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Dynamical decoupling (DD) is an efficient method to decouple systems from environmental noise and to
prolong the coherence time of systems. In contrast to discrete and continuous DD protocols in the presence of
bias field, we propose a Floquet DD at zero bias to perfectly suppress both the zeroth and first orders of noises
according to the Floquet theory. Specifically, we demonstrate the effectiveness of this Floquet DD protocol in
two typical systems including a spinor atomic Bose-Einstein condensate decohered by classical stray magnetic
fields and a semiconductor quantum dot electron spin coupled to nuclear spins. Furthermore, our protocol can be
used to sense high-frequency noises. The Floquet DD protocol we propose shines light on low-cost and highly
portable DD technics without bias field and with low controlling power, which may have wide applications in
quantum computing, quantum sensing, nuclear magnetic resonance, and magnetic resonance imaging.
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I. INTRODUCTION

Systems that are not sufficiently isolated inevitably couple
to environments, resulting in finite coherence time, finite life-
time, and particle loss [1–4]. The fidelity of entangled-state
preparations and the reliability of quantum-gate operations
will be decreased [5–9], leading to destructive effects on
many quantum applications, such as quantum communication
[10], quantum teleportation [11,12], and quantum computing
[13,14]. Therefore, it is crucial to suppress these destructive
channels in experiments. However, the time scale of decoher-
ence induced by noises or interactions is much shorter than
other destructive channels. Thus, suppressing the decoherence
channel and prolonging the coherence time is the first chal-
lenge in experiments [15–20].

Dynamical decoupling (DD) is a useful mechanism to
prolong the coherence time of systems and to decouple sys-
tems from both classical and quantum noises [21–23]. It was
proposed by Hahn [24] as spin echo, then developed into
various forms, such as Carr-Purcell-Meiboom-Gill [25,26],
periodic DD [27], concatenated DD (CDD) [27,28], Uhrig
DD, concatenated Uhrig DD (CUDD) [29,30], and uniaxial
DD [31]. The DD protocols mentioned above are the dis-
crete type with strong strength of control pulses. To decrease
the controlling power, continuous DD protocols have been
proposed [32–42]. Recently, these DD protocols have been
widely applied to various systems, such as quantum dots
(QDs) [43,44], nitrogen-vacancy centers [17,38,41], trapped
ions [19,20,37], and superconducting quantum interference
devices [16,45,46]. The coherence time of systems is sig-
nificantly improved in experiments. However, both discrete
and continuous DD protocols require a large bias field, which
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makes the experimental setups high cost and low portability.
Additionally, there are potential tasks to decouple systems
from noises, to sense noises, and to coherently stabilize quan-
tum gates without bias [47–52]. Thus, it is necessary and
significant to propose a protocol aiming at suppressing the
decoherence channel and sensing high-frequency noises at
zero bias. Even though the continuous DD with reversed
amplitudes yielding effectively zero bias was experimentally
demonstrated [45], we here propose a method with the true
zeroness of the applied bias.

In this paper, we propose a method named Floquet DD at
zero bias to decouple systems from environments. We first
analytically obtain the effective Hamiltonian under Floquet
DD based on the Floquet theory, which demonstrates our
protocol can not only suppress the zeroth order of noises
but prevent systems from being decohered by the first or-
der of noises. Second, numerical simulations confirm the
commendable performance of our protocol in a spinor Bose-
Einstein condensate (BEC) decohered by stray magnetic fields
(classical noises) and in a semiconductor QD electron spin
qubit decohered by nuclear spins (quantum noises). Our re-
sults can be applied to research in low control fields and
zero bias in nuclear magnetic resonance and quantum sensing
beyond the standard quantum limit.

II. FLOQUET DD

Before we discuss the Floquet DD, we briefly review
existing DD protocols. To compare our method with these
protocols, we depict them in the toggling frame of bias since
there is no bias in our method intrinsically. The simplest
discrete DD, i.e., spin echo, is shown in Fig. 1(a). The control
Hamiltonian is Ĥc = �δ(t − nT )Ĵx, with controlling strength
satisfying

∫ nT +ε/2
nT −ε/2 �δ(t − nT )dt = π ; then noises along the
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FIG. 1. Schematics for different dynamical decoupling (DD)
protocols. The control is along the x axis, and noises are along the
z axis, bz ∈ [−bm, bm]. The typical DD protocols are shown in the
left panels, while the corresponding evolutions are shown in the right
panels. (a) Discrete DD. (b) Continuous DD. (c) Floquet DD.

z axis Ĥz = bzĴz with strength bz ∈ [−bm, bm] are suppressed.
As a result, the spin returns to its initial state after one period,
as shown in the right panel of Fig. 1(a). A typical continu-
ous DD is shown in Fig. 1(b). The control Hamiltonian is
Ĥc = �Ĵx; then the system is decoupled from noises under
the condition � � bm. The evolution trajectory is shown in
the right panel of Fig. 1(b), which forms a closed circle.

The Floquet DD protocol we propose is shown in
Fig. 1(c). The control Hamiltonian is Ĥ = � cos(ωt + ϕ)Ĵx,
with controlling strength � and frequency ω; then the evo-
lution of systems coupled to longitudinal magnetic noises is
governed by

Ĥ = bzĴz + � cos(ωt + ϕ)Ĵx, (1)

where we assume |bz| � bm. After applying a rotating
wave transformation Û = exp[i

∫ t
0 � cos(ωτ + ϕ)Ĵxdτ ], the

Hamiltonian becomes

Ĥr = bz

∞∑
n=−∞

{J2n exp[i2n(ωt + ϕ)]Ĵz

− iJ2n+1 exp[i(2n + 1)(ωt + ϕ)]Ĵy}, (2)

where Jn is the nth-order Bessel function of �/ω. When ω

is larger than bm, we can use the high-frequency expansion to

obtain the Floquet effective Hamiltonian:

Ĥeff = Ĥ (0) +
∑
n �=0

(
[Ĥ (n), Ĥ (−n)]

2nω
− [Ĥ (n), Ĥ (0)]

nω

)
+ · · · ,

where Ĥ (n) = 1
T

∫ T
0 Ĥ (t )e−inωt dt . In the high-frequency limit,

the rotating wave approximation, we can keep the expansion
to the leading order:

Ĥeff = bzJ0Ĵz. (3)

When the ratio �/ω satisfies J0(�/ω) = 0, the zeroth order
of noises about bz is completely suppressed. Furthermore,
because of [Ĥ (n), Ĥ (−n)] = 0, the first order of longitudinal
noises is also inhibited perfectly.

According to the above analysis, we conclude that both the
zeroth and first orders of longitudinal noises are suppressed
completely. However, in experiments, there may exist noises
with random directions, i.e., stray magnetic fields. Thus, it is
vital for Floquet DD to prevent systems from being decohered
by stray magnetic fields. Fortunately, our protocol can be
directly extended to suppress these noises. The Hamiltonian
with controls in this situation is

Ĥ = b · Ĵ +
∑
α=x,y

�α cos(ωαt + ϕα )Ĵα, (4)

where we assume |b| � bm and ωx = ωy = ω [53]. In the
following, we apply a rotating wave transformation Û I =
exp[i

∫ t
0 �x cos(ωτ + ϕx )Ĵxdτ ], resulting in the Hamiltonian:

Ĥ I
r =

∞∑
n=−∞

Ĥ (n)einωt , (5)

where

Ĥ (0) = bxĴx + byJ0Ĵy + bzJ0Ĵz − �yJ1 sin(ϕx − ϕy)Ĵz,

Ĥ (2n �=0) = byJ2n exp(i2nϕx )Ĵy + bzJ2n exp(i2nϕx )Ĵz

+ i
�y

2
(J2n−1 exp{i[(2n − 1)ϕx + ϕy]}

+J2n+1 exp{i[(2n + 1)ϕx − ϕy]})Ĵz

Ĥ (2n+1) = ibyJ2n+1 exp[i(2n + 1)ϕx]Ĵz

− ibzJ2n+1 exp[i(2n + 1)ϕx]Ĵy

+ �y

2
(J2n exp{i[2nϕx + ϕy]}

+J2n+2 exp{i[(2n + 2)ϕx − ϕy]})Ĵy,

with Jn ≡ Jn(�x/ω). In the high-frequency limit ω �
bm,�y and J0(�x/ω) = 0, the effective Hamiltonian be-
comes

Ĥ I
eff = bxĴx + γ Ĵz, (6)

with γ = −�yJ1 sin(ϕx − ϕy). Then we apply another rotat-
ing wave transformation Û II = exp(iγ Ĵzt ), which transforms
the above Hamiltonian to

Ĥ II
r = bx[cos(γ t )Ĵx − sin(γ t )Ĵy]. (7)
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In the rotating wave approximation γ � bm, the effective
Hamiltonian is finally obtained:

Ĥ II
eff = 0. (8)

Thus, the zeroth order of stray magnetic fields is completely
suppressed. Furthermore, according to the Floquet expansion,
when ϕx = π/2 or 3π/2 and ϕy = 0 or π , Ĥ (n) is equal to
Ĥ (−n) in Eq. (5), thereby inhibiting the first order of noises
about by, bz. The first order of noises about bx can also be
inhibited by alternatively tuning ϕy = 0 or ϕy = π for two
nearest-neighboring intervals and ensuring |γ |T/2 = 2nπ in
each interval [54]. Until now, we have demonstrated the
complete suppression of both the zeroth and first orders of
stray magnetic noises. Additionally, higher orders of noises
are also slightly suppressed by small coefficients because of
the high-order Bessel function. More significantly, the above
discussions about classical magnetic fields are also valid for
quantum noises, only regarding b as the b̂ operator. In the
following two sections, we numerically calculate two concrete
examples to illustrate that our protocol is capable of suppress-
ing both classical and quantum noises.

III. SUPPRESSING CLASSICAL NOISES IN A SPINOR BEC

As for classical noises, we consider an atomic spinor
BEC in external stray magnetic fields. The system with
controls is described by the Hamiltonian Ĥ = b · Ĵ +∑

α=x,y �α cos(ωαt + ϕα )Ĵα under the single-mode approxi-

mation [55–58], which is the same as Eq. (4). Here, Ĵ is the
total spin of the spinor BEC and b are stray magnetic fields
that are randomly distributed in a sphere with radius bm. The
controls are chosen along the x and y axes. The energy and the
time units are bm and b−1

m , respectively.
As we have demonstrated based on the Floquet theory,

stray magnetic fields bx, by, and bz are all suppressed to the
second order. Thus, without loss of generality, we just show
numerical simulations of 〈Ĵy〉 in Fig. 2. Due to J0(�x/ω) =
0, we set r0 ≡ �x/ω ≈ 2.4048. Additionally, to satisfy the
high-frequency expansion (ω > �y 
 γ > bm) and the com-
mensuration between two rotating wave transformations, we
set r1 ≡ ω/γ ∈ Z, r2 ≡ γ /bm ∈ R. According to numerical
results shown in Fig. 2(a), we find expectation values of Ĵy

approach J as r1 and r2 increase. In Fig. 2(b), we show five
typical dynamics of 〈Ĵy〉 under different controlling parame-
ters, where blue circles depict the free induced decay (FID)
without Floquet DD, and other colored lines show decoher-
ence with Floquet DD. These numerical results indicate that
the coherence time is significantly prolonged under controls
even when the controlling strengths are slightly larger than the
strength of noises. For example, when r1 = r2 = 4, the coher-
ence time is dozens of times longer than that of FID based on
the rough estimation, and when r1 = r2 � 8, the coherence
time is clearly seen prolonged by 2 orders of magnitude,
which is consistent with the theoretical analysis indicating
that stray magnetic fields are suppressed to the second order
O(1/r2

1,2). In experiments, the strength of stray magnetic fields
bm is usually <1 mG, that is, corresponding to 0.7 kHz and
is further suppressed to 10 µG in a magnetic shielding room
[59]. If we roughly consider bm = 0.7 kHz and r1 = r2 = 8,
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FIG. 2. Suppression of classical noises with Floquet dynami-
cal decoupling (DD) in an atomic spinor Bose-Einstein condensate
(BEC). (a) Expectation values of Ĵy at time t/b−1

m = 200 under differ-
ent controlling parameters r1 = ω/γ and r2 = γ /bm. (b) Dynamics
of 〈Ĵy〉 under several typical pairs of {r1, r2}, and free induced decay
(FID) means there is no control. The black solid line mimics the
decaying dynamics by exp(−σ 2t2), with σ ≈ 0.35bm. ωx = ωy = ω,
�x = ωr0, and �y = γ /J1(r0), with J0(r0) = 0. Stray magnetic
fields b are randomly distributed in a sphere, and the radius of the
sphere is bm. The initial state is polarized along the y direction. J is
the mean value of Ĵy for the initial state.

the corresponding controlling parameters are ω ≈ 44.8 kHz,
�y ≈ 10.8 kHz, and �x ≈ 107.7 kHz.

IV. SUPPRESSING QUANTUM NOISES IN A QD

As for quantum noises, which are intrinsically different
from classical noises described by stochastic fields, they
are treated by operators and their correlations. To illustrate
the suppressing capability of our protocol, we consider a
gate-defined GaAs semiconductor QD system, which is well
described by a central electron spin decohered by surrounding
nuclear spins [60–62]. The Hamiltonian of this system with
N nuclear spins under two sequences of alternative controls
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is Ĥ = S · ∑N
k=1 AkIk + ∑

α=x,y �α cos(ωαt + ϕα )Ŝα , where
S and I are the electron and nuclear spins, respectively, and
both are assumed spin- 1

2 for simplicity. In general, Ak is
proportional to the local density of the electron at the posi-
tion of the kth nucleon, Ak = Amexp[−(x − x0)2/w2

x − (y −
y0)2/w2

y ], a 2D (N = 4 × 3) Gaussian form with effective
widths wx/ax = 3

2 and wy/ay = 2 (the lattice constant ax,y),
and a shifted center x0/ax = 0.1 and y0/ay = 0.2 [63]. The
energy and time units are Am and A−1

m . Here, we neglect the
interactions between nuclear spins because they are so small
that the time scale of their dynamics is much longer than the
decoherence time of the electron spin.

The meanings of controlling parameters r0, r1, and r2 are
the same as that in suppressing classical noises. We choose
expectation values of Ŝy as the witness for quantum noises
suppression. The system evolution is simulated by the
Chebyshev polynomial expansion [64]. According to
Fig. 3(a), we find suppressing effects are increased as
strengths of controlling parameters increase, which is like the
behaviors in suppressing classical noises. However, based on
Fig. 3(b), we find that the coherence time for suppressing
quantum noises at r1 = r2 = 8 is like that for suppressing
classical noises at r1 = r2 = 4. To compare these two different
types of noises, we use the decaying dynamics exp(−σ 2t2)
to mimic the processes of FID. We obtain σ ≈ 0.35bm for
the classical noisesand σ ≈ 0.35 × 3Am for the quantum
noises. (The effective value of σ for quantum noises can be
tuned by the initial distribution of nuclear spins [63].) Thus,
in our numerical simulations, the controlling parameters for
suppressing quantum noises should be larger than that for
suppressing classical noises to achieve a similar coherence
time. In experiments, Am is typically equal to 10−4 µeV,
that is, corresponding to 20 kHz [28,61,62]. Then the
controlling parameters are ω ≈ 1.28 MHz, �y ≈ 0.31 MHz,
and �x ≈ 3.08 MHz, if r1 = r2 = 8.

V. ROBUSTNESS OF FLOQUET DD

Although we have demonstrated the ability of
Floquet DD in suppressing both classical and quantum noises,
controlling fluctuations arising from power, frequency, and
phase have not been considered. Based on current experi-
mental conditions, we here mainly consider the fluctuation in
controlling power �α . Therefore, after applying the first rotat-
ing wave approximation, the Hamiltonian in Eq. (4) becomes
Ĥ I

eff = bxĴx + b′
yĴy + b′

zĴz + γ ′Ĵz, with b′
y = byJ0(�′

x/ω),
b′

z = bzJ0(�′
x/ω), and γ ′ = −�′

yJ1(�′
y/ω) sin(ϕx − ϕy).

The zeroth order of noises about by and bz is suppressed
to b′

y and b′
z, respectively. Then after applying the

second rotating wave approximation, the above effective
Hamiltonian becomes Ĥ II

eff = b′
zĴz − [�′

yJ1(�′
y/ω) −

�yJ1(�y/ω)] sin(ϕx − ϕy)Ĵz. Additionally, the second
term −[�′

yJ1(�′
y/ω) − �yJ1(�′

y/ω)] sin(ϕx − ϕy)Ĵz can
be canceled by alternatively tuning ϕy = 0 or ϕy = π for
two nearest-neighboring intervals. Finally, the fluctuation of
�α leads to the residue of longitudinal magnetic noises b′

z,
resulting in a shorter coherence time of spins in the x − y
plane than that along the z axis. Without loss of generality,
we still choose 〈F̂y〉 as the witness of decoherence, where
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FIG. 3. Suppression of quantum noises with Floquet dynamical
decoupling (DD) in a GaAs quantum dot (QD). (a) Expectation
values of Ŝy at time t/A−1

m = 200 under different controlling param-
eters r1 = ω/γ and r2 = γ /bm. (b) Dynamics of 〈Ŝy〉 under several
typical pairs of {r1, r2}, and free induced decay (FID) means there
is no control. The black solid line mimics the decaying dynam-
ics by exp(−σ 2t2), with σ ≈ 0.35 × 3Am. ωy = ωx = ω, �x = ωr0,
and �y = γ /J1(r0), with J0(r0) = 0. Coupling strengths of nuclear
spin interactions are distributed in a two-dimensional (2D) (4 × 3)
Gaussian form, Ak = Amexp[−(x − x0 )2/w2

x − (y − y0 )2/w2
y ], with

effective widths wx/ax = 3
2 and wy/ay = 2 and a shifted center

x0/ax = 0.1 and y0/ay = 0.2. The nuclear spins are initially ran-
domly polarized on the Bloch sphere. The initial electronic spin is
polarized along the y direction. S is the mean value of Ŝy for the
initial state.

F̂ denotes Ĵ for classical noises and Ŝ for quantum noises.
Numerically, r0 ∈ [2.388, 2.417] approximately corresponds
to 1.2% fluctuations of �α , and the numerical simulations
are shown in Fig. 4. Here, 〈F̂y〉/F is still >0.7 at time
t/b−1

m = 200 and t/A−1
m = 200 for classical and quantum

noises, respectively. Based on these results, we find these two
kinds of noises are suppressed well, and the coherence time is
still prolonged by 2 orders of magnitude even with fluctuation
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FIG. 4. Robustness of Floquet dynamical decoupling (DD) under
fluctuation in controlling powers. 〈F̂y〉 means the expectation value of
spins along the y axis at time t/b−1

m = 200 (t/A−1
m = 200). F denotes

J (S) for classical (quantum) noises. r0 ∈ [2.388, 2.417] corresponds
to 1.2% fluctuations of controlling power �α . We set r1 = r2 = 16
and 32 for suppressing classical and quantum noises, respectively.
The down (up) triangles depict the results for suppression of classical
(quantum) noises with fluctuation of controlling power.
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FIG. 5. Suppression of classical noises with Floquet dynamical
decoupling (DD) and other existing DD protocols in an atomic
spinor Bose-Einstein condensate (BEC). Dynamics of 〈Ĵy〉 un-
der parameters r1 = r2 = 10 in Floquet DD (solid line), and free
induced decay (FID; circles) means there is no control. Both con-
catenated DD (CDD; dashed line) and concatenated Uhrig DD
(CUDD; dot-dashed line) are concatenated once with fluctuation of
bias 0.2 mG = 0.2bm, pulse duration 20 µs ≈ 0.02b−1

m and pulse
separation τ = 0.1b−1

m . Concatenated continuous DD (CCD; dot-
ted line) under control Hamiltonian ωĴz + 2�1 cos(ωt + ϕ1)Ĵx +
4�2 cos(ωt + π/2) cos(�1t + ϕ2)Ĵx satisfies the magic condition,
and ω � �1, �1/�2 = 10, and �2/bm = 10, fluctuation of bias 0.2
mG. The initial state is polarized along the y direction. J is the mean
value of Ĵy for the initial state. Other parameters are the same as those
shown in Fig. 2.
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FIG. 6. Suppression of (a) pink noise and (b) Lorentzian noise
with Floquet dynamical decoupling (DD) in an atomic spinor
Bose-Einstein condensate (BEC). (a) and (b) Dynamics of 〈Ĵy〉 under
several typical pairs of {r1, r2}, and free induced decay (FID) means
there is no control. The initial state is polarized along the y direction.
J is the mean value of Ĵy for the initial state. Other parameters are the
same as those shown in Fig. 2.

in controlling powers, which manifests that our protocol is
robust against controlling fluctuations.

VI. SUMMARY

We propose a Floquet DD protocol at zero bias to decouple
systems from environmental noise. According to the theoreti-
cal analysis based on Floquet expansion, we find our protocol
can not only suppress the zeroth order but the first order of
noises. Additionally, we numerically calculate two systems
including a spinor BEC in classical stray magnetic fields and
a GaAs QD electron spin coupled to quantum nuclear spins.
The numerical results of these two systems show our protocol
significantly prolongs the coherence time and is robust against
fluctuations in controlling powers. Furthermore, our protocol
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can be used to sense noises with high frequency by detect-
ing decoherence of systems. Our results suggest alternative
low-cost and highly portable DD techniques without bias,
which may find wide applications in quantum computing,
quantum information processing, nuclear magnetic resonance,
and magnetic resonance imaging.
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APPENDIX A: COMPARISONS BETWEEN OUR METHOD
AND THE EXISTING DD PROTOCOLS

Although the notable merit of our method is the true
zeroness of the applied bias, in this section, we compare
our method to the existing DD protocols in terms of
the effectiveness of noise suppression. Honestly speaking,
the existing discrete DD protocols such as CDD [27] and
CUDD [30] can suppress higher orders of noises if the DD is
concatenated more times, while our method can only suppress
both the zeroth and first orders of noises. However, if we focus
on the lower orders (zeroth and first orders) of suppressing
effect, i.e., both CDD and CUDD are concatenated once,
our method has some advantages such as no fluctuation of
bias and no error induced by the finite width of pulses. To
compare the existing discrete DD protocols with our proposal
numerically, the fluctuation of bias is set as 0.2 mG, and the
pulse duration is set as 20 µs [65]. The numerical simulations
are shown in Fig. 5, where parameters r1 = r2 = 10 in
Floquet DD, and the pulse separation τ is set as 0.1b−1

m in both
CDD ( fτ x fτ y fτ x fτ z fτ x fτ y fτ x fτ fτ x fτ y fτ x fτ z fτ x fτ y fτ x fτ )
and CUDD [ fτ y fτ fτ y fτ x( fτ y fτ fτ y fτ )2x fτ y fτ fτ y fτ ]. Other
parameters are the same as that shown in Fig. 2. According
to Fig. 5, we find that the CDD with fluctuation of bias and
finite pulse width performs worse than the Floquet DD in

suppressing effect, while the performance of CUDD with
these controlling errors is more robust than CDD, and the
suppressing effect of CUDD is comparable with the Floquet
DD. As for the continuous DD, there also exists the fluctuation
of bias resulting in an extra controlling error. To compare the
continuous DD with our proposal numerically, the fluctuation
of bias is also set as 0.2 mG. The numerical result is depicted
by the dotted line in Fig. 5, where we use the concatenated
continuous DD (CCD) with control Hamiltonian ωĴz +
2�1 cos(ωt + ϕ1)Ĵx + 4�2 cos(ωt + π/2) cos(�1t + ϕ2)Ĵx

[36], which satisfies the magic condition to suppress both
of the zeroth and first orders of noises demonstrated in our
previous paper [39] and ω � �1,�1/�2 = 10,�2/bm = 10.
According to the numerical result, we find the suppressing
effect of CCD is slightly influenced by the fluctuation
of bias.

APPENDIX B: SUPPRESSION OF COLORED NOISES
WITH FLOQUET DD

To check the performance of Floquet DD under different
types of colored noises, we calculate the spin dynamics for
the BEC system under pink noise S(ω) ∝ 1/ω and Lorentzian
noise S(ω) ∝ τcorr

1+(ω−ω0 )2τ 2
corr

with Floquet DD, where S(ω) is
the power spectrum of the noise. The frequency of pink noise
is numerically distributed in the range [0.01, 1]ωc, and the
maximal strength of pink noise is 15bm, while the frequency
of Lorentzian noise is in the [−0.5 + ω0/ωc, 0.5 + ω0/ωc]ωc

range, and the maximal strength of Lorentzian noise is also
15bm. In experiments, since the noise is mainly induced by the
electromagnetic coils, the dominant frequency of the noise is
50 Hz. We here set ωc = 500 Hz, ω0 = 50 Hz, and τcorr = 50
ms. Other parameters are the same as those shown in Fig. 2.
The numerical simulations are shown in Fig. 6. We find the
suppressing effect of colored noises is more efficient than
that of the static noise because the large-strength and low-
frequency noise is significantly suppressed by our method,
while the strength of high-frequency noise is very small.
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