊥ �= 0 iDMI induces the gap at q‖ = k/2 [see Eqs. (58) and (59)].
Here, the anisotropy parameter SB = 0.1Ak2.

in the present theory, elementary excitations, which can be
in principle characterized by the wave number from the first
Brillouin zone of the square (triangular) lattice, appear on
top of the periodic magnetic cycloid. Thus, the magnetic unit
cell may differ significantly from the chemical Brillouin zone.
It does not happen in conventional spiral magnets without
umklapps which change the picture qualitatively in the consid-
ered system. In the so-called reduced zone scheme (see, e.g.,
Ref. [39]), each magnon has q‖ ∈ (−k/2, k/2] and gaps open
up on the boundary |q‖| = k/2 due to finite matrix elements
between states with q‖ = ±nk/2 arising from the umklapps.

For example, magnons with q = ±k are no longer
propagating particles due to the anisotropy-induced double
umklapps. This effect can be revealed using a two-state effec-
tive Hamiltonian which can be represented by a 4×4 matrix.
Corresponding eigenstates are symmetric and antisymmetric
combinations of “bare” magnons and their energies are

ε± =
√

2Ak2

[
1 + 2SB

8Ak2
± 5S|B|

8Ak2

]
. (58)

Then, the gap proportional to |B| opens at q = ±k. Its linear-
ity in the anisotropy constant is a consequence of the resonant
mixing of degenerate magnon states. Noteworthy, this split-
ting can be probed using the spin resonance technique because
S0 contains Sη

±k [see Eq. (13)]. As a result, the dynamical two-
spin correlator built on S0 contains G0(ω,±k) and F0(ω,±k).

A similar effect arises for q‖ = ±k/2 at q⊥ � k. In this
case, the gap linear in q⊥ opens up due to single umklapps
induced by the iDMI so that at q‖ = ±k/2 one has

ε± =
√

5

4
Ak2 + 2

√
5

5
SB ± Ak|q⊥|

(
1 − SB

8Ak2

)
. (59)

Figure 2 illustrates our findings (58) and (59), where we
use the so-called extended zone scheme [39]. Noteworthy,
the first and the second band have a single crossing point at
q‖ = k/2, q⊥ = 0.

FIG. 3. Same as Fig. 2 but for three values of q⊥ ∼ k and B = 0.

The case of q⊥ ∼ k is essentially different. Indeed, at
q‖ � k the single umklapps are of the same order of mag-
nitude with other coefficients in the Hamiltonian [see also
Eq. (47)]. It does not allow truncating the system of the Dyson
equations at some ntr in an asymptotically correct fashion.
However, we solve the problem numerically and observe that
the lowest magnon band can be described within the ntr = 2
approximation with high accuracy. The reason is that the
coefficients Ẽq+nk grow with n approximately as n2. Thus, the
problem of the magnon spectrum calculation here resembles
the problem of a particle hopping in the external parabolic
potential (note that we discuss the “hopping” in the reciprocal
space). The lowest energy state is localized near the potential
minimum, so large “distances” are not important. In our case,
large n are not important for the lowest magnon band descrip-
tion. For example, if we set ntr = 3, additional “sites” will
be available for hopping. However, their energy is ≈10Ak2,
which is much larger than the relevant energy domain for the
first magnon band.

Our numerical results for various q⊥ ∼ k values are sum-
marized in Fig. 3 for B = 0 (small finite B does not change
the spectra qualitatively in this case). One can see that the
magnon bands are almost flat at q‖ � k due to large gaps
caused by strong umklapps. We use ntr = 4 for the careful
description of energies in the second and third bands. It is
pertinent to note that we use small-q expansions of various
quantities in our calculations. Thus, there is a natural “cutoff”
for the number of bands that can be in principle discussed.
Evidently, the condition ntrk � 1 should be satisfied.

The peculiar magnon band structure discussed above can
be obtained experimentally. The imaginary part of the dynam-
ical spin susceptibility tensor χαβ (ω, q) is connected with the
dynamical structure factor which is probed in, e.g., neutron
scattering experiments. In particular, using Eqs. (10), (13),
(16), (29), and (45), for χ zz(ω, q) = −〈Sz

q, Sz
−q〉ω we obtain

χ zz(ω, q) = −S

8
(e2iφ[F2(−q − k) + F †

−2(q + k)

+ G−2(q + k) + G2(−q − k)]

+ e−2iφ[F−2(−q + k) + F †
2 (q − k)

+ G2(q − k) + G−2(−q + k)]
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FIG. 4. Imaginary part of the zz component of the dynamical
spin susceptibility calculated using Eq. (60) for two momenta q. For
illustration purposes, we use the logarithmic scale, add unity to the
susceptibility, and manually broaden peaks by adding i0.001Ak2 to
ω. (a) Anisotropy value B = 0. (b) SB = 0.2Ak2. Each peak seen in
panel (a) acquires a satellite.

+ F0(−q + k) + F †
0 (q − k) + G0(q − k)

+ G0(−q + k) + F0(−q − k) + F †
0 (q + k)

+ G0(q + k) + G0(−q − k)). (60)

In Fig. 4 we present Imχ zz(ω, q) calculated using Eq. (60)
at φ = 0 for two momenta belonging to different regimes
of relatively weak and strong umklapp influence (cf. Figs. 2
and 3). One can see that for both momenta the dynamical
structure factor has numerous peaks produced by magnons
from different bands. Noteworthy, finite B leads to a double
structure of each peak which is illustrated in Fig. 4(b).

C. Néel temperature and correlation lengths
of short-range order

The magnon spectrum obtained above can be used to
discuss the destruction of the long-range order at finite tem-
perature T . The standard estimation of the Néel temperature
comes from the equality δS = 〈a†

i ai〉 = S which follows from
the Holstein-Primakoff representation (29) of the longitudinal
spin component. One has [40]

δS = lim
τ→−0

−T
∞∑

n=−∞

∫
d2q

(2π )2
G0(iωn, q)e−iωnτ , (61)

where the summation over Matsubara frequencies is per-
formed, and G0(q) is defined in Eq. (45). In the leading order
in small parameters, G0(q) reads as

G0(q) ≈ ω + Ẽq

ω2 − ε2
q
, (62)

where εq is given by Eq. (57) and Ẽq ≈ Ak2/2 at q � k, which
are the most important momenta for the present analysis.

After some calculations from Eq. (61) we have

δS = δS0 + δST , (63)

where

δS0 =
∫

d2q

(2π )2

Ak2 − 2εq

4εq
(64)

is the contribution due to “zero-point oscillations” and

δST =
∫

d2q

(2π )2

Ak2

2εq

1

eεq/T − 1
(65)

is the temperature correction.
In both Eq. (64) and Eq. (65) infrared behavior of the

spectrum (57) is of prime importance, in which the last term
plays a role only at q‖ ∼ q2

⊥/k. Integral (64) can be estimated
as

δS0 ∼
∫ k

0
dq⊥

∫ k

q2
⊥/k

dq‖
k

q‖
∼ k2 � 1. (66)

Then, zero-point oscillations in the considered system are
rather weak.

In contrast, thermal correction (65) has a power-law diver-
gence that is stronger than the logarithmic one in isotropic
2D magnets. To show this, we consider the small-temperature
limit (T � Ak2) and note that Planck’s function has the form
at T � εq

1

eεq/T − 1
≈ T

εq
(67)

so that one has from Eq. (65)

δST ∼ T

A

∫ kT

0
dq⊥

∫ kT

q2
⊥/k

dq‖
q2

‖
. (68)

Here, kT is some momentum for which Ak2
T ∼ T . Note that the

precise value of kT is not important for the present discussion
since Eq. (68) has the power-law infrared divergence due to
the quasi-1D form of the long-wavelength magnon spectrum
(57).

In real systems, the power-law divergence in Eq. (68) can
be screened by a small gap � in the spectrum which can arise,
in particular, due to small low-symmetry spin interactions
not considered in the present study. Moreover, the small gap
should appear even in the considered model via the order-by-
disorder mechanism after accounting for quantum fluctuations
(see Ref. [27] for the corresponding discussion for cubic B20
helimagnets). Thus, in the classical limit, any finite temper-
ature destroys the long-range magnetic order while quantum
fluctuations can make the Néel temperature TN finite in the
considered model by producing the gap � in the spectrum.
Equation (68) gives a simple estimation TN ∼ √

�A.
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FIG. 5. Two types of defects considered in the present study.
(a) Defect bonds are shown by dashed lines which can be a result
of some defect in the substrate. (b) Vacancy in the magnetic layer.
In both cases, the distortion of the magnetic order by the defect is
described by an equation for the field of electric charges indicated in
both panels (see the text).

At T > TN , due to the spectrum anisotropy, there are two
correlation lengths L‖ and L⊥ of the short-range order in di-
rections along and perpendicular to k, respectively. According
to Eq. (57), they are related as

L‖ ∼ kL2
⊥, (69)

in order magnons with momenta corresponding to the cor-
relation volume boundary have energies of the same order.
Then, the correlation lengths can be found using the criterion
δST ∼ S which reads as

T

A

∫ kT

L−1
⊥

dq⊥
∫ kT

max{L−1
‖ ,q2

⊥/k}

dq‖
q2

‖
∼ S, (70)

where we use L‖ and L⊥ to cut off the infrared divergence of
the integral. Equations (69) and (70) yield

L⊥ ∼ SA

T

1

k
, L‖ ∼

(
SA

T

)2 1

k
, (71)

which signify that L⊥ � L‖ and L‖, L⊥ � 1/k at T � SA.
To summarize the finite-temperature estimations, one can

see that (i) the correction to the staggered magnetization is a
subject of power-law singularity, rather than a conventional
logarithmic one; the latter usually allows considering the so-
called quasi-long-range order regime, which is not the case
here (only short-range order persists), and (ii) the coherent
volume is essentially elongated in the modulation vector di-
rections. The latter knowledge allows us to speculate on the
spin ordering of the whole structure. Bearing in mind that
in real materials small in-plane anisotropic interactions (e.g.,
anisotropic exchange) dictate preferable directions for cycloid
modulation vectors k, we believe that at T > TN the system
could be considered as a “soup” of elongated rectangular
cycloid domains with two possible perpendicular orientations.

IV. CYCLOID ORDERING AND QUENCHED DISORDER

In this section, we consider the influence of quenched
disorder on the magnetic ordering at T = 0 in the classi-
cal limit. One expects various types of pointlike defects on
the interface in real systems. We consider two typical point
defects in the magnetic monolayer shown in Fig. 5: (i) a
defect bond with changed values of the interaction between
neighboring magnetic ions which arises due to some impurity

in the substrate, and (ii) a vacancy in the magnetic layer. We
demonstrate that even an infinitesimal concentration of such
defects destroys the long-range order (previously, the same
effect was discussed for frustrated noncollinear antiferromag-
nets in Ref. [28]).

A. Single defect

According to the linear response (Kubo) formalism [41],
the defect-induced perturbation of the magnetic ordering δSR
at site R reads as

δSα
R =

∫
d2q

(2π )2
ei(q·R)χαβ (q)Qβ (q), (72)

where χαβ (q) is the tensor of static susceptibilities and Q(q)
is the Fourier transform of the effective field produced by a
defect. It is clear from Eqs. (29) that in the classical limit one
needs transverse susceptibilities χηη(ω, q), χξξ (ω, q), and
χξη(ω, q) at ω → 0. As one can see from Eq. (29), they are
expressed via Green’s functions G0, F0, and F †

0 introduced in
Eqs. (45). In the leading order in small parameters, G0 is given
by Eq. (62) and one has

F0(q) = F †
0 (q) ≈ − B̃q

ω2 − ε2
q

(73)

for the anomalous Green’s functions, where B̃q and εq
are given by Eqs. (49) and (57), respectively. The non-
diagonal static susceptibility χξη(q) = 0. Diagonal static
susceptibilities are approximately equal to each other at short
wavelengths (as in a ferromagnet)

χηη(q) ≈ χξξ (q) ≈ S

Aq2
, q � k, (74)

whereas in the long-wavelength limit, they are essentially
different:

χηη(q) ≈ S
Ak2 + SB

ε2
q

, q � k, (75)

χξξ (q) ≈ S
Aq2

ε2
q

∼ O(1), q � k. (76)

The latter equation indicates that the local transverse field in
the ξ direction (perpendicular to the plane in which spins
rotate) would lead only to a local, visible on the scale of
the cycloid period λ = 2π/k, perturbation of the magnetic
ordering.

Let us consider a single defect in the substrate. It seems
reasonable to model its influence on magnetic properties by
a defect bond connecting neighboring magnetic atoms [see
Fig. 5(a)]. We denote the deviation of the exchange coupling
constant and iDMI at the defect bond from their values in
the clean system as UJ and UD, respectively. We also in-
troduce an explicit form for the cycloid modulation vector
k = k(cos θ, sin θ, 0). The perturbation of the Hamiltonian
(2) from the defect bond between spins at sites R0 and R0 + x̂
reads as

V = UDŷ · [SR0 × SR0+x̂] − UJSR0 · SR0+x̂

= (kUJ − UD) cos θ
(
Sζ

R0
Sη

R0+x̂ − Sη

R0
Sζ

R0+x̂

)
. (77)
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Noteworthy, there are also terms including Sζ Sξ with coeffi-
cients ∝ cos kR0, but they are oscillatory and fields along ξ

have only a local influence on the cycloid ordering. We also
neglect terms containing an even number of Bose operators
(e.g., Sζ Sζ , SηSη, etc.).

Bearing in mind that Sζ

R ≈ S, the perturbation (77) has the
form of a Zeeman term produced by local magnetic fields
directed along η and acting on two spins at R0 and R0 + x̂:

V ∼= Q cos θ
(
Sη

R0
− Sη

R0+x̂

)
, (78)

Q = S(UD − kUJ ). (79)

Substituting these expressions to Eq. (72), one obtains

δSη

R =Q cos θ

∫
d2q

(2π )2
χηη(q)[eiq·(R−R0 ) − eiq·(R−R0−x̂)].

(80)

At short distances |R − R0| � λ, the integral in Eq. (80) is
mainly determined by q � k so that χηη should be taken
from Eq. (74). Then, Eq. (80) gives the field of two Coulomb
charges (a dipole) in the two-dimensional space having the
form

δSη

R = SQ cos θ

2πA
(ln |R − R0 − x̂| − ln |R − R0|). (81)

This expression is simplified as follows at 1 � |R − R0| � λ:

δSη

R = −SQ cos θ

2πA

(R − R0) · x̂

(R − R0)2
. (82)

Then, the defect bond behaves as an electric dipole. Such elec-
trostatic analogy was previously exploited in Refs. [42–48] in
disordered magnets with isotropic long-wavelength spectrum.
It is easy to show that the defect bond between sites R0 and
R0 + ŷ leads to the similar result

δSη

R = SQ sin θ

2πA
(ln |R − R0 − ŷ| − ln |R − R0|). (83)

At large distances |R − R0| � λ, momenta q � k domi-
nate in Eq. (80) due to the oscillatory factor. In this case, the
susceptibility χηη(q) is essentially anisotropic as a function
of momentum. As a result, the cycloid distortion δSη

R at large
distances is no longer the field of the 2D dipole. We set
B = 0 below for simplicity since a finite B does not affect the
physical picture. We obtain using Eqs. (75) and (80)

δSη

R = SQ cos θ

∫ ∞

−∞

dq‖dq⊥
(2π )2

k2

A(k2q2
‖ + g2q4

⊥)

× [eiq·(R−R0 ) − eiq·(R−R0−x̂)]. (84)

After integration by residues over q‖ one has

δSη

R = SkQ cos θ

4πgA

×
∫ ∞

−∞

dq⊥
q2

⊥
(eiq⊥R⊥

1 −gq2
⊥R‖

1/k − eiq⊥R⊥
2 −gq2

⊥R‖
2/k ), (85)

where

R⊥
1 = (R − R0) · ĉ, (86)

R‖
1 = |(R − R0) · k|/k, (87)

R⊥
2 = (R − R0 − x̂) · ĉ, (88)

R‖
2 = |(R − R0 − x̂) · k|/k. (89)

The integral in Eq. (85) can be taken analytically with the
result

δSη

R = SkQ cos θ

4gA

⎧⎨
⎩ 2√

π

[√
gR‖

2

k
exp

(
−kR⊥2

2

4gR‖
2

)

−
√

gR‖
1

k
exp

(
−kR⊥2

1

4gR‖
1

)]

+ R⊥
2 Erf

⎛
⎜⎝

√
kR⊥

2

2
√

gR‖
2

⎞
⎟⎠ − R⊥

1 Erf

⎛
⎜⎝

√
kR⊥

1

2
√

gR‖
1

⎞
⎟⎠

⎫⎪⎬
⎪⎭, (90)

where Erf(x) is the error function. Importantly, in a relatively
wide region of k(R⊥

i )2 � |R‖
i |, where i = 1, 2, Eq. (90) has a

very simple form in the considered regime of |R − R0| � λ:

δSη

R
∼= −SkQ cos θ sin θ

4gA
sgn[(R − R0) · ĉ] (91)

with corrections being of the order of exp (−k|R − R0|). In
another limiting case of k(R⊥

i )2 � |R‖
i | one has

δSη

R = −SQ cos θ2

4A

√
k

g|R − R0| sgn[(R − R0) · k]

+ O(1/|R − R0|5/2). (92)

It is easy to show that in the case of the defect bond di-
rected along the ŷ axis one should simply make a substitution
θ �→ θ − π/2 in Eqs. (91) and (92).

Figure 6 illustrates the behavior of δSη

R given by Eq. (90).
When k is not oriented along square edges, asymptotic (91)
works at all orientations of R − R0 except for close vicinity
of directions parallel to k. In this case, δSη

R is described by
the field of a 1D dipole whose axis is oriented parallel to ĉ
[see Fig. 6(a)]. In contrast, when k is directed along a square
edge, the prefactor in Eq. (91) is zero and δSη

R acquires a small
value only when the condition of applicability of asymptotic
(92) holds, i.e., when R − R0 is nearly parallel to k. Note that
the distortion made by the defect along the ŷ axis is exactly
zero in this case.

The vacancy shown in Fig. 5(b) does not require a separate
consideration because it can be treated as a superposition of
four defect bonds with, e.g., UD = −D and UJ = −J in the
nearest-neighbors model. At short length scales, it leads to
a dipole-like δSη

R with the dipole momentum directed along
k. At large distances, it is easy to show that constant con-
tributions to δSη

R given by Eq. (91) cancel each other at any
orientation of k. In the main order, the result in this case
is similar to that shown in Fig. 6(b), where a small cycloid
distortion arises only when R − R0 is nearly parallel to k.

B. Finite concentration of defects

We turn to the discussion of a finite concentration c of
defects. Let us start with the case of defect bonds. We
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FIG. 6. The cycloid distortion δSη

R given by Eq. (90) and pro-
duced by a single defect bond between R0 and R0 + x̂ sites at large
distances |R − R0| � λ. The dependence is shown of δSη

R on the
polar angle ϕ of R − R0 for a certain set of the model parameters.
The cycloid modulation vector k is oriented (a) along the square
diagonal and (b) parallel to x̂ axis.

assume that the probability for each particular bond to be the
defect one is equal to c � 1. Various types of disorder can
be studied. We concentrate below on the binary one at which
all the defect bonds are characterized by the same parameters.
The theory adaptation for other types of disorder, e.g., for the
Gaussian one, is straightforward.

It was shown in Ref. [28] that even an infinitesimal concen-
tration of defect bonds is sufficient to destroy the long-range
order in frustrated noncollinear 2D helimagnets. In simple
models like the triangular-lattice antiferromagnet discussed
in Ref. [28], spin textures produced by defect bonds are
described by expressions like Eq. (82). Then, the spin at a
certain lattice site feels dipole-like fields from all the defect
bonds. After averaging over disorder configurations, the mean
square transverse spin component in the linear order in defects
concentration c can be estimated as

〈δS2
⊥〉 ∼ c

∫
d2r

(
d · r
r2

)2

∼ cd2
∫ ∞

1

dr

r
, (93)

where d is the defect bond dipole moment. The integral in
Eq. (93) diverges at large distances. Then, one needs to intro-
duce a cutoff whose physical meaning is the disorder-induced
correlation length. It can be estimated using the condition

〈δS2
⊥〉 ∼ S2, which yields

Ld ∼ eG/cd2
, (94)

where G is a constant. For c � 1, the correlation length is
macroscopically large and a quasi-long-range order persists.

The situation is essentially different in the magnet with
the iDMI. At c � 1, the most important part of the cycloid
distortions comes from large lengths, where, in general, we
should use quasi-1D solution (91). The condition 〈δS2

⊥〉 ∼ S2

reads as c(SkQ/A)2L2
d ∼ S2 and gives

Ld ∼ A√
c|Q|

1

k
. (95)

Then, instead of the exponential dependence on c, we find
the power-law one so that the effect of disorder is much more
pronounced in the considered system.

In the case of vacancies or defect bonds, when k is parallel
to a square edge, we have to use Eq. (92) for estimations. Bear-
ing in mind that the corresponding contribution is nonzero
only at a small interval ∼1/

√
k|R − R0| of directions of

R − R0 along k, we write

〈δS2
⊥〉 ∼ c

S2Q2

A2

∫
rdr

√
k

r3/2
. (96)

Then, the disorder-induced correlation length is estimated as

Ld ∼ A4

c2Q4

1

k
, (97)

whose dependence on the defect concentration is still the
power-law one rather than the exponential one. Notice that
in contrast to the considered system, an infinitesimal con-
centration of vacancies and other defects with a symmetric
arrangement of defect bonds do not destroy the long-range
order in simple spiral magnets like the triangular-lattice anti-
ferromagnet [28,48].

The way in which results (95) and (97) are obtained sug-
gests that the same equations should hold for other types of
disorder rather than the considered binary one. For example,
in the case of some continuous distribution of Q among de-
fects, we should simply substitute Q2 with its average value
〈Q2〉 in Eqs. (95) and (97). No qualitative changes in the
results are expected. In any case, an infinitesimal amount of
quenched disorder should lead to short-range cycloid struc-
tures even at zero temperature.

V. DISCUSSION AND CONCLUSION

To conclude, we consider the ferromagnetic monolayer
with interfacial Dzyaloshinskii-Moriya interaction (iDMI)
and a small easy-axis anisotropy (2). This model should also
be applicable to thin films with a strong enough iDMI. The
cycloid magnetic order with several possible ordering vectors
k arises in this system that makes possible also a topological
magnetic structure. In the present study, we analyze only the
state with the cycloid magnetic ordering characterized by a
single ordering vector k with k � 1.

We derive the classical spectrum of elementary excitations
(magnons) at zero temperature. We show that the spectrum
of the short-wavelength magnons is similar to that in a com-
mon ferromagnet. In contrast, umklapp terms in the bosonic
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version of the spin Hamiltonian renormalize the long-
wavelength spectrum drastically making it essentially
anisotropic with respect to the k direction: it is linear and
quadratic for momenta directed along and perpendicular to
k, respectively. Then, the spin-wave velocity of this quasi-1D
spectrum is essentially angle-dependent so that it is zero in the
direction transverse to k.

Umklapps also lead to the emergence of magnon bands
inside the Brillouin zone similar to electronic bands in solids.
We show that at q⊥ �= 0 noticeable gaps in the spectrum
emerge at q‖ = ±k/2,±3k/2, . . . due to iDMI single umk-
lapps and at q‖ = ±k,±2k, . . . due to the anisotropy-induced
double umklapps, where q⊥ and q‖ are components of the
momentum q perpendicular and parallel to k, correspondingly
(see Figs. 2 and 3). Moreover, the magnon dispersion inside
the bands becomes almost flat in q‖ at q⊥ ∼ k as seen in
Fig. 3. This magnon band structure appears in dynamical spin
correlators as a sequence of numerous anomalies which can
be observed experimentally (see Fig. 4).

The obtained quasi-1D character of the spectrum has
important consequences on the physical properties of the con-
sidered system on large length scales. At T = 0, the quantum
correction to the mean magnetic moment 〈m〉 is small (∼k2 �
1) and the cycloid order is robust. However long-wavelength
thermal fluctuations produce a correction to 〈m〉 with a power-
law singularity rather than the logarithmic one (which is usual
for isotropic 2D magnets). Thus, even so-called quasi-long-
range order cannot persist in the considered system at finite T .
Our estimations show that correlation lengths are substantially
different at T �= 0 for directions along k and perpendicular
to it. Thus, the coherent volume of the short-range order is
substantially elongated in the k direction.

We also consider two typical types of impurities in the
magnetic layer which can arise in real systems: defect bonds
and vacancies. In both cases, we arrive at qualitatively similar
conclusions that a single defect provides long-range perturba-
tions of the cycloid structure which destroys the long-range
order even at T = 0 at finite defect concentration c � 1.
Importantly, we obtain that the cycloid distortion caused by
a single impurity is described by an electrostatic field pro-
duced by a complex of charges (one and four dipoles for the
defect bond and the vacancy, respectively) placed at the defect
location (see Fig. 5). Due to the quasi-1D character of the
magnon spectrum, these dipoles behave in most cases as 1D
and 2D dipoles at distances much larger and much smaller
than 1/k, respectively. As a result, the correlation length in the
impurity-induced disordered ground state has strong power-
law dependencies on 1/c.

We would like to note that in real systems there are several
possibilities for screening the discussed above large-length-
scale peculiarities. First, small spin interactions arising in the
fourth order in the spin-orbit coupling can lead to a small
velocity of spin waves at q‖ = 0. Second, quantum corrections
should lead to the gap in the magnon spectrum via the order-
by-disorder mechanism. These corrections introduce an extra
very long length scale (or, equivalently, low energy) parameter
to the theory up to which the above consideration remains
valid.
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