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Metastability and dynamics in remanent states of square artificial spin ice
with long-range dipole interactions
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After removal of an applied magnetic field, artificial square spin ice can be left in a metastable remanent
state, with nonzero residual magnetization and excess energy above the ground state. Using a model of magnetic
islands with dipoles of fixed magnitude and local anisotropies, the remanent states are precisely determined here,
including all long-range dipole interactions. Small deviations away from remanent states are analyzed and the
frequencies of modes of oscillation are determined. Some modes reach zero frequency at high-symmetry wave
vectors, such that the stability limits are found, as determined by the local anisotropy strength relative to the
dipolar coupling strength.

DOI: 10.1103/PhysRevB.108.174405

I. REMANENT STATES IN SQUARE ARTIFICIAL SPIN ICE

Artificial spin ice on a square lattice [1] has attracted a
lot of attention as a system exhibiting frustration [2,3], a
doubly degenerate ground state [4], and monopole-like topo-
logical excitations [5–7] out of a degenerate ground state
[8–10]. These properties result from the geometry-induced
demagnetization anisotropy of magnetic islands fabricated on
a nonmagnetic substrate [11]. Protocols using applied mag-
netic fields have been developed to nudge the system towards
a ground state [12–16], which is difficult due to the energy
barriers associated with frustration. In a ground state (GS)
of artificial square ice, the island dipoles satisfy the two-in,
two-out ice rule at each vertex to minimize the dipolar energy,
also referred to as Type I, with pairs of opposing dipoles both
inward or both outward across the centers of the vertices,
see Fig. 1 of Ref. [17]. If the system can be pushed into
a ground state, it should have a particular small-amplitude
spin-wave spectrum, which has been investigated in varying
approximations [18–20]. The spectrum is expected to help
identify and characterize the ground state [21,22].

A remanent state (RS) of spin ice, however, may be more
straightforward to obtain, as it requires application of an ap-
plied field that is slowly reduced to zero. Figure 1 shows a
segment of square ice left in a remanent state, after applying a
field along a nearest-neighbor (NN) primary axis of the island
lattice, labeled xI, which was then turned off. The state is
metastable, being a local energy minimum but well above the
ground state, and although it also satisfies the ice rule, the
vertices are of higher energy and referred to as Type II [17]
vertices.

Remanent states should possess distinct small-amplitude
oscillations or spin-wave spectra, which signal the presence of
that state [21,23]. The goal of the present work is to estimate
the stability properties of a remanent state by analysis of the
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linearized spin-wave modes about a remanent state by assum-
ing Heisenberg-like dipole dynamics [24,25] as opposed to
Ising spins [26,27]. There is one dipole per island, of fixed
length but varying direction. This assumption ignores internal
magnetization dynamics within the islands. For isolated thin
islands with large in-plane aspect ratios, simulations show that
there is very little spatial variation in the internal magnetiza-
tion, even under a reversal process [28]. This approximation
will be valid if the dipolar interaction fields are nearly uniform
within an island affected by those fields.

The Heisenberg-like island dipoles in the RS of Fig. 1 are
tilted slightly from the islands’ long axes. This is because
dipolar interactions cause the dipoles on the two sublattices
to tilt towards each other as they compete with the shape
anisotropy of the islands. The effects of this tilting are taken
into account here.

Long-range dipole interactions have been shown to be
highly relevant [29]. For clarity, we start from a NN model and
extend it to include all dipolar interactions to unlimited range.
The sum over infinite-range dipole interactions is motivated
by a calculation of the mode spectrum for a one-dimensional
chain of magnetic islands [30]. The mode spectrum helps to
determine the stability properties and discriminates remanent
states from other configurations.

Heisenberg-like dipole model

In this model [25] the magnetic islands have single-domain
dipole moments of fixed magnitude μ whose time-dependent
directions are along Heisenberg-like unit spin vectors μ̂i(t ).
The elongation of the islands produces uniaxial anisotropy
[28] along axis ûi of strength K1, and their limited height
produces planar anisotropy of strength K3 with axis ẑ. Both
anisotropies are due to demagnetization or geometric effects.
The anisotropy energies are very close to parabolic in the
components of the dipole [28], even though small deviations
from uniform magnetization can appear at the edges. The
islands are elongated either along the x or y directions of a
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FIG. 1. Square spin ice in a remanent state magnetized along a
principal NN-direction xI. Dots indicate the vertices, each surrounded
by four islands. A and B represent the two sublattices for the two
island orientations. The island lattice constant along diagonal direc-
tions is aI = av/

√
2, where av is the vertex lattice constant along the

original xy coordinates of the square lattice of vertices, see Eq. (2).

square lattice of vertices, and they are symmetrically located
between vertices at locations (vx, vy)av, where the spacing is
av and vx, vy are integer locations. The Hamiltonian for N
islands can be written

H = − μ0

4π

μ2

a3
I

N∑
i> j

[3(μ̂i · r̂i j )(μ̂ j · r̂i j ) − μ̂i · μ̂ j]

(ri j/aI )3

+
∑

i

{K1[1 − (μ̂i · ûi )
2] + K3(μ̂i · ẑ)2}, (1)

where μ0 is the magnetic permeability of space, aI is the
NN spacing of the islands and ri j and r̂i j are center-to-center
distance and direction vectors between pairs of islands [31].
The NN island separation is aI = 1√

2
av, which determines the

NN principal displacements (i.e., basis vectors of the island
lattice),

xI = 1√
2

aI(x̂ + ŷ), yI = 1√
2

aI(−x̂ + ŷ), (2)

rotated 45◦ from the xy coordinate system of the vertices, see
Fig. 1. When indicating directions in this work, the island NN
principal directions along x̂I and ŷI are used. For example,
the net magnetization of the state in Fig. 1 is along the [10]
direction of the island lattice (equivalent to the [11] direction
of the vertex lattice).

A convenient energy unit is the NN dipolar coupling, de-
noted with script D,

D ≡ μ0

4π

μ2

a3
I

, (3)

and farther neighbors have dipole interactions reduced by the
center-to-center distance cubed.

II. REMANENT STATES IN THE NEAREST-NEIGHBOR
MODEL

First we consider only NN dipole interactions, and later
include long-range interactions that are known to be important
[32,33] in the dynamics of spin ice. The system is assumed to

be uniform by sublattice. The islands aligned along x̂ make up
the A sublattice, with spins μ̂i = A, and the islands aligned
along ŷ comprise the B sublattice, with spins μ̂i = B. A cen-
tral A site interacts with four NN B sites, and vice versa. The
dipole interactions depend on the direction to the neighbors.

Taking the interaction of an A site with its neighbors,
averaged with the interaction of a B site with its neighbors,
leads to an effective two-sublattice Hamiltonian, which is the
energy per pair of A and B sites,

HAB = −2D[3(A · x̂I)(B · x̂I) + 3(A · ŷI)(B · ŷI)

− 2A · B] + K1
(
2 − A2

x − B2
y

)+ K3
(
A2

z + B2
z

)
. (4)

Inserting the NN unit vectors, this is

HAB = −2D(AxBx + AyBy − 2AzBz )

+ K1
(
2 − A2

x − B2
y

)+ K3
(
A2

z + B2
z

)
. (5)

A local minimum of this Hamiltonian is a remanent state. It
should be minimized under the constraint of fixed spin length
for A and B. Lagrange’s method of undetermined multipli-
ers quickly shows that Az = Bz = 0 is required; the dipoles
remain within the xy plane. Thus their equilibrium directions
are described by in-plane angles φA and φB, taken as counter-
clockwise deviations away from the x̂ and ŷ directions, such
that

A = (cos φA, sin φA, 0), B = (− sin φB, cos φB, 0). (6)

In these coordinates, the two-sublattice Hamiltonian is

HAB = −2D sin (φA − φB) + K1(2 − cos2 φA − cos2 φB).
(7)

This is minimized when sin 2φA = − sin 2φB, which implies
φB = −φA, together with the additional requirement,

∂HAB

∂φA
= −2D cos (φA − φB) + K1 sin 2φA = 0. (8)

FIG. 2. The RS energy εNN(φA) given in Eq. (10) for various
values of in-plane anisotropy, K1/D. In all cases there is a local
minimum, which suggests real frequencies of oscillation about that
minimum, however, the NN model requires K1 > 2.947D for stabil-
ity, which limits the stable canting angle φA.
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FIG. 3. The RS equilibrium tilting angles φ0
A (left axis) given

in Eqs. (9), and the equilibrium energy per site ε (right axis) in
Eqs. (10), as functions of the islands’ uniaxial anisotropy K1/D,
comparing the nearest-neighbor couplings model with the infinite-
range couplings model in Sec. IV A.

The fourfold symmetry of the system implies four RS solu-
tions. We consider the primary one as that where the system
magnetization points at 45◦ between the x and y axes (along
xI), with energy-minimizing angles satisfying

tan 2φ0
A = − tan 2φ0

B = 2D
K1

. (9)

The 0 superscript indicates the equilibrium RS values. With
φ0

A positive, and φ0
B negative, as in Fig. 1, the sublattices

tilt inward towards the 45◦ diagonal direction, attempting to
minimize dipolar energy which competes with an increasing
uniaxial anisotropy energy. The inward canting of the sublat-
tices is small, unless K1 is small. However, when K1 is too
small the state will destabilize, as shown later. Thus there is
a limited amount of spin canting. With φB = −φA, the energy
per site is

εNN(φA) = 1
2 HAB = −D sin 2φA + K1 sin2 φA. (10)

This is minimized when φA = φ0
A, as seen in Fig. 2 for vari-

ous anisotropy strengths relative to dipole strength. Stronger
uniaxial anisotropy in the islands reduces the spin canting,
see Fig. 3, which shows the canting angle φ0

A and energy per
site εNN for the NN model and for the model that includes
infinite-range dipole interactions, below. For comparison, the
per-site energy in a ground state of square ice is εGS = −3D
when only NN interactions are included. Later we show
that the NN model requires K1 > 2.947D for RS stability,
hence the NN canting angle is limited by φ0

A < 17◦. Even so,

this angular deviation must be taken into account to obtain
correct normal-mode oscillation frequencies around a rema-
nent state.

III. LINEARIZED OSCILLATION DYNAMICS
IN THE NEAREST-NEIGHBOR MODEL

Still staying with the NN model, the small amplitude oscil-
lations can be analyzed. The island dipoles are now allowed
to deviate slightly from their equilibrium RS directions in
Eq. (9), including out-of-plane deviations μz

n = μ sin θn. An
island is located at

n = nxI xI + nyI yI, (11)

in terms of the NN principal displacements xI, yI, letting
nxI = 1, 2, 3, . . . N1 and nyI = 1, 2, 3, . . . N2. The total energy
is a sum over islands n, and counting the dipole interactions
with a NN bond to n + xI and a NN bond to n + yI. The
dipole interaction energies in these different directions are not
equivalent.

Based on (1), the dipole-dipole interaction energy of an
island at n on the A sublattice with the neighbor at n + xI
on the B sublattice is

udd‖ = −D
[

3
2

(
Ax

nBy
n+xI

+ Ay
nBx

n+xI

)
+ 1

2

(
Ax

nBx
n+xI

+ Ay
nBy

n+xI

)− Az
nBz

n+xI

]
. (12)

The parallel symbol (‖) indicates that the spins point close to
the bond direction. For the interaction of an A site with its
neighbor at n + yI on the B sublattice, the first term has the
opposite sign,

udd⊥ = −D
[− 3

2

(
Ax

nBy
n+yI

+ Ay
nBx

n+yI

)
+ 1

2

(
Ax

nBx
n+yI

+ Ay
nBy

n+yI

)− Az
nBz

n+yI

]
. (13)

The perpendicular symbol ⊥ indicates that the spins point
almost perpendicular to the bond direction. These expressions
also apply to the interaction of a B island with its princi-
pal direction neighbors on the A sublattice (interchanging
A and B).

To analyze time-dependent fluctuations, the in-plane an-
gles are set to φA = φ0

A + φn(t ) on A islands and φB = φ0
B +

φn(t ) on B islands, where φn(t ) are the deviations from the
equilibrium RS. There are nonzero out-of-plane deviations
θn(t ), such that the spins’ (x, y, z) components are written

An = (
cn cos

(
φ0

A + φn
)
, cn sin

(
φ0

A + φn
)
, sn

)
,

Bn = (−cn sin
(−φ0

A + φn
)
, cn cos

(−φ0
A + φn

)
, sn

)
, (14)

where cn = cos θn, sn = sin θn.
Then, the dipolar energies can be expanded to quadratic

order in φn � 1 and θn � 1. For example,

udd‖

D ≈ −3

2

[
1 − φnφn+xI − 1

2

(
φ2

n + φ2
n+xI

+ θ2
n + θ2

n+xI

)]

+ θnθn+xI − 1

2

{
sin

(
2φ0

A

)[
1 + φnφn+xI − 1

2

(
φ2

n + φ2
n+xI

+ θ2
n + θ2

n+xI

)]+ cos
(
2φ0

A

)
(φn − φn+xI )

}
. (15)
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A similar expression gives udd⊥ , with the − 3
2 changed to + 3

2 . Combining udd‖ with udd⊥ , and summing over n produces the net
NN dipolar energy, ordered by zeroth, linear, and quadratic terms,

Udd ≈ −ND sin
(
2φ0

A

)− D cos
(
2φ0

A

)∑
n

[
φn − 1

2

(
φn+xI + φn+yI

)]

+ D
∑

n

{
3

2
φn(φn+xI − φn+yI ) + θn(θn+xI + θn+yI ) + sin

(
2φ0

A

)[
φ2

n + θ2
n − 1

2
φn(φn+xI + φn+yI )

]}
. (16)

In the same way, the anisotropy energy after expansion is

UK ≈ NK1 sin2 φ0
A + K1

2
sin

(
2φ0

A

)∑
n

[
φn − 1

2
(φn+x + φn+y)

]
+
∑

n

[
K1 cos

(
2φ0

A

)
φ2

n + (
K1 cos2 φ0

A + K3
)
θ2

n

]
. (17)

The total system energy is the sum,

H = Udd + UK = H0 + H (1) + H (2), (18)

where the zeroth-order term H (0) is the RS energy:

H (0) = N
(−D sin 2φ0

A + K1 sin2 φ0
A

)
. (19)

The term H (1) linear in deviations is zero, and the quadratic
terms are separated into in-plane parts and out-of-plane parts,
H (2) = Hφ + Hθ , defined by

Hφ =
∑

n

{[
D sin 2φ0

A + K1 cos 2φ0
A

]
φ2

n

− 1

2
D sin

(
2φ0

A

)
φn(φn+xI + φn+yI )

+ 3

2
Dφn(φn+xI − φn+yI )

}
, (20)

Hθ =
∑

n

{[
D sin 2φ0

A + K1 cos2 φ0
A + K3

]
θ2

n

+Dθn
(
θn+xI + θn+yI

)}
. (21)

A. Spin deviation energy in matrix form

Having expressed the small fluctuations by quadratic
Hamiltonians, now it is possible to extract the modes of os-
cillation. To that end, the sub-Hamiltonians Hφ and Hθ can be
written in a matrix notation, from which the spin dynamics
is easier to follow. Generally, the spin deviations form state
vectors (written as row vectors),

ψ
†
φ = (φ1, φ2, φ3, . . . φN ),

ψ
†
θ = (θ1, θ2, θ3, . . . θN ), (22)

where the subscripts label the islands. There are only sparse
couplings (i.e., nearest neighbors) among the elements of each
vector. The out-of-plane Hamiltonian can be written in terms
of an N×N matrix Mθ as

Hθ = 1
2ψ

†
θ Mθψθ , (23)

where the matrix elements are either diagonal ones (Mθ,n,n)
or NN ones (Mθ,n,n±xI and Mθ,n,n±yI ). From (21), the nonzero
elements are

Mθ,n,n = Mθ,1 ≡ 2
(
D sin 2φ0

A + K1 cos2 φ0
A + K3

)
,

Mθ,n,n±xI = Mθ,n,n±yI ≡ Mθ,2 = D. (24)

Mθ is symmetric: Mθ,n,m = Mθ,m,n. The in-plane Hamiltonian
can be written in the same form,

Hφ = 1
2ψ

†
φMφψφ, (25)

where (20) gives the nonzero matrix elements,

Mφ,n,n = Mφ,1 ≡ 2
(
D sin 2φ0

A + K1 cos 2φ0
A

)
,

Mφ,2 ≡ −1

2
D sin 2φ0

A, Mφ,3 ≡ 3

2
D,

Mφ,n,n±xI = Mφ,2 + Mφ,3,

Mφ,n,n±yI = Mφ,2 − Mφ,3. (26)

Mφ is also symmetric, but the couplings in the yI direction are
different than those in the xI direction.

B. Spin dynamics from Hφ and Hθ

Assuming a gyromagnetic ratio γe, the undamped dynam-
ics of an island’s magnetic moment is given by a torque
equation [34,35],

dμn

dt
= γeμn × Bn. (27)

The magnetic field that acts on an island is derived from the
total Hamiltonian, H = Hφ + Hθ , according to

Bn = − ∂H

∂μn
. (28)

Each island’s unit spin μ̂n is nearly aligned to the equilibrium
magnetic field B0

n acting on it, except for the small deviations
caused by oscillations. The fluctuations in Bn contribute to
torque. Let μ̂0

n be the equilibrium spin, and then let t̂n = ẑ ×
μ̂0

n be a unit vector transverse to μ̂0
n in the xy plane. The spin

has transverse deviation φnt̂n and z deviation θn ẑ, such that

μ̂n ≈ μ̂0
n + φnt̂n + θn ẑ. (29)

The magnetic field can also be expressed as the equilibrium
value plus transverse and z deviations,

Bn = B0
n − 1

μ

∂H

∂φn
t̂n − 1

μ

∂H

∂θn
ẑ. (30)

Inserting into the torque equation (27), and keeping only lead-
ing terms, gives

φ̇nt̂n + θ̇n ẑ = γeμ̂
0
n ×

(
B0

n − 1

μ

∂H

∂φn
t̂n − 1

μ

∂H

∂θn
ẑ
)

. (31)
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Separating into transverse and z components gives the lin-
earized Hamiltonian equations of motion,

φ̇n = γe

μ

∂H

∂θn
, θ̇n = −γe

μ

∂H

∂φn
. (32)

These result more directly by realizing that out-of-plane com-
ponent μ̂z

n = θn is the momentum conjugate to φn.
With H = Hφ + Hθ in separated form, the set of derivatives

can be expressed via matrix notation,(
∂Hφ

∂φn

)
= Mφψφ,

(
∂Hθ

∂θn

)
= Mθψθ . (33)

The dynamic equations become a matrix problem with 2N
degrees of freedom,

ψ̇φ = γe

μ
Mθψθ , ψ̇θ = −γe

μ
Mφψφ. (34)

There are various ways to solve (34) for the dynamic eigen-
modes. One way that works only in the NN model is to find
the eigenvalues and eigenvectors of Mθ and Mφ that satisfy

Mθψθ = λθψθ , Mφψφ = λφψφ. (35)

1. Eigenvalues of Mθ

Consider Mθ . The elements θn of an eigenvector are iden-
tified by their position, n = nxI xI + nyI yI, in the NN island
coordinates. One row of the eigenvalue problem for Mθ is

Mθ,1θn + Mθ,2(θn+xI + θn−xI )

+ Mθ,2(θn+yI + θn−yI ) = λθ θn, (36)

where the on-site (Mθ,1) and NN (Mθ,2) matrix elements were
defined in (24). The out-of-plane fluctuations for a dipole are
μz

n = μ sin θn ≈ μθn.
With periodic boundary conditions, wave solutions result.

The elements of ψθ are either on the A or B sublattice. Thus
two amplitudes aθ , bθ are included, i.e.,

θA
n = aθeiq·n, A sites,

θB
n = bθeiq·n, B sites. (37)

The wave vectors q = (qxI , qyI ) are quantized in the usual way,
with components in island coordinates,

qxI = 2πkx

N1aI
, kx = 0, 1, 2, . . . (N1 − 1),

qyI = 2πky

N2aI
, ky = 0, 1, 2, . . . (N2 − 1). (38)

For the wave solution, the sums over NNs are

θn+xI + θn−xI = 2θn cos qxI aI,

θn+yI + θn−yI = 2θn cos qyI aI. (39)

The total q-dependent phase factor is

γ +
q = 2(cos qxI aI + cos qyI aI ). (40)

The system of equations (36) is split into two sets, depending
on whether n resides on the A or B sublattice, producing a
2×2 reduced system:[

Mθ,1 Mθ,2γ
+
q

Mθ,2γ
+
q Mθ,1

][
aθ

bθ

]
= λθ

[
aθ

bθ

]
. (41)

FIG. 4. Energy eigenvalue λ+
θ vs in-plane anisotropy, for the

most unstable wave vector qIaI = (π, π ) in island coordinates,
showing that stability requires K1 > 1.5D when K3 = 0, or any
K1 > 0 when K3 > D. The same results hold for λ−

θ (0, 0).

This matrix has symmetric and antisymmetric eigenvectors,
(aθ , bθ ) = (ψ±)† ≡ 1√

2
(1,±1), with eigenvalues

λ±
θ = Mθ,1 ± Mθ,2γ

+
q . (42)

In terms of the original constants in H and with full q depen-
dence this is

λ±
θ (q) = 2[D sin 2φ0

A + K1 cos2 φ0
A + K3

± D(cos qxI aI + cos qyI aI )]. (43)

A negative eigenvalue implies that the RS can lower its energy
by excitation with the associated wave vector, which indi-
cates instability. Specifically of interest, λ+

θ (π, π ) is plotted
in Fig. 4, which shows RS instability for K1 > 1.5D when
K3 = 0, and stability for all K1 > 0 when K3 > D. Note that
wave vectors are denoted in terms of their components and
directions in the island coordinates.

2. Eigenvalues of Mφ

Next, consider Mφ , which has the matrix elements in (26).
Fluctuations in φn are dipole components transverse to the
equilibrium directions, within the xy plane. One row of the
eigenvalue problem is

Mφ,1φn + (
Mφ,2 + Mφ,3

)
(φn+xI + φn−xI )

+ (
Mφ,2 − Mφ,3

)(
φn+yI + φn−yI

) = λφφn. (44)

Note that couplings along the yI direction are different than
along xI. Again a wave solution is present, with amplitudes
aφ, bφ on the sublattices, i.e.,

φA
n = aφeiq·n, A sites,

φB
n = bφeiq·n, B sites. (45)

Defining another phase factor,

γ −
q = 2(cos qxI aI − cos qyI aI ), (46)
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FIG. 5. The NN-model in-plane energy eigenvalue λ+
φ vs in-

plane anisotropy, for various wave vectors in island coordinates,
Eq. (49), showing that stability requires K1 > K1,min ≈ 2.947D.

the reduced 2×2 system is[
naa nab

nba nbb

][
aφ

bφ

]
= λφ

[
aφ

bφ

]
,

naa = nbb ≡ Mφ,1,

nab = nba ≡ Mφ,2γ
+
q + Mφ,3γ

−
q . (47)

The eigenvectors are again symmetric and antisymmetric,
(aφ, bφ ) = (ψ±)† = 1√

2
(1,±1), with eigenvalues

λ±
φ = Mφ,1 ± (Mφ,2γ

+
q + Mφ,3γ

−
q ). (48)

The full dependence on q and parameters in H is

λ±
φ (q) = 2K1 cos 2φ0

A ± 3D(cos qxI aI − cos qyI aI )

+ D sin 2φ0
A[2 ∓ (cos qxI aI + cos qyI aI )]. (49)

This eigenvalue has considerable dependence on wave vector,
see Fig. 5. For example, λ+

φ becomes the most negative for
qIaI = (π, 0), and, additionally, it will not become positive
unless K1 > 2.947D, approximately. This shows that a trav-
eling mode along the xI axis destabilizes the RS, and K1 >

K1,min ≈ 2.947D is required for stability in the NN model.
There is another instability where λ−

φ is less than zero for
qIaI = (0, π ) when K1 becomes less than 2.947D. Then, the
stability requirement for λ+

θ > 0 in Fig. 4 is satisfied even for
K3 = 0.

3. Nearest-neighbor model mode eigenfrequencies

For the NN model only, the matrices Mθ and Mφ have the
same eigenvectors, (ψ±)† = 1√

2
(1,±1). A time derivative of

equations (34) separates φ and θ solutions,

ψ̈φ = −
(

γe

μ

)2

MθMφψφ, (50)

and similarly for ψ̈θ . Either eigenvector ψφ = ψ+ or ψφ =
ψ− is a separate solution to these equations. Assuming e−iωt

times dependencies, the eigenfrequencies in the NN model
only, for both θ and φ oscillations, which remain intrinsically

FIG. 6. The mode frequencies ω±
NN in units of δ1 = γeD/μ, in

the NN model, for the minimum value, K1 = K1,min ≈ 2.947D, that
ensures RS stability, together with K3 = 0, for wave vectors along
directions in the island principal coordinates.

coupled, are given by

ω±
NN(q) = γe

μ

√
λ±

θ
(q)λ±

φ
(q), (51)

where the natural choice for frequency unit is

δ1 ≡ γe

μ
D. (52)

Some typical mode frequencies are shown in Fig. 6, first for
anisotropy at the stability limit, K1 = K1,min ≈ 2.947D, with
K3 = 0. The wave vectors are given in the island coordinate
system. The RS mode frequencies in the [10] and [01] di-
rections are different because the net nonzero magnetization
is along the [10] direction, breaking the symmetry. The most
important feature is the softening of the modes in [10] and
[01] directions towards zero frequency as qIaI → π , signi-
fying the RS instability. When the anisotropy is increased
to K1 = 5.0D, Fig. 7, all modes oscillate well above zero
frequency.

While the frequency spectrum might be useful for exper-
imental detection of a state, it is important to go beyond the
NN model and include the modifications due to longer range
dipole interactions.

IV. EFFECTS OF LONG-RANGE-DIPOLE INTERACTIONS

To get a better description, dipole interactions beyond NN
must be included. Consider two islands’ dipoles, one at a site
n and another at displacement r, on site m = n + r. While the
spins are written using their (x, y, z) components, it is best to
describe the displacements in integer NN island coordinates,
(xI, yI ), i.e.,

r = (xIx̂I + yIŷI )aI, (53)

in contrast with vertex coordinates (x, y), meaning

r = (xx̂ + yŷ)av. (54)
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FIG. 7. The mode frequencies ω±
NN in units of δ1 = γeD/μ, in the

NN model, for anisotropy K1 = 5D, well above that needed for RS
stability, together with K3 = 0, for wave vectors given in the island
principal coordinates.

The transformation between the two is

x = 1
2 (xI − yI ), y = 1

2 (xI + yI ). (55)

When (xI + yI ) is even (or x and y both integers), the dis-
placement stays on the same sublattice (AA or BB bond).
When (xI + yI ) is odd (or x and y both half integers), the
displacement goes from one sublattice to the other (AB bond).
The separation is r = (x2

I + y2
I )1/2aI. The dipole interaction is

reduced from its NN strength D by a factor

ρ3 ≡ r3
/

a3
I = (

x2
I + y2

I

)3/2
. (56)

From (1), the island pair dipole interaction is

unm = − D
ρ3

[(
1

2
− 3xIyI

ρ2

)
μx

nμ
x
m +

(
1

2
+ 3xIyI

ρ2

)
μy

nμ
y
m

+ 3

2ρ2

(
x2

I − y2
I

)(
μx

nμ
y
m + μy

nμ
x
m

)− μz
nμ

z
m

]
. (57)

Consider first an AB bond, where (xI + yI ) is odd. The
dipoles are labeled μ̂n = An and μ̂m = Bm. The dipoles have
slight angular deviations from the equilibrium RS, as in (14).
The terms needed are expanded up to quadratic order in the
deviations, such as

Ax
nBx

m ≈ cncm
[(

1 − 1
2φ2

n − 1
2φ2

m + φnφm
)

cos φ0
A sin φ0

A

− φn sin2 φ0
A − φm cos2 φ0

A

]
, (58)

where the out-of-plane deviation factor is

cncm ≈ 1 − 1
2θ2

n − 1
2θ2

m. (59)

There is a similar term for y components,

Ay
nBy

m ≈ cncm
[(

1 − 1
2φ2

n − 1
2φ2

m + φnφm
)

cos φ0
A sin φ0

A

+ φn cos2 φ0
A + φm sin2 φ0

A

]
. (60)

Finally, there is the cross coupling of components,

Ax
nBy

m + Ay
nBx

m ≈ cncm
(
1 − 1

2φ2
n − 1

2φ2
m − φnφm

)
. (61)

One can see that the pair’s dipolar energy uAB contains zeroth-
order, first-order, and quadratic-order terms.

Consider instead an AA pair with energy uAA, or similarly,
a BB pair, where (xI + yI ) is even. For uAA the needed expres-
sions are

Ax
nAx

m ≈ cncm
[(

1 − 1
2φ2

n − 1
2φ2

m

)
cos2 φ0

A + φnφm sin2 φ0
A

− (φn + φm) sin φ0
A cos φ0

A

]
, (62)

Ay
nAy

m ≈ cncm
[(

1 − 1
2φ2

n − 1
2φ2

m

)
sin2 φ0

A + φnφm cos2 φ0
A

+ (φn + φm) sin φ0
A cos φ0

A

]
, (63)

Ax
nAy

m + Ay
nAx

m ≈ cncm
[(

1 − 1
2φ2

n − 1
2φ2

m − φnφm
)

sin 2φ0
A

+ (φn + φm) cos 2φ0
A

]
. (64)

For uBB because the equilibrium directions are different on the
B sublattice, the expressions are also different, swapping the
factors of sin φ0

A and cos φ0
A,

Bx
nBx

m ≈ cncm
[(

1 − 1
2φ2

n − 1
2φ2

m

)
sin2 φ0

A + φnφm cos2 φ0
A

− (φn + φm) sin φ0
A cos φ0

A

]
, (65)

By
nBy

m ≈ cncm
[(

1 − 1
2φ2

n − 1
2φ2

m

)
cos2 φ0

A + φnφm sin2 φ0
A

+ (φn + φm) sin φ0
A cos φ0

A

]
, (66)

Bx
nBy

m + By
nBx

m ≈ cncm
[(

1 − 1
2φ2

n − 1
2φ2

m − φnφm
)

sin 2φ0
A

− (φn + φm) cos 2φ0
A

]
. (67)

A. The shifted equilibrium

Including long-range dipole (LRD) interactions, the
Hamiltonian can be expressed

H = H (0) + H (1) + H (2), (68)

where the superscripts indicates the zeroth, linear, and
quadratic terms in the deviations around equilibrium. The
equilibrium still has opposing in-plane tilting, φ0

B = −φ0
A. The

terms in H come partly from AB bonds and partly from
AA bonds (nearly equivalent to BB bonds), as well as the
anisotropy. At the equilibrium, the linear part H (1) vanishes.
There are no linear terms in θn in H , implying that the equilib-
rium still has values θn = 0 for all sites, and thus all sn = 0,
cn = 1. The zeroth-order terms, not containing θn nor φn, are
very simple in Eqs. (57) through (67) and are easy to apply to
obtain H (0), employing inversion symmetry of the system, and
dividing by two to avoid double counting. The equilibrium
energy of an island interacting with the entire system via LRD
interactions, per island, ε∞ = H (0)/N , is found to be

ε∞ = K1 sin2 φ0
A − D

4

⎛
⎝ AB∑

xI,yI

sin 2φ0
A

ρ3
+

AA∑
xI,yI

1

ρ3

⎞
⎠. (69)

The first sum is over AB bonds, where ρ2 = 1, 5, 9, 13, etc.
The second sum is over AA bonds, with ρ2 = 2, 4, 8, etc.
Estimates of the sums are

sAB =
AB∑
xI,yI

1

ρ3
≈ 5.8397, sAA =

AA∑
xI,yI

1

ρ3
≈ 3.1926. (70)

174405-7



G. M. WYSIN PHYSICAL REVIEW B 108, 174405 (2023)

FIG. 8. The effect of adding longer-range dipole interactions on
the remanent state’s equilibrium tilting angle φ0

A, Eq. (72), as a func-
tion of the largest radius used in the needed sum sAB of equation (70).
The first large jump at ρmax = √

5 is due to fourth-nearest neighbors.

Then with infinite-range dipole interactions, the energy per
island is

ε∞ = K1 sin2 φ0
A − 1

4D
(
sAB sin 2φ0

A + sAA
)
. (71)

The equilibrium tilting of the dipoles takes place at the mini-
mum of H (0), which gives

tan 2φ0
A = − tan 2φ0

B = sABD
2K1

≈ 2.9198D
K1

. (72)

Thus, the effect of infinite-range dipolar interactions is to
increase the inward tilting of the two sublattices towards each
other, compared with the NN model [Eq. (9)], see Fig. 3.
The change in tilting as longer-range dipolar interactions are
included is shown in Fig. 8, as a function of the maximum
neighbor distance ρmax used in the sum sAB, for K1/D = 5.
The largest jump (beyond NN interactions) occurs at ρmax =√

5, where φ0
A changes from 10.9◦ to 12.6◦. This is attributed

to fourth nearest-neighbor interactions (eight AB bonds with
ρ2 = 5) that try to align the A and B lattices. The AA bonds
do not shift the equilibrium, as the sum sAA plays no role in
the formula for φ0

A, but they contribute to the energy.

B. Dynamics with long-range-dipole interactions

The last term in the Hamiltonian, H (2) = Hφ + Hθ , is
quadratic in the small deviations φn and θn, and controls the
dynamics, as in Eqs. (32) and (34). Equations (57) through
(67) give the contributions of arbitrary range dipole interac-
tions to H (2) and implicitly define the matrices Mφ and Mθ .
Once LRD interactions are included, the matrices Mφ and
Mθ do not have the same eigenvectors, so a more general
procedure is needed to get the dynamic modes.

The dynamics in (34) is still solved using traveling waves
written in the NN island coordinates. While locating an island
by n = nxI xI + nyI yI, a displacement to another island of a
dipole pair is expressed as r = xIxI + yIyI. Assume waves on
both sublattices varying in time as e−iωt (suppressed in the

formulas), the same as in the NN model,

θA
n = aθeiq·n, φA

n = aφeiq·n, A sites,

θB
n = bθeiq·n, φB

n = bφeiq·n, B sites. (73)

The allowed wave vectors were given in (38).
The matrix form of the dynamic equations (34) involves

sums over matrix elements with the spin field components,

−iωφn = γe

μ

⎛
⎝Mθ,n,nθn +

∑
r �=0

Mθ,n,n+rθn+r

⎞
⎠,

iωθn = γe

μ

⎛
⎝Mφ,n,nφn +

∑
r �=0

Mφ,n,n+rφn+r

⎞
⎠. (74)

This pair of equations becomes four equations when both A
and B sublattices are considered. The matrix elements are
either within a sublattice (MAA

n,m, MBB
n,m) or between sublattices

(MAB
n,m, MBA

n,m). They are derived from the quadratic terms in
Eqs. (57) through (67). For example, the coefficient of φ2

n in
Ax

nBx
m in (58) contributes to MAB

φ,n,n, while the coefficient of
φnφm contributes to MAB

φ,n,m.
With the wave assumption, the equations comprise coupled

systems with 2×2 matrices named m and n for compact nota-
tion,

−iω

[
aφ

bφ

]
=
[

maa mab

mba mbb

][
aθ

bθ

]
, (75)

−iω

[
aθ

bθ

]
= −

[
naa nab

nba nbb

][
aφ

bφ

]
. (76)

This is identical to a single 4×4 eigenvalue problem,⎡
⎢⎢⎣

0 0
0 0 m

n
0 0
0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

aφ

bφ

iaθ

ibθ

⎤
⎥⎥⎦ = ω

⎡
⎢⎢⎣

aφ

bφ

iaθ

ibθ

⎤
⎥⎥⎦. (77)

Symbolically, the 2×2 matrices off the diagonal are

m = γe

μ
Mθ , n = γe

μ
Mφ, (78)

as projected onto the traveling-wave solutions. More specif-
ically, the matrix elements of m and n are given by sums
of the interactions as derived from H (2). For instance, maa

comes from the AA dipole interactions as well as the on-site
anisotropy. Supposing n is an A site, with n + r also an A site,

maa = γe

μ

(
Mθ,n,n +

AA∑
r

Mθ,n,n+reiq·r
)

. (79)

The symbol
∑AA

r indicates summing over displacements on
one sublattice (xI + yI = even). The same expression gives
mbb = maa. For the AB couplings there is also symmetry,

mab = mba = γe

μ

AB∑
r

Mθ,n,n+reiq·r, (80)

where
∑AB

r indicates summing over displacements from one
sublattice to the other (xI + yI = odd). The full q dependence
of the matrix elements of m and n is shown in Appendix B.
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FIG. 9. With infinite-range dipole interactions, the in-plane en-
ergy eigenvalue λ+

φ vs in-plane anisotropy, for two wave vectors in
island coordinates, showing that stability requires K1 >≈ 1.094D,
significantly less than K1 > 2.947D in the NN model.

1. Stability requirements with long-range dipole interactions

Similar to the NN model, the eigenvalues of matrices n
and m must be positive for stability of the RS when LRD
interactions are included. The controlling requirement is due
to the eigenvalues λ±

φ of matrix n. A general formula for its
eigenvalues (as for any 2×2 matrix) is

λ±
φ = 1

2 (naa + nbb) ±
√

1
4 (naa + nbb)2 − (naanbb − nabnba).

(81)
The most unstable eigenvalue occurs at qaI = (π, 0), where
the sums needed (see Appendix B) become

fodd(π, 0) = devn(π, 0) = f xy
evn(π, 0) = 0, (82)

fevn(π, 0) ≈ −0.93546, dodd(π, 0) ≈ −3.71107. (83)

Then the eigenvalues are λ±
φ = naa ± nab, or

λ±
φ (π, 0) = 2K1 cos 2φ0

A + 1
2D[sAB sin 2φ0

A

+ sAA − fevn(π, 0) ± 3dodd(π, 0)]. (84)

Because dodd(π, 0) is negative, the eigenvalue λ+
φ (π, 0) is

smallest. It is responsible for an instability at K1 < 1.094D,
see Fig. 9. As a result, LRD interactions enhance the stability
of the remanent state, meaning that even rather weak uniaxial
anisotropy of the islands will be able to maintain that state.

2. Mode frequencies with long-range dipole interactions

It is shown in Appendix C that the eigenfrequencies of the
4×4 eigenvalue problem (77) are obtained from

ω2 = 1
2 [(mT · n) ±

√
(mT · n)2 − 4|m||n|]. (85)

The two solutions can be labeled as ω±
∞(q), where ∞ indi-

cates keeping LRD interactions to unlimited distances. The
formula contains a dot product of the two 2×2 dynamic matri-
ces, as well as a product of their determinants. It should apply
to any spin dynamics problem involving a two-sublattice par-
titioning of the system. The two modes might be considered as

FIG. 10. Comparison of the [10] RS dispersion relations (wave
vectors in island coordinates) using the 1st + 2nd neighbors model
(ω±

2NN, indigo) and the model with all ∞-range dipole interactions
(ω±

∞, red) calculated using sums out to ρ ≈ 4000, at K1 = 2.974D,
just above the minimum needed for stability in the NN model. The
frequencies are higher with more dipole terms and the crossing point
shifts to lower wave vector.

acoustic and optic modes, however, such identification really
depends on the spin components being considered.

Following the procedure in Appendix C, and applying
Eq. (85), the dispersion relations for modes of excitation from
a remanent state were obtained for various cases of anisotropy.

3. Changes in dynamics—second-nearest neighbors

To see the general trend due to going beyond NN in-
teractions, first we include only the interactions up to
second-nearest neighbors (2NN), with displacements (x, y) =
(±1, 0)av, (0,±1)av, which are the nearest AA or BB bonds.
It is straightforward to show that the equilibrium angles φ0

A are
the same as in the NN model. The procedure in Eq. (85) gives
the eigenfrequencies, using sums truncated at second-nearest
neighbors. A partial mode spectrum is shown in Fig. 10,
for K1 = 2.947D, where the 2NN model is compared with
the model using infinite-range dipole interactions. The 2NN
interactions already lift eigenfrequencies enough to relieve the
instability that is present in the NN model, compare Fig. 6.
Once LRD interactions to infinite range are included, the
frequencies are raised further, and the notable crossing point
between higher and lower modes shifts to lower frequency.
Surprisingly, it is not an avoided crossing.

4. Changes in dynamics—infinite-range dipole interactions

The stability limit at K1 ≈ 1.094D, K3 = 0, with infinite-
ranged dipole interactions can be verified by finding the mode
dispersion relations for wave vectors along [10], [01], and [11]
directions in island coordinates, see Fig. 11. It is found that
the ω−

∞ modes along both the [10] and [01] directions go to
zero for qIaI = π , similar to the behavior in the NN model,
compare Fig. 6, even though the [01] frequency is higher,
away from the stability limit point. One concludes that spin
waves traveling either parallel to (along [10]) or perpendicular
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FIG. 11. Dispersion relations in island coordinates using all
dipole interactions, for a remanent state with K1 = 1.09428D and
K3 = 0, just above the minimum needed for stability, calculated
using sums out to ρ ≈ 10 000. Both the [10] and [01] ω−

∞ dispersion
relations go unstable at qIaI = π for smaller K1.

to (along [01]) the magnetic moment of the RS contribute to
its instability at weak uniaxial anisotropy in the islands. Even
so, very little uniaxial anisotropy is needed to stabilize a RS
under the influence of long-range dipole interactions. Another
example of the dispersion relations is shown in Fig. 12 for
K1 = 5D, K3 = 0. The shapes have changed noticeably from
how they appeared at the stability limit for K1. Note that the
frequencies along [10] touch or cross now at qIaI ≈ 0.3π ,
while those along [01] and [11] remain very highly separated
for all qI. This is in strong contrast to the result in Fig. 7
for the NN model above the stability limit. The conclusion
is that dipolar interactions are especially influential along the
[11] island direction in keeping the higher and lower mode

FIG. 12. Dispersion relations using all dipole interactions for a
RS at K1 = 5.0D, calculated using sums out to ρ ≈ 4000. While the
ω−

∞ and ω+
∞ frequencies along [01] and [11] island directions are far

from each other, they touch or cross at a point in the [10] direction,
i.e., for wave vectors parallel to the RS magnetization.

FIG. 13. Dispersion relations at K1 = 5.0D, K3 = 0 for wave
vectors along the [11] island direction only, comparing the cal-
culations of the NN model (ω±

NN), the model with first- and
second-nearest neighbors (ω±

2NN), and the model with all LRD in-
teractions (ω±

∞).

frequencies separated. This effect is highlighted in Fig. 13,
where the frequencies along [11] are compared for the NN
model (ω±

NN), the model with first- and second-nearest neigh-
bors (ω±

2NN), and the model with all LRD interactions (ω±
∞). A

drastic change occurs when the second-nearest neighbors are
added, while going from there to very-long-range interactions
shifts the frequencies about 10% higher.

Consider next a real square spin-ice material such
as that using permalloy studied by Wang et al. [11],
with elongated islands of approximate dimensions
220 nm×80 nm×25 nm thick. Based on the saturation
magnetization Ms = 860 kA m−1 multiplying the volume
of elliptical islands, the island magnetic dipole moment
was estimated as μ = 2.97×10−16 A m2, see Ref. [25].
Then supposing a square ice with a close vertex spacing,
av = 320 nm (island NN spacing aI = av/

√
2), the NN

dipolar coupling constant in Eq. (3) is D = 7.61×10−19 J.
Simulations in Ref. [28] can be used to estimate the anisotropy
constants, for the chosen island aspect ratios, and they were
found [25] to be K1 = 2.9×10−17 J and K3 = 6.4×10−17 J.
These are high compared with room-temperature thermal
energy, which ensures stabilization of a remanent or other
discrete spin-ice state, and truly forces the oscillations to be
of small amplitude. Then the scaled anisotropy parameters
needed here are estimated as K1 = 38D and K3 = 84D, based
on this particular geometry of the island lattice.

For this realistic model, mode frequencies or wave vectors
along the [10], [01], and [11] directions in island coordinates
are plotted in Fig. 14. Relative to the examples with weaker
anisotropy, the whole spectrum has been shifted to higher
frequencies due to the strong anisotropy in typical spin-ice
with greatly elongated islands. Note again the vivid linearity
of dispersion relations along the [10] direction near qI = 0,
and in the region near the point where higher and lower fre-
quencies touch. The modes along [01], on the contrary, remain
widely separated for the whole range of wave vectors. Along
[11], both modes ω+

∞ and ω−
∞ are almost independent of qI,
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FIG. 14. Dispersion relations in island coordinates using all
dipole interactions, for a remanent state at realistic spin-ice parame-
ters appropriate to the square spin-ice of Wang et al. [11]. Calculated
using sums out to ρ ≈ 4000. Note the linear dispersions on both
sides of the [10] touching point, while the modes stay fairly widely
separated along [01] and [11]. Furthermore, the modes along [10]
and [01] approach qIaI → π with zero slope.

with only slight variations. The modes along [10] and [01]
both approach qIaI → π with zero slope.

V. CONCLUSIONS

An effective model with Heisenberg-like island dipoles
influenced by anisotropies and dipole-dipole interactions has
been applied to find the remanent state properties for square
spin ice, including the spin configuration, its energy, angular
deviation eigenvalues, and the normal modes of oscillation
about an RS. The model allows the net dipole of each island
to deviate continuously in direction from its long axis, while
paying a cost in anisotropy energy. This analysis would not be
possible if the island dipoles were represented as Ising spins.

The model with NN dipole interactions, although some-
what limited, was used to describe the static and dynamic
calculations and to estimate the basic properties. The RS
energy (Fig. 3) for K1 > K1,min ≈ 2.947D is εNN ≈ −0.2D,
compared with the ground-state energy −3D in the NN ap-
proximation. Hence, the RS exhibits a metastable property.
It has considerably higher energy than a ground state but
nevertheless is stabilized from small oscillations by relatively
weak uniaxial anisotropy of the islands, even when including
only NN dipole interactions.

In the NN model, a RS is stable in the absence of pla-
nar anisotropy (K3 = 0) as long as the uniaxial anisotropy
of an island surpasses K1,min = 2.947D, where D is the NN
dipolar interaction strength. The instability for weak uniaxial
anisotropy (K1 < K1,min) can be attributed to in-plane devi-
ation eigenvalues becoming zero at the limiting anisotropy:
λ+

φ (π, 0) → 0 and λ−
φ (0, π ) → 0. The net magnetic moment

of the system in the selected remanent state is along the
[10] direction of the island lattice ([11] direction of the xy
coordinates of the vertex lattice). Although the nonzero mag-
netization M breaks the symmetry of the system, modes along

island directions [10] and [01] both go unstable at K1,min, see
Fig. 6. The eigenvalues λ±

φ become imaginary for K1 < K1,min,
implying that large in-plane fluctuations will grow with time
for the unstable RS. The out-of-plane deviation eigenvalues
λ±

θ remain positive and do not play a role in the instability,
even for planar anisotropy K3 = 0, as long as K1 > K1,min.

A procedure was developed here to include all dipole-
dipole interactions of a central site with neighbors at any
distance on the square lattice. With dipole-dipole bonds clas-
sified as AA or BB (intrasublattice) and AB (intersublattice),
it is found that the AA and BB bonds do not change the
RS spin angles, but they do affect the dynamic frequencies.
LRD interactions cause the sublattice spins to tilt more closely
towards each other (closer to the [10] direction) compared
with their directions in the NN model, see Fig. 3. That extra
tilting puts the dipoles into an energetically more favorable
configuration for dipole-dipole interactions and lowers the RS
energy while the state remains metastable.

With infinite-range dipole interactions, the instability of
the RS for qIaI → π still takes place for wave vectors along
both the [10] and [01] island directions for K1 < K1,min, how-
ever, the limiting value decreases to K1,min = 1.09428D. This
implies that the extra dipole interactions beyond NN tend to
keep the island spins more strongly along the island axes,
with less need for uniaxial anisotropy. A remanent state of
square spin ice will not be stable for K3 = 0 unless K1 >

1.09428D, a rather weak anisotropy constraint. For the model
of a realistic square spin ice, the large anisotropy values
K1/D = 38, K3/D = 84 very strongly stabilize a remanent
state.

The dynamics with LRD interactions is determined by a
pair of coupled 2×2 eigenvalue problems, equivalent to a
single 4×4 system. Due to the symmetry properties of the
involved matrices, the exact frequency eigenvalues of the 4×4
system can be calculated. Generally, the mode frequencies
increase as longer range dipole interactions are included.
For realistic parameters for square spin-ice, Fig. 14, the
mode frequencies are fairly high already due to the islands’
anisotropies. The modes ω±

∞ with wave vectors along [10]
(parallel to the RS magnetization) touch at one point and
display a linear behavior at lower wave vectors. The other
modes ω±

∞ with wave vectors along [01] and [11] stay well
separated. Along [11] that mode separation appears to be due
to the LRD interactions. These calculations are expected to
be applicable for finding state stability and mode properties in
other distinct states of spin ice and can be adapted to different
lattices.

APPENDIX A: FULL LONG-RANGE DIPOLE
HAMILTONIAN H (2)

Here the quadratic terms in expression (57) for dipole pair
energy are fully expanded in the small deviations θn and φn
and a complete expression for H (2) that determines the dy-
namics is given. The quadratic part of an AB pair interaction
energy can be written as

u(2)
AB = uxx

AB + uyy
AB + uxy

AB + uzz
AB. (A1)
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Equations (58) through (61) are used to get the contributions
to u(2)

AB,

uxx
AB = D

4ρ3

(
1

2
− 3xIyI

ρ2

)
sin 2φ0

A

× (
φ2

n + φ2
m − 2φnφm + θ2

n + θ2
m

)
,

uyy
AB = D

4ρ3

(
1

2
+ 3xIyI

ρ2

)
sin 2φ0

A

× (
φ2

n + φ2
m − 2φnφm + θ2

n + θ2
m

)
,

uxy
AB = 3D

4ρ5

(
x2

I − y2
I

)
× (

φ2
n + φ2

m + 2φnφm + θ2
n + θ2

m

)
,

uzz
AB = D

ρ3
θnθm. (A2)

Then the single AB pair interaction is

u(2)
AB = D

ρ3

{
1

4

(
φ2

n + φ2
m − 2φnφm + θ2

n + θ2
m

)
sin 2φ0

A

+ 3
(
x2

I − y2
I

)
4ρ2

(
φ2

n + φ2
m + 2φnφm + θ2

n + θ2
m

)

+ θnθm

}
. (A3)

This is summed over all AB pairs, which is one contribution
to H (2). Each pair must be summed only once, which can be
done by restricting n to be an A site only and m to be a B site
only, denoted as

U (2)
AB =

A∑
n

B∑
m

u(2)
AB. (A4)

But the expressions are symmetric in n and m, so that sum-
ming φ2

m over all m is equivalent to summing φ2
n over all n.

That means φ2
m can be removed, and n can be summed over all

sites of both sublattices. The term θ2
m can be removed for the

same reason. For the cross terms, let m = n + r, sum over the
allowed AB displacements r, sum over all n, and then divide
by two to undo the double counting of bonds. n might be an
A or B site, it does not matter, as long as r = (xI, yI ) is an AB
bond, which is enforced with (xI + yI ) being an odd integer.
This gives the AB bond contribution to H (2),

U (2)
AB =

∑
n

AB∑
r

D
ρ3

{
1

4

(
φ2

n − φnφm + θ2
n

)
sin 2φ0

A

+ 3
(
x2

I − y2
I

)
4ρ2

(
φ2

n + φnφm + θ2
n

)+ 1

2
θnθm

}
. (A5)

A similar procedure is applied for AA bonds.
Equations (62) through (64) give

uxx
AA = D

2ρ3

(
1

2
− 3xIyI

ρ2

)

× [(
φ2

n + φ2
m + θ2

n + θ2
m

)
cos2 φ0

A − 2φnφm sin2 φ0
A

]
,

uyy
AA = D

2ρ3

(
1

2
+ 3xIyI

ρ2

)

× [(
φ2

n + φ2
m + θ2

n + θ2
m

)
sin2 φ0

A − 2φnφm cos2 φ0
A

]
,

uxy
AA = 3D

4ρ5

(
x2

I − y2
I

)
× (

φ2
n + φ2

m + 2φnφm + θ2
n + θ2

m

)
sin 2φ0

A,

uzz
AA = D

ρ3
θnθm. (A6)

Their sum is a single AA pair interaction,

u(2)
AA = D

ρ3

{
1

4

(
φ2

n + φ2
m − 2φnφm + θ2

n + θ2
m

)+ θnθm

+ 3
(
x2

I − y2
I

)
4ρ2

(
φ2

n + φ2
m + 2φnφm + θ2

n + θ2
m

)
sin 2φ0

A

− 3xIyI

2ρ2

(
φ2

n + φ2
m + 2φnφm + θ2

n + θ2
m

)
cos 2φ0

A

}
.

(A7)

When u(2)
AA is summed over all AA pairs, this gives another

contribution to H (2). In this case both n and m must be se-
lected from the A sites, and the sum is

U (2)
AA = 1

2

A∑
n

A∑
m �=n

u(2)
AA, (A8)

where 1/2 undoes the double counting of AA bonds. But
summing φ2

m over all A sites gives the same as summing φ2
n

over all A sites. Therefore this can be written indicating that n
is an A site while the displacements r = (xI, yI ) must be AA
bonds, enforced by (xI + yI ) being even integers. This gives

U (2)
AA =

A∑
n

AA∑
r

D
ρ3

{
1

4

(
φ2

n − φnφn+r + θ2
n

)+ 1

2
θnθm

+ 3
(
x2

I − y2
I

)
4ρ2

(
φ2

n + φnφn+r + θ2
n

)
sin 2φ0

A

− 3xIyI

2ρ2

(
φ2

n + φnφn+r + θ2
n

)
cos 2φ0

A

}
.

(A9)

Finally there are BB bonds, very similar to AA bonds, how-
ever, the terms differ because the equilibrium dipole directions
on the two sublattices are different. Equations (65) through
(67) give

uxx
BB = D

2ρ3

(
1

2
− 3xIyI

ρ2

)

× [(
φ2

n + φ2
m + θ2

n + θ2
m

)
sin2 φ0

A − 2φnφm cos2 φ0
A

]
,

uyy
BB = D

2ρ3

(
1

2
+ 3xIyI

ρ2

)

× [(
φ2

n + φ2
m + θ2

n + θ2
m

)
cos2 φ0

A − 2φnφm sin2 φ0
A

]
,

uxy
BB = 3D

4ρ5

(
x2

I − y2
I

)
× (

φ2
n + φ2

m + 2φnφm + θ2
n + θ2

m

)
sin 2φ0

A,

uzz
BB = D

ρ3
θnθm. (A10)
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The displacements that connect BB pairs are the same as
for AA pairs, selecting r = (xI, yI ) with (xI + yI ) being even
integers. Summing appropriately over all the BB pairs gives
their contribution to H (2),

U (2)
BB =

B∑
n

BB∑
r

D
ρ3

{
1

4

(
φ2

n − φnφn+r + θ2
n

)+ 1

2
θnθm

+ 3
(
x2

I − y2
I

)
4ρ2

(
φ2

n + φnφn+r + θ2
n

)
sin 2φ0

A

+ 3xIyI

2ρ2

(
φ2

n + φnφn+r + θ2
n

)
cos 2φ0

A

}
. (A11)

The term with xIyI is reversed in sign from that in U (2)
AA,

Eq. (A9), which is obtained more easily by transforming
φ0

A → π
2 − φ0

A in going from AA interactions to BB interac-
tions for the same r.

The final contribution to H (2) comes from the islands’
anisotropies, whose quadratic contribution can be obtained
from (17),

U (2)
K =

∑
n

[(
K1 cos 2φ0

A

)
φ2

n + (
K1 cos2 φ0

A + K3
)
θ2

n

]
.

(A12)
Then the total second-order Hamiltonian is the sum of all
these parts,

H (2) = U (2)
K + U (2)

AB + U (2)
AA + U (2)

BB . (A13)

APPENDIX B: MATRIX ELEMENTS OF H (2)

The matrix elements needed in the dynamics calculations
can be found from the full quadratic Hamiltonian H (2), using
its quadratic form,

H (2) = 1
2ψ

†
θ Mθψθ + 1

2ψ
†
φMφψφ. (B1)

This is equivalent to a double sum over all n and m,

H (2) = 1

2

∑
n,m

(Mθ,n,mθnθm + Mφ,n,mφnφm). (B2)

The matrix elements can be found either by inspection of H (2)

in (A13) or by second derivatives,

Mθ,n,m = ∂2H (2)

∂θn∂θm
, Mφ,n,m = ∂2H (2)

∂φn∂φm
. (B3)

The factors θ2
n and φ2

n appear in all four parts of H (2), so
all LRD interactions contribute to on-site (Mn,n) couplings.
Those matrix elements are

Mθ,n,n = Mdd + 2
(
K1 cos2 φ0

A + K3
)
,

Mφ,n,n = Mdd + 2K1 cos 2φ0
A, (B4)

where Mdd is the LRD part, the same for θ and φ,

Mdd =
AB∑
r

D
ρ3

[
1

2
sin 2φ0

A + 3
(
x2

I − y2
I

)
2ρ2

]

+
AA∑
r

D
ρ3

[
1

2
+ 3

(
x2

I − y2
I

)
2ρ2

sin 2φ0
A ∓ 3xIyI

2ρ2
cos 2φ0

A

]
.

(B5)

For A sites (B sites), the last term takes the minus (plus) sign.
For an infinite system, however, the sums involving xI and yI

are zero due to symmetry. Mdd is the same for A and B sites,
and depends on sums over 1/ρ3 for AB or AA bonds,

Mdd = 1
2D

(
sAB sin 2φ0

A + sAA
)
, (B6)

where sAB and sAA were defined in (70). Note that − 1
2 Mdd

already appears in the expression (71) for equilibrium energy
per island, H (0)/N .

There are also matrix elements connecting different sites,
which can be grouped according to bond type (AB, AA, or
BB), and depend on the bond displacement r = (xI, yI ) or on
the distance ρ = (x2

I + y2
I )1/2. For the θ coordinate, they do

not depend on the bond type:

MAB
θ,n,n+r = MAA

θ,n,n+r = MBB
θ,n,n+r = D

ρ3
. (B7)

For the φ coordinate, the bond type is important:

MAB
φ,n,n+r = D

ρ3

[
−1

2
sin 2φ0

A + 3
(
x2

I − y2
I

)
2ρ2

]
,

MAA
φ,n,n+r = D

ρ3

[
−1

2
+ 3

(
x2

I − y2
I

)
2ρ2

sin 2φ0
A − 3xIyy

ρ2
cos 2φ0

A

]
,

MBB
φ,n,n+r = D

ρ3

[
−1

2
+ 3

(
x2

I − y2
I

)
2ρ2

sin 2φ0
A + 3xIyy

ρ2
cos 2φ0

A

]
.

(B8)

None of the above matrix elements depend on the site n, but
only on the displacement from n to n + r, where r = (xI, yI )
in integer island coordinates.

Elements of the dynamic matrices m and n

The elements of the dynamic matrices m (which acts on
a θ wave function) and n (which acts on a φ wave function)
with all LRD interactions are implicitly defined via Eq. (74),
with traveling waves inserted. The aa and bb elements stay
within a sublattice, so they involve Fourier sums over MAA

n,n+r

and MBB
n,n+r. For the θ operator m,

maa = mbb = γe

μ

(
Mθ,n,n +

AA∑
r

MAA
θ,n,n+reiq·r

)

= γe

μ
[Mθ,n,n + D fevn(q)]. (B9)

This depends on a Fourier sum over AA displacements,

fevn(q) ≡
AA∑
r

eiq·r

ρ3
=

even∑
xI+yI

cos[(qxI xI + qyI yI )aI](
x2

I + y2
I

)3/2 . (B10)

The restriction that xI + yI is even keeps the bonds on the same
sublattice. The ab and ba elements are determined by Fourier
sums over MAB

n,n+r,

mab = mba = γe

μ

AB∑
r

MAB
θ,n,n+reiq·r = γe

μ
D fodd(q), (B11)
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where the sum is restricted by xI + yI being odd,

fodd(q) ≡
AB∑
r

eiq·r

ρ3
=

odd∑
xI+yI

cos[(qxI xI + qyI yI )aI](
x2

I + y2
I

)3/2 . (B12)

For the φ operator n, the corresponding matrix elements are

naa = γe

μ

(
Mφ,n,n +

AA∑
r

MAA
φ,n,n+reiq·r

)

= γe

μ

{
Mφ,n,n + D

[
3

2
devn(q) sin 2φ0

A − 3 f xy
evn(q) cos 2φ0

A

− 1

2
fevn(q)

]}
, (B13)

nbb = γe

μ

(
Mφ,n,n +

BB∑
r

MBB
φ,n,n+reiq·r

)

= γe

μ

{
Mφ,n,n + D

[
3

2
devn(q) sin 2φ0

A + 3 f xy
evn(q) cos 2φ0

A

− 1

2
fevn(q)

]}
, (B14)

nab = nba = γe

μ

AB∑
r

MAB
φ,n,n+reiq·r

= γe

μ
D
[

3

2
dodd(q) − 1

2
fodd(q) sin 2φ0

A

]
. (B15)

These depend on fe(q) and fo(q) and other Fourier sums,

f xy
evn(q) ≡

even∑
xI+yI

xIyI cos[(qxI xI + qyI yI )aI](
x2

I + y2
I

)5/2 ,

devn(q) ≡
even∑
xI+yI

(
x2

I − y2
I

)
cos[(qxI xI + qyI yI )aI](
x2

I + y2
I

)5/2 ,

dodd(q) ≡
odd∑

xI+yI

(
x2

I − y2
I

)
cos[(qxI xI + qyI yI )aI](
x2

I + y2
I

)5/2 . (B16)

APPENDIX C: EIGENVALUES OF THE 4×4
DYNAMIC MATRIX

The general dynamic equation (77) has the expanded ex-
pression

⎡
⎢⎢⎢⎢⎣

0 0 maa mab

0 0 mba mbb

naa nab 0 0

nba nbb 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

aφ

bφ

iaθ

ibθ

⎤
⎥⎥⎥⎥⎦ = ω

⎡
⎢⎢⎢⎢⎣

aφ

bφ

iaθ

ibθ

⎤
⎥⎥⎥⎥⎦. (C1)

This is Wψ = ωψ , where W is the 4×4 matrix. The solution
requires the determinant D(ω) = |W − ωI| to be zero. This is

D(ω) =

∣∣∣∣∣∣∣∣
−ω 0 maa mab

0 −ω mba mbb

naa nab −ω 0
nba nbb 0 −ω

∣∣∣∣∣∣∣∣
= 0. (C2)

Evaluating D(ω) by the first row, the first term is

D1(ω) = −ω

∣∣∣∣∣∣
−ω mba mbb

nab −ω 0
nbb 0 −ω

∣∣∣∣∣∣
= −ω[−ω3 + (mbanab + mbbnbb)ω]. (C3)

The next term is

D2(ω) = maa

∣∣∣∣∣∣
0 −ω mbb

naa nab 0
nba nbb −ω

∣∣∣∣∣∣
= maa[−naaω

2 + mbb(naanbb − nabnba)]. (C4)

The third and last term is

D3(ω) = −mab

∣∣∣∣∣∣
0 −ω mba

naa nab −ω

nba nbb 0

∣∣∣∣∣∣
= −mab[nbaω

2 + mba(naanbb − nabnba)]. (C5)

The total determinant is the sum, D(ω) = D1 + D2 + D3,
which is quadratic in ω2,

D(ω) = ω4 − [maanaa + mbbnbb + mabnba + mbanab]ω2

+ (maambb − mabmba)(naanbb − nabnba) = 0. (C6)

That is very general, and it is the same as

D(ω) = ω4 − (mT · n)ω2 + |m||n| = 0. (C7)

That involves a scalar product of the 2×2 matrices and their
determinants. Then the eigenvalues in this rather general case
are determined by the quadratic formula,

ω2 = 1
2 [(mT · n) ±

√
(mT · n)2 − 4|m||n|]. (C8)

One can verify that all four eigenvalues are real, and they
come in ± pairs, corresponding to opposite directions of
propagation. The ± in the expression gives two fundamental
solutions (higher and lower frequencies), whose dispersion re-
lations are denoted ω+

∞(q) and ω−
∞(q), where the ∞ subscript

indicates that all LDR interactions are included.

174405-14



METASTABILITY AND DYNAMICS IN REMANENT STATES … PHYSICAL REVIEW B 108, 174405 (2023)

[1] S. H. Skjærvø, C. H. Marrows, R. L. Stamps, and L. J.
Heyderman, Nat. Rev. Phys. 2, 13 (2020).

[2] C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85,
1473 (2013).

[3] V. D. Nguyen, Y. Perrin, S. Le Denmat, B. Canals, and N.
Rougemaille, Phys. Rev. B 96, 014402 (2017).

[4] J. P. Morgan, A. Stein, S. Langridge, and C. Marrows,
Nat. Phys. 7, 75 (2011).

[5] R. C. Silva, F. S. Nascimento, L. A. S. Mól, W. A. Moura-Melo,
and A. R. Pereira, New J. Phys. 14, 015008 (2012).

[6] I. R. B. Ribeiro, F. S. Nascimento, S. O. Ferreira, W. A. Moura-
Melo, C. A. R. Costa, J. Borme, P. P. Freitas, G. M. Wysin, C. I.
L de Araujo, and A. R. Pereira, Sci. Rep. 7, 13982 (2017).

[7] C. Nisoli, in The Role of Topology in Materials, edited by S.
Gupta and A. Saxena, Springer Series in Solid-State Sciences
(Springer, Cham, 2018), Vol. 189, pp. 85–112.

[8] G. Möller and R. Moessner, Phys. Rev. Lett. 96, 237202 (2006).
[9] G. Möller and R. Moessner, Phys. Rev. B 80, 140409(R) (2009).

[10] L. A. S. Mól, R. L. Silva, R. C. Silva, A. R. Pereira, W. A.
Moura-Melo, and B. V. Costa, J. Appl. Phys. 106, 063913
(2009).

[11] R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J.
Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi, and
P. Schiffer, Nature (London) 439, 303 (2006).

[12] X. Ke, J. Li, C. Nisoli, Paul E. Lammert, W. McConville, R. F.
Wang, V. H. Crespi, and P. Schiffer, Phys. Rev. Lett. 101,
037205 (2008).

[13] C. Nisoli, J. Li, X. Ke, D. Garand, P. Schiffer, and V. H. Crespi,
Phys. Rev. Lett. 105, 047205 (2010).

[14] J. M. Porro, A. Bedoya-Pinto, A. Berger, and P. Vavassori,
New J. Phys. 15, 055012 (2013).

[15] A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar,
M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman,
Phys. Rev. Lett. 111, 057204 (2013).

[16] X. Zhang, Y. Lao, J. Sklenar, N. S. Bingham, J. T. Batley, J. D.
Watts, C. Nisoli, C. Leighton, and P. Schriffer, APL Mater. 7,
111112 (2019).

[17] V. Kapaklis, U. B. Arnalds, A. Harman-Clarke, E. Th.
Papaioannou, M. Karimipour, P. Korelis, A. Taroni, P. C. W.

Holdsworth, S. T. Bramwell and B. Hjörvarsson, New J. Phys.
14, 035009 (2012).

[18] S. Gliga, A. Kákay, R. Hertel, and O. G. Heinonen, Phys. Rev.
Lett. 110, 117205 (2013).

[19] M. B. Jungfleisch, W. Zhang, E. Iacocca, J. Sklenar, J. Ding,
W. Jiang, S. Zhang, J. E. Pearson, V. Novosad, J. B. Ketterson,
O. Heinonen, and A. Hoffmann, Phys. Rev. B 93, 100401(R)
(2016).

[20] E. Iacocca, S. Gliga, R. L. Stamps, and O. Heinonen, Phys. Rev.
B 93, 134420 (2016).

[21] D. M. Arroo, J. C. Gartside, and W. R. Branford, Phys. Rev. B
100, 214425 (2019).

[22] T. D. Lasnier and G. M. Wysin, Phys. Rev. B 101, 224428
(2020).

[23] N. Arora and P. Das, AIP Adv. 11, 035030 (2021).
[24] W. Heisenberg, Eur. Phys. J. A 49, 619 (1928).
[25] G. M. Wysin, W. A. Moura-Melo, L. A. S. Mól, and A. R.

Pereira, New J. Phys. 15, 045029 (2013).
[26] E. Ising, Z. Phys. 31, 253 (1925).
[27] E. Östman, U. B. Arnalds, V. Kapaklis, A. Taroni, and B.

Hjörvarsson, J. Phys.: Condens. Matter 30, 365301 (2018).
[28] G. M. Wysin, W. A. Moura-Melo, L. A. S. Mól, and A. R.

Pereira, J. Phys.: Condens. Matter 24, 296001 (2012).
[29] O. Brunn, Y. Perrin, B. Canals, and N. Rougemaille, Phys. Rev.

B 103, 094405 (2021).
[30] G. M. Wysin, J. Phys.: Condens. Matter 34, 065803 (2022).
[31] G. M. Wysin, A. R. Pereira, W. A. Moura-Melo, and C. I. L. de

Araujo, J. Phys.: Condens. Matter 27, 076004 (2015).
[32] N. Rougemaille, F. Montaigne, B. Canals, A. Duluard, D.

Lacour, M. Hehn, R. Belkhou, O. Fruchart, S. El Moussaoui, A.
Bendounan, and F. Maccherozzi, Phys. Rev. Lett. 106, 057209
(2011).

[33] Y. Shevchenko, A. Makarov, and K. Nefedev, Phys. Lett. A 381,
428 (2017).

[34] D. Jiles, Introduction to Magnetism and Magnetic Materials
(Chapman and Hall, London, 1991), Chap. 11.

[35] G. M. Wysin, Magnetic Excitations & Geometric Confine-
ment: Theory and Simulations (IOP Expanding Physics ebook,
London, 2015), Chap. 2.

174405-15

https://doi.org/10.1038/s42254-019-0118-3
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/PhysRevB.96.014402
https://doi.org/10.1038/nphys1853
https://doi.org/10.1088/1367-2630/14/1/015008
https://doi.org/10.1038/s41598-017-14421-w
https://doi.org/10.1103/PhysRevLett.96.237202
https://doi.org/10.1103/PhysRevB.80.140409
https://doi.org/10.1063/1.3224870
https://doi.org/10.1038/nature04447
https://doi.org/10.1103/PhysRevLett.101.037205
https://doi.org/10.1103/PhysRevLett.105.047205
https://doi.org/10.1088/1367-2630/15/5/055012
https://doi.org/10.1103/PhysRevLett.111.057204
https://doi.org/10.1063/1.5126713
https://doi.org/10.1088/1367-2630/14/3/035009
https://doi.org/10.1103/PhysRevLett.110.117205
https://doi.org/10.1103/PhysRevB.93.100401
https://doi.org/10.1103/PhysRevB.93.134420
https://doi.org/10.1103/PhysRevB.100.214425
https://doi.org/10.1103/PhysRevB.101.224428
https://doi.org/10.1063/9.0000175
https://doi.org/10.1007/BF01328601
https://doi.org/10.1088/1367-2630/15/4/045029
https://doi.org/10.1007/BF02980577
https://doi.org/10.1088/1361-648X/aad0c1
https://doi.org/10.1088/0953-8984/24/29/296001
https://doi.org/10.1103/PhysRevB.103.094405
https://doi.org/10.1088/1361-648X/ac3609
https://doi.org/10.1088/0953-8984/27/7/076004
https://doi.org/10.1103/PhysRevLett.106.057209
https://doi.org/10.1016/j.physleta.2016.11.041

