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Building entanglement entropy out of correlation functions for interacting fermions
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We provide a prescription to construct Rényi and von Neumann entropy of a system of interacting fermions
from a knowledge of its correlation functions. We show that Rényi entanglement entropy of interacting fermions
in arbitrary dimensions can be represented by a Schwinger-Keldysh free energy on replicated manifolds with
a current between the replicas. The current is local in real space and is present only in the subsystem which is
not integrated out. This allows us to construct a diagrammatic representation of entanglement entropy in terms
of connected correlators in the standard field theory with no replicas. This construction is agnostic to how the
correlators are calculated, and one can use calculated, simulated, or measured values of the correlators in this
formula. Using this diagrammatic representation, one can decompose entanglement into contributions which
depend on the one-particle correlator, two-particle correlator, and so on. We provide an analytic formula for
the one-particle contribution and a diagrammatic construction for higher-order contributions. We show how
this construction can be extended for von Neumann entropy through analytic continuation. For a practical
implementation of a quantum state, where one usually has information only about few-particle correlators, this
provides an approximate way of calculating entanglement commensurate with the limited knowledge about the
underlying quantum state.
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I. INTRODUCTION

A quantum many-body state encodes nonlocal correlations
between degrees of freedom in one part of the system with
those in another part, i.e., the information about the state is
distributed amongst degrees of freedom which are typically
far away from each other. A simple way to see this is to expand
a quantum many-body state in a basis which is tensor product
of local basis states. The complex quantum amplitudes of this
expansion (or the many-body wave function) store the infor-
mation about these nonlocal correlations. The most obvious
example of this is quantum statistics: e.g., fermions cannot
share a quantum state, which can impose long-range nonlocal
constraints on wave functions of many fermions.

If one is interested in observables which have support only
in the Hilbert space of a subsystem A, one can trace over the
degrees of freedom in the complementary subsystem B and
construct a reduced density matrix (RDM) ρ̂A [1]. This den-
sity operator will reproduce all observables in the subsystem
and has the usual interpretation of a “classical” ensemble of
quantum states as specified by its spectral decomposition. For
pure quantum states in the full Hilbert space, if the RDM also
represents a pure state in the subsystem, the original state is
separable, otherwise it is entangled [2].

Entanglement and its related measures have played an
important role in wide-ranging fields including quantum in-
formation and computation [3,4], foundations of quantum
mechanics [5], black-hole physics and quantum gravity [6],
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and quantum condensed-matter systems [7,8]. An impor-
tant measure of entanglement in pure states is the bipartite
entanglement entropy (EE), which is the classical entropy
corresponding to the probability distribution specified by the
eigenvalues of ρ̂A. In quantum many-body systems, the scal-
ing of EE with subsystem size is used to fingerprint states
[8–12], detect presence of topological order [13] or occur-
rence of quantum phase transitions [14]. In fact, exotic states
like spin liquids [15] are often best described by the “entan-
glement patterns” in the ground state [16]. More recently, the
entanglement scaling of excited states in the middle of the
spectrum [17] has been used to classify whether a disordered
interacting system is in an ergodic phase, where local ob-
servables can be described by usual statistical mechanics, or
in a many-body localized (MBL) phase [18], where laws of
statistical mechanics fail to apply. The question of thermaliza-
tion [19] in a system has also been tracked through the time
evolution of entanglement under nonequilibrium dynamics
[20–22]. Thermalizing systems show a linear growth of en-
tanglement, while many-body localized systems have a slower
logarithmic growth of entanglement [23,24]. The growth of
entanglement has also played a crucial role in the development
of ideas related to quantum chaos [25,26]. Experimental mea-
surements of EE in many-body systems have been performed
on a variety of platforms including ion traps [27,28], ultracold
Rydberg atoms [29,30], and superconducting qubits [31].

There are only a few methods to calculate the EE in inter-
acting many-body systems, either in thermal or in the ground
state. Even fewer methods can tackle nonequilibrium dynam-
ics of EE. The most direct method is to obtain the quantum
state by exact diagonalization, calculate the reduced density
matrix and hence the EE [32,33]. While this is the most widely
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used method, it is limited to small finite-size systems in one
dimension since the specification of a quantum many-body
state requires knowledge of an exponentially large (in sys-
tem size) number of quantum amplitudes. Quantum Monte
Carlo based methods have been extensively used for systems
in one and two dimensions [34]. In the cases where EE is
expected to have a weak scaling with system size, numerical
techniques using density matrix renormalization group ideas
[35] in one dimension and tensor network based methods
[36] in higher dimensions have been used to calculate EE.
For noninteracting systems or integrable systems, progress
can be made using specialized numerical techniques, as one
can reduce the complexity of the calculation [37]. Standard
field-theoretic techniques for calculation of entanglement en-
tropy [10, 12] use replica methods with complicated boundary
conditions. This limits their scope as it is often impossible
to obtain solutions of even simple problems with the compli-
cated boundary conditions. For (1+1)-dimensional [(1+1)D]
conformal field theories (CFTs) [10], where correlators are
tightly constrained, one can obtain exact analytical answers
for leading and subleading scaling of EE.

A key problem in calculating EE of a state is the following:
We have an operational prescription to calculate EE if we
know the exact quantum state; however for a generic system,
there is no such prescription to calculate the EE in terms of
the correlation functions. There are two aspects to this issue:
(a) A prescription to obtain entanglement from correlators can
lead to efficient estimates of entanglement in numerics since
efficient algorithms to calculate correlation functions already
exist in the literature [35,38]. There are also a large class
of analytic approximation schemes [39,40] for calculating
interacting correlation functions, which have been developed
over the years. With a prescription connecting correlations
to EE, these methods can increase the scope of study of
entanglement in large quantum systems. We note that in the
special cases where this prescription is known, like in nonin-
teracting systems [37,11] or (1+1)D CFT [10], our knowledge
of EE is vastly more advanced than the cases where such a
prescription is not known. (b) In any realistic situation, it is
impossible to know the exact quantum state; however, there
are experimental probes to obtain information about the corre-
lation functions [41]. Even in highly controllable systems like
ultracold atoms [42], experiments can at best have knowledge
of few-body correlations [43–45]. A prescription to calculate
entanglement entropy from knowledge of correlation func-
tions would thus not only enhance the theoretical space for
such calculations, it will be the only consistent description of
realistic experimental situations. Here we would like to note
that if one requires the knowledge of all m-body correlators
in a system to calculate EE, the complexity of the problem
is same as knowing the full quantum state. Thus, it would
be useful to have estimates of entanglement which involve
only few-body correlators, and one should be able to improve
these estimates if information about higher-order correlators
becomes available.

In this paper, we take on the task of constructing an oper-
ational prescription for computing EE of a generic interacting
fermionic system in terms of its correlation functions. We
consider the system to be made of mutually exclusive regions
A and B, with a Hilbert space which is a tensor product of

Hilbert spaces for degrees of freedom in A and B. We are in-
terested in the EE of the system when the degrees of freedom
in B are traced out. We use Schwinger-Keldysh field theory
[46,47], which allows us to consider ground states, thermal
systems, and closed and open quantum systems evolving in
time out of thermal equilibrium on the same footing. Our
prescription is agnostic to these different situations. Our for-
malism can in principle be applied to track the evolution of
EE along quantum protocols such as entanglement distillation
and entanglement concentration [48]. (i) We show that the
nth Rényi entropy, S(n), of a system of interacting fermions is
the Schwinger-Keldysh free energy of a system of n replicas
with “inter-replica currents” flowing only in the subsystem A.
These currents are local in space (i.e., between same lattice
sites, or same location) and in time (currents are present only
at the time of measurement). The matching of fields across
replicas in standard field-theory technique for calculating EE
is replaced by the inter-replica currents in our formalism. We
argue that the doubling of fields in the SK field theory is
a crucial ingredient which allows boundary conditions to be
replaced by quadratic currentlike terms, and we do not know
of any method which can achieve this in a single-contour
Lorentzian or Euclidean field theory. (ii) Using this identifi-
cation of EE with a free energy, we provide a prescription to
calculate it in terms of correlations in a single replica theory,
which does not involve complicated boundary conditions (it
has the same boundary conditions as the usual field theory).
(iii) We show that if one only has information of up to m-
particle connected correlators, one can construct an estimate
of EE, which can be improved if information about (m + 1)-
particle correlators becomes available. More precisely, for the
nth-order Rényi entanglement entropy (REE), S(n), we show

S(n) = S(n)
1P + S(n)

2P + S(n)
3P + · · · , (1)

where S(n)
mP involves up to m-particle connected correlators

G(m)
c , and does not involve any correlators of higher order

(particle number). For m > 1, G(m)
c is simply related to the

connected part of the expectation value of a normal-ordered
string of fermion operators (ĉ†, ĉ) with respect to the state,

G(m)
c ∼

〈
ĉ†ĉ† . . . ĉ†︸ ︷︷ ︸

m times

ĉ ĉ . . . ĉ︸ ︷︷ ︸
m times

〉
c

. (2)

We calculate S(n)
1P exactly and provide a prescription of Feyn-

man diagrams for calculating S(n)
mP for m > 1 in terms of

higher-order connected correlators. The decomposition in
Eq. (1) is most useful for states where the series can be
truncated at low orders to get reasonably accurate estimates
of REE, i.e., when the higher-order connected correlators fall
off sufficiently fast. This is possible in models which are
perturbatively connected to a Gaussian theory, for example, a
weakly interacting Fermi liquid, or in symmetry-broken mean
field theories such as large-N models of superconductors or
magnets. A further candidate could be states deep in the
MBL phase in 1D where the effective degrees of freedom
are quasilocal approximately conserved l-bits. (iv) The von
Neumann entropy S does not have a simple field-theoretic
interpretation, but has to be calculated as an analytic con-
tinuation of REE, i.e., S = limn→1 S(n). We posit a similar
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m-particle decomposition for S,

S = S1P + S2P + S3P + · · · , (3)

where SmP = limn→1 S(n)
mP. We calculate S1P exactly, and show

that a large class of diagrams for S(n)
mP vanish when the n → 1

limit is taken. For S2P, we explicitly calculate the first non-
trivial diagram which involves two two-particle connected
correlators. Note that our prescription is completely agnostic
to how the connected correlation functions are calculated. Our
formulation thus opens up the possibility of computing EE
using approximate analytic techniques, numerically obtained
correlators, or even experimentally measured ones. We believe
this construction will allow large-scale calculations of EE in
higher dimensions (d > 1) both in and out of equilibrium.
The remainder of the text is organized as follows. In Sec. II
we establish that the nth-order REE for a generic system of
interacting fermions is equal to the Schwinger-Keldysh free
energy of n replicas of the system coupled via inter-replica
currents. We use this fact in Sec. III to show how S(n) can
be decomposed into m-particle contributions S(n)

mP and provide
explicit diagrammatic rules to construct the same in terms of
k-particle correlators with 1 � k � m. Section IV is devoted
to the analytic continuation of these contributions as n → 1.
In Sec. V we provide an alternate diagrammatic prescription
in terms of Green’s functions of the noninteracting repli-
cas in presence of the quadratic inter-replica current terms.
These correlators depend on replica indices and do not admit
the usual physical interpretations as correlators in standard
Keldysh field theory. Lastly, we conclude in Sec. VI with a
summary of our findings.

II. ENTANGLEMENT ENTROPY AS A FREE ENERGY
IN PRESENCE OF REPLICA CURRENTS

Consider a system of fermions which is made up of two
mutually exclusive spatial subsystems A and B. For our pur-
pose, we consider a lattice with V sites, where the subsystem
A has VA sites. We will explicitly work with discrete lattice
systems, and take appropriate continuum limit at the end. The
Hilbert space of the system is a product of the Hilbert space
of degrees of freedom lying in A and those lying in B, i.e.,
HAB = HA ⊗ HB. On tracing over degrees of freedom in B,
a quantum state of the full system, |ψ (to)〉 gives rise to a
reduced density matrix ρ̂A(to) over the subsystem A. Here to
is the time of observation. The nth-order Rényi entanglement
entropy (REE) of this state for the partition between A and B
is then given by

S(n)(to) = − 1

n − 1
ln Tr[(ρ̂A(to))n], (4)

while the von Neumann entanglement entropy (referred to as
EE in the following) is obtained as the analytic continuation

S(to) = lim
n→1

S(n)(to) = −Tr[ρ̂A(to) ln ρ̂A(to)]. (5)

In a steady state or in equilibrium, the RDM and hence the
entropies are independent of to. In the standard field-theoretic
prescription for calculation of S(n), one considers n copies
(replicas) of the system. The time evolution of each of these
replicas can be written as a functional integral over fields,

FIG. 1. Replica-based evaluation of S(4): (a) Standard technique
for ground states where the reduced density matrix is represented as a
Euclidean-time path integral with boundary conditions in the subsys-
tem A. The fields are matched across consecutive replica as shown.
(b) Our formalism expresses each replica of the density matrix on a
real-time Keldysh contour with doubled fields. Fields at each point
of the subsystem A in one replica are coupled to their counterparts
in all other replicas. For S(4) this implies coupling between sheets
1 and 3, and between sheets 2 and 4, in addition to the coupling
between consecutive ones. The coupling operates only at the time
of observation to, and is “directional” in replica space, acting as a
“replica current.” Partial tracing is achieved by setting the coupling
to zero in the complementary subsystem B. No field matchings are
required in this formalism.

giving rise to n fields for each space-time point. The multipli-
cation of RDMs translates to imposing the boundary condition
that the fields within subsystem A in different replicas have
to be matched at the time of measurement. A schematic rep-
resentation of this prescription is shown in Fig. 1(a). This
naturally leads to integrals over constrained field configura-
tions in the replica space [10]. Here, we propose a modified
scheme [schematically shown in Fig. 1(b)] to calculate REE
of fermions which uses Schwinger-Keldysh field theory for
n replicas [21,22,49–51]. The key advantage is that we can
trade the boundary conditions in favor of “currents” flowing
between replicas in the subsystem A. This allows us to connect
REE with standard correlators of the original nonreplicated
theory.

To develop our formalism, it is useful to define the Wigner
characteristic χ of a density matrix, as the expectation value
of the fermionic displacement operator [22,52,53],

χ (ζ̄, ζ; to) = Tr[ρ̂(to)e
∑

i ĉ†
i ζi−ζ̄i ĉi ], (6)

where ρ̂(to) is the density matrix of the full system. The
Wigner characteristic has the useful property that χ for the
RDM is given by

χA(ζ̄, ζ; to) = Tr[ρ̂(to)e
∑

i∈A ĉ†
i ζi−ζ̄i ĉi ], (7)

i.e., one simply needs to restrict the support of the displace-
ment operator to HA [21]. From now onwards we will use ζ

and η to indicate vectors of Grassmann variables with support
only in A. Note that χA is a Grassmann valued function of
the Grassmann fields ζi, ζ̄i and does not have an immediate
physical interpretation. Its usefulness lies in the fact that
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expectations values of operators with support in A can be written as integrals over χ :

〈Ô〉[to] ≡ Tr[ρ̂A(to)Ô] = 2−VA

∫
D[ζ̄, ζ]D[η̄, η] χA(

√
2η̄,

√
2η; to)χO(

√
2ζ̄,

√
2ζ)eζ̄·η−η̄·ζ, (8)

where χO(ζ̄, ζ) = Tr[Ôe
∑

i∈A ĉ†
i ζi−ζ̄i ĉi ] is the Weyl symbol of the operator Ô and the dot product ζ̄ · η = ∑

i∈A ζ̄iηi. It is then easy
to see (substituting ρ̂A for Ô) that the second Rényi entropy is given by

e−S(2) (to) = 2−VA

∫
D[ζ̄, ζ]D[η̄, η]χA(

√
2η̄,

√
2η; to)χA(

√
2ζ̄,

√
2ζ; to)eζ̄·η−η̄·ζ. (9)

Using properties of displacement operators and fermionic coherent states, Ref. [22] showed that the nth-order REE corresponding
to can be written as (suppressing the time index)

e−(n−1)S(n) = 2−(n−1)VA

∫ n−1∏
α=1

D[ζ̄(α)
, ζ(α)]D[η̄(α), η(α)]

n−1∏
α=1

χA(
√

2η̄(α),
√

2η(α) ) χA

(√
2
∑

α

ζ̄
(α)

,
√

2
∑

α

ζ(α)

)

× exp

⎛
⎜⎜⎝

n−1∑
α=1

ζ̄
(α) · η(α) − η̄(α) · ζ(α) +

n−1∑
α,β=1
α>β

ζ̄
(α) · ζ(β ) − ζ̄

(β ) · ζ(α)

⎞
⎟⎟⎠. (10)

Here 1 � α, β � n − 1 are replica indices. Note that while
there are product of n replicas, the integration is over 2(n − 1)
pairs of Grassmann variables for each site in A.

Equation (10) is the starting point of our attempt to find
a field-theoretic construction of EE and hence a general rela-
tion between correlators and entanglement. For this, we work
with the Schwinger-Keldysh field theory of fermions [46],
which describes the evolution of a many-body density matrix
ρ̂(t ) = Û (t, 0)ρ̂(0)Û†(t, 0) in terms of path and functional
integrals over two fermionic (Grassmann) fields ψ±(i, t ) at
each space-time point. The ψ+ fields are obtained from the
expansion of Û (i.e., forward propagation of states) while
the ψ− fields come from the expansion of Û† (i.e., backward
propagation of states), giving rise to a field theory on a closed
contour. The partition function Z on this contour in presence
of sources J±, J̄± is

Z[J̄±, J±] =
∫
D[ψ̄±, ψ±]eιSK [ψ̄±,ψ±]+ι

∫
dt J̄+ψ+−J̄−ψ−+H.c.,

where the Keldysh action SK determines the evolution of the
correlators in the system (and ι2 = −1). Note that although
we have used the same notation D[·] to indicate integrals
over the fermion matter fields ψ as well as integrals over
the arguments of the Wigner characteristic (ζ , η), the matter
fields fluctuate in space-time, while the arguments of Wigner
characteristic are evaluated at to and hence have only spatial
variations. In this section, we do not need specific forms of the
action, and will refrain from talking about them. One obvious
advantage of using a Keldysh field theory is that one can treat
both equilibrium and nonequilibrium situations in the same
footing.

In earlier works [21,22,49], we had shown that the Wigner
characteristic of the reduced density matrix is the Schwinger-
Keldysh partition function of the system in presence of
sources which couple to fields in the subsystem A only
at the time when the entropy is measured, i.e., J̄±(i, t )

= ± ι ζ̄i/2 δ(t − to) if i ∈ A and 0 otherwise. This is schemat-
ically shown in Fig. 2. Note that the partition function
automatically traces over degrees of freedom in B, the sources
are inserted in A to compute the Wigner characteristic.

FIG. 2. Schematic representation of the Wigner characteristic
function χA(ζ̄, ζ; to) as a Keldysh path integral with source insertions.
Expanding the evolution operators Û (t, 0) and Û†(t, 0) leads to a
path integral with fields on the “forward”(red) and “backward”(blue)
contours, respectively. The fields are identified at t = ∞ and are
connected at t = 0 through the matrix elements of the initial density
matrix ρ̂0. The displacement operator is inserted symmetrically on
both forward and backward contours at the time of observation to and
is equivalent to insertion of sources J±, J̄±. The call-out shows the
spatial distribution of these sources; they take nonzero values only in
subsystem A.
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At this point, it will be useful to shift to symmetric (ψs, ψ̄s)
and antisymmetric (ψa, ψ̄a) combinations of the ± fields de-
fined at each space-time point as

ψs = (ψ+ + ψ−)/
√

2, ψ̄s = (ψ̄+ + ψ̄−)/
√

2,

ψa = (ψ+ − ψ−)/
√

2, ψ̄a = (ψ̄+ − ψ̄−)/
√

2.

The symmetric source Js = (J+ + J−)/
√

2 couples to the
antisymmetric field ψ̄a, while the antisymmetric source
Ja = (J+ − J−)/

√
2 couples to the symmetric field ψ̄s. For the

Wigner characteristic, the source structure works out to

Js(i, t ) = 0, Ja(i, t ) = − ι√
2
ζiδ(t − to)

J̄s(i, t ) = 0, J̄a(i, t ) = ι√
2
ζ̄iδ(t − to)

⎫⎬
⎭ for i ∈ A, (11)

and 0 otherwise. We can then write

χA(
√

2ζ̄,
√

2ζ, to) =
∫

D[ψ̄s,a,ψs,a]

× eιSK [ψ̄s,a,ψs,a]+ζ̄·P̂Aψs (to)−ψ̄s (to)P̂A·ζ, (12)

where P̂A is a projection operator on to the degrees of freedom
in subsystem A, added to explicitly account for the sources
coupling only to the degrees of freedom in A.

Substituting Eq. (12) into (10), we obtain

e−(n−1)[S(n)−VA ln 2] =
∫ n∏

α=1

D
[
ψ̄

(α)
s,a ,ψ(α)

s,a

]
eι

∑n
α=1 SK [ψ̄

(α)
s,a ,ψ(α)

s,a ]

× eιSent[{P̂Aψ̄
(α)
s (to),P̂Aψ(β )

s (to)}], (13)

where the entangling action Sent is given by

eιSent =
∫ n−1∏

α=1

D[ζ̄(α)
, ζ(α), η̄(α), η(α)] exp

⎛
⎝n−1∑

α=1

ζ̄
(α) · η(α) − η̄(α) · ζ(α) +

∑
α>β

ζ̄
(α) · ζ(β ) − ζ̄

(β ) · ζ(α)

⎞
⎠

× exp

(
n−1∑
α=1

η̄(α) · P̂Aψ(α)
s (to) − ψ̄

(α)
s (to)P̂A · η(α) +

n−1∑
α=1

ζ̄
(α) · P̂Aψ(n)

s (to) − ψ̄
(n)
s (to)P̂A · ζ(α)

)
.

The first part of Eq. (13) represents the action of n independent
replicas, while the entangling action involves integrals over
the source terms in each of the replicas. Note that in absence of
Sent, the Keldysh partition function of the independent replicas
is 1, and hence the entanglement would have vanished, i.e., the
finite entanglement comes solely from the effects of Sent. This
is consistent with the fact that Sent has information about the
subsystem A since the sources are restricted to A. While this
may seem similar to the standard path integral over n replicas
used in field-theoretic treatment of entanglement [10,12], we
note that we have 2n fields here. Beyond the obvious fact that
this allows us to look at nonequilibrium dynamics, we will
see that even for equilibrium systems or ground states, using
2n fields gives us certain advantages in terms of the structure
of the resultant theory.

For a noninteracting system, with Gaussian action, both
the integrals over the fields and the sources can be performed
exactly (in either order); however, for a generic interacting
system, it is not possible to integrate out the matter fields
exactly. Fortunately, even in this case, the integral over the
sources is just a Gaussian integral, which can be done analyt-
ically to get

ιSent = [
ψ̄s

(1)
, ψ̄s

(2)
, . . . , ψ̄s

(n)]
J ⊗ P̂A

⎡
⎢⎢⎢⎣

ψs
(1)

ψs
(2)

...

ψs
(n)

⎤
⎥⎥⎥⎦, (14)

where J is an n × n antisymmetric matrix with all entries
below the diagonal equal to one:

J =

⎛
⎜⎜⎜⎝

0 −1 . . . −1

1 0 . . .
...

...
. . .

. . . −1
1 . . . 1 0

⎞
⎟⎟⎟⎠

n×n

. (15)

Note that the integral over the sources couples the fields in
different replicas in Sent. It is useful to note the following
features of the entangling action:

(i) The integration of sources produces a replica coupling
term which is quadratic in the fields and only couples fields in
the subsystem A across replicas.

(ii) The coupling is local in space and time, i.e., it connects
fields on the same lattice sites, only at the time of measuring
the REE.

(iii) The structure of Sent has the form of a “current” in the
replica space, flowing between the same sites in the subsystem
A across any two distinct replicas. The entangling action does
not couple fields in the same replica, but couples fields in all
distinct replica pairs. In contrast, the standard replica trick
with Euclidean field theory involves fields in one replica being
identified with their counterparts in consecutive replicas. The
schematic difference between the standard approach and our
approach is shown in Figs. 1(a) and 1(b). The use of the
two-contour SK field theory allows the replacement of the
boundary condition by quadratic terms. The boundary condi-
tion in standard replica methods requires one to work with

174309-5



SARANYO MOITRA AND RAJDEEP SENSARMA PHYSICAL REVIEW B 108, 174309 (2023)

actions defined on n-sheeted Riemann surfaces for generic
interacting systems, with reduction to a single sheet possible
in special cases, like in free theories [12] or in presence of
conformal symmetry in (1 + 1)D [10]. Our formalism, on the
other hand, involves “currentlike” couplings between replicas
without additional boundary conditions on fields across repli-
cas. This will allow us to write a diagrammatic expansion for
EE in terms of the local connected correlators of the single
replica for a generic theory. We will take up this task in the
next section.

(iv) It is important to note that the Keldysh indices of
the fields making up the entangling action has the form
∼ψ̄ (α)

s ψ
(β )
s with α �= β. Such a term involving fields from the

same replica is forbidden in usual Schwinger-Keldysh field
theory as it would change normalization of ρ̂ and affect the
causal structure of the correlations. Thus, there is no obvious
analog of this term in usual single-component field theories,
or thermal field theories. The doubling of the fields in the
Keldysh formalism is what allows us to write this term, even
if we are considering the entanglement of a thermal state or
a ground state. Thus, Keldysh field theory is not just a way
to access nonequilibrium dynamics in this case, it is essen-
tial to writing a space-time local description of entanglement
entropies.

(v) Finally, we would like to note that the equations de-
rived until now are agnostic to the explicit form of the action.
For example, they do not require conformal invariance, and
can be used for generic interacting systems in any dimension
both in and out of equilibrium.

Thus, the n-order REE is the Keldysh free energy of
the n-fold replicated system in presence of the inter-replica
“current” between the same sites in the subsystem A. These
currents are active only at the time of measurement of the
entropy of the system. For a system in ground state/thermal
equilibrium/steady state, the entropy is independent of the
time of measurement, and we can choose the time to simplify
calculations. For non-equilibrium dynamics, which tracks the
time evolution of entanglement entropy, one is interested in
calculating the entropy as a function of the measurement time
to. We have thus provided an alternate field-theoretic picture of
REE of fermionic systems. We note that a similar construction
for bosonic systems runs into issues of zero modes, and we
will take it up in a future work [51].

III. FEYNMAN DIAGRAMS AND “m”-PARTICLE
ENTANGLEMENT

In the previous section, we have shown that the n-order
REE of a system of interacting fermions is the Keldysh free
energy of n replicas of the system with inter-replica currents
flowing between the sites in the subsystem A. Here we will
try to develop a diagrammatic expansion which will provide
a prescription to construct the REE in terms of the correlation
functions of the interacting system in a single replica sheet
restricted to the subsystem A. More precisely, we will show
that the nth REE can be written as

S(n) = S(n)
1P [G(1)] + S(n)

2P

[
G(1), G(2)

c

]
+ S(n)

3P

[
G(1), G(2)

c , G(3)
c

] + · · · , (16)

where G(1) = −ι〈ψsψ̄s〉 is the one-particle (two-point)
Keldysh Green’s function at equal times, and G(m)

c =
(−ι)m〈ψsψs . . . m times ψ̄sψ̄s . . . m times〉 is the equal time
m-particle (or 2m-point) connected correlator of the symmet-
ric fields at the time of observation. The spatial indices of
the correlators will only span the sites in the subsystem A.
As alluded to in Eq. (2), these correlators can be expressed
in terms of (the connected pieces of) expectation values of
normal-ordered strings of fermion creation and annihilation
operators in the system. We derive the exact form for the same
in Appendix A. In the construction of Eq. (16), S(n)

mP is indepen-
dent of k-particle connected correlators for k > m. Further, if
the m-particle correlator G(m) is factorizable, i.e., G(m)

c = 0,
then S(n)

mP vanishes identically. We will provide an explicit an-
alytic form of S(n)

1P [G(1)] and formulate diagrammatic rules for
constructing S(n)

mP for general m. The key point of this formula-
tion is that it is agnostic to how the correlators are calculated
or measured and provides a recipe to stitch together the exact
correlators of the interacting theory to construct the entan-
glement entropy. One can calculate the correlators in some
specified approximation scheme, but one can also substitute
in this expansion experimentally measured correlators, or the
same measured in numerical experiments like Monte Carlo
methods. This thus provides an alternative to constructing
REE from the knowledge of the exact quantum state. Note that
reconstructing a generic many-body quantum state requires
the knowledge of an exponential number of variables O(eV ),
while S(n)

mP only requires knowledge of up to m-particle con-
nected correlators which have O(V m

A ) variables. Further, REE
and EE are nonlinear nonlocal functions of the RDM; there
are very few ways of computing them, whereas a large number
of analytic and numerical approximation schemes are known
for calculating correlation functions. This connection between
correlators and entanglement in fermionic systems will allow
these approximation methods to be used in calculating REE
of interacting fermions.

A. One-particle correlators and S(n)
1P

We will first focus on calculating S(n)
1P . To do this, let us

first consider the REE of a system of free fermions, where
S(n)

mP = 0 for m > 1, i.e., S(n) = S(n)
1P . For the diagrammatic

expansion, we denote the symmetric fermionic fields by a
solid line, and the antisymmetric fields by dashed lines, as
shown in Fig. 3(a). We have omitted spin indices, but they
can be easily added to this description. Each field carries a
replica index along with usual space-time indices. We will
expand the free energy around the theory with n independent
identical replicas and treat Sent as an additional coupling. In
the independent replica theory, the propagators connect fields
with same replica indices. The propagators for each replica
are exactly the same as that of a single replica (i.e., standard)
Keldysh field theory. There are three independent propagators,
the retarded propagator GR = −ι〈ψsψ̄a〉, the advanced prop-
agator GA = −ι〈ψaψ̄s〉, and the Keldysh propagator GK =
−ι〈ψsψ̄s〉, as shown in Fig 3(b). Note 〈ψaψ̄a〉 = 0 in the
single-replica Keldysh field theory. These definitions hold for
both the interacting and noninteracting theories. The quadratic
coupling in Sent is represented by an open circle, with the J
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FIG. 3. Diagrammatic representation of (a) the symmetric (ψs) and antisymmetric (ψa) fields in the theory, (b) the two-point propagators
of the free theory in each replica, and (c) the entangling vertex [for details about vertex factors refer to main text, Eqs. (14) and (15)]. Lattice
sites are labeled by i, j and 1 � α, β � n are replica indices. (d) A ring diagram with two J vertices. We explicitly evaluate the diagram with
lattice and replica indices marked on each propagator. Since the latter are same in each replica, the resulting sum factorizes into a trace over
replica indices (R), and a trace over the subsystem (A). (e) Rényi entropy in a free theory S(n)

0 is the sum of all ring diagrams. Unmarked
propagators imply trace over replica and lattice indices. The term with a single J vertex evaluates to zero, but is still explicitly mentioned to
emphasize the series structure of the ring diagrams.

vertex given by the matrix J ⊗ P̂A as shown in Fig 3(c). Note
that this vertex couples symmetric fields in different replicas
on the same site in subsystem A at the time when REE is
computed.

The first point to note is that since the Rényi entropy is
a free energy (in presence of inter-replica currents), it can
be written as a sum of all fully connected diagrams in the
replica field theory with no external legs. The second point
to note is that the Keldysh free energy of the independent
replicas is 0, so the diagrams which contribute to REE must
have one or more Sent vertices. Finally, since Sent is quadratic,
one can easily resum all the diagrams here. Since the diagonal
elements of J are 0, there are no diagrams with a single J
vertex. The first nontrivial diagram, which has two J vertices
is shown in Fig. 3(d), together with its explicit evaluation.
In fact, the set of ring diagrams shown in Fig. 3(e) exhausts
all the free-energy diagrams for the free theory. Note that
only the Keldysh propagator, which carries information about
distribution functions, appears in this series. We note that the
diagram with p circles have a symmetry factor of 1/p [1/p!
from the exponential and (p − 1)! from permutation of the J
vertices]. Defining ιĜK

0;A = P̂AιĜK (to, to)P̂A as the projection
of the equal-time Keldysh correlator onto the subsystem A, it
is easy to see that

(1 − n)S(n)
0 = (1 − n)VA ln 2 −

∞∑
p=1

1

p
TrR[J p]TrA

[(
ιĜK

0;A

)p]

= ln

(
1

2(n−1)VA
det

[
I ⊗ 1̂ − J ⊗ ιĜK

0;A

])
, (17)

where I is the n × n identity matrix and 1̂ is the identity op-
erator on the subsystem A. This determinant is known exactly
(see Appendix B of Ref. [22]), and it reduces to a closed-form
expression for S(n)

0 ,

S(n)
0 (to) = 1

1 − n
TrA ln[[Ĉ0(to)]n + [1̂ − Ĉ0(to)]n], (18)

where C0(i, j; to) ≡ 〈ĉ†
i (to)ĉ j (to)〉0 is the noninteracting corre-

lation matrix restricted to A, and is related to the equal-time
Keldysh correlator by Ĉ0(to) = (1̂ − ιĜK

0,A)/2. Here ĉ†
i creates

a fermion on site i. Equation (18) matches with formulas
derived earlier for noninteracting fermionic systems [22,37].
This formula for REE of free fermions in terms of the one-
particle correlation function is well known in the literature,
and this acts as a check on our method to calculate entangle-
ment.

Let us now turn our focus to interacting fermionic systems,
where, for the sake of convenience, we assume a pairwise
interaction

S±
int = ±

∫
dt

∑
r,r′

ψ̄±(r, t )ψ̄±(r′, t )U (r, r′)ψ±(r′, t )ψ±(r, t ).

Here r, r′ run over degrees of freedom in the whole system.
We note that the final formulas we derive are agnostic to the
precise form of the interaction; however, assuming a repre-
sentative form of Sent helps us draw Feynman diagrams and
clearly illustrates some of the properties of the formalism. In
Sec. III D, we outline a derivation of the same formulas with-
out making reference to any particular form of interaction. For
such a pairwise form the typical interaction vertices, shown
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FIG. 4. (a) Interaction vertices in Keldysh field theory corresponding to a pairwise interaction ψ̄rψ̄r′U (r, r′)ψr′ψr . There are eight vertices
in the ψs,a basis, each with an odd number of symmetric and antisymmetric fields, and a vertex factor of ιU (r, r′)/2 (represented as a green
wavy line). We use fields with dotted lines as a placeholder for both symmetric (solid) and antisymmetric (dashed) fields for the sake of brevity.
(b) The presence of interactions induces self-energy corrections � which in turn dress the propagators. We use thick solid lines to signify the
interacting Keldysh propagators. (c), (d) Interaction dressing converts the free propagators in the ring diagrams to their interacting counterparts.
(e) The one-particle contribution to S(n), S(n)

1P is entirely determined by the sum of ring diagrams with the interacting Keldysh propagators.

in Fig 4(a), consist of three symmetric and one antisymmetric
fields, or vice versa. Note that interaction vertex couples fields
with the same replica index. It is still true that the Keldysh
free energy of n independent interacting replicas is 0, so we
only need to worry about connected diagrams with one or
more open J vertices. It is instructive to think about the
modifications of the ring diagrams due to interaction vertices.
There are a set of diagrams where the interaction vertices
couple fields on the same propagator. Some representative
diagrams are shown on Fig. 4(c). These are essentially self-
energy corrections to the propagators, shown in Fig. 4(b).
The net effect of summing up all such diagrams is to convert
the noninteracting one-particle correlator Ĉ0 to the interacting
one-particle correlator Ĉ in the expressions given in Eq. (18),
as seen in Figs. 4(c) and 4(d). These dressed diagrams, de-
picted in Fig. 4(e), exhaust S(n)

1P and other possible diagrams
for S(n) depend on higher particle correlators. So, for interact-
ing fermions, we have

S(n)
1P = 1

1 − n
TrA ln[Ĉn + (1̂ − Ĉ)n]. (19)

This is the analytic form of S(n)
1P in terms of the exact interact-

ing one-particle correlator (two-point function). Note that this
term has the same functional form as the well-known answer
for free fermions derived in Ref. [37], albeit in terms of the
interacting correlation function. In the absence of interactions

Ĉ is replaced by the noninteracting correlation function Ĉ0,
and we recover Eq. (18) which is identical to the formulas in
[37].

B. Two-particle correlators and S(n)
2P

In a noninteracting system the one-particle correlators de-
fine the density matrix and hence the REE [37]. However, this
is no longer true for interacting systems, where multiparticle
connected correlators also contribute to the REE. To see this,
let us focus on the first diagram shown in Fig. 5(a). Here we
consider two otherwise disconnected rings, where an interac-
tion line connects a propagator in one ring to a propagator
in the other ring. This is now a connected diagram which
contributes to S(n), but does not belong to the series of ring
diagrams in S(n)

1P . The set of diagrams in Fig. 5(a) shows how
one can add more complicated motifs between the pair of
propagators to convert them to the fully interacting connected
two-particle propagator (shaded region)

ι2G(2)
c (i, j|k, l; to) = 〈ψs(i, to)ψs( j, to)ψ̄s(l, to)ψ̄s(k, to)〉c

= 22〈ĉ†
k ĉ†

l ĉ j ĉi〉c.

An equivalent way of getting this diagram is to first con-
sider the connected correlator G(2)

c and join its external legs
through J vertices with interacting one-particle propagators
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FIG. 5. Feynman diagrams for the two-particle contribution to REE: (a) Propagators in two separate rings are connected by interaction
vertices. Dressing of this pair of propagators converts them to an interacting connected two-particle correlator G(2)

c [shown in (c)]. The rings
are now connected and lead to a valid connected diagram for S(n)

2P . (b) A pair of propagators within the same ring is connected by interaction
vertices and gets dressed to G(2)

c . (a), (b) Can be viewed as diagrams where external legs of G(2)
c are connected by chains of entangling vertices

J interlinked with single-particle propagators. (c) Details of the two-particle connected correlator G(2)
c . Note that it is diagonal in replica space.

(d) Chains with different numbers of entangling vertices can be resummed into a single connector V̂ . (e) The series for constructing V̂ . The
solid lines are interacting Keldysh propagators in a single replica. Detailed expressions for V̂ are provided in Eqs. (21) and (22).

in-between them. Note that each chain connecting the ends of
G(2)

c should have at least one J vertex. Otherwise, the two-
particle connected correlator would effectively reduce to a
single-particle propagator and reproduce diagrams in S(n)

1P . It is
simple to generalize to the case of p rings where pair of prop-
agators from the different rings are connected by interaction
lines, leading to diagrams with multiple G2

c . A second class of
diagrams contributing to S(n)

2P can be obtained by considering
pairs of propagators in a single ring and connecting them by
interaction lines, effectively converting this pair to a G(2)

c . A
series of connections leading to such a diagram are shown in
Fig. 5(b). In both Figs. 5(a) and 5(b), the resultant diagram can
be reproduced by first considering G(2)

c and connecting its legs
by chains of J vertices coupled by one-particle propagators.

At this point, it is useful to note that each chain connecting
the external legs of G(2)

c can have 1, 2, 3, or any number of
J vertices. This is depicted in Fig. 5(d). One can then use a
resummed one-particle connector V̂ to join the external legs of
G(2)

c (see Sec. III D for details). The diagrammatic series cor-

responding to this resummation is shown in Fig. 5(e), which
evaluates to the following for V̂ :

V̂αβ =
∞∑

p=1

[ J p ]αβ

[
ιĜK

A (to, to)
]p−1

= [
J ⊗ 1̂

(
I ⊗ 1̂ − J ⊗ ιĜK

A

)−1]
αβ

, (20)

where ιĜK
A = P̂AĜK (to, to)P̂A is the interacting one-particle

Keldysh correlator at equal times, restricted to the subsystem
A. It is possible to analytically obtain an expression for the
matrix elements of V̂ , namely,

[V̂αβ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

v̂0 −v̂n−1 −v̂n−2 . . . −v̂1

v̂1 v̂0
. . .

. . .
...

v̂2
. . .

. . .
. . . −v̂n−2

...
. . .

. . . v̂0 −v̂n−1

v̂n−1 . . . v̂2 v̂1 v̂0

⎤
⎥⎥⎥⎥⎥⎥⎦, (21)
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FIG. 6. (a) The diagrams for S(n)
2P , which involve 1 and 2 G(2)

c s. (i), (ii), (iii) The diagrams shown exhaust all topologically distinct
possibilities up to two instances of G(2)

c . α, β are replica indices, and lattice indices are implied to be traced over the subsystem A. (b) The
details of a k-particle connected correlator including replica and site indices. Note that all incoming and outgoing lines represent symmetric
fields and carry the same replica index. (c)–(e) Some representative diagrams contributing to S(n)

3P . (c) Involves a single G(3)
c , (d) involves a G(3)

c

and a G(2)
c , while (e) involves two G(3)

c s.

where

v̂0 = 1

2

Ĉn−1 − (1̂ − Ĉ)n−1

Ĉn + (1̂ − Ĉ)n
,

v̂k = 1

2

Ĉn−k−1(1̂ − Ĉ)k−1

Ĉn + (1̂ − Ĉ)n
for 1 � k � n − 1. (22)

This resummed connector is denoted diagrammatically by two
concentric open circles with the inner one filled in with a
cross-hatch pattern. Note that while the J (= J ⊗ P̂A) vertex
had only off-diagonal components in replica space, V̂ can
couple fields with same replica indices as well. In this new
language, we consider the interacting two-particle connected
correlator and join its external legs by the V̂ connectors to
rewrite the diagrams of Figs. 5(a) and 5(b). These are shown
in Figs. 6(a-i).

Now, one can construct a larger class of diagrams which
only involve the fully interacting G(2)

c and V̂s. To construct
these diagrams, consider p different G(2)

c ’s, and connect their

external legs by V̂’s, so that no external leg remains uncon-
nected. One can show (see Sec. III D) that the symmetry
factor of the diagram is simply determined by considering
the possible permutations of the G(2)

c blocks. All the diagrams
involving one or two G(2)

c blocks are shown in Fig. 6(a). The
sum of all such diagrams which depend only on the one- and
two-particle correlators, with the number of the latter varying
from 1 through ∞, forms S(n)

2P . This can be neatly summarized
in the Feynman rules for diagrams in S(n)

2P :
(i) Consider p two-particle connected correlators and join

their external legs in all topologically distinct ways.
(ii) For each connected correlator, put a factor of

ι2G(2)
c (i, j|k, l; to), for each line joining external legs, put a

factor of the resummed connector V̂αβ (i, j; to).
(iii) Sum over possible replica indices (noting that external

legs of G(2)
c belong to the same replica).

(iv) Sum over site indices in the subsystem A.
(v) Multiply by (−1)NL , where NL is the number of

fermion loops.
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(vi) Multiply each diagram by its symmetry factor (see
Sec. III D for details)

Using these Feynman rules one can see that the first dia-
gram in Fig. 6(a-i) evaluates to

−n
∑

i jkl∈A

G(2)
c (i, j|k, l; to) v0(k, i; to) v0(l, j; to). (23)

Similarly the first diagram (of ladder topology) shown in
Fig. 6(a-ii) is given by

1

2

∑
αβ

∑
i jkl
xyzw∈A

G(2)
c (i, j|k, l )Vαβ (k, x)Vαβ (l, y)

× G(2)
c (x, y|z,w)Vβα (z, i)Vβα (w, j), (24)

while the first diagram (of bubble topology) in Fig. 6(a-iii)
evaluates to

− 1

2

∑
αβ

∑
i jkl
xyzw∈A

G(2)
c (i, j|k, l )Vαα (k, i)Vββ (z, x)

× G(2)
c (x, y|z,w)Vαβ (l, y)Vβα (w, j). (25)

We have suppressed the time index in the above two equa-
tions for the sake of clarity. Summing over all such diagrams
yields S(n)

2P . We thus have a prescription for construction of S(n)
2P

from the one- and two-particle correlators.

C. m-particle correlators and S(n)
mP

Once we have established the Feynman rules for construct-
ing the two-particle contribution to REE, S(n)

2P , it is easy to
extend it to the case of S(n)

mP. Note that by definition, diagrams
for S(n)

mP must have at least one instance of the m-particle
connected correlator

ιm G(m)
c (i1, i2, . . . im| j1, j2, . . . jm; to)

= 〈ψs(i1, to) . . . ψs(im, to)ψ̄s( jm, to) . . . ψ̄s( j1, to)〉c

= (−2)m
〈
ĉ†

jm
. . . ĉ†

j2
ĉ†

j1
ĉi1

ĉi2
. . . ĉim

〉
c
. (26)

The diagrams cannot contain higher-order (k > m) correla-
tors. Now, G(m)

c has m incoming lines and m outgoing lines.
Each of these outgoing lines can be (a) connected to the
incoming lines of same G(m)

c . Figure 6(c) shows such a dia-
gram for G(3)

c and 6(b) connected to incoming lines of some
other G(k)

c with k < m. Figure 6(d) shows such a diagram
where some of the outgoing lines of G(3)

c are connected to
the incoming lines of a G(2)

c and 6(c) connected to incoming
lines of another G(m)

c . Figure 6(e) shows such a diagram where
two G(3)

c ’s are connected to each other. We draw topologically
distinct connected diagrams where all the incoming and out-
going lines are joined with V̂ vertices, making it a free-energy
diagram. The symmetry factor is determined by considering
permutations of the connected correlators in the usual way.
The sum of all such diagrams gives S(n)

mP. The Feynman rules
for these diagrams are simple extensions of those for S(n)

2P :
(i) Consider at least one m-particle connected correlator

and any number of k-particle connected correlators with k <

m. Join their external legs in all topologically distinct ways,
so that no external lines remain hanging.

(ii) Draw only fully connected diagrams.

(iii) For each k-particle connected correlator, put a factor
of ιkG(k)

c (i1, · · ·k | j1, . . . jk; to), for each line joining external
legs, put a factor of the resummed connector V̂ αβ (i, j; to).

(iv) Sum over possible replica indices (noting that external
legs of G(k)

c belong to the same replica).
(v) Sum over site indices in the subsystem A.
(vi) Multiply by (−1)NL , where NL is the number of

fermion loops.
(vii) Multiply each diagram by its symmetry factor (see

Sec. III D for details).
This provides a general prescription to construct the

m-particle contribution to the Rényi entropy S(n)
mP. Some rep-

resentative diagrams in the construction of S(n)
3P , which involve

G(2)
c and G(3)

c , are shown in Figs. 6(b)–6(d). As an instance
of employing the Feynman rules, the diagram in Fig. 6(b) is
given by (time index suppressed)

n
∑

i, j,k
x,y,z∈A

ι3G(3)
c (i, j, k|x, y, z) v0(x, i) v0(y, j) v0(z, k). (27)

One can now use the Feynman rules given above to construct
diagrams and convert them into integral contributions to S(n)

mP.
We note here for completeness that diagrams constructed fol-
lowing the aforementioned rules will contribute to (1 − n)S(n)

mP.
We have thus provided a general prescription of constructing
an estimate of Rényi entanglement entropy if we only have
knowledge of up to m-particle connected correlation func-
tions.

D. General derivation

In the discussion so far, we started by inspecting what
effect a “replica current” term Sent would have on the free-
energy diagrams of n independent free theories S0. We then
proceeded to add interactions Sint in each replica to argue
for, and illustrate, various nonperturbative effects. In this
section we instead choose to formally expand Eq. (13) in
cumulants of ιSent and evaluate them in terms of connected
correlators in the (unreplicated) interacting theory S0 + Sint.
This will provide a first-principles derivation of the previously
stated results which makes no appeal to the form or nature
of Sint.

We crucially use three facts mentioned earlier, but reit-
erated here for emphasis: (i) REE S(n) is equivalent to a
Keldysh free energy of n independent replicas in presence of
the entangling action Sent; (ii) Keldysh partition functions are
inherently normalized to unity in the absence of sources which
implies that all diagrams must include at least one instance
of Sent; (iii) all correlators which occur in the diagrammatic
expansion are “standard” Schwinger-Keldysh correlators of a
single replica, i.e., these are the correlation functions one finds
in standard textbooks [46]. Owing to the structure of Sent, only
equal-time correlators of the symmetric fields, restricted to the
subsystem A, will make an appearance. With this in mind,
Tr[ρ̂n

A] can be viewed as an expectation value of eιSent in n
independent copies of the interacting theory,

e−(n−1)(S(n)−VA ln 2) = 〈eιSent〉n,

where the subscript on 〈. . . 〉n denotes the number of indepen-
dent copies of the action SK . The REE S(n) can be obtained as
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FIG. 7. Feynman diagrams from cumulant expansion: (a)–(c) Diagrams corresponding to the first three cumulants of ιSent. Replica indices
are explicitly marked on each propagator whereas lattice indices are implied to be traced over. (d) Diagrams corresponding to the fourth
cumulant of ιSent. Note that this involves diagrams which form part of S(n)

1P (first diagram) as well as diagrams which form part of S(n)
2P (last four

diagrams). Similarly, the sixth cumulant will have terms belonging to S(n)
3P as well as S(n)

1P and S(n)
2P . Note that each of S(n)

mP has contribution from
an infinite set of cumulants starting at order 2m. The cumulants simply correspond to a different grouping of all the diagrams discussed earlier.

the cumulant expansion of the above,

(1 − n)(S(n) − VA ln 2)

= 〈ιSent〉 + 1

2!
〈(ιSent )

2〉c + 1

3!
〈(ιSent )

3〉c + · · · , (28)

where 〈. . . 〉c represents the connected part of the expectation
value calculated with respect to the n independent replicas.
For example, in case of the second cumulant 〈(ιSent )2〉c =
〈(ιSent )2〉n − 〈ιSent〉2

n. We will employ the diagrammatic rules
set up previously to evaluate these cumulants. A pth-order
cumulant will involve all possible topologically distinct con-
nected diagrams made out of p number of J vertices. The first
few orders are depicted in Fig. 7. Since the J vertex does not
connect fields in the same replica, the first cumulant 〈ιSent〉n

is exactly zero. This simplifies the diagrams at higher orders.
In particular, until the third cumulant, the only possible fully
connected diagrams are ring diagrams as shown in Figs. 7(a)–
7(c). Explicitly evaluating the diagram in Figs. 7(b) and 7(c)
we get

〈(ιSent )
2〉c = −TrR[J 2]TrA

[(
ιĜK

A

)2]
,

〈(ιSent )
3〉c = −2!TrR[J 3]TrA

[(
ιĜK

A

)3]
,

where ιĜK
A = P̂AιĜK (to, to)P̂A is the equal-time two-point

Keldysh correlator evaluated in the interacting theory and
restricted to subsystem A. In a similar fashion, every higher-
order cumulant will give rise to a ring diagram of J vertices,
with the number of cyclic permutations at order p being (p −
1)!. Taken together with the combinatorial factor of 1/p! in
the definition of the cumulant expansion, the weight of a ring
diagram at order p is 1/p. Grouping all order ring diagrams

together we have recovered the one-particle contribution to
S(n), S(n)

1P as depicted in Fig. 4(e), and consequently the ana-
lytic form of the same in terms of the interacting correlation
function C in Eq. (19).

In higher-order cumulants, connected diagrams of J ver-
tices can also be constructed using multiparticle connected
correlators. For example, Fig. 7(d) shows the diagrams with
G(2)

c that contribute to the fourth-order cumulant. In fact, the
pth-order cumulant will involve all possible fully connected
diagrams with p instances of the entangling vertex J joined
by all possible k-particle equal-time connected Keldysh cor-
relators G(k)

c with 2k � p.
We now turn to classifying the diagrams based on their

correlator content. Diagrams with at least one instance of the
two-body connected correlator G(2)

c , but no higher-body corre-
lators are clubbed together as the “two-particle contribution”
S(n)

2P . Similarly we define the “m-particle contribution” to S(n)

as the collection of all diagrams which contain at least one
instance of G(m)

c but none of the higher-body correlators. This
formal regrouping lets us write a “m-particle” decomposition
for EE as stated in Eq. (16). Given the structure of S(n)

mP, if the
mth correlator is factorizable, the entire collection of diagrams
gets decimated.

Each of these m-particle contributions contains a multi-
tude of diagrams with different correlator content (number
and type of G(m)

c boxes) and topologies. They also include
infinitely many diagrams of the same topology and correla-
tor content but with a variable number of J vertices on the
lines between the G(m)

c boxes. Such diagrams can be clubbed
together to get a resummed connector V on each line since
the relative weights of the diagrams turn out to be exactly
one. Assume a diagram of a given structure with a total of
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p number of J vertices, distributed across q different lines
with the number in each line being n1, n2, . . . , nq. The ways
of distributing p identical vertices into q lines with the number
of vertices in each line fixed, gets exactly canceled by the 1/p!
from the cumulant expansion and nj! permutations from the
jth line:

Weight = 1

p!
× p!

n1! n2! . . . nq!
× (n1! n2! . . . nq!) = 1.

This fact reproduces the series depicted in Fig. 5(d) and the
functional forms in Eq. (22). This also makes it apparent that
any and all symmetry factors for the diagram are determined
from exchange of the correlator blocks. In summary, all dia-
grams are constructed following the Feynman rules laid down
in the previous sections.

We have thus provided a constructive prescription for eval-
uating S(n)

mP in a manner independent of the underlying theory
of the problem. We note that if one is interested in the exact
answer for entanglement, one has to compute up to S(n)

VAP and
the complexity of the problem is the same as exact diago-
nalization. However, field-theoretic methods are rarely good
for exact answers, they are usually geared to provide useful
approximate answers to various quantities. In this case, the
decomposition of S(n) into S(n)

mP is useful when the series can
be truncated after a few terms to yield good estimates of
entanglement. This will happen if the higher-order connected
correlators are parametrically small, i.e., the system is con-
nected to a Gaussian theory by small couplings. This can
happen in a weakly interacting Fermi liquid, where the higher-
order correlators occur at higher orders in the interaction
strength. It can also happen if the Gaussian theory represents a
symmetry-broken mean field state, e.g., in a large-N theory of
a superconductor or magnets, where higher-order connected
correlators have larger powers of 1/N . In general, if one only
has information about few-body correlators, one can use this
decomposition to obtain estimates of REE. The question of
specific approximation schemes for particular situations is not
discussed here. It will be taken up in future works.

IV. ANALYTIC CONTINUATION AND
VON NEUMANN ENTROPY

In the previous section we have shown a way to construct
the nth-order Rényi entropy in terms of the multiparticle cor-
relators of an interacting fermionic system. In this section we
will discuss how this can be used to obtain a construction
of the von Neumann entropy (EE) S = limn→1 S(n). The di-
agrammatic construction discussed so far is given for (1 −
n)S(n). Hence, only diagrams which scale as ∼(n − 1) will
contribute to S in this expansion; terms ∼O[(n − 1)]2 will not
survive the analytic continuation.

Let us first consider the one-particle contribution S1P. Tak-
ing the analytic continuation of Eq. (19), one can easily show
that

S1P = −Tr[Ĉ ln Ĉ + (1̂ − Ĉ) ln(1̂ − Ĉ)]. (29)

This expression has the same functional form (in terms of
the interacting correlator C) as the answer for noninteracting
fermions known from [37]. It is hard to formulate such a
general expression for analytic continuation of S(n)

mP. This is

primarily because of the fact that elements of the matrix V̂αβ

have explicit n dependence as well as dependence on α − β.
Thus, the n dependence of different diagrams, which involve
summing over replica indices, has to be calculated individu-
ally for each diagram and a priori cannot be captured by a
general formula. However, a large class of diagrams vanish
when the analytic continuation is taken and the diagrammatic
expansion for S has many diagrams less than that for S(n). To
see this, note that in the limit n → 1,

v̂0 ∼ n − 1

2
ln

[
Ĉ

1 − Ĉ

]
+ O[(n − 1)]2. (30)

This has the immediate consequence that any term involving
more than one instance of v̂0 must scale at least as ∼(n − 1)2

and hence have vanishing contribution in the n → 1 limit.
These v̂0 connectors may connect the external legs on the
same correlator, or the legs from different correlators with the
same replica index. As an example, consider diagrams like
those in Figs. 8(a) and 8(b), where the external legs of a single
multiparticle correlator are joined by the resummed connector
V̂ . Such diagrams necessarily contain more than one factor of
v̂0 and are decimated under analytic continuation. Similarly,
one can show that entire series of diagrams vanish under
analytic continuation due to this criterion. We depict two
examples of such series in Figs. 8(d) 8(e) which have the
topology of Harteee corrections and random phase approxi-
mation (RPA) diagrams of many-body theory, respectively.

The leading scaling of v̂0 in the n → 1 limit can also be
used to constrain possible diagrams which have nonzero con-
tribution to EE. Given a legitimate diagram with a k-particle
correlator, we can generate another equally legitimate dia-
gram from it by replacing the chosen correlator with a (k +
1)-particle one with a pair of external legs self-contracted
through v̂0, as shown in Fig. 8(f). This procedure keeps the
replica structure of the connectors in the original diagram
intact. However, the presence of the extra v̂0 in the extended
diagram increases the leading (n − 1) scaling by one power as
compared to the original. If the original diagram had a nonzero
contribution to EE, the diagram born from such an “irrelevant”
extension will not contribute to EE. As an example, the dia-
gram in Fig. 8(c) is an irrelevant extension of the diagram in
Fig. 6(a-ii) and does not contribute in the n → 1 limit for EE.

We now turn to focus on diagrams which do survive in the
n → 1 limit. As an example, consider the analytic continua-
tion of the diagrams for S(n)

2P shown in Fig. 6(a). The diagrams
of Figs. 6(a-i) and 6(a-iii) vanish in the n → 1 limit, while
the first nontrivial diagram for S2P is given by the analytic
continuation of the diagram in Fig 6(a-ii). For the evaluation
of this diagram, it is more convenient to work in the eigenbasis
of the interacting correlation matrix C(i, j) restricted to the
subsystem A, defined as Ĉ|cm〉 = cm|cm〉 where cm and |cm〉
are, respectively, the eigenvalues and eigenvectors of Ĉ. For
n → 1, this diagram gives (see Appendix B for details)

− 1

32

∑
c1,c2,c3,c4

ln(x) − ln(y)

x − y
|〈c1, c2|Ĝ(2)

c |c3, c4〉|2, (31)

where x = c1c2(1 − c3)(1 − c4) and y = (1 − c1)(1 −
c2)c3c4, and |c1, c2〉 = |c1〉 ⊗ |c2〉. The arguments presented
in Appendix B can be readily adapted to analytically continue

174309-13



SARANYO MOITRA AND RAJDEEP SENSARMA PHYSICAL REVIEW B 108, 174309 (2023)

FIG. 8. Examples of diagrams which do not contribute to EE, i.e., do not survive under analytic continuation n → 1. (a), (b) Diagrams
with a single multiparticle correlator with external legs connected amongst themselves through v̂0. (a) Scales like ∼(n − 1)2 whereas (b) scales
as ∼(n − 1)3. (c) Diagram with mixed correlators scaling as ∼(n − 1)2 despite having only one instance of v̂0. (d), (e) Series of diagrams
with recurrent motifs which get decimated in the n → 1 limit. In (d) each successive diagram with p motifs scales as at least O[(n − 1)]p,
whereas in (e) each successive diagram scales as at least O[(n − 1)]2. Note that the first diagrams in both series are topologically equivalent.
It is included twice to emphasize the series structure. (f) A given diagram can be modified to generate new diagrams by replacing a k-particle
connected correlator by a (k + 1)-particle correlator with a contracted pair of legs. The extended diagram preserves the replica structure of
connectors as in the original but scales with one higher power of n − 1 in the n → 1 limit. Such extensions are “irrelevant” for the analytic
continuation, in the sense that if the original diagram survived the n → 1 limit, the extended diagram would not. The diagram in (c) is such an
irrelevant extension of a diagram which has a nonzero analytic continuation, and hence has a zero contribution itself.

other diagrams with the same replica connection structure,
such as the diagram in Fig. 6(e).

So far we have assumed that the expression in Eq. (31) is
finite. Indeed, the (ln x − ln y)/(x − y) factor in the summand
of Eq. (31) is finite for x = y but diverges when either of
x, y → 0. It is a priori unclear if the matrix elements of G(2)

c
are sufficiently small in this regime to result in a finite answer
for this diagram. In case they do not converge, the program of
diagram-by-diagram analytic continuation falls under suspi-
cion and some appropriate subset of diagrams in S(n)

mP might
have to be resummed first and then analytically continued.
Such considerations and its implications for entanglement are
left as topics of future work.

V. BEYOND STANDARD KELDYSH FIELD THEORY

In Sec. III A, we have shown that the nth Rényi entropy of
a system of interacting fermions is the Keldysh free energy of
n replicas governed by an action, S0 + Sint + Sent, where S0

is the noninteracting (quadratic) action for decoupled repli-

cas, Sint is the interacting part of the action for decoupled
replicas, and Sent is the quadratic action which couples the
different replicas and generates entanglement. In Sec. III D,
we expanded the free energy around S0 + Sint and connected
entanglement entropy with interacting connected correlators
in the usual single-replica theory. However, one can also think
of solving S0 + Sent exactly since this is still a quadratic
action, and use the resulting propagators to expand in Sint.
Note that this is a regrouping of the terms worked out earlier.
In this section we will work out this expansion and resultant
diagrammatics.

The earlier expansion around S0 + Sint had the advantage
that it used propagators and correlators which can be related
to observable correlations in the system. The one-particle
propagators, for example, can be grouped into retarded, ad-
vanced, or Keldysh propagators with well-known properties
and relations to measured quantities. The current expansion
will work with propagators which are matrices in replica space
and cannot be immediately related to observables. They will
not follow the clear demarcation into retarded, advanced, or
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FIG. 9. Feynman diagrams for Rényi entanglement entropy using propagators in the replicated theory. (a) Single-particle propagators G̃
in the noninteracting theory with the replica coupling term Sent included. We use double lines for these propagators and single lines for
propagators in a single replica (G). α and β are the replica indices. Note that G̃ aa is finite in this theory, in contrast to a single-replica Keldysh
theory. (b) The Dyson series for the G̃ in terms of G and the entanglement vertex J . The structure of the Dyson equation is similar for
all Keldysh components. Hence, a single diagram with dotted lines is used to show this. The specific Keldysh components can easily be
obtained from this by replacing the dotted external lines with a solid (symmetric) or a dashed (antisymmetric) line. Note that for G̃ aa, the first
term 〈∗〉ψaψ̄a0 = 0. (c) Diagrams showing the first-order correction due to interaction vertices. The diagrams are drawn with double dotted
lines to show their structural similarity with standard free-energy diagrams in equilibrium field theory (direct and exchange terms). However,
the propagators here carry Keldysh indices and only particular combinations are allowed by interaction vertices. This is explicitly shown in
(c) for the first-order diagrams. Note that lines emanating from an interaction vertex must have the same replica index. (d) Feynman diagrams
corresponding to second-order corrections in the interaction strength. Only the structure of diagrams is shown with dotted lines for the sake of
brevity.

Keldysh propagators, at least they will not inherit their well-
known properties. However, there are two advantages to the
current expansion: (i) the organization of diagrams is sim-
pler since the replica space propagators already incorporate
resummations due to Sent and (ii) this expansion will tie up
vertex functions rather than correlation functions. This can
be of relevance if one is interested in calculating “effective
entanglement actions” under various circumstances with the
“effective entanglement action” playing a similar role as that
of modular Hamiltonians [54] used to study entanglement

entropy. Since this maintains the language of an effective
action, this is also the natural language to introduce techniques
like auxiliary fields, saddle points, etc. This is also the natural
language to think about renormalization group in this context.

Let us first focus on S0 + Sent. In this case both the
fields and the propagators carry space-time, Keldysh, and
replica indices (one can add spin or other quantum numbers
as well). Using Sent as a self-energy correction, one can
solve the Dyson series exactly [see Fig. 9(b)], and define the
propagators

G̃ sa
αβ (r, t ; r′, t ′) = δαβGR

0 (r, t ; r′, t ′) + ι
∑
i, j∈A

GK
0 (r, t ; i, to)V0

αβ (i, j) GR
0 ( j, to; r′, t ′),

G̃ as
αβ (r, t ; r′, t ′) = δαβGA

0 (r, t ; r′, t ′) + ι
∑
i, j∈A

GA
0 (r, t ; i, to)V0

αβ (i, j) GK
0 ( j, to; r′, t ′),

G̃ ss
αβ (r, t ; r′, t ′) = δαβGK

0 (r, t ; r′, t ′) + ι
∑
i, j∈A

GK
0 (r, t ; i, to)V0

αβ (i, j) GK
0 ( j, to; r′, t ′),

G̃ aa
αβ (r, t ; r′, t ′) = ι

∑
i, j∈A

GA
0 (r, t ; i, to)V0

αβ (i, j) GR
0 ( j, to; r′, t ′),

(32)
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where GR
0 , GA

0 , and GK
0 are the retarded, advanced, and

Keldysh propagators of the single-replica Keldysh field
theory without interactions.V̂0 has the same structure as
in Eq. (21) but with the noninteracting correlation matrix
determining the blocks in Eq. (22). We denote this difference
by using concentric empty circles to represent V̂0 in contrast
to the cross-hatched concentric circles used for V̂ . These prop-
agators and the Dyson series for them are shown in Figs. 9(a)
and 9(b). Although these propagators are not directly related
to observables, they can be constructed out of the standard
one-particle propagators. We note that in this case G̃ sa is not
a retarded propagator, nor is G̃ as an advanced propagator,
although the relation (G̃ as)† = G̃ sa still holds. Further, unlike
the standard Keldysh theory, G̃ aa is nonzero due to the
presence of Sent in the action. It is easy to show that G ss and
G aa are both anti-Hermitian in this replicated theory. These
propagators are represented by a double line in the diagrams.

One can now work out the diagrammatic expansion of
the free energy in terms of the original interaction vertices
in Sint and the new propagators in the usual way: (a) Draw
all topologically distinct connected diagrams. (b) For each
interaction vertex, put ιU (r, r′)/2, where U (r, r′) is the matrix
element of the interaction, for each propagator put a factor of
ιG̃. (c) Multiply by symmetry factor and (−1)nL , where nL is
the number of fermion loops. (d) Sum over all internal indices
(over all space and time, not only in the subsystem). Three
important things need to be kept in mind: (i) The fields coming
out of any interaction vertex belong to the same replica. (ii)
The propagators G̃(r, t ; r′, t ′) are supported over the entire
system and generically lack translational invariance due to the
presence of the entanglement cut. (iii) Certain diagrams which
vanish in standard Keldysh field theory give finite contribu-
tion, as G̃ aa are finite in this theory. The first-order correction
to Sn is shown in Fig. 9(c). The first of these diagrams (the
direct contribution) evaluates to

δS(n) = (−ι)
∑

α

∫
dt

∑
r,r′

[
G̃ ss

αα (r, t ; r, t ) + G̃ aa
αα (r, t ; r, t )

]
× U (r, r′)

[
G̃ as

αα (r′, t ; r′, t ) + G̃ sa
αα (r′, t ; r′, t )

]
, (33)

while the second diagram (the exchange contribution) is given
by

δS(n) = (ι)
∑

α

∫
dt

∑
r,r′

[
G̃ ss

αα (r, t ; r′, t ) + G̃ aa
αα (r, t ; r′, t )

]
× U (r, r′)

[
G̃ as

αα (r′, t ; r, t ) + G̃ sa
αα (r′, t ; r, t )

]
. (34)

One can similarly evaluate other diagrams, some of which are
shown in Fig. 9(d). One can thus reconstruct the diagrammatic
series in terms of the replica propagators and the original inter-
action vertices. We note that while the propagators cannot be
related to anything physical, the number of diagrams reduce
considerably in this way of grouping the terms. However, in
absence of physical correlators, one needs to construct useful
approximate truncations of the diagrams. While a perturbation
theory immediately provides a truncation, one should be more
careful about constructing nonperturbative approximations in
this nonstandard Keldysh field theory.

VI. CONCLUSIONS

In this paper, we have formulated a different way of
calculating entanglement entropy of a generic interacting
fermionic system from the knowledge of correlation functions
in the subsystem. Using a Wigner function based method,
coupled with Schwinger-Keldysh field theory, we show that
the nth Rényi entropy S(n) is the Keldysh free energy of
a theory of n replicas which are coupled by inter-replica
currents, which exist in the subsystem. These currents are
local in space-time, i.e., they are turned on between same
degrees of freedom at the time of measurement of the
entanglement theory. These currents have a structure which is
not allowed in usual Keldysh field theory with a single replica,
and hence we do not have an equivalent formulation in usual
single-contour field theories. These currents implement the
boundary condition matching required in standard replica
formulation of entanglement theory.

Starting from this description of EE as a free energy in
presence of inter-replica currents, we show that the EE can be
written as a sum of terms which require knowledge of progres-
sively higher-order connected correlators in the system. These
correlators are usual field-theoretic observables, calculated in
a standard field theory with no replicas and correspond to
observables in the system. We provide an analytic formula
for the single-particle contribution to REE and EE; we also
provide a diagrammatic construction for the contribution of
higher-particle correlators to REE. We thus relate the correla-
tion functions in a system to its entanglement entropy. These
constructions are agnostic to how the correlators are calcu-
lated, and hence form a universal basis for further approximate
calculations. One can also use experimentally measured cor-
relation functions in these formulas to calculate entanglement
entropy, thus providing estimates for entanglement when only
a few order correlation functions are known. This reduces
the complexity of calculating entanglement entropies vis a
vis direct methods which require the knowledge of the full
quantum many-body state.

We have considered how one can implement the analytic
continuation required to obtain the von Neumann entropy
S from the Rényi entropy. We obtain an analytic formula
for the single-particle contribution to S in terms of in-
teracting one-particle distributions. We show that a large
class of diagrams for multiparticle contributions vanish under
the analytic continuation. We calculate an analytic formula
for the first nontrivial diagram for two-particle contribution
to S.

Technically, we achieve this in two different ways: (a) by
constructing an expansion around an interacting theory with
independent replicas (this provides a relation between observ-
ables and entanglement and is useful for gaining insights,
and (b) by constructing an expansion around a noninteracting
theory of coupled replicas. While this method is less insight-
ful, it provides a simpler construction of diagrams since a
large class of individual diagrams in the first method are re-
summed into single objects in this case. While the first method
provides relation between correlations and entanglement, the
second method provides a relation between vertex functions
and entanglement, and may be more suitable for treatments
like renormalization group analysis.
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We note that what we have done here is akin to setting up
a general diagrammatic expansion and writing the Feynman
diagrams and Feynman rules for the calculation of entan-
glement entropy. Calculations for particular systems would
require further approximations. One can ask the following
question: In general, correlations will be calculated using
approximation methods. One would have to further truncate
or approximate using a subset of the diagrams we have drawn
here. For simple approximations like perturbation theory or
large-N approximations, it is clear how such a truncation
will happen. However, for nonperturbative approximations, it
may turn out that certain approximations for correlators are
compatible with certain subsets of these diagrams. Is there a
general rule for such compatibility? We do not take up this
question in this work, but leave it as a general question to be
answered in future works.
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APPENDIX A: EQUAL-TIME KELDYSH CORRELATORS
IN TERMS OF OPERATORS

In this Appendix we provide the explicit form of the many-
particle equal-time Keldysh correlators in terms of electron
operators. These will be useful when connecting our formal-
ism to numerical simulations or experiments measuring such
correlators.

Like in usual quantum field theory, the Schwinger-Keldysh
partition function in presence of sources, Z[Js,a, J̄s,a] is the
generating function of k-particle correlators, and lnZ is the
generating function for connected correlators. In particular, to
get the k-particle Keldysh correlator involving all symmetric
fields, we take derivatives of lnZ with respect to the antisym-
metric sources,

〈ψs(1) . . . ψs(k)ψ̄s(k
′) . . . ψ̄s(1

′)〉c

= δ2k lnZ[Ja,s, J̄a,s]

δJ̄a(1) . . . δJ̄a(k) δJa (k′) . . . δJa(1′)

∣∣∣∣
Ja,s,J̄a,s=0

, (A1)

where the field arguments are shorthand for coordinates,
(1) ≡ (i1, t1), (1′) ≡ (i′1, t ′

1), etc. We now use the fact that the
Wigner characteristic function χ (ζ̄, ζ; to) is a Keldysh parti-
tion function in the presence of instantaneous sources [21,22].
In case of the equal-time Keldysh correlator, Eq. (11) allows
us to replace Z in Eq. (A1) with χ (ζ̄, ζ; to), and employing
Eq. (12), the functional derivatives with respect to the sources
Ja simplify to partial derivatives with respect to the Grassman
variables ζ, ζ̄:

ιkG(k)
c (i1 . . . ik|i′1 . . . i′k, to) = 2k ∂2k ln χ (ζ̄, ζ; to)

∂ζ̄1 . . . ∂ζ̄k ∂ζk′ . . . ∂ζ1′

∣∣∣∣ζ=0
ζ̄=0

.

(A2)

Here ζk is shorthand notation for the Grassman variable at site
ik , ζik . For the rest of this Appendix we suppress the time label
to for brevity. To illustrate how this expression with partial
derivatives simplifies it is convenient to first consider the full
correlation function G(k) generated from χA. The resultant ex-
pression’s connected piece will then reproduce the connected
correlation function G(k)

c .
From the definition of χ in Eq. (6) as an expectation value

of the fermionic displacement operator D̂(ζ̄, ζ), the correla-
tion function G(k) can be written as

ιkG(k)(i1 . . . ik|i′1 . . . i′k ) = 2k

〈
∂2kD̂(ζ̄, ζ)

∂ζ̄1 . . . ∂ζ̄k ∂ζk′ . . . ∂ζ1′

〉∣∣∣∣∣ζ=0
ζ̄=0

.

(A3)

We can use the anticommutation relations amongst the Grass-
man variables and fermion operators to get a simplified form
for D̂ [22]:

D̂(ζ̄, ζ) ≡ e
∑

i ĉ†
i ζi−ζ̄i ĉi

=
∏

i

[
1 + ĉ†

i ζi − ζ̄iĉi + ζiζ̄i

(
ĉiĉ

†
i − 1

2

)]
. (A4)

It is then immediate to read off the partial derivatives,

∂D̂

∂ζm

∣∣∣∣∣
ζ,ζ̄=0

= −ĉ†
im
,

∂D̂

∂ζ̄m

∣∣∣∣∣
ζ,ζ̄=0

= −ĉim
,

and
∂2D̂

∂ζ̄m∂ζm

∣∣∣∣∣
ζ,ζ̄=0

= ĉim
ĉ†

im
− 1

2
. (A5)

In the case where none of the (m) and (m′) coordinates coin-
cide, it is easy to see that the k-particle correlator is

ιkG(k)(i1 . . . ik|i′1 . . . i′k ) = 2k
〈
ĉi1

. . . ĉik
ĉ†

i′k
. . . ĉ†

i′1

〉
, (A6)

which in turn implies that the connected correlator is given by

ιkG(k)
c (i1 . . . ik|i′1 . . . i′k ) = (−2)k

〈
ĉ†

i′k
. . . ĉ†

i′1
ĉi1

. . . ĉik

〉
c. (A7)

The extra (−1)k results from normal ordering the opera-
tors. In case of coincident coordinates, the expression for the
k-particle correlator picks up extra terms with lower-order
correlators (k − 1, k − 2, etc.). However these extra pieces get
canceled in the subtractions to get the connected k-particle
correlator, making Eq. (A7) valid for arbitrary coordinates.

APPENDIX B: ANALYTIC CONTINUATION
OF TWO G(2)

c DIAGRAM

The objective of this Appendix is to work out the analytic
continuation of a particular diagram given in Fig. 6(a-ii),
henceforth referred to as D.

For the following it is convenient ot define {|i〉} as a com-
plete set of states in A, with |i〉 localized on degree of freedom
i. We can then make the identifications

〈i|V̂αβ | j〉 ≡ Vαβ (i, j), 〈i j|Ĝ(2)
c |kl〉 ≡ G(2)

c (i, j|k, l; to),
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where |i j〉 = |i〉 ⊗ | j〉. It is then immediate to rewrite Eq. (24)
in more compact notation as

D = 1

2

n∑
α,β=1

TrA
[
V̂αβ ⊗ V̂αβĜ(2)

c V̂βα ⊗ V̂βαĜ(2)
c

]
, (B1)

where TrA is now understood to be over two copies of A.
From Eq. (21) it is clear that the matrix [V̂αβ ⊗ V̂αβ] is block
circulant in replica indices, and hence the sum over the same
in Eq. (B1) can be simplified to read as

D = n

2
TrA

[̂
v⊗2

0 Ĝ(2)
c v̂⊗2

0 Ĝ(2)
c

] + n

2

n−1∑
k=1

TrA
[
v̂⊗2

k Ĝ(2)
c v̂⊗2

n−kĜ(2)
c

]
,

(B2)

where v̂k are as defined in Eq. (22) and v̂⊗2
k = v̂k ⊗ v̂k . We

immediately note that the first term in the sum will not con-
tribute in the n → 1 limit since v̂0 ∼ (n − 1) from Eq. (30).
Evaluating the rest of the sum is not a priori straightforward
as v̂⊗2

k and Ĝ(2)
c do not commute in general. It is convenient

to switch to the basis in which v̂k is diagonal, namely, the
eigenbasis of the Ĉ operator (correlation matrix restricted to
the subsystem A), {|c〉} defined as Ĉ|c〉 = c|c〉. In this basis,

v̂⊗2
k takes the form

v̂⊗2
k =

∑
c1,c2

(c1c2)n−k−1[(1 − c1)(1 − c2)]k−1

4
[
cn

1 + (1 − c1)n
][

cn
2 + (1 − c2)n

] |c1c2〉〈c1c2|.

(B3)

Here c1 and c2 are eigenvalues of Ĉ, each running over the en-
tire spectrum of the same. Substituting this form into Eq. (B2)
and ignoring the leading piece with v̂0, we get

D = n

32

∑
c1,c2
c3,c4

〈c1c2|Ĝ(2)
c |c3c4〉〈c3c4|Ĝ(2)

c |c1c2〉∏4
j=1[cn

j + (1 − c j )n]

n−1∑
k=1

xn−k−1yk−1,

where we have defined

x = c1 c2 (1 − c3)(1 − c4), y = (1 − c1)(1 − c2) c3 c4.

(B4)

The last sum over replica blocks can now be done trivially:

n−1∑
k=1

xn−k−1yk−1 = xn−1 − yn−1

x − y
.

To analytically continue the contribution of this diagram to
S, we look at limn→1 D/(1 − n), which gives back the result
quoted in Eq. (31).
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