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Scattering of magnetostatic surface modes of ferromagnetic films by geometric defects
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Magnonics, an emerging field of magnetism, studies spin waves (SWs) in nanostructures, with an aim towards
possible applications. As information may be eventually transmitted with efficiency stored in the phase and am-
plitude of spin waves, a topic of interest within magnonics is the propagation of SW modes. Thus understanding
mechanisms that may influence SW propagation is of interest. Here the effect of localized surface geometric
defects on magnetostatic surface modes propagation is studied in ferromagnetic films and semi-infinite media.
Theoretical results are developed that allow one to calculate the scattering of these surface or Damon-Eshbach
(DE) modes. A Green’s-extinction theorem extension is used to determine the scattering of incident surface
modes through the determination of phase shifts of associated modes that are symmetric and antisymmetric under
inversion in the same geometry with geometric defects. Choosing localized symmetric depressions as geometric
defects, scattering transmission coefficients are determined that show perfect transmission at specific frequencies
or wavelengths that we associate with resonances in the system: they do occur when appropriate fractions of
the incoming wavelength “fit” with the approximate depression’s sizes, i.e., depressions are effectively similar
to “potential wells.” Interestingly the system also shows the appearance of localized modes in the depression
regions, with associated discrete frequencies immersed in the continuum spectrum of these surface DE modes.
These localized modes have a short wavelength content and appear similarly in semi-infinite surfaces with
depressions. The latter indicates that these types of scattering effects should appear in all surfaces with roughness
or more pronounced geometric defects.
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I. INTRODUCTION

A present area of interest, that has been developed mainly
in the past couple of decades, is magnonics [1,2], which
studies spin waves in nanostructures [3,4] with an aim to-
wards possible technological applications [5–7]. Among the
advantages of spin waves to transmit information are low
consumption of energy, long transmission lengths, and op-
eration at microwave frequencies with wavelengths at the
nanoscale, i.e., compatible with nanocircuits. Within magnon-
ics a particular topic of interest is propagation of spin waves in
waveguides, since the control of proper transmission of infor-
mation coded either in the amplitude or phase of a spin wave
is crucial for applications. The present study corresponds to
the latter topic of interest, since it delves with the effect of
geometric defects on the propagation of magnetostatic surface
waves or Damon-Eshbach (DE) [8] waves. In particular we
study, as an example of localized geometric defects, the effect
of depressions in the scattering of DE modes in ferromagnetic
thin films and semi-infinite media.

Magnetostatic surface or volume modes have been studied
in ferromagnetic films for a long time since the 1950s and
even up to the present, in different ways. One may mention
theoretical studies [9,10] and experimental ones [11–13] that
have dealt with these modes in ferromagnetic films. Surface
magnetostatic modes have the advantage that they may prop-
agate long distances, in the order of several microns [12,14],
they may have large group velocities, and they do not require
large applied magnetic fields.

The scattering of spin waves by different types of
defects/inhomogeneities/textures in films and waveguides

has been studied theoretically and experimentally. A few of
these types of studies are scattering by regions of inhomoge-
neous magnetic fields [15,16], by a localized defect [17], by
nanodefects and nanowells [18,19], by one dimensional steps
[20], and by magnetic textures as skyrmions and domain walls
[21–26].

The surface geometric defects considered in the present
theoretical study correspond to effectively two-dimensional
(2D) geometric features [no variation along a transverse di-
rection (z)] that do not alter the equilibrium magnetization
of this Damon-Eshbach geometry: there is an in plane ap-
plied magnetic field with which the equilibrium magnetization
aligns itself and the surface spin waves propagate perpendicu-
lar to this latter direction. The scattering of the magnetostatic
surface waves is analyzed in these films using an extension
of the Green’s-extinction theorem [39] method: it has been
used by the author and co-workers in previous works, either in
the magnetostatic approximation [27–29] (the latter reference
studied periodic surface geometric defects, with an associated
appearance of frequency band gaps) or in the dipole-exchange
approximation [30–32]. The latter studies introduced “aux-
iliary functions” as part of the Green’s-extinction method,
an approach that is also used in the present study and that
was named there the “orthogonal equations” method [32].
The mentioned method allows one to write integral equa-
tions for the spin wave modes evaluated on the surfaces (these
may have arbitrary shapes in principle) and their correspond-
ing eigenfrequencies. Indeed, after the integral equations are
solved on the surface of the sample one may obtain the shape
of the modes everywhere in space, if desired.
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The theoretical analysis of the magnetostatic scattering
results has many similarities with a simpler case study that
has been well researched and where a great deal of analytical
progress has been possible: this corresponds to 1D scattering
of a quantum mechanical particle by a localized potential. The
associated Schrödinger equation has been well studied and
scattering theories developed [33–37].

An analysis of the flow of energy [10,38] in the scattering
process of a surface magnetostatic wave by surface geometric
defects allows one to determine reflection and transmission
coefficients. Also, an analysis in terms of the orthogonal equa-
tions method [32] allows one to determine the phase shifts
of eigenmode solutions that are “symmetric” and “antisym-
metric” under inversion in the presence of these geometric
defects. As well as in the simpler 1D quantum particles
scattering [33,34], the scattering solution of an incident mag-
netostatic surface wave may be related with these symmetric
and antisymmetric modes and indeed the reflection and trans-
mission coefficients may be directly written in terms of the
difference between the previously mentioned phase shifts.

Results are presented that apply the previous theory to
an example of geometric defects: depressions symmetrically
located on both surfaces of the film. The transmission coeffi-
cient as function of frequency or incident wavelength presents
resonances associated with perfect transmission and also in-
terestingly some localized modes appear at the location of the
defects: the latter start appearing at short wavelengths and
they are also present with basically the same features in a
semi-infinite medium.

II. MAGNETIZATION DYNAMICS

A. Samples and magnetostatic surface modes configuration

We study scattering of magnetostatic surface modes in
ferromagnetic films and semi-infinite media with geometric
defects localized at the surfaces. We assume these defects to
be geometric perturbations invariant in the z direction and that
there is a magnetic field applied in this direction, �Happ = H0ẑ:
this determines that there is a uniform equilibrium magnetiza-
tion, Msẑ, parallel to the applied magnetic field. We consider
wave propagation in the ±x̂ directions with invariance along
the transverse z direction. Thus the fields associated to the
wave propagation vary effectively in two dimensions, the
x − y plane, with y the direction perpendicular to the sur-
faces of the film or the semi-infinite medium. This geometry,
magnetic field, and wave propagation directions correspond
to the so called Damon-Eshbach (DE) configuration [8], i.e.,
propagation perpendicular to the equilibrium magnetization,
where it is well known that magnetostatic surface modes
propagate [8].

The perfect or unperturbed geometries that we consider
correspond to ferromagnetic films of thickness w = 2l (sur-
faces at y = ±l) or a semi-infinite ferromagnetic medium
at y � 0. Given the applied magnetic field direction, in a
semi-infinite medium these modes propagate only in one di-
rection at frequency ω = |γ |(H0 + 2πMs) (in our case in the
x̂ direction; γ is the gyromagnetic factor and Ms the satura-
tion magnetization). In a ferromagnetic film Damon-Eshbach
surface modes propagating in different directions are

reciprocal in frequencies but nonreciprocal in shape [8]: a
right propagating mode (x̂ direction) has its main amplitude
associated with the lower surface of the film (y = −l), while
a left propagating mode has amplitude mainly in the opposite
upper surface. The dispersion relation of the magnetostatic DE
modes is known analytically as [8]

� =
√

(h0 + 1/2)2 − e−4|k|l/4, (1)

where � ≡ ω/4πMs|γ | represents normalized frequencies,
h0 ≡ Ho/4πMs a nondimensional magnitude of the applied
magnetic field, and k the wave vector of the surface modes.
Thus the lower end frequencies of this dispersion relation
correspond to the long wavelength DE modes that have fre-
quencies starting at � = √

h0(h0 + 1) (which is the upper
limit of the bulk modes) and the upper frequencies limit
corresponds to the short wavelength surface modes that have
frequencies that end at � = h0 + 1/2, i.e., at the mentioned
frequency of surface waves in a semi-infinite medium. One
may say that the finite thickness w = 2l of the film, or ef-
fectively the presence of two opposing surfaces, has opened
up the degeneracy of the surface modes of a semi-infinite
medium at the frequency � = h0 + 1/2. Indeed, the long
wavelength surface modes change their frequencies the most;
this may be understood since the amplitude of the surface
modes penetrates a distance of the order of their wavelength
λ into the medium, i.e., the long wavelength modes “feel the
effect” of the other surface of the film when λ ∼ l , which is
reflected in the dispersion relation of Eq. (1).

The geometric defects that we consider alter the surfaces
of the semi-infinite medium and the film, such that their new
surfaces are described as y = ξ (x) for the first and as y =
l + η(x) for the upper surface of the film and y = −l + ξ (x)
for the lower. We consider these defects to be localized per-
turbations, i.e., the geometries are flat at x → ±∞, and that
they are even with respect to x = 0 (this allows one to sim-
plify the analysis of the scattering problem in terms of spin
wave modes with symmetry properties). Given these defects,
the equilibrium magnetization is unaltered; it continues to be
uniform and parallel to the geometric defects’ directions since
these defects do not induce effective magnetic charges for
Msẑ. The magnetostatic approximation used here should be
valid for wavelengths larger than the exchange length of the
ferromagnet. Thus one expects this approximation to be valid
for defects whose geometric features are smooth, i.e., that do
not have a content at wavelengths shorter than the exchange
length.

B. Linear spin wave modes

The magnetization to linear order in these media may be
written as

�M(�x, t ) � Msẑ + �m(�x, t ), (2)

with �m(�x, t ) = mxx̂ + myŷ, i.e., perpendicular to ẑ, the equi-
librium magnetization direction. Under these conditions we
will determine linear surface eigenmodes of frequency ω, as
follows:

�m(�x, t ) = Re[ �mω(x, y)e−iωt ] . (3)
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1. Landau-Lifshitz equation

We are considering a micromagnetic continuum model of
description of the magnetization dynamics, which is gov-
erned by the Landau-Lifshitz equation of motion for the
magnetization. In the magnetostatic approximation that we are
considering the effective field that exerts torque on the mag-
netization is given by the sum of the applied magnetic field
H0ẑ and by the demagnetizing field �hD( �m) produced by the
dynamic magnetization. Then, the linear spin wave modes of
Eq. (3) satisfy the following Landau-Lifshitz equation written
to linear order:

i(ω/|γ |) �m = (Msẑ + �m) × (H0ẑ + �hD). (4)

This leads to a linear relation between the components of the
demagnetizing field and the dynamic magnetization:(

hx
D

hy
D

)
=

(
h0 i�

−i� h0

)(
4πmx

4πmy

)
, (5)

with h0 ≡ H0/4πMs. Inverting the previous relations, one ob-
tains the following relation between the components of the
dynamic magnetic induction �b = �hD + 4π �m and those of the
demagnetizing field:(

bx

by

)
=

(
μ iν

−iν μ

)(
hx

D

hy
D

)
, (6)

with μ ≡ (h2
0 + h0 − �2)/(h2

0 − �2) and ν ≡ −�/(h2
0 − �2)

frequency dependent effective susceptibility coefficients.
These satisfy

μ − 1 ± ν = 1/(h0 ± �). (7)

2. Magnetostatic Maxwell equations and boundary conditions

The magnetic induction �b and demagnetizing field �hD that
the linear spin wave modes produce should satisfy the follow-
ing Maxwell equations in the magnetostatic approximation:

∇ · �b = 0, ∇ × �hD = 0. (8)

The second equation may be solved by introducing a magne-
tostatic potential φ(�x, t ) through �hD = −∇φ and then the first
becomes Laplace’s equation for the magnetostatic potential
both inside and outside the sample [since �b = �hD outside
and by use of Eqs. (6) inside]. The magnetostatic boundary
conditions that these fields should satisfy on the surfaces of
the ferromagnetic samples are that the normal component of
the magnetic induction be continuous, i.e., bn = �b · n̂, with
n̂ the normal to the sample surface, and that the tangential
demagnetizing field be continuous or equivalently that the
magnetostatic potential be continuous.

III. ORTHOGONALITY EQUATIONS

Instead of using the standard procedure for solving for
the magnetostatic linear spin wave modes, that was explained
in the previous section II B, the frequencies of the magne-
tostatic spin wave modes as well as their amplitudes on the
surfaces of the sample may be obtained by solving integral
equations satisfied by them that follow from the orthogonal

equations method [32]. These are homogeneous eigenvalue
equations that may be thought of as a generalization of
Green’s-extinction theorem [39] to the equations relevant to
this case: this is explained in Appendix A. In the following
these integral equations are derived for the magnetostatic nor-
mal modes evaluated on the surfaces of the sample.

A. Integral equations originated from the exterior
of the magnetized sample

In the upper outside region of the sample the “auxiliary”
functions of the orthogonal equations method may be taken
as having the following simple form, characterized by a given
wave vector k and decaying at y → +∞:

φ
−(ω,k)
U = e−ikxe−|k|y, (9)

by
U = hy

U = −∂φU /∂y = |k|φU , (10)

bx
U = hx

U = −∂φU /∂x = ikφU , (11)

while those in the lower region as

φ
−(ω,k)
L = e−ikxe|k|y, (12)

by
L = hy

L = −∂φL/∂y = −|k|φL, (13)

bx
L = hx

L = −∂φL/∂x = ikφL. (14)

Their time dependence is exp(iωt ). The orthogonality
Eq. (A4) in the upper region leads to (surface described
by y = l + η(x), dl = dx

√
1 + η′(x)2 the length differential,

and n̂ = [−η′(x)x̂ + ŷ]/
√

1 + η′(x)2 the surface normal that
points into the vacuum)

0 =
∫ ∞

−∞
dx e−ikxe−|k|η(x){

√
1 + η′(x)2bn[x, l + η(x)]

+ [ikη′(x) − |k|]φ[x, l + η(x)]} (15)

and in the lower surface described by y = −l + ξ (x) (n̂ =
[ξ ′(x)x̂ − ŷ]/

√
1 + ξ ′(x)2):

0 =
∫ ∞

−∞
dx e−ikxe|k|ξ (x){

√
1 + ξ ′(x)2bn[x,−l + ξ (x)]

− [ikξ ′(x) + |k|]φ[x,−l + ξ (x)]}. (16)

B. Orthogonality equations originated from the interior
of the magnetized sample

Inside the film the magnetostatic potential φi = φ
−(ω,k)
± of

the auxiliary functions satisfies Laplace’s equation [it follows
from Eqs. (6) and (8)]. We choose a pair of them, associated
with a wave vector (−k), and with growing and decaying
exponential behaviors (± signs) in the y direction, as follows:

φi = φ
−(ω,k)
± = e−ikxe±|k|y, (17)
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and it follows that(
b±

x

b±
y

)
=

(
μ −iν
iν μ

)(
h±

x

h±
y

)
=

(
i(μk ± ν|k|)
−(νk ± μ|k|)

)
φ±. (18)

For the (±) auxiliary functions the previous orthogonality
equations (A7) may be written as

0 =
∫ ∞

−∞
dx e−ikxe±|k|[l+η(x)]{

√
1 + η′(x)2bn[x, l + η(x)]

+ [(νk ± μ|k|) + iη′(x)(μk ± ν|k|)]φ[x, l + η(x)]}

+
∫ ∞

−∞
dx e−ikxe±|k|[−l+ξ (x)]{

√
1 + ξ ′(x)2bn[x,−l + ξ (x)]

− [(νk ± μ|k|) + iξ ′(x)(μk ± ν|k|)]φ[x,−l + ξ (x)]}.
(19)

C. Set of magnetostatic orthogonality equations
in a film with geometric defects

In order to better handle the set of orthogonality equa-
tions (15), (16), and (19) for the modes, we define Bu

n(x) ≡√
1 + η′(x)2bn[x, l + η(x)] and �u(x) ≡ φ[x, l + η(x)] in the

upper surface and similarly Bd
n (x) ≡

√
1 + ξ ′(x)2bn[x,−l +

ξ (x)] and �d (x) ≡ φ[x,−l + ξ (x)] in the lower one. Thus
Eqs. (15), (16), and (19) become the following system of
magnetostatic orthogonality equations:

0 =
∫ ∞

−∞
dx e−ikxe−|k|η(x){Bu

n(x) + [ikη′(x) − |k|]�u(x)},

0 =
∫ ∞

−∞
dx e−ikxe|k|ξ (x){Bd

n (x) − [ikξ ′(x) + |k|]�d (x)},

0 =
∫ ∞

−∞
dx e−ikxe±|k|[l+η(x)]{Bu

n(x)

+ [(νk ± μ|k|) + iη′(x)(μk ± ν|k|)]�u(x)}

+
∫ ∞

−∞
dx e−ikxe±|k|[−l+ξ (x)]

{
Bd

n (x)

− [(νk ± μ|k|) + iξ ′(x)(μk ± ν|k|)]�d (x)
}
. (20)

D. Even geometric obstacles using symmetry properties

If we consider even geometric obstacles, i.e., η(−x) =
η(x) and ξ (−x) = ξ (x), one may analyze the spin wave modes
in terms of functions with different symmetries with respect to
the plane x = 0, i.e., even or odd. For example, the magneto-
static potential evaluated at the upper surface is separated into
even (e) and odd (o) parts:

�u(x) = �u
e (x) + �u

o(x). (21)

It is convenient to describe even, E (x), and odd, O(x),
functions in terms of cosine, Ec(q), and sine, Os(q), Fourier
transforms, as follows:

E (x) = 1

π

∫ ∞

0
dq cos(qx)Ec(q),

O(x) = 1

π

∫ ∞

0
dq sin(qx)Os(q),

Ec(q) = 2
∫ ∞

0
dx cos(qx)E (x), (22)

Os(q) = 2
∫ ∞

0
dx sin(qx)O(x) ,

with more details in Appendix B.
Thus the orthogonality equations for the spin wave modes

that follow from the orthogonality Eqs. (20) become [details
in Appendix C, s(k) ≡ sgn(k)]

0 = Bu
e (k) − is(k)Bu

o(k) − Hu
e (k) + is(k)Hu

o (k) + 2

N

∑
q

{
C−|k|

u (k, q)Bu
e (q) − is(k)S−|k|

u (k, q)Bu
o(q) − S−|k|

u (k, q)Hu
e (q)

+ is(k)C−|k|
u (k, q)Hu

o (q)
}
, (23)

0 = Bd
e (k) − is(k)Bd

o (k) − Hd
e (k) + is(k)Hd

o (k) + 2

N

∑
q

{
C|k|

d (k, q)Bd
e (q) − is(k)S|k|

d (k, q)Bd
o (q) − S|k|

d (k, q)Hd
e (q)

+ is(k)C|k|
d (k, q)Hd

o (q)
}
, (24)

0 = e±|k|l ([s(k)� ± h]
[
Bu

e (k) − is(k)Bu
o(k)

] + [h ± s(k)� + 1]
[
Hu

e (k) − is(k)Hu
o (k)

] + 2

N

∑
q

{
[s(k)� ± h]

[
C±|k|

u (k, q)Bu
e (q)

− is(k)S±|k|
u (k, q)Bu

o(q)
] + [h ± s(k)� + 1]

[
S±|k|

u (k, q)Hu
e (q) − is(k)C±|k|

u (k, q)Hu
o (q)

]}) + e∓|k|l([s(k)� ± h]
[
Bd

e (k)

− is(k)Bd
o (k)

] − [h ± s(k)� + 1]
[
Hd

e (k) − is(k)Hd
o (k)

] + 2

N

∑
q

{
[s(k)� ± h]

[
C±|k|

d (k, q)Bd
e (q)

− is(k)S±|k|
d (k, q)Bd

o (q)
] − [h ± s(k)� + 1]

[
S±|k|

d (k, q)Hd
e (q) − is(k)C±|k|

d (k, q)Hd
o (q)

]})
, (25)
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with

C±|k|
u (k, q) ≡

∫ ∞

−∞
dx cos(qx) cos(kx)(e±|k|η(x) − 1),

C±|k|
d (k, q) ≡

∫ ∞

−∞
dx cos(qx) cos(kx)(e±|k|ξ (x) − 1),

S±|k|
u (k, q) ≡ s(k)

∫ ∞

−∞
dx sin(qx) sin(kx)(e±|k|η(x) − 1),

S±|k|
d (k, q) ≡ s(k)

∫ ∞

−∞
dx sin(qx) sin(kx)(e±|k|ξ (x) − 1).

(26)

The previous orthogonality Eqs. (25) were written in terms
of sine and cosine Fourier transforms coefficients (they are
the unknowns; notice that they are even in their arguments,
k or q; also the eigenvalue � is an unknown). New variables
He(k) ≡ |k|�e(k), Ho(k) ≡ |k|�o(k) were introduced, and we
also used Eq. (7) that allows at the end to transform the orthog-
onality equations into a standard matrix eigenvalue problem
for the frequency �. Furthermore, the integrals and transforms
were written in their discrete versions, a necessary step for
numerical calculations (see Appendix B).

E. “Mirror reflected” obstacles along the thickness
direction of the film

We also consider “mirror reflected” obstacles along the
thickness direction y (with respect to the plane y = 0), which
correspond to symmetric perturbations, i.e., η(x) = −ξ (x).
For them C±|k|

u = C∓|k|
d ≡ C± and also S±|k|

u = S∓|k|
d ≡ S±.

Also, we define

P±(k, q) = δk,q + 2

N
C±(k, q),

(27)

R±(k, q) = δk,q + 2

N
S±(k, q),

M±(k, q) = e±|k|l P±(k, q),

N±(k, q) = e±|k|l R±(k, q). (28)

Thus, for these mirror reflected obstacles and taking the
cases s = sgn(k) = ±1, the previous orthogonality Eqs. (23)–
(25) may be written more compactly as

0 = P−Bu
e − R−Hu

e , (29)

0 = R−Bu
o − P−Hu

o , (30)

0 = P−Bd
e − R−Hd

e , (31)

0 = R−Bd
o − P−Hd

o , (32)

0 = (� + h)
[
M+Bu

e + M−Bd
e − iN+Bu

o − iN−Bd
o

]
+ (h + � + 1)

[
N+Hu

e − N−Hd
e − iM+Hu

o + iM−Hd
o

]
,

(33)

0 = −(� + h)
[
M−Bu

e + M+Bd
e + iN−Bu

o + iN+Bd
o

]
+ (h + � + 1)

[
N−Hu

e − N+Hd
e + iM−Hu

o − iM+Hd
o

]
,

(34)

0 = −(� − h)
[
M+Bu

e + M−Bd
e + iN+Bu

o + iN−Bd
o

]
+ (h − � + 1)

[
N+Hu

e − N−Hd
e + iM+Hu

o − iM−Hd
o

]
,

(35)

0 = (� − h)
[
M−Bu

e + M+Bd
e − iN−Bu

o − iN+Bd
o

]
+ (h − � + 1)

[
N−Hu

e − N+Hd
e − iM−Hu

o + iM+Hd
o

]
.

(36)

We define symmetric and antisymmetric variables with re-
spect to the thickness direction y: Bs

e = Bu
e + Bd

e , Ba
e = Bu

e −
Bd

e , and analogously for the variables Bo, He, and Ho. Indeed,
due to our assumed symmetries of the geometric defects, i.e., a
geometry with mirror reflection properties with respect to the
planes x = 0 and y = 0, the modes separate into symmetric
and antisymmetric with respect to the inversion transforma-
tion (x, y) → −(x, y) and are associated with the variables
Bs

e, Ba
o, Hs

e , Ha
o and Bs

o, Ba
e , Hs

o , Ha
e , respectively. This happens

because, given the applied magnetic field and the assumed
form of the defects the system is invariant under the inversion
transformation (x, y) → −(x, y) or equivalently by a rotation
of the system in 180◦ with respect to the z axis. This separation
of the problem into the just called symmetric and antisymmet-
ric modes is seen explicitly to happen as follows. Summing
Eqs. (33), (34) and Eqs. (35), (36), and also from Eqs. (29),
(31) and Eqs. (30), (32), one obtains the following equations:

0 = (� + h)
[
(M+ − M−)Ba

e − i(N+ + N−)Bs
o

]
+ (h + � + 1)

[
(N+ + N−)Ha

e − i(M+ − M−)Hs
o

]
,

(37)

0 = −(� − h)
[
(M+ − M−)Ba

e + i(N+ + N−)Bs
o

]
+ (h − � + 1)

[
(N+ + N−)Ha

e + i(M+ − M−)Hs
o

]
,

(38)

0 = P−Ba
e − R−Ha

e , (39)

0 = R−Bs
o − P−Hs

o . (40)

The previous Eqs. (37)–(40) correspond to modes that are an-
tisymmetric with respect to the inversion symmetry operation.
Now, summing and subtracting Eqs. (37) and (38) one obtains

0 = −�
(
NsB

s
o + Md Hs

o

) − ih
(
NsH

a
e + Md Ba

e

) − iNsH
a
e ,

(41)

0 = −�
(
NsH

a
e + Md Ba

e

) + ih
(
NsB

s
o + Md Hs

o

) + iMd Hs
o ,

(42)

with

Ns ≡ N+ + N−, Md ≡ M+ − M−. (43)
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Defining new variables

NsBs
o + Md Hs

o = W Hs
o , NsHa

e + Md Ba
e = XHa

e , (44)

with, from Eqs. (39) and (40),

W ≡ NsV + Md , X ≡ Ns + Md T,
(45)

V ≡ R−1
− P−, T ≡ P−1

− R−,

then Eqs. (41) and (42) may be written as

0 =
( −�I −ihI − iNsX −1

iMdW −1 + ihI −�I

)(
W Hs

o

XHa
e

)
. (46)

Notice that from Eqs. (28) the matrices M±, N± may be
written as

M± = D±P±, N± = D±R±, (47)

with D± the following diagonal matrices:

(D+)mn = e|k|lδmn, (D−)mn = e−|k|lδmn,

D−1
+ = D−, D−1

− = D+. (48)

Using Eqs. (43), (45), (47), and (48) one obtains

W −1 = (R+V + P+)−1D−, X −1 = (R+ + P+T )−1D−.

(49)
Finally, Eqs. (46) may be combined into the following eigen-
value problem for antisymmetric modes:

0 = ([MdW −1 + hI][NsX
−1 + hI] − �2I )

(
XHa

e

)
. (50)

Now, about symmetric modes: subtracting Eqs. (33), (34)
and Eqs. (35), (36) between themselves and from Eqs. (29)–
(32), one obtains the following equations for this type of
mode:

0 = (� + h)
[
(M+ + M−)Bs

e − i(N+ − N−)Ba
o

]
+ (h + � + 1)

[
(N+ − N−)Hs

e − i(M+ + M−)Ha
o

]
,

(51)

0 = −(� − h)
[
(M+ + M−)Bs

e + i(N+ − N−)Ba
o )

]
+ (h − � + 1)

[
(N+ − N−)Hs

e + i(M+ + M−)Ha
o

]
,

(52)

0 = P−Bs
e − R−Hs

e , (53)

0 = R−Ba
o − P−Ha

o . (54)

Summing and subtracting Eqs. (51) and (52) one obtains

0 = −�
(
Nd Ba

o + MsH
a
o

) − ih
(
MsB

s
e + Nd Hs

e

) − iNd Hs
e ,

(55)

0 = −�
(
MsB

s
e + Nd Hs

e

) + ih
(
Nd Ba

o + MsH
a
o

) + iMsH
a
o ,

(56)

where

Nd ≡ N+ − N−, Ms ≡ M+ + M−. (57)

We define new variables

Nd Ba
o + MsHa

o = Y Ha
o , MsBs

e + Nd Hs
e = ZHs

e , (58)

with, from Eqs. (45), (53), (54), and (58),

Y ≡ NdV + Ms, Z ≡ MsT + Nd . (59)

Now, from Eqs. (43), (45), (47), (57), and (59) it results that
Y = W and Z = X . Equations (55) and (56) may then be
written as

0 =
( −�I −ihI − iNd X −1

iMsW −1 + ihI −�I

)(
W Ha

o
XHs

e

)
. (60)

These equations may be combined into the following eigen-
value problem for the symmetric modes:

0 = ([MsW
−1 + hI][Nd X −1 + hI] − �2I )(XHs

e ). (61)

IV. SCATTERING, REFLECTION, AND TRANSMISSION
COEFFICIENTS

Far from the region of geometric defects, the spin wave
mode solutions correspond to those of flat surfaces (see
Appendix E). There a plane wave with a specified wave vec-
tor k, and with related amplitudes of the magnetization and
magnetostatic fields that vary along the thickness direction y,
is a valid spin wave solution at a frequency ω(k) given by
the dispersion relation of Eq. (1). Thus a scattering type of
solution, with incident, reflected, and transmitted parts that are
plane waves of wave vector k, may be regarded as a spin wave
mode solution at frequency ω, and far from the geometric
defect its magnetostatic potential takes the following form:

φ−∞ = AI f (y)ei(kx−ωt ) + ARg(y)e−i(kx+ωt ) : x → −∞,

φ∞ = AT f (y)ei(kx−ωt ) : x → ∞. (62)

Notice that the magnetostatic potential profiles of the incident
and transmitted waves, f (y), are the same, while that of the
reflected wave, g(y), satisfies g(y) = f (−y), i.e., there is a
mirror reflection symmetry with respect to the plane y = 0 in
the magnetostatic potential between right and left propagating
spin wave modes (shape nonreciprocity; see Appendix E).

Now we discuss the reflection and transmission of energy
due to scattering, which allows one to evaluate reflection (R)
and transmission coefficients (T ). Due to conservation of en-
ergy we will verify that R + T = 1. According to Refs. [3,38]
in the magnetostatic approximation the following expression
represents the averaged over time energy current density 〈 �F 〉
of spin waves [it is basically the electromagnetic Poynting
vector; a time dependence of the fields as exp(−iωt ) has been
assumed]:

〈 �F 〉 = − cω

8π
Re(iφ∗�b), (63)

with φ and �b = �hD + 4π �m the magnetostatic potential and
magnetic induction associated with the spin wave, respec-
tively. Indeed local conservation of energy is represented by
a continuity equation of the form

0 = ∂u/∂t + ∇ · �F , (64)

with u the energy density. We integrate the previous continuity
equation over the volume V of the film for a stationary pro-
cess occurring at frequency ω and we average over time, the
integration over ∂u/∂t averaged over time is zero (stationary
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process), and we get through Gauss’s theorem:

0 =
∫

V
∇ · 〈 �F 〉 =

∫
S
〈 �F 〉 · d �S. (65)

The integration over the upper and lower surfaces of the film
is zero [given the form of 〈 �F 〉 from Eq. (63) and a similar
analysis to what we presented for the extinction theorem in
Appendix A 2]. Thus, from the remaining integration over the
left and right cross sections of the film, Eq. (65) implies∫

dz
∫

dy〈Fx〉−∞ =
∫

dz
∫

dy〈Fx〉∞, (66)

where the integration is over the cross sections at x → ∓∞
of the film (due to translation invariance in the z direction, the
integration in that direction cancels out). Thus, in Eq. (66), the
equal sign has come from conservation of energy [Eq. (64)].
The integrals in Eq. (66) may be done using Eqs. (6) and (63).
Indeed,∫

dy〈Fx〉 = − cω

16π

∫
dy

[
2μk|φ|2 + ν

∂

∂y
(|φ|2)

]
. (67)

Then, according to Eqs. (62) and (67),∫
dy〈Fx〉∞ = −|AT |2 cω

16π
{2μkw[| f |2]

+ ν[| f (l )|2 − | f (−l )|2]}, (68)

with

w[| f |2] ≡
∫ l

−l
dy| f (y)|2. (69)

Furthermore,∫
dy〈Fx〉−∞ = −|AI |2 cω

16π
{2μkw[| f |2] + ν[| f (l )|2

− | f (−l )|2]} − |AR|2 cω

16π
{−2μkw[|g|2]

+ ν[|g(l )|2 − |g(−l )|2]}.
(70)

Using Eqs. (66), (68), and (70), and that [|g|2] = [| f |2] and
g(±l ) = f (∓l ), one gets

|AI |2 − |AR|2 = |AT |2 (71)

or, defining |AR/AI |2 = R and |AT /AI |2 = T as reflection and
transmission coefficients, one gets

R + T = 1 (72)

as expected due to energy conservation.

A. Even and odd modes in 1D and phase shifts

A convenient way to handle numerically the previous scat-
tering problem is to introduce mode solutions at frequency ω

with parity properties.
First, we present a simple scattering problem for a scalar

field in 1D, ψ (x), as a useful introduction. The incident,
reflected, and transmitted solutions far from the scatterer in

this case are

ψ−∞ = AI e
i(kx−ωt ) + ARe−i(kx+ωt ) : x → −∞,

ψ∞ = AT ei(kx−ωt ) : x → ∞ (73)

or equivalently

ψ−∞ = e−iωt {(AI + AR) cos(kx) + (AI − AR)i sin(kx)},
ψ∞ = e−iωt AT {cos(kx) + i sin(kx)}. (74)

In terms of modes with symmetry properties, the scattering
solutions of Eq. (73), that are associated with a wave vector k,
read

ψ−∞ = e−iωt {Ce cos(kx − δe) + Co sin(kx − δo)},
(75)

ψ∞ = e−iωt {Ce cos(kx + δe) + Co sin(kx + δo)},
where δe and δo are phase shifts produced by the scatterer in
the even and odd solutions. From Eqs. (74) and (75) by simple
algebra one gets

AI = −iCoe−iδo, AR = Coeiδe sin(δe − δo),
(76)

AT = −iCoeiδe cos(δe − δo), Ce = −iCoei(δe−δo),

from which it follows that

|AR/AI |2 = sin2(δe − δo), |AT /AI |2 = cos2(δe − δo). (77)

Thus the reflection and transmission coefficients may be deter-
mined through the difference of phase shifts associated with
even and odd modes.

B. Film modes with symmetry properties and phase shifts

The scattering modes’ solutions for the magnetostatic
potential φ−∞(x, y, t ) of Eqs. (62) at x → −∞ may be
written as

φ−∞ = e−iωt {AI f (y)eikx + AR f (−y)e−ikx}
= e−iωt {e(y)[(AI + AR) cos(kx) + (AI − AR)i sin(kx)]

+ o(y)[(AI − AR) cos(kx) + (AI + AR)i sin(kx)]},
(78)

with

e(y) ≡ [ f (y) + f (−y)]/2, o(y) ≡ [ f (y) − f (−y)]/2
(79)

even and odd functions along the thickness of the film, respec-
tively. Similarly,

φ∞ = e−iωt AT f (y)eikx

= e−iωt AT [e(y) + o(y)][cos(kx) + i sin(kx)]. (80)

A convenient way to handle numerically the previous scat-
tering problem is to introduce mode solutions at frequency ω

with symmetry properties, similarly as in Eqs. (75):

φ−∞ = e−iωt
{
e(y)

[
Ce

e cos
(
kx − δe

e

) + Ce
o sin

(
kx − δe

o

)]
+ o(y)

[
Co

e cos
(
kx − δo

e

) + Co
o sin

(
kx − δo

o

)]}
, (81)

φ∞ = e−iωt
{
e(y)

[
Ce

e cos
(
kx + δe

e

) + Ce
o sin

(
kx + δe

o

)]
+ o(y)

[
Co

e cos
(
kx + δo

e

) + Co
o sin

(
kx + δo

o

]}
, (82)
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i.e., we are distinguishing even-even (Ce
e ), even-odd (Co

e ),
odd-even (Ce

o), and odd-odd (Co
o) modes, considering parity

properties in the y and x directions, respectively. Similarly to
what was done in the previous section, comparing Eqs. (78),
(81) and Eqs. (80), (82) for the different types of modes, one
obtains

AI = −iCe
oe−iδe

o , AR = Ce
oeiδe

e sin
(
δe

e − δe
o

)
,

AT = −iCe
oeiδe

e cos
(
δe

e − δe
o

)
, Ce

e = −iCe
oei(δe

e−δe
o ) (83)

and

AI = −iCo
oe−iδo

o , AR = −Co
oeiδo

e sin
(
δo

e − δo
o

)
,

AT = −iCo
oeiδo

e cos
(
δo

e − δo
o

)
, Co

e = −iCo
oei(δo

e−δo
o ). (84)

Notice that Eqs. (83), (84) are consistent if Co
o =

Ce
oei(δe

e−δe
o ), δo

e = δe
o, and δo

o = δe
e . Indeed calling δe

e = δs, δe
o =

δa, and Ce
o = Ca, then

AI = −iCae−iδa ,

AR = Caeiδs sin(δs − δa),

AT = −iCaeiδs cos(δs − δa). (85)

Also, notice that Caeiδs = iCseiδa , with Cs ≡ Ce
e . Then

Eqs. (81) and (82) take the form

φ−∞ = AI e
−iωt {e(y)[eiδs cos(kx − δs) + i eiδa sin(kx − δa)]

+ o(y)[eiδa cos(kx − δa) + i eiδs sin(kx − δs)]}, (86)

φ∞ = AI e
−iωt {e(y)[eiδs cos(kx + δs) + i eiδa sin(kx + δa)]

+ o(y)[eiδa cos(kx + δa) + i eiδs sin(kx + δs)]}. (87)

Then, the previous solutions at x = ±∞ may be written as

φ−∞ = AI e
−iωt {eiδs [e(y) cos(kx − δs) + i o(y) sin(kx − δs)]

+ eiδa [o(y) cos(kx − δa) + i e(y) sin(kx − δa)]},
(88)

φ∞ = AI e
−iωt {eiδs [e(y) cos(kx + δs) + i o(y) sin(kx + δs)]

+ eiδa [o(y) cos(kx + δa) + i e(y) sin(kx + δa)]}. (89)

Thus the solutions involve sums of symmetric and antisym-
metric solutions under the inversion symmetry of the system,
i.e., (x, y) → −(x, y), that we call φs and φa, respectively.
Indeed in our case the solution for the potential in all the
regions may then be written as

φ(x, y) = AI e
−iωt {eiδsφs(x, y) + eiδaφa(x, y)}, (90)

with the following behavior of the symmetric and antisym-
metric solutions for the magnetostatic potential at x → ±∞:

φ±∞
s (x, y) = e(y) cos(kx ± δs) + i o(y) sin(kx ± δs),

φ±∞
a (x, y) = o(y) cos(kx ± δa) + i e(y) sin(kx ± δa)}.

(91)

These symmetric and antisymmetric solutions have clear
phase shifts δs and δa at |x| → ∞, respectively. Furthermore,
from Eqs. (85) one concludes that

R = |AR/AI |2 = sin2(δs − δa),

T = |AT /AI |2 = cos2(δs − δa). (92)
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FIG. 1. Geometric defects chosen: schematics of depressions
symmetrically located in the film. Approximate dimensions of the
depressions in this figure: depth p = 0.1�, length 2a = 40�, and
transition regions scale b = 2�.

Thus the reflection (R) and transmission (T ) coefficients may
be calculated using the differences of the phase shifts of the
just mentioned symmetric and antisymmetric modes—phase
shifts that are produced by the geometric defects.

Notice that for a film with flat surfaces these symmetric (S)
and antisymmetric (A) mode solutions for the magnetostatic
potential are

φ f
s (x, y) = S(x, y) = e(y) cos(kx) + i o(y) sin(kx),

φ f
a (x, y) = A(x, y) = o(y) cos(kx) + i e(y) sin(kx). (93)

These are simply interpreted, since they are basically the sum
and difference of right and left traveling spin wave modes
(here we write just the magnetostatic potential of the spin
wave):

S(x, y) = [ f (y)eikx + f (−y)e−ikx]/2,

A(x, y) = [ f (y)eikx − f (−y)e−ikx]/2. (94)

V. EXAMPLES OF MAGNETOSTATIC
SURFACE SCATTERING

In Sec. II A the geometric defects were presented as modi-
fying the upper and lower surfaces of the film as y = l + η(x)
and y = −l + ξ (x), respectively. In order to present examples
of magnetostatic surface scattering using the theory presented,
we chose a symmetric configuration with η(x) = −ξ (x) =
p{−1 + tanh[(x − a)/b]} (formulas valid for x � 0 and with
reflection symmetry with respect to x = 0). Figure 1 repre-
sents the film with these depressions for the case a = 20�,
with � the smallest length with which we discretize numerical
results (we also present calculations with a = 10�), and we
took b = 2� and p = 0.1� for this figure: these correspond
to symmetrically located depressions (we also calculated an
example with b = 5�).
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FIG. 2. Scattering transmission coefficient T as a function of
surface mode frequency, � = ω/4πMs|γ |, for different cases of
depression half widths (a) and transition distances (b): a = 10�,
b = 2�, a = 20�, b = 2�, and a = 20�, b = 5�, respectively
(h0 = H0/4πMs = 0.2 and p = 0.1�).

The calculations that will be presented in the following
are done for films of length between −L � x � L, with L =
1024�, so Fig. 1 is just a section of the full length, shown for
illustrative purposes. � is a unit of length, so wave vectors
will have units of 1/�. The thickness of the film is taken
between y = −� and y = �. All the results that we present
have no units; for example, for the coordinate x actually we
plot x/�: indeed magnetostatic equations are independent of
�; there is no underlying length scale (the only length scale
is the thickness of the film). Also, we take h0 = H0/4πMs =
0.2, so that the range of frequencies of the Damon-Eshbach
modes in this case is between the normalized frequencies
�l = √

h0(h0 + 1) � 0.49 and �u = h0 + 1/2 = 0.7.
First, we discuss results on scattering of propagating mag-

netostatic surface modes. As presented in the theory sections,
our theory is able to calculate the scattering of an incident
magnetostatic surface wave of wave vector k, with an asso-
ciated wavelength λ = 2π/k. Reflection (R) and transmission
coefficients (T ) of this incident surface wave were determined
through the phase shifts δs and δa of modes symmetric and
antisymmetric under inversion, as shown in Eqs. (92). Then,
the transmission coefficient is given by T = cos2 δ, where we
have defined δ ≡ δs − δa.

In Fig. 2 the transmission coefficient T is shown as a func-
tion of normalized frequency [frequency � ≡ ω/4πMs|γ |
and wave vector k are related through Eq. (1) for these scatter-
ing modes] for three examples of depressions. According to
Fig. 2 these particular obstacles do not affect much the overall
transmission (T hovers between 0.95 and 1), but interestingly
there are particular frequencies at which there is perfect trans-
mission (T = 1), which we associate with resonances [35,40].
Resonances have been qualitatively associated with a wave
being trapped for a while through successive reflections in

FIG. 3. Scattering transmission coefficient T as a function of
surface mode wavelength λ (scaled by �) for different cases of
depression half widths (a) and transition distances (b): a = 10�,
b = 2�, a = 20�, b = 2�, and a = 20�, b = 5�, respectively
(h0 = H0/4πMs = 0.2 and p = 0.1�).

a “potential well” and then escaping from it; the frequency
width of these resonances would be proportional to the in-
verse “trapping time” (a bound state would be very difficult
to spot as a transmission resonance, since it should have an
infinitesimal frequency width). Notice that the lowest subplots
of Fig. 2, which correspond to the same approximate size of
depression (a = 20�) but to different transition sizes (b =
2�, or a “sharp” depression, and b = 5�, or an “extended”
depression), do share the same frequency resonances while
the extended depression results may be interpreted in terms of
shorter trapping times or wider resonance widths: this was to
be expected of a “looser” depression—an interpretation also
consistent with the “disappearance” of resonances at higher
frequencies in the latter case. Also notice that between the first
two subplots the size of the depression (a) is doubled, keeping
the transition regions equal (b): new resonances appear for the
larger size of depression as to be expected, but also some
of them are repeated with the other case (due to sizes of
depressions that differ by a factor of two approximately).

In Fig. 3, where the transmission coefficient is plot-
ted versus wavelength for the same previous cases, an
interpretation of the results becomes more clear. The
first two subplots, where a changes from a = 10�

to a = 20�, keeping b = 2� the same, show reso-
nances at approximately λ/� = 47.5, 24, 16, 12.3 and at
λ/� = 95.5, 49, 32.5, 24.5, 19.5, 16.5, 14, 12.3, . . ., respec-
tively, i.e., there are some coincidences. For the first
subplot, i.e., a = 10�, the longest wavelength resonance
at λ/� = 47.5 may be interpreted as half the wavelength
coinciding with an approximate size of the depression [2(a +
b) = 24�], the second resonance λ/� = 24 corresponds to
the full wavelength fitting with the size of the depression,
the third resonance at λ/� = 16 when 3/2 of the wavelength
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coincides approximately with the depression size, and the
fourth resonance at λ/� = 12.3 when twice the wave-
length coincides with the depression size, .... For the case
of the second subplot (a = 20�, b = 2�) of approximate
depression size 44� (or apparently better 48�) a similar
explanation of the longest wavelength resonances at λ/� =
95.5, 49, 32.5, 24.5 may be given: they occur approximately
when 1/2, 1, 3/2, 2 of the respective wavelengths coincide
with the approximate size of the depression. Thus the depres-
sions would effectively act similarly to potential wells, since
resonances occur when appropriate fractions of the wave-
length “fit” with the depressions’ sizes.

The previous transmission coefficients were calculated
by determining the phase shifts δs, δa, associated with the
symmetric and antisymmetric modes under inversion. In the
following we comment about the determination of these phase
shifts with our method. The phase shifts δa, δs are determined
by plotting the inverse cosine transforms associated with the
even functions Ha

e and Hs
e of Eqs. (50) and (61), respectively.

In both cases (symmetric and antisymmetric modes) we plot
the inverse Fourier cosine transforms for no geometric de-
fects and with them, and then we determine the phase shifts
between these plots at a distance x ∼ 100� from the center
x = 0, i.e., approximately at the right end of Fig. 1. Notice
that the parameter L, that reflects the end of an actual film and
that needs to be taken as finite in a numerical calculation, is a
“regulator” for the problem, i.e., it discretizes the number of
modes and allows one to count them. Also, due to this regula-
tor the inverse Fourier cosine transforms have zero derivatives
at x = L and the plots of Ha

e (x) and Hs
e (x) coincide at x = L

for the film with and without defects, meaning that the phase
shifts determined at x = L are zero; that is why in our case
we determine these phase shifts closer to the defects, i.e., at
approximately x = L/10.

Figure 4 plots the difference of phase shifts of symmetric
and antisymmetric modes, i.e., δ ≡ δs − δa, as a function of
the wavelength of the incident magnetostatic surface wave.
Clearly δ oscillates in a nonuniform way as a function of λ.
Peaks of these oscillations represent lower transmissions and
zeros represent full transmission or resonances. These oscilla-
tions of δ between positive and negative values of the curves
of Fig. 4 imply directly the recurrence of full transmissions of
Figs. 2 and 3.

Now we turn to discussing the appearance of localized
modes associated with the presence of these geometric de-
fects which are depressions. Indeed for both extensions of the
depressions, i.e., a = 10�, 20�, extensions of the transitions
regions b = 2�, 5�, and for the given depth p = 0.1�, inter-
estingly there are two localized modes appearing close to the
region of the depressions. In all these cases there is a mode of
lower frequency that is localized mainly in the interior of the
depressions and a higher frequency mode localized in the in-
terior and in the contiguous region to the depression. Figure 5
is a plot of the shapes of Ha

e for the lowest frequency local-
ized antisymmetric modes, with a = 10�, b = 2�, a = 20�,
b = 2�, and a = 20�, b = 5�, respectively. Clearly these
previous modes are approximately localized to the regions
limited by x = 10�, 20�, when a = 10�, 20�, respectively.
A comparison of the last two subplots, at the same value of
a = 20� and varying b = 2�, 5�, respectively, shows that
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FIG. 4. Scattering phase shift δ ≡ δs − δa as a function of
surface mode wavelength λ = 2π/k (scaled by �), for differ-
ent cases of depression half widths (a) and transition distances
(b): a = 10�, b = 2�, a = 20�, b = 2�, and a = 20�, b = 5�,
respectively.
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FIG. 5. Shapes of the lowest frequency localized antisymmetric
modes (variable Ha

e ) as a function of the distance from the center
x = 0 of the film, for different cases of depression half widths (a)
and transition distances (b): a = 10�, b = 2�, a = 20�, b = 2�,
and a = 20�, b = 5�, respectively.
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FIG. 6. Shapes of the second lowest frequency localized sym-
metric modes (variable Hs

e ) as a function of the distance from the
center x = 0 of the film, for different cases of depression half widths
(a) and transition distances (b): a = 10�, b = 2�, a = 20�, b =
2�, and a = 20�, b = 5�, respectively.

with a looser depression (b = 5�) the localized mode extends
a little further out, as one would have expected.

Figure 6 is a plot of the shapes of Hs
e for the second

lowest frequency localized symmetric modes, for the same
previous choice of geometric parameters. These “second”
localized symmetric modes do have amplitudes in the interior
regions of the depressions and decaying amplitudes outside
the depressions of an extent similar to the interior regions.

The localized modes at the depressions do have cosine
Fourier transform coefficients of higher amplitudes at the
higher end of the wave-vector range, as evidenced in Fig. 7.
Thus these modes do have a short wavelength content in their
structure, which allows them to be localized at the depressions
(they also oscillate quite a bit inside them).

Similar scattering calculations were done for a semi-
infinite medium (theory explained in Appendix D) and we did
find that there are very similar localized modes at their surface
when there is a single analogous depression. One would ex-
pect a finite thickness effect of the film if the depressions had
a higher depth. All this is consistent with the short wavelength
content of these localized modes.

Furthermore in Fig. 8 the frequencies of the two symmetric
localized modes are plotted in terms of a variable depth p
of the depressions. Thus there is a monotonic decrease of
the frequencies of these localized modes as the depth of the
depressions increases. The decrease starts at the frequency of
the surface modes of a perfect semi-infinite surface (or short
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FIG. 7. Cosine Fourier transform coefficients of the lowest fre-
quency localized symmetric modes (variable Hs

e ) as a function of
the nondimensional wave vector k�, for different cases of depres-
sion half widths (a) and transition distances (b): a = 10�, b = 2�,
a = 20�, b = 2�, and a = 20�, b = 5�, respectively.

wavelength limit of a perfect film also), i.e., �u = h0 + 1/2 =
0.7. The antisymmetric localized modes have similar frequen-
cies of those of the symmetric modes shown in Fig. 8. Notice
that these discrete frequencies of localized modes are im-
mersed in the continuum spectrum of the DE surface modes,
as in other studies [41].

We make a final comment about the calculations. The
eigenvalue problems that are solved, i.e., Eqs. (50) and (61),
are diagonal when the film has no defects: then we start the
calculations with p = 0 or flat surfaces, the eigenvalues and
eigenvectors are very simple, and each one corresponds to
a given value of wave vector k. Then the parameter p is
changed step by step (this allowed us to plot for example
the frequencies of Fig. 8) and the different eigenvalues and
eigenvectors are followed as they evolve with p growing: this
allows one to identify the effect of the defects in the scattering
of a mode with associated wave vector k at infinity.

Finally, we do give an estimate of the effect of Gilbert
damping in this magnetostatic scattering process, specifically
for resonances (α is taken as the Gilbert damping constant).
There is a damping decay time, τ = 1/ωα for a spin wave of
frequency ω, and also an estimate of resonance trapping time
is T = 1/�ω, with �ω the frequency width of the resonance.
Then resonance trapping time over damping decay time is
given approximately as

T

τ
∼ �α

��
∼ 0.5 × 0.001

0.02
∼ 0.3, (95)

where � was estimated to be of the order of 0.5; from Fig. 2
we estimated �� of order 0.02 for a resonance and we took
a low damping constant, α ∼ 0.001. Thus this estimate tells
us that in low damping ferromagnets it may be possible to see
magnetostatic resonances not being significantly affected by
damping.
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FIG. 8. Normalized frequencies, � = ω/4πMs|γ |, of the local-
ized symmetric modes as a function of the depth p of the geometric
depressions (the thickness of the film is w = 2�), for different cases
of depression half widths (a) and transition distances (b): a = 10�,
b = 2�, a = 20�, b = 2�, and a = 20�, b = 5�, respectively.

VI. CONCLUSIONS

A study of scattering of magnetostatic Damon-Eshbach
(DE) waves by geometric defects was presented. A theory was
developed that may be applied to defects of arbitrary shapes
in ferromagnetic films and semi-infinite media. This theory is
based on an extension of the Green’s-extinction theorem: inte-
gral equations are obtained for the modes on the surfaces and
their frequencies. We chose symmetrically located defects:
this allowed us to simplify the scattering calculations, which
may be framed in terms of scattering phase shifts of sym-
metric and antisymmetric modes under inversion (the phase
shifts measure how much the solutions are displaced in the flat
regions due to the presence of defects in comparison with the
case without defects). We calculated transmission coefficients
that are directly written in terms of the mentioned phase shifts
(it is proven that the sum of the transmission and reflection
coefficients is one due to energy conservation in the scat-
tering process). We provided examples of the application of
the theory by choosing as geometrical defects symmetrically
located depressions: we varied a bit their extent, transition
regions, and depth. The results are that the transmission co-
efficients decrease with depth of the depressions and they
show “resonances,” i.e., there are particular incident wave-
lengths (or frequencies) at which there is perfect transmission;
this is associated with a wave that is temporarily trapped
in the depressions and then leaves. The depressions would
effectively act similarly to potential wells, since resonances
occur when appropriate fractions of an incoming wavelength

fit with the approximate depression’s sizes. Interestingly we
also found the appearance of two localized modes for both
types of modes (symmetric and antisymmetric under inver-
sion) in the depressions, with frequencies that are lower than
the short wavelength limit of DE surface waves in films, i.e.,
they are bound states in the continuum. The lowest frequency
modes are localized inside the depressions, while the higher
frequency modes do have localization inside the depression
and to a similar extent also they do show amplitude outside
the depressions. Very similar localized modes do appear in
a semi-infinite medium with depressions, since these modes
have a high content of short wavelengths in themselves. The
latter indicates that these types of scattering effects should
appear in all surfaces with roughness or more pronounced
geometric defects.
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APPENDIX A: GREEN’S-EXTINCTION THEOREM
AND ORTHOGONAL EQUATIONS METHOD

A type of Green’s-extinction theorem [39] has been used
to obtain spin wave modes in several geometries by the author
and co-workers, applied either in the magnetostatic approx-
imation [27–29] or in the dipole-exchange approximation
[30–32]. Our initial applications of the method used Green’s
functions, while the latter studies used auxiliary functions,
i.e., an introduced variation of the method, which was named
the orthogonal equations method [32] and that is also used
in the present work. In the following the main ideas of these
methods are summarized.

The initial applications considered interior and exterior sets
of Green’s functions that satisfy the Landau-Lifshitz magne-
tization dynamics equations and the magnetostatic Maxwell’s
equations (i.e., the equations introduced in subsections II B 1
and II B 2, but evaluated at negative frequencies and wave
vectors, and without regard to boundary conditions), with the
exception that the magnetic inductions satisfy

∇ · �bG(�x − �x′) = 4πδ(�x − �x′), (A1)

i.e., they consider localized artificial magnetic charges at �x′.

1. Integral equations outside the magnetized sample

Integral equations can be derived for the linear normal
modes of the system if one integrates in the region outside
the magnetized sample the following expression:∫

Vout

dV
{
φ−ω

0 (�x − �x′)∇ · �bω(�x) − φω(�x)∇ · �b−ω
0 (�x − �x′)

}
,

(A2)
which involves the modes and the outside Green’s function.
The volume of integration is chosen outside the magne-
tized sample, but ending on its limiting surface. Using the
equations for the divergences of the magnetic inductions,
and since outside �bω = −∇φω and �b−ω

0 = −∇φ−ω
0 , integrat-

ing by parts the previous equation one obtains (Green’s
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theorem)∫
S

d �S · {
φ−ω

0 (�x − �x′)�bω(�x) − φω(�x)�b−ω
0 (�x − �x′)

}
=

{
4πφω(�x′)

0

}
, (A3)

with S the surface of this nonmagnetized region, with its nor-
mal pointing out of the sample, and the upper inhomogeneous
form applies if �x′ is chosen outside the magnetized sample and
the lower if �x′ is inside. The latter homogeneous equation is
associated with the extinction name, since the integral expres-
sion is extinguished in that case.

Analogous homogeneous integral equations may be writ-
ten if instead of exterior Green’s functions one uses aux-
iliary functions in the outside region that satisfy the same
equations as the modes without regard to boundary condi-
tions (evaluated at negative frequencies and wave vectors,
no sources). Thus, for these outside auxiliary functions,
one gets∫

S
d �S · {

φ−ω
o (�x)�bω(�x) − φω(�x)�b−ω

o (�x)
} = 0. (A4)

2. Integral equations inside the magnetized sample

In a similar way the following integral is taken over the
interior of the magnetized sample volume:

0 =
∫

Vin

dV
{
φ−ω

I (�x, �x′)∇ · �bω − φω(�x)∇ · �b−ω
I (�x, �x′)

}
,

(A5)
with φ, �b corresponding to normal modes and φI , �bI represent-
ing an inside Green’s function. Integrating by parts and using
the equations for the divergences of the magnetic inductions
involved, one obtains∫

S
d �S · {

φω(�x)�b−ω
I (�x, �x′) − φ−ω

I (�x, �x′)�bω(�x)
} =

{
0

4πφω(�x′)

}
.

(A6)

The lower inhomogeneous equation arises when �x′ is in-
side the sample and the upper homogeneous one otherwise
(extinction equation). Furthermore, analogous homogeneous
equations are obtained if the Green’s function is replaced by
auxiliary functions satisfying the same equations inside the
sample, but without sources and without regard to boundary
conditions. Thus one obtains the following integral equa-
tions associated with the interior of the sample:∫

S
d �S · {φ−ω

i (�x)�bω(�x) − φω(�x)�b−ω
i (�x)} = 0, (A7)

with φi, �bi representing inside auxiliary functions.

APPENDIX B: CONTINUOUS AND DISCRETE SINE
AND COSINE FOURIER TRANSFORMS

The continuous cosine and sine transforms of even, E (x),
and odd, O(x), functions are defined as

Ec(q) =
∫ ∞

−∞
dx cos(qx)E (x) = 2

∫ ∞

0
dx cos(qx)E (x), (B1)

Os(q) =
∫ ∞

−∞
dx sin(qx)O(x) = 2

∫ ∞

0
dx sin(qx)O(x).

(B2)

From these equations, it follows that Ec(−q) = Ec(q) and
Os(−q) = −Os(q). These may be inverted as follows:

E (x) = 1

2π

∫ ∞

−∞
dq cos(qx)Ec(q) = 1

π

∫ ∞

0
dq cos(qx)Ec(q),

(B3)

O(x) = 1

2π

∫ ∞

−∞
dq sin(qx)Os(q) = 1

π

∫ ∞

0
dq sin(qx)Os(q).

(B4)

A connection of these mentioned continuous sine and cosine
Fourier transforms of Eqs. (B1)–(B4) with the usual discrete
sine and cosine transforms is the following:

1

2
Ec(qk ) =

∫ ∞

0
dx cos(qkx)E (x) = �Ek

= �

⎧⎨
⎩1

2
[E0 + EN (−1)k] +

N−1∑
j=1

cos(qk j�)Ej

⎫⎬
⎭,

(B5)

1

2
Os(qk ) =

∫ ∞

0
dx sin(qkx)O(x) = �Ok

= �

N−1∑
j=1

sin(qk j�)Oj, (B6)

where the points located between 0 < x < L are discretized
as follows: x j = j�, j = 0, . . . , N , with L = N�. Also, qk =
πk/N� = πk/L.

Following the continuous formulas, the inverse discrete
cosine and sine transforms are the following:

E (x j ) = Ej = 1

π

∫ ∞

0
dq cos(qx j )Ec(q)

= 2

N

{
1

2
[Ek=0 + Ek=N (−1) j] +

N−1∑
k=1

cos(qk j�)Ek

}
,

(B7)

O(x j ) = 1

π

∫ ∞

0
dq sin(qx j )Os(q) = 2

N

N−1∑
k=1

sin(qk j�)Ok,

(B8)

with qk j� = πk j/N .
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APPENDIX C: EVEN OBSTACLES AND THIN FILMS

By writing the fields in terms of even and odd functions with respect to x = 0, the extinction Eqs. (20) lead to [B(x) =
Be(x) + Bo(x), �(x) = �e(x) + �o(x)]

0 =
∫ ∞

−∞
dx e−|k|η(x)

{
cos(kx)Bu

e (x) + [k sin(kx)η′(x) − |k| cos(kx)]�u
e (x) − i sin(kx)Bu

o(x) + i[k cos(kx)η′(x)

+ |k| sin(kx)]�u
o(x)

}
, (C1)

0 =
∫ ∞

−∞
dx e|k|ξ (x)

{
cos(kx)Bd

e (x) − [k sin(kx)ξ ′(x) + |k| cos(kx)]�d
e (x) − i sin(kx)Bd

o (x) − i[k cos(kx)ξ ′(x)

− |k| sin(kx)]�d
o (x)

}
, (C2)

0 =
∫ ∞

−∞
dx e±|k|[l+η(x)]

{
cos(kx)Bu

e (x) − i sin(kx)Bu
o(x) + [cos(kx)(νk ± μ|k|) + sin(kx)η′(x)(μk ± ν|k|)]�u

e (x)

− i[sin(kx)(νk ± μ|k|) − cos(kx)η′(x)(μk ± ν|k|)]�u
o(x)

} +
∫ ∞

−∞
dx e±|k|[−l+ξ (x)]{cos(kx)Bd

e (x) − i sin(kx)Bd
o (x)

− [cos(kx)(νk ± μ|k|) + sin(kx)ξ ′(x)(μk ± ν|k|)]�d
e (x) + i[sin(kx)(νk ± μ|k|) − cos(kx)ξ ′(x)(μk ± ν|k|)]�d

o (x)
}
.

(C3)

Using the representation of the unknown fields in terms of inverse sine and cosine Fourier transforms (see next Appendix sec-
tion B) leads to

0 = Bu
e (k) − |k|�u

e (k) − is(k)Bu
o(k) + ik�u

o(k) + 1

π

∫ ∞

0
dq

{
C−|k|

u (k, q)Bu
e (q) − qS−|k|

u (k, q)�u
e (q)}

− i

π

∫ ∞

0
dq{s(k)S−|k|

u (k, q)Bu
o(q) − qs(k)C−|k|

u (k, q)�u
o(q)

}
, (C4)

0 = Bd
e (k) − |k|�d

e (k) − is(k)Bd
o (k) + ik�d

o (k) + 1

π

∫ ∞

0
dq

{
C|k|

d (k, q)Bd
e (q) − qS|k|

d (k, q)�d
e (q)}

− i

π

∫ ∞

0
dq{s(k)S|k|

d (k, q)Bd
o (q) − qs(k)C|k|

d (k, q)�d
o (q)

}
, (C5)

0 = e±|k|l{Bu
e (k) − is(k)Bu

o(k) + (kν ± |k|μ)
[
�u

e (k) − is(k)�u
o(k)

]} + e±|k|l

π

∫ ∞

0
dq

{
C±|k|

u (k, q)Bu
e (q)

− is(k)S±|k|
u (k, q)Bu

o(q) + q[ν ± s(k)μ]
[
s(k)S±|k|

u (k, q)�u
e (q) − iC±|k|

u (k, q)�u
o(q)

]} + e∓|k|l{Bd
e (k) − is(k)Bd

o (k)

− (kν ± |k|μ)
[
�d

e (k) − is(k)�d
o (k)

]} + e∓|k|l

π

∫ ∞

0
dq

{
C±|k|

d (k, q)Bd
e (q)

− is(k)S±|k|
d (k, q)Bd

o (q) − q[ν ± s(k)μ]
[
s(k)S±|k|

d (k, q)�d
e (q) − iC±|k|

d (k, q)�d
o (q)

]}
. (C6)

Indeed, the following equations help to understand the previous Eqs. (C4)–(C6):

f ±
η (x) ≡ e±|k|η(x)[k sin(kx)η′ ± |k| cos(kx)] = ±s(k)

∂

∂x
[sin(kx)e±|k|η(x)]. (C7)

Then, ∫ ∞

−∞
dx cos(qx) f ±

η (x) = ±qs(k){π [δ(k − q) − δ(k + q)] + S±|k|
u (k, q)}. (C8)

Similarly, ∫ ∞

−∞
cos(qx) f ±

ξ (x) = ±qs(k){π [δ(k − q) − δ(k + q)] + S±|k|
d (k, q)}. (C9)

Notice that

[cos(kx)(νk ± μ|k|) + sin(kx)η′(x)(μk ± ν|k|)] = [μ ± s(k)ν][k sin(kx)η′(x) ± |k| cos(kx)] (C10)
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and it leads through Eq. (C8) to∫ ∞

−∞
dx cos(qx)e±|k|η(x)[cos(kx)(νk ± μ|k|) + sin(kx)η′(x)(μk ± ν|k|)] = q[ν ± s(k)μ]

{
π [δ(k − q) − δ(k + q)] + S±|k|

u (k, q)
}
.

(C11)

Also,

g±
η (x) ≡ e±|k|η(x)[k cos(kx)η′ ∓ |k| sin(kx)]

= ±s(k)
∂

∂x
[cos(kx)e±|k|η(x)] . (C12)

Then, ∫ ∞

−∞
dx sin(qx)g±

η (x) = ∓qs(k)
{
π [δ(k − q) + δ(k + q)] + C±|k|

u (k, q)
}
. (C13)

Also,

[sin(kx)(νk ± μ|k|) − cos(kx)η′(x)(μk ± ν|k|)] = −[μ ± s(k)ν][k cos(kx)η′(x) ∓ |k| sin(kx)] (C14)

and it leads through Eq. (C13) to∫ ∞

−∞
dx e±|k|η(x) sin(qx)[sin(kx)(νk ± μ|k|) − cos(kx)η′(x)(μk ± ν|k|)] = q[ν ± μs(k)]{π [δ(k − q) + δ(k + q)] + C±|k|

u (k, q)}.
(C15)

APPENDIX D: SEMI-INFINITE MEDIUM

We consider that the semi-infinite magnetized medium is located in y � 0 and that the geometric perturbation of the lower
surface (y � 0) is ξ (x) = −η(x), i.e., y(x) = −η(x) represents the perturbed surface. One may obtain extinction equations for
semi-infinite mediums as special cases of the extinction equations (24) and (25):

0 = Be(k) − is(k)Bo(k) − He(k) + is(k)Ho(k) + 2

N

∑
q

{C−(k, q)[Be(q) + is(k)Ho(q)] − S−(k, q)[He(q) + is(k)Bo(q)]},

(D1)

0 = [s(k)� − h][Be(k) − is(k)Bo(k)] − [h − s(k)� + 1][He(k) − is(k)Ho(k)] + 2

N

∑
q

{[s(k)� − h][C+(k, q)Be(q)

− is(k)S+(k, q)Bo(q)] − [h − s(k)� + 1][S+(k, q)He(q) − is(k)C+(k, q)Ho(q)]}, (D2)

with

C±(k, q) ≡
∫ ∞

−∞
dx cos(qx) cos(kx)(e±|k|η(x) − 1),

S±(k, q) ≡ s(k)
∫ ∞

−∞
dx sin(qx) sin(kx)(e±|k|η(x) − 1). (D3)

Considering the cases s(k) = sgn(k) = ±1, one gets four extinction equations from Eqs. (D1) and (D2):

0 = Be(k) − iBo(k) − He(k) + iHo(k) + 2

N

∑
q

{C−(k, q)[Be(q) + iHo(q)] − S−(k, q)[He(q) + iBo(q)]}, (D4)

0 = Be(k) + iBo(k) − He(k) − iHo(k) + 2

N

∑
q

{C−(k, q)[Be(q) − iHo(q)] − S−(k, q)[He(q) − iBo(q)]}, (D5)

0 = (� − h)[Be(k) − iBo(k)] − (h − � + 1)[He(k) − iHo(k)] + 2

N

∑
q

{(� − h)[C+(k, q)Be(q)

− iS+(k, q)Bo(q)] − (h − � + 1)[S+(k, q)He(q) − iC+(k, q)Ho(q)]}, (D6)

0 = (� + h)[Be(k) + iBo(k)] + (h + � + 1)[He(k) + iHo(k)] + 2

N

∑
q

{(� + h)[C+(k, q)Be(q)

+ iS+(k, q)Bo(q)] + (h + � + 1)[S+(k, q)He(q) + iC+(k, q)Ho(q)]}. (D7)
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By defining new variables

U± ≡ Be ± iHo, V± ≡ He ± iBo (D8)

and using the matrices P±, R± defined in Eqs. (27), Eqs. (D4)–(D7) become

0 = P−U+ − R−V+, (D9)

0 = P−U− − R−V−, (D10)

0 = (� − h − 1/2)(P+U− + R+V−) − R+V+/2 + P+U+/2, (D11)

0 = (� + h + 1/2)(P+U+ + R+V+) + R+V−/2 − P+U−/2. (D12)

In the case of no geometric defects these equations become U+ = V+, U− = V−, and

0 = (� − h − 1/2)U−, (D13)

0 = (� + h + 1/2)U+. (D14)

The modes resulting from Eq. (D13) correspond to surface modes of positive frequency � = h + 1/2, with U−(k) = V−(k) �= 0,
U+(k) = V+(k) = 0. The latter [using Eqs. (D8)] leads to Be = −iHo, He = −iBo, and together with U− = V− leads to Ho = iHe,
Bo = iBe. The last equality leads to

B(x) = (2/N )[Be cos(kx) + Bo sin(kx)] = (2/N )Beeikx, (D15)

meaning that there is only propagation to the right on the semi-infinite surface, as announced [here k > 0 and the time dependence
is exp(−iωt )].

By using the following matrices: T ≡ P−1
− R−, S ≡ P+T + R+, and Q ≡ P+T − R+, the system of Eqs. (D9)–(D12) becomes

a regular eigenvalue (�) problem:

0 =
(

(h + 1/2)I − �I −QS−1/2
QS−1/2 −(h + 1/2)I − �I

)(
SV−
SV+

)
. (D16)

A final step leads to

0 =
(

[(h + 1/2)2 − �2]I −(QS−1)2/4
)(

SV+
)
. (D17)

Thus the eigenvalues �2 are equal to the eigenvalues of the matrix −(QS−1)2/4 plus (h + 1/2)2.

APPENDIX E: CASE OF THIN FILM
WITH FLAT SURFACES

The spin wave modes of a film with flat surfaces may be
solved by the standard method, i.e., by solving the magneto-
static Maxwell equations subject to boundary conditions, and
the Landau Lifshitz equations (see discussion in Sec. II B).
The plane wave solution for the magnetostatic potential is of
the form

φ(x, y, t ) = ei(kx−ωt )φ(y), (E1)

with φ(y) given by

φu(y) = U e−|k|(y−l ), y > l,

φi(y) = I+e|k|y + I−e−|k|y, −l < y < l,

φd (y) = D e|k|(y+l ), y < −l. (E2)

Notice that the profile f (y) of the magnetostatic plane wave of
Eqs. (62) corresponds to φ(y) evaluated for s = sgn(k) > 0.
Applying the boundary conditions of continuous magneto-
static potential and y component of the magnetic induction

by at the surfaces y = ±l of the film, one obtains

0 =
(

(μ + 1 + sν)e|k|l (−μ + 1 + sν)e−|k|l

(μ − 1 + sν)e−|k|l (−μ − 1 + sν)e|k|l

)(
I+
I−

)
,

(E3)

which is equivalent to

0 =
(

(2 + 1
h+s� )e|k|l − 1

h−s� e−|k|l
1

h+s� e−|k|l −(2 + 1
h−s� )e|k|l

)(
I+
I−

)
. (E4)

Imposing the determinant of the previous matrix to be null
leads to the frequencies of the DE surface modes of Eq. (1)
(there are solutions with equivalent negative frequencies).
From the eigenvector associated with Eq. (E4) at positive
frequency (fixed value of k) one deduces that the ratio of the
potentials evaluated at the surfaces is

φ(l )

φ(−l )
= U

D
=

√
h + 1/2 − s�

h + 1/2 + s�
, (E5)

which shows that the amplitude of the spin wave in propaga-
tion to the right (� > 0 and k > 0) is significant in the lower
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surface and vice versa for propagation to the left, i.e., in that
case significant in the upper surface.

In the case of a film with flat surfaces one may also obtain
the antisymmetric and symmetric modes of Eqs. (93) and (94)
through our extinction equations. Indeed, Eqs. (39)–(42) for
the antisymmetric modes become effectively Ba

e = Ha
e , Bs

o =
Hs

o , and

0 = −2�D+Hs
o − i[(2h + 1)D+ + D−]Ha

e ,

0 = i[(2h + 1)D+ − D−]Hs
o − 2�D+Ha

e . (E6)

These equations may be written in matrix form as

0 =
(

−�I −i
[(

h + 1
2

)
I + D2

−
2

]
i
[(

h + 1
2

)
I − D2

−
2

] −�I

)(
D+Hs

o

D+Ha
e

)
.

(E7)

Imposing the determinant of the previous equations to be
null leads to the dispersion relation of Damon Eshbach (DE)
modes. For the positive frequencies (there are ± pairs of
solutions), the eigenvector corresponds to

iHs
o (k)

Ha
e (k)

=
√

h + 1/2 + e−2|k|l/2

h + 1/2 − e−2|k|l/2
. (E8)

Also, Eqs. (53)–(56) for the symmetric modes become
effectively Bs

e = Hs
e , Ba

o = Ha
o , and

0 = −2�D+Ha
o − i[(2h + 1)D+ − D−]Hs

e ,

0 = i[(2h + 1)D+ + D−]Ha
o − 2�D+Hs

e . (E9)

These equations may be written in matrix form as

0 =
(

−�I −i
[(

h + 1
2

)
I − D2

−
2

]
i
[(

h + 1
2

)
I + D2

−
2

] −�I

)(
D+Ha

o

D+Hs
e

)
.

(E10)

Imposing the determinant of the previous equations to be null
leads again to the frequency eigenvalues of the DE modes of
Eq. (1). For the positive frequencies, the eigenvector corre-
sponds to

iHa
o (k)

Hs
e (k)

=
√

h + 1/2 − e−2|k|l/2

h + 1/2 + e−2|k|l/2
. (E11)

The results for the eigenvectors of the antisymmetric and
symmetric modes of Eqs. (E8) and (E11) may be verified by
use of the “standard” solution of Eq. (E2) and indeed more
directly by use of Eq. (E5).
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