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Purification dynamics in a continuous-time hybrid quantum circuit model
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We introduce a continuous-time model of many-body quantum dynamics based on infinitesimal random
unitary operations, combined with projective measurements. We consider purification dynamics in this model,
where the system is initialized in a mixed state, which then purifies over time as a result of the measurements. By
mapping our model to a family of effective 1D quantum Hamiltonians, we are able to derive analytic expressions
that capture how the entropy of the system decays in time. Our results confirm the existence of two distinct
dynamical phases, where purification occurs over a timescale that is exponential versus constant in system size.
We compare our analytic expressions for this microscopic model to results derived from field theories that are
expected to capture such measurement-induced phase transitions and find quantitative agreement between the
two.
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I. INTRODUCTION

The continuing development of programmable quantum
devices with increasing numbers of degrees of freedom has
led to a great deal of interest in addressing fundamental
questions regarding the dynamics of information in many-
body quantum systems [1–12]. In recent years, there has
been a particular focus on the competition between unitary
operations, which generate entanglement, and local projective
measurements, which are nonunitary processes that break en-
tanglement. Models of dynamics that feature both of these
ingredients are often referred to as hybrid quantum circuits,
the study of which has led to the discovery of a sharp entan-
glement phase transition driven by the rate of measurements,
separating regimes where many-body entanglement is either
stable or fragile against these measurements [13–24]. Typi-
cally, the studied geometry is that of a 1D chain of qudits,
but similar transitions have also been found in more complex
geometries such as random tensor networks [25–28]. Inter-
esting behavior of entanglement measures under monitored
dynamics has also been recently shown in free fermionic sys-
tems, where a Berezinskii–Kosterlitz–Thouless (BKT) type
transition between extended criticality and area-law behavior
has been suggested [29–33]. The existence and nature of this
transition is, however, still the subject of active debate.

The existence of this transition was first understood in
terms of the entanglement structure of an ensemble of pure
many-body states at equilibrium. Subsequent studies also
revealed the existence of a simultaneous dynamical phase
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transition, which can be understood as the ability of the mea-
surement protocol to learn an initially mixed state [34–37].
The latter suggests a connection between the dynamics of
hybrid quantum circuits and quantum error correcting codes
[38], which by construction protect information against dele-
terious nonunitary processes. The transition was also shown
to play an important role in the context of simulating the
behavior of open quantum systems [39–42].

These considerations have led to the notion of purification
dynamics, where one studies how the entropy of an initially
mixed state decreases over time as a result of the measure-
ments. Away from the critical measurement rate there are
two phases where the state purifies over a timescale that
increases exponentially with system size (“mixed phase”) or
is independent of the system size (“purifying phase”) [34].
To understand the phenomenology of these phases in a fully
quantitative way, arguments based on capillary wave theory
have been put forward [43]. Using an effective field theory
which is expected to capture the universal features of the tran-
sition, one can obtain concrete predictions of how the purity
of the system will depend on time in each phase. However,
direct verification of these predictions by means of a direct
calculation from a microscopic model are as of yet lacking.

In this paper, we introduce and study a hybrid quantum
circuit model of dynamics that is defined in continuous time,
the properties of which we are able to calculate analytically.
In particular, by means of a mapping onto an effective Hamil-
tonian, we are able to compute the time dependence of a
particular family of operator-space entanglement measure-
ments, which can be related to the purity of the system at
a time t , starting from a maximally mixed initial state. For
the particular case of the second Rényi entropy and an infi-
nite local dimension of the spin chain, the effective quantum
Hamiltonian becomes the well-known transverse field Ising
model (TFIM) in imaginary time.
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FIG. 1. Schematic representation of the random circuit geometry
for open boundary conditions. The construction of the unit cells is
illustrated on the right. The Hamiltonian H and evolution time �t are
kept fixed, but the random unitaries U,V are sampled independently
at each space-time location in the circuit.

We look in detail at both the mixed and purifying phases,
as well as at the transition between them. Our results agree
with those of capillary wave theory in both phases: the entropy
decays exponentially with time in the purifying phase and
decreases as − ln t in the mixed phase over an exponentially
long time window [Eqs. (64) and (71)]. In our calculations,
we consider both periodic and open boundary conditions, and
show that the two choices give rise to quantitatively different
behavior when in the mixed phase: in particular, a (1/2) ln N
contribution to the entropy appears when we impose periodic
boundary conditions, but this is absent for open boundary con-
ditions. We also look at the dynamics at criticality, where there
exists a regime during which the entropy decays algebraically,
Eq. (77).

The structure of our paper is as follows. In Sec. II, we
introduce a continuous time model of dynamics based on
infinitesimal random unitary operations, and describe how one
can calculate various measures of entanglement and infor-
mation spreading in this model. We supplement the unitary
dynamics with projective measurements in Sec. III, and in
Sec. IV, we explain how the resultant unitary-projective dy-
namics can be mapped onto imaginary-time evolution under
an effective 1D Hamiltonian. We then present our main quan-
titative results in Sec. V, giving analytic expressions that
quantify how the purity of the system increases as a function
of time in the purifying/mixed phase and at criticality. Finally,
we discuss our results and conclude in Sec. VI.

II. CONTINUOUS-TIME RANDOM CIRCUIT MODEL

In this section, we introduce a random unitary circuit
(RUC) model of unitary dynamics, and describe how its entan-
glement properties can be analysed. We will later incorporate
measurements into this model, which will allow us to study
the dynamics of purification.

We consider a one-dimensional array of N qudits, each
with a local Hilbert space of dimension d . The evolution
is driven by a spatially local unitary circuit with a brick-
work structure, illustrated in Fig. 1. In a given timestep τ =
1, 2, . . ., two-site unitaries are applied to each pair of qudits
on the odd bonds (2 j − 1, 2 j), followed by another layer of

unitaries on the even bonds (2 j, 2 j + 1). These elementary
two-site unitaries each have the same structure, also depicted
in Fig. 1. First, single-site gates U ⊗ V are applied, followed
by evolution under some two-qudit Hamiltonian H for a time
�t , and finally the change of basis is undone by applying the
inverse single-site rotations U † ⊗ V †. We denote the unitary
operator describing the evolution from time 0 to τ as W (τ ).

Throughout this work, H will be treated as a free param-
eter of the model and it is kept fixed across both time and
space. To simplify calculations, we will assume it is real,
hermitian and symmetric under swapping the two qudits it acts
on. The single-qudit unitaries will be sampled randomly and
independently from the Haar ensemble for each unit cell. We
will generally be interested in the limit where �t → 0, which
we refer to as the continuous-time limit. Note that the state
only evolves by an infinitesimal amount in each timestep, in
contrast to discrete-time RUC models of quantum dynamics
(e.g., Refs. [6,11]). A model of continuous-time dynamics was
studied numerically in Ref. [44]. Our method for constructing
the unit cell is more general and more easily amenable to
analytical treatment.

The model was chosen with two main principles in mind.
The first is that infinitesimal transformations commute up to
quadratically small error terms due to the Trotter formula.
This means we do not need to worry about the alternating
layers in the brickwork circuit and should expect the final
evolution to be uniform in time. The second is to introduce
Haar random rotations in a way that simplifies calculations
without affecting the first condition. The unit cell we propose
satisfies both criteria, while still allowing for a large degree of
generality through the free matrix parameter H . In this work
we keep it constant, but the discussion could be generalized
in a straightforward way to include dependence of H on both
time and space.

Our focus will be on the dynamics of entanglement and
quantum information in these continuous-time models. For
this purpose, it is useful to consider the Choi-Jamiolkowski
(CJ) state |W (τ )〉 corresponding to the unitary W (τ ). This
state is defined on two copies of the system, which we can
associate with the inputs and outputs of the time evolution op-
erator. Formally, we have |W (τ )〉 = [I ⊗ W (τ )] |�+〉, where
|�+〉 = ⊗N

j=1(d−1/2 ∑d
a=1 |a〉 ⊗ |a〉) consists of maximally

entangled states between each input qudit and its correspond-
ing output [45]. Many important quantities that are used to
diagnose the spreading of quantum information can be ex-
pressed as simple functions of this operator state |W (τ )〉 [5].

As is now common in studies of RUC dynamics, we use
the Rényi entropies to quantify the entanglement properties of
the state |W (τ )〉

S(n)(ρA) = 1

1 − n
ln tr

(
ρn

A

)
, (1)

where n is some positive parameter. Here, ρA is the reduced
density matrix of |W (τ )〉 corresponding to some subset A
of inputs and outputs. Compared to the usual von Neumann
entropy SvN, the Rényi entropies for n = 2, 3, . . . are more
amenable to analytic studies, since they only involve integer
moments of the density matrix and hence can be computed us-
ing a replica method. The von Neumann entanglement entropy
SvN can be recovered by constructing an analytical continu-
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ation of the function and taking the limit n → 1 (see, e.g.,
Ref. [46]).

For the largest part of this work, we will only be con-
cerned with the second Rényi entropy S(2)(ρA), which is the
simplest to evaluate. This is a lower bound on the von Neu-
mann entropy SvN � S(2), which in certain cases is known
to be asymptotically tight [47]. Since the purity Tr[(ρA)2] ≡
exp[−S(2)(ρA)] is a quadratic function of |W (τ )〉 〈W (τ )|, it
can be expressed using a fourfold copy of the evolution oper-
ator, which we denote

W(2)(τ ) := (W (τ ) ⊗ W ∗(τ ))⊗2. (2)

Note here that the operator replicated in the expression
differs from |W (τ )〉 〈W (τ )| by a reshuffling of the indices.
Henceforth, we will use this convention, but retain the essence
of the CJ isomorphism by noting that we treat inputs and
outputs on par when discussing Rényi entropies.

Define (unnormalized) states

|I〉 j =
d∑

a,b=1

(|a〉 ⊗ |a〉 ⊗ |b〉 ⊗ |b〉) j, (3)

|S〉 j =
d∑

a,b=1

(|a〉 ⊗ |b〉 ⊗ |b〉 ⊗ |a〉) j, (4)

which live in the fourfold-replicated Hilbert space of each
physical site j. In terms of these, we have

e−S(2) = Tr[(ρA)2] = 〈�Aout |W(2)(τ )|�Ain〉 , (5)

where we denote the set of input (output) sites included in the
region A as Ain (Aout), and the states

|�Ain〉 =
⎛
⎝⊗

j∈Ain

|S〉 j

⎞
⎠ ⊗

⎛
⎝⊗

j /∈Ain

|I〉 j

⎞
⎠, (6)

and similar for |�Aout 〉.
To make progress, we look at the average of the Rényi en-

tropy (5) over the random ensemble of unitary circuits. More
precisely, we will evaluate the average purity as opposed to the
average entropy, which is equivalent to performing averages
inside the logarithm of Eq. (1). This simplification is common
in analyses of RUCs [17], and still recovers the correctly-
averaged von Neumann entropy if one takes the replica limit
n → 1. Accordingly, averaging the purity amounts to replac-
ing W(2)(τ ) with its ensemble average W(2)(τ ). As shown
in Appendix I in Ref. [48], W(2)(τ ) maps states spanned by
tensor products of |I〉 j , |S〉 j to other such states, meaning we
can focus on the restriction of this averaged operator to the
subspace V (S2)⊗N , where V (S2) = span(|I〉 , |S〉).

Because the single-site Haar-random unitaries appearing
in each of the two-site elementary blocks of the circuit
(Fig. 1) are sampled independently, we can consider the en-
semble average of the evolution under a single one of these
blocks, which we denote T : V (S2)⊗2 → V (S2)⊗2. Using the
Weingarten diagrammatic calculus as seen in Appendix I in
Ref. [48], we find that, for small �t , this map can be expressed
as

Ti j = 1 − �t2�(H )Wg(i)Wg( j)
(
1 − σ (i)

z σ ( j)
z

) + O(�t4),
(7)

where i, j label the sites on which the unit cell acts, �(H ) is
a measure of the entangling power of the Hamiltonian

�(H ) = d2 tr(H2) − 2d tr(tr1(H )2) + tr(H )2, (8)

and Wg is the Weingarten matrix corresponding to the sym-
metric group S2

Wg = 1

d (d2 − 1)

[
d −1

−1 d

]
= 1

d2 − 1

(
1 − σx

d

)
. (9)

The induced evolution can be equivalently described using
the effective imaginary-time Hamiltonian

Hi j = �(H )Wg(i)Wg( j)
(
1 − σ (i)

z σ ( j)
z

)
, (10)

in terms of which the unit cell map is

Ti j = e−�t2Hi j + O(�t4). (11)

It is interesting to note that there are no contributions from
odd powers of �t in the expansion of Eq. (7). Looking at
the form of the Hamiltonian (10), we see that in the effective
Hilbert space spanned by the states (3) and (4), the only mo-
bile degrees of freedom are domain walls separating regions
of |I〉 from |S〉, consistent with discrete-time RUCs discussed
previously [6,11]. The initial Hamiltonian H only enters the
expression through its entangling rate �(H ). This sets the
overall timescale of quantum information transfer through the
system. In Appendix II in Ref. [48], we compute the transfer
matrix for a higher number of replicas and show that this
statement holds more generally. This result suggests that the
qualitative behavior of entanglement dynamics derived from
our model should be insensitive to most of the microscopic
details, and hence applicable to a wide range of physical
processes.

The propagator for the whole circuit T can be constructed
by concatenating the two-site maps (11) according to the
brickwork circuit structure illustrated in Fig. 1. We have

T (τ ) =

⎛
⎜⎝N−2∏

i=2
i even

e−�t2Hi,i+1

N−1∏
i=1
i odd

e−�t2Hi,i+1

⎞
⎟⎠

τ

+ O(τ�t4).

(12)

We now define the effective time as t = τ�t2 and take the
limit τ → ∞, �t → 0 such that t is kept constant. Using
the Suzuki-Trotter formula, we find the limit of the previous
equation

T (t ) = exp

(
−t

N−1∑
i=1

Hi,i+1

)
. (13)

We reiterate here that this operator acts as the restriction
of W(2)(τ ) to its invariant subspace V (S2)⊗N and therefore
may replace it in average entropy calculations [e.g., averaging
Eq. (5)].

In its current form, the effective Hamiltonian
∑N−1

i=1 Hi,i+1

is not Hermitian, but can be made so through a local sim-
ilarity transformation, a technique commonly encountered
in the study of nonequilibrium dynamics [49]. If we de-
fine a new evolution operator by T̃ = (Wg− 1

2 )⊗NT (Wg
1
2 )⊗N ,

each 2-local term in the effective Hamiltonian transforms as
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H̃i j = (Wg− 1
2 )⊗2Hi j (Wg

1
2 )⊗2, which gives us the Hermitian

interaction

H̃i j = γ

2

[
1 − d2 − 1

d2
σ (i)

z σ ( j)
z

+ 1

d2
σ (i)

x σ ( j)
x − 1

d

(
σ (i)

x + σ ( j)
x

)]
, (14)

where the overall strength is given by γ = 2�(H )/(d2 − 1)2.
This type of local interaction is found in the literature both
as the quantum equivalent of the classical two-dimensional
axial next-nearest neighbor Ising model (ANNNI) [50,51] or
more recently as the Jordan-Wigner transform of the balanced
interacting Kitaev chain [52,53].

In the limit of d → ∞, we are left with a simple ferro-
magnetic nearest-neighbor Hamiltonian, with each domain
wall incurring an energy penalty of γ . The Hamiltonian is
symmetric under the global spin-flip operator C = ∏

i σ
(i)
x , as

can be seen through the commutation relation [C,Hi j] = 0.

III. INCLUDING MEASUREMENTS

In this section, we will introduce the formalism that can
be used to incorporate measurements into the random circuit
evolution. For the purpose of this work, we will consider pro-
jective measurements in the computational basis of each qudit
that occur stochastically. The same framework can accommo-
date for weak-measurement schemes as seen in Ref. [17]. Due
to the continuous nature of our circuits, the effective model
will be identical in the two cases.

A projective measurement is a nonunitary stochastic pro-
cess, where the wave function of the system |ψ〉 collapses to a
postmeasurement state |m〉 with probability pm = | 〈m|ψ〉 |2.
Here, the set of wave functions {|m〉} is the computational
basis in which the measurement is performed and m =
1, 2, . . . d . For any fixed realization of the random unitary
circuit and positioning of the measurements, the final state of
the system will depend on all the measurement outcomes m =
(m1, m2, . . .). Thus we can write the ensemble of final states
as {(pm, |Wm)〉}, where pm is the joint probability of the mea-
surement results, and |Wm)〉 is the (normalized) conditional
state. As before, we will imagine the Choi-Jamiolkowski state,
so |Wm)〉 is a state on a twofold copy of the system, and is
constructed by preparing a maximally entangled state between
the two copies in the computational basis, and evolving one of
the copies under the evolution in question.

As is typical in the study of hybrid quantum circuits,
our interest is on the statistics of the entanglement prop-
erties of individual conditional wave functions |Wm)〉; see,
e.g., Refs. [14,34]. The natural quantity to consider for this
purpose is the von Neumann entropy, SvN(ρA

m), where ρA
m is

the reduced density matrix of |Wm〉 over a subset of inputs
and outputs A. Specifically, we would want to compute the
average of this quantity over all realizations of the random cir-
cuit, measurement locations and measurement results, which
we denote SvN(ρA

m). However, this quantity is very difficult
to compute directly in random circuit models. We follow

Ref. [17] and introduce the series of related quantities

S̃(n)
A = 1

1 − n
ln

∣∣∣∣∣∣
∑

{M} pMd |M|(n−1)∑
m pn

m tr[
(
ρA

m

)n
]∑

{M} pMd |M|(n−1)
∑

m pn
m

∣∣∣∣∣∣, (15)

where M labels a particular configuration of measurement lo-
cations in space-time, which occurs with probability pM , and
m runs over all measurement results for the given configura-
tion M. These quantities are related to measurement-averaged
Rényi entropies, with the main difference that each outcome
is weighted by pn

iM . The additional factor of d |M|(n−1) ensures
that the correct order of magnitude, in powers of d , of the
correct weight is preserved, and only deviations from it are
amplified by the number of replicas. The renormalization is
also performed on average, i.e., we compute the average of the
numerator and the denominator independently. Knowledge of
this quantity for all integers n � 2 can be used to recover the
average entanglement entropy S̃A of subsystem A using the
replica limit

SvN
(
ρA

i

) = lim
n→1

S̃(n)
A . (16)

Each term in the sums over M appearing in the numerator
and the denominator in Eq. (15) is a scalar that depends
linearly on the tensor

〈W(n)〉 = d |M|(n−1)
∑

m

pn
m(Wm ⊗ W ∗

m )⊗n, (17)

which is analogous to the duplicated state in Eq. (2) defined
earlier. The angled brackets are a short-hand notation for the
weighted sum on the RHS. For simplicity, we once again
revert to the normal operator indices, but keep in mind that
the probabilities are obtained from expectation values of the
appropriate projectors in the CJ state |Wm〉.

To see how this tensor evolves as the circuit progresses, let
us consider how 〈W(n)〉 is updated when a new measurement
is performed on site i, the outcome of which we denote m.
Each of the n replicas transforms via the action of a projector
P(i)

m , which corresponds to the mth computational basis state
for qudit i. Since all measurement outcomes m are summed
over in Eq. (17), we find

〈W(n)〉 → dn−1Mi(〈W(n)〉) = dn−1
∑

m

(
P(i)

m

)⊗2n〈W(n)〉.
(18)

The effect of postselection is included by assuming a
perfect correlation of the measurement results in all n
replicas.

Since adding an infinitesimal time evolution to the av-
eraged tensor only leads to linear transformations by left
multiplication due to both the chaotic dynamics and the mea-
surements, we can proceed again by mapping the evolution
of 〈W(n)〉 to a reduced system with an effective Hamiltonian.
If we focus again on the twofold replica n = 2, we see that
the action of the measurement operator on the reduced Hilbert
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space at each site is

M |I〉 = d
∑

m

P⊗4
m |I〉 = d

∑
m

|m〉⊗4 := |O〉 ,

M |S〉 = d
∑

m

P⊗4
m |S〉 = |O〉 ,

M |O〉 = d
∑

m

P⊗4
m

∑
n

|n〉⊗4 = |O〉 . (19)

Therefore we find that the new vector space VM(S2) =
span(|I〉 , |S〉 , |O〉) is closed under measurements. If we pro-
mote this to the reduced Hilbert space of the entire chain
V ⊗N
M (S2), we find that this is also closed under the action of

the Haar averaged unit cell between any pair of sites. To show
this, we can consider the properties of the following linear
combination

|X〉 := |O〉 − d

d + 1
(|I〉 + |S〉) ∈ VM(S2). (20)

It is straightforward to show that this becomes null under
any contraction between a normal and a complex conjugate
leg. Due to the rules of the Weingarten calculus, this means
that such local states are preserved by averaged unit cells. This
is summarized in the following equation

T M
i j |X〉 ⊗ VM(S2) ∈ |X〉 ⊗ VM(S2). (21)

In Appendix III in Ref. [48] we give an explicit repre-
sentation of the new operator T M

i j , acting on VM(S2)⊗2. We
find that evolution in subspaces that contain |X〉 states happen
at a different rate �, independent of the rate of information
propagation γ . This is defined by

� = 2d

(d2 − 1)2
tr(tr1(H )2), (22)

and can be qualitatively understood as an energy cost asso-
ciated with |X〉 states. In Appendix IV in Ref. [48] (see also
Ref. [54] therein) we derive a more explicit relation between
the rates �, γ and the microscopic Hamiltonian H .

The new state |X〉, which appears after a measurement,
ensures that we obtain the correct correlations between mea-
surements performed consecutively at short time intervals on
the same qudit. The timescale 1/� represents the time it takes
a qudit to relax before we can obtain new information by
measuring again in the same basis. For the rest of this work,
we set � → ∞, such that no measurement inertia can be
observed. In Appendix III in Ref. [48], we show that doing
so is effectively equivalent to projecting out the |X〉 state
and working in the previous two-dimensional reduced Hilbert
space V (S2). The action of the measurements is also projected
onto this subspace and can be expressed as

M = d

d + 1
(1 + σx ). (23)

It can be shown that this same operator is obtained in the
reduced subspace if we consider instead measurements in
random bases.

In the following, the measurements are distributed through
the circuit according to an independent Poisson process for

each site, at some uniform rate f (in the natural time units
of the continuous model). The transfer matrix at time t under
both random dynamics and measurements is then given by
an effective imaginary-time evolution Teff (t ) = exp(−tHeff ),
with Heff given by

Heff =
N−1∑
i=1

Hi,i+1 − f
N∑

i=1

(Mi − 1). (24)

From Eqs. (5) and (15), we see that we can express the sec-
ond moment of the entanglement entropy of some subregion
A at time t using matrix elements of the transfer matrix

S̃(2)
A = − ln

∣∣∣∣∣
〈
�Aout

∣∣ Teff (t )
∣∣�Ain

〉
〈I|⊗N Teff (t )

∣∣�Ain

〉
∣∣∣∣∣. (25)

The denominator acts as a normalization factor, so using
the expression above allows us to safely drop constant terms
in the effective Hamiltonian.

We can perform a similar analysis for the case of multiple
replicas. Using the results in Appendix II in Ref. [48] and the
limits d, � → ∞ we show that the effective Hamiltonian of
the n′th replica theory is given by

H(n)
eff = γ

2

N−1∑
i=1

Di j − f
N∑

i=1

M(n), (26)

where M(n) is the generalization of the operator in Eq. (23)
that acts as

M(n) |τ 〉 =
∑
σ∈Sn

|σ 〉 , (27)

and D is a diagonal two-site operator with entries given by

Dκε,στ = δκσ δετ D(σ, τ ), (28)

with D(σ, τ ) the bi-invariant metric on Sn given by the Ham-
ming distance between σ and τ , i.e., the number of elements
that are not mapped onto themselves under τ−1σ . This form
is manifestly consistent with the expected symmetry group
Sn × Sn. It is interesting to note that the d → ∞ limit does not
result in the fine tuned Sn!-symmetric Potts model observed in
circuits with fully Haar random unit cells [17].

IV. FERMIONIC MAPPING

If we take the limit of large local dimension d and keep
only the leading contributions, we obtain dynamics driven by

Heff = −γ

2

(
N−1∑
i=1

σ (i)
z σ (i+1)

z + g
N∑

i=1

σ (i)
x

)
, (29)

where g = 2 f /γ . This is easily recognized as the transverse
field Ising model (TFIM) in 1D, subject to open boundary
conditions. It is well-known that this can be mapped to a
system of noninteracting fermions using the Jordan-Wigner
transformation [55]. In this section, we will introduce the
general formalism used to compute quantities of the form
shown in Eq. (25).
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We start by constructing a set of nonlocal Majorana opera-
tors as

γ
(1)

i = σ (i)
z

∏
j>i

σ ( j)
x , (30)

γ
(2)

i = σ (i)
y

∏
j>i

σ ( j)
x = −iσ (i)

z

∏
j�i

σ ( j)
x , (31)

defined on all sites i = 1, 2, . . . , N [56]. These operators are
Hermitian (γ μ)† = γ μ and obey the standard anticommuta-
tion relations

{γ μ, γ ν} = 2δμν, (32)

where the indices μ, ν are understood to run over all 2N
previously defined operators. From the definition, we get the
additional relation

γ
(1)

i γ
(2)

i = −iσ (i)
x , (33)

such that the product of all Clifford operators is

N∏
i=1

γ
(1)

i γ
(2)

i = (−i)N
N∏

i=1

σ (i)
x := (−i)NC. (34)

This operator anticommutes with all the Majorana
fermions {C, γ μ} = 0 and it is a conserved quantity, since
it commutes with the full Hamiltonian [C,H] = 0. We can
couple Majorana fermions living on adjacent sites into domain
wall creation and annihilation operators

a†
i = 1

2

(
γ

(1)
i − iγ (2)

i+1

)
, (35)

ai = 1
2

(
γ

(1)
i + iγ (2)

i+1

)
, (36)

for i = 0, 1, . . . , N − 1, where we assume periodic boundary
condition N = 0. These obey the typical anticommutation
relations

{ai, a j} = 0, {a†
i , a†

j} = 0, {ai, a†
j} = δi j . (37)

A simple calculation shows that

a†
i ai = 1

2

(
1 − σ (i)

z σ (i+1)
z

)
, (38)

such that the number operator of the fermionic mode at some
site i �= 0 is a projector onto configurations that have a do-
main wall between sites i and i + 1. With this convention, the
Hamiltonian becomes a quadratic form

Heff = γ

2

[
N−1∑
i=1

a†
i ai − g

N∑
i=1

(a†
i + ai )(ai−1 − a†

i−1)

]
. (39)

This can be more succinctly expressed using the
Bogoliubov-de Gennes notation

Heff = 1
2 a†Da, (40)

where a = (a0, a1, . . . , aN−1, a†
0, a†

1, . . . , a†
N−1)T . The ma-

trix D is called the grand-dynamical matrix and it obeys the
particle-hole symmetry equation

ηDT η = −D, where η =
[

0 I
I 0

]
. (41)

The exponentials of such Hamiltonians are most easily
treated using the algebra of fermionic Gaussian states, as
worked out in Ref. [57]. We will briefly outline some of the

results relevant to our calculation. It is convenient to define a
Gaussian state through its generating quadratic form as

ρ[W ] = 1

Z (W )
exp

(
1

2
a†W a

)
, (42)

with a normalization constant Z (W ) chosen such that
Trρ[W ] = 1. By Wick’s theorem, such many-body states are
fully characterized by their two-body correlation matrix, de-
fined as

�μν = 2Tr(ρ[W ]a†
μaν ) − δμν. (43)

The correlation matrix is related to the generator of the
quadratic form through the useful relations

� = tanh

(
W

2

)
, eW = 1 + �

1 − �
, (44)

where it is assumed that 1 − � is invertible. Using a special
case of the Baker-Campbell-Hausdorff formula, it is shown
that fermionic Gaussian states are closed under multiplication
and we have

ρ[�] = Z (W )Z (W ′)
Z (�)

ρ[W ]ρ[W ′], (45)

with the new generating matrix � given by

� = ln(exp(W ) exp(W ′)). (46)

If we denote the correlation matrix of � by � × �′, with �

and �′ the correlation matrices of W and W ′ respectively, the
following formula is proven in Ref. [57]

� × �′ = 1 − (1 − �′)
1

1 + ��′ (1 − �). (47)

Inner products can be easily computed using the following
trace formula

{�,�′} = Tr(ρ[W ]ρ[W ′]) = ±
√∣∣∣∣det

1 + ��′

2

∣∣∣∣, (48)

where the ambiguity of the sign is in general a complex issue,
but this will not be a problem for our purposes.

V. DYNAMICS OF PURIFICATION

In the preceding sections, we developed a formalism
that allows us to study entanglement dynamics in our
continuous-time random quantum circuit models. Here, we
focus specifically on purification dynamics in these mod-
els. Namely, starting from an initial mixed state, we are
interested in how fast the state of the system is purified by
measurements. We will be particularly interested in the pu-
rification transition that occurs as a function of measurement
frequency f [34], which is thought to be concomitant with
the measurement-induced entanglement transition separating
area- and volume-law phases [13–16,18]. Thanks to the exact
solvability of our model in the d → ∞ limit, we are able
to compute analytical expressions for the order parameters
of this dynamical phase transition, and infer the key critical
exponents.
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A. Setup and phase diagram

The setup we study is as in Ref. [34]: the system is ini-
tialized in a maximally mixed state, which is represented in
the above formalism by the input state |I〉⊗N . After some
evolution time t , the purity of the state of the system will
have increased from its initial value due to the measurements.
As explained previously, we will use the quantity (15) as a
measure of the typical entropy of the ensemble of states. Since
we are looking at the purity of the entire state after a time t ,
the set A that appears in Eq. (25) will contain all of the output
qubits. Accordingly, we can express the quantity in question
in terms of the transfer matrix Teff (t )

S̃(2)(t ) = − ln

∣∣∣∣∣ 〈S|⊗N Teff (t ) |I〉⊗N

〈I|⊗N Teff (t ) |I〉⊗N

∣∣∣∣∣. (49)

The purification transition that occurs in our model is
associated with a quantum phase transition in the effective
Hamiltonian Heff , which generates the time evolution operator
Teff (t ). Based on the phase diagram of the TFIM, we can
deduce that such a transition must occur at the critical mea-
surement rate gc = 1, i.e., fc = γ /2. In the spin basis (29),
the two phases correspond to the Z2 symmetric phase under
the symmetry C = ∏N

i=1 σ (i)
x for g > 1, and a spontaneous

symmetry-broken phase for g < 1.
For the problem in hand, the relevant order parameter that

we use to distinguish the two phases is not a correlation func-
tion, as is usually the case, but rather the many-body overlap
appearing inside the logarithm in Eq. (49). We also note in
passing that the numerator and denominator inside the loga-
rithm in Eq. (49) are reminiscent of the many-body overlap
amplitudes that appear in dynamical quantum phase transi-
tions (DQPTs). DQPTs in the TFIM have been thoroughly
investigated [58,59], although we note that the quantities we
are interested in here differ in that the evolution is in imag-
inary time, and for the numerator the initial and final states
are not the same. For this reason, we cannot immediately lift
results from that context.

To provide intuition into how this quantity behaves either
side of the transition, we can reformulate our expression for
S̃(2)(t ) as follows. Since |S〉⊗N = C |I〉⊗N , the above fraction
becomes equal to the expectation value of C in the state

|�(t )〉 = T
1
2

eff |I〉⊗N , namely,

S̃(2)(t ) = − ln |〈C〉�̃(t )|, (50)

where |�̃(t )〉 := |�(t )〉 /
√〈�(t )|�(t )〉 is the wave function

after imaginary time evolution under Heff/2, appropriately
normalized.

If the measurement rate is sufficiently high such that the
Hamiltonian (29) is in a symmetry-unbroken phase, then
the ground state is nondegenerate and thus |�̃(t )〉 inherits
the symmetry of the Hamiltonian. Since the Hamiltonian is
also gapped, we see that the (accordingly normalized) state
|�(t )〉 = exp(−tHeff/2) |I〉⊗N converges to the ground state
exponentially quickly. The ground state must be an eigenstate
of C, whose eigenvalues are ±1, so we can then conclude
that |〈C〉�(t )| → 1 exponentially quickly as t → ∞, and hence
S̃(2) → 0 at a rate independent of the system size, as expected
in this regime. When g < 1 the symmetry is spontaneously

broken. In this case, the ground eigenspace is doubly de-
generate in the thermodynamic limit N → ∞, and the effect
of the transfer matrix at long times is to project onto this
subspace. The projected state may no longer be an eigenstate
of C, so we can have a nonzero residual entropy. As we will
see, this residual entropy is extensive, with a ln(N ) correction
[Eq. (69)].

While this picture allows us to understand the transition
at a qualitative level, to obtain an analytic expression for the
residual entropy, we will instead use the fermionic mapping
detailed in the previous section. We will find it convenient
to work with states of definite fermion parity, and hence
we define the density matrices ρ± = |±〉 〈±|, where |±〉 :=
(|I〉⊗N ± |S〉⊗N )/

√
2, which are eigenstates of C. We can then

write

S̃(2) = ln

∣∣∣∣1 + �

1 − �

∣∣∣∣, (51)

where the parameter � is defined by

� = Tr(e−tHeff ρ+)

Tr(e−tHeff ρ−)
, (52)

We note that Eqs. (51) and (52) are quite general, and could
be applied even if we didn’t take the d → ∞ limit.

Because the Hamiltonian (39) is a fermion bilinear, the
exponential e−tHeff can be written in the form of Eq. (42),
with the grand dynamical matrix D in place of W . Hence
we can define correlation matrices �[−tD] that correspond to
this fermionic state, according to Eq. (43). The states ρ± are
also Gaussian fermionic states, and hence can be character-
ized through their correlation matrices. These have the simple
diagonal form �GS = diag(−1, −1, . . . , −1, 1, 1, . . . , 1)
and �E = diag(1, −1, . . . , −1, −1, 1, . . . , 1), with ±1
each appearing N times. Then, using Eq. (48) we obtain

� = {�[−tD], �+}
{�[−tD], �−} . (53)

This expression for �, which determines the Rényi entropy
via Eq. (51), will help us study the purification transition at a
quantitative level.

The above considerations help us anticipate the existence
of two distinct dynamical phases, consistent with previous
work on purification dynamics in discrete time random circuit
models, which we refer to as “mixed” (g < 1) and “purify-
ing” phases (g > 1), following Ref. [34]. In the following,
we derive analytical expressions for the time dependence of
�, which in turn determines the Rényi entropy S̃(2)(t ) via
Eq. (51). We will use these expressions later to understand
the nature of the two phases and the transition between them
at a quantitative level.

B. Expressions for �(t )

While we have so far left the boundary conditions un-
specified, in computing �(t ) we will consider open and
periodic boundary conditions separately in our calculations.
The conventional timescale γ = 1 is employed throughout
this chapter.
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1. Periodic boundary conditions

We start by considering periodic boundary conditions,
which can be realized by introducing additional random uni-
tary gates that act between sites 1 and N in the original
circuit model. In this case, a standard calculation shows that
the Jordan-Wigner-transformed Hamiltonian (39) acquires an
additional term which imposes either periodic or antiperiodic
boundary conditions depending on the fermion parity sector
one works in (see, e.g., Ref. [55]). Taking N to be even
from hereon for simplicity, the even (odd) parity sector fea-
tures antiperiodic (periodic) boundary conditions. These are
sometimes referred to as Ramond and Neveu-Schwarz sectors,
respectively.

Thanks to the translation invariance of the system, the
single particle Hamiltonian D can be block diagonalized us-
ing momentum eigenstates, whose wavevector is quantized to
kl = lπ/N , with l ∈ {1, . . . , N − 1}. In the even parity sector
l must be odd to be compatible with the boundary conditions,
and likewise vice versa. Recognizing that the states |±〉 are
the ground states of the Hamiltonian in the g → 0 limit in
each parity sector, we can express � as a ratio of products
over kl modes, with even l in the numerator and odd l in the
denominator. In Appendix V in Ref. [48], we show that

� = et

∏N/2−1
n=1 θ (k2n, t )∏N/2
n=1 θ (k2n−1, t )

, (54)

where

θ (k, t ) = cosh(λkt )

[
1 + tanh(λkt )

1 − gcos k

λk

]
, (55)

and the energy eigenvalues are given by

λk =
√

1 + g2 − 2gcos k. (56)

The factor et in Eq. (54) accounts for the modes k = 0, k = π ,
which are only present in the odd parity sector.

2. Open boundary conditions

We can also consider open boundary conditions (OBCs),
where the Hamiltonian Heff no longer features the term con-
necting sites 1 and N . While the change of boundary condition
makes little difference in the purifying phase, we will find that
in the mixed phase, quantitative differences between OBCs
and PBCs can be seen in the behavior of the Rényi entropy.
As such, will focus mainly on mixed phase g < 1, although of
the following holds true throughout the phase diagram.

With OBCs, the JW-transformed does not contain a term
that manifestly depends on the fermion parity sector. This
leaves us with the problem of diagonalizing the single-
particle matrix D, which is now the same in both parity
sectors. Since the system is no longer translation invariant,
we cannot treat momentum eigenmodes separately as we
did before. Instead, we must explicitly compute the corre-
lation matrices �[−tD] and �±, and use the more general
expression (53). To do so, we calculate the single-particle
eigenstates, which form the columns of a real orthogo-
nal eigenvector matrix O. In terms of these, we obtain
a spectral decomposition of the grand dynamical matrix
D = O�O−1. The eigenvalues � come in pairs due to

FIG. 2. Qualitative plot showing the behavior of the system en-
tropy on different timescales in the mixed(red) and purifying(black)
phase. In the mixing phase, the entropy undergoes a period of very
slow logarithmic decay up to exponentially long times in the system
size.

the particle-hole symmetry (41), which we arrange as � =
diag(λ0, λ1, λ2, . . . λN−1,−λ0, −λ1, −λ2, . . . −λN−1) with
λi > 0 and in nondecreasing order. The corresponding pairs
of eigenvectors are also related through |−λi〉 = η |λi〉, with η

defined in Eq. (41). In terms of these eigenvalues, the correla-
tion matrix �[−tD] becomes

�[−tD] = O tanh

(−t�

2

)
O−1, (57)

which can be substituted directly into Eq. (53). In
Appendix VI in Ref. [48], we show that the single particle
eigenstates take the form of sinusoids, whose wavevectors kl

can be found as the solutions to the equation

tan Nkl = g sin kl

1 − gcos kl
, (58)

lying in the interval [0, π ) and labeled in increasing order.
In terms of these wavevectors, the eigenvalues λl them-
selves again follow the well-known dispersion for the TFIM,
Eq. (56). In the mixed phase, there is also a single imaginary
solution to the above, which we label k0 = iK , corresponding
to a Majorana edge mode localized at the two boundaries of
the chain. The energy of this edge mode λ0 can be shown to
be exponentially small in the system size N , and this energy
is associated with a long timescale λ−1

0 which we will show is
responsible for the slow decay of purity in this phase.

C. Behavior of the Rényi entropy

With the above expressions in place, we are now ready to
study the behavior of the Rényi entropy in the two phases, as
well as the critical point which separates them. A qualitative
representation of the findings was given in Fig. 2.

1. Mixed phase—periodic boundary conditions

In the mixed phase, the Rényi entropy shows quantitative
differences depending on the boundary conditions, and thus
we will consider both PBCs and OBCs in the regime g < 1,
starting with the former. Beginning with Eq. (54), we can
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use complex integration methods to transform the alternating
product over even and odd k modes into an infinite product

� =
∞∏

q=0

tanh
Nxq

2
, (59)

with x′
qs found as the solutions of the equation

t
√

2gcosh x − 1 − g2 + φ(x) = π

(
q + 1

2

)
, (60)

tan φ(x) = gcosh x − 1√
2gcosh x − 1 − g2

, (61)

in the interval (K,∞), where K = − ln g is the point in the
complex plane where the dispersion function λ(iK ) has a zero.
This form makes it manifestly clear that � < 1. The details of
this calculation are given in Appendix V in Ref. [48]. Except
at criticality, for sufficiently large N , we can have NK  1,
which in turn implies Nxq  1 for all q. In this case, by virtue
of the approximation ln tanh(y) ≈ −2e−2y for y  1, we can
approximate ln � by an integral

ln � ≈ −2
∫ ∞

K

dq

dx
e−Nx, (62)

where dq/dx is the density of solutions and can be found by
differentiating Eq. (60). The result to highest order in powers
of N is

ln �(t ) = −
√

1 − g2

πN
e−NK

(
t + 2

1 − g2

)
. (63)

To relate this expression to the Rényi entropy (15), we focus
on the regime where t scales no faster than polynomial in N ,
such that the small factor e−NK dominates, making − ln �(t )
itself small. Then, if we make the approximations 1 − � ≈
− ln � and 1 + � ≈ 2, we can deduce the following form for
the Rényi entropy, valid for a broad window of times eNK 
t  2/(1 − g2) (restoring the original units of time)

S̃(2)(t ) = N ln |g| − ln
t√
N

+ 1

2
ln

4π

1 − g2
+ o(1) (64)

where the term o(1) represents terms that tend to zero in the
limit of large t or N . We see that the entropy decreases very
slowly in time in this window, which is a defining feature of
the mixed phase.

Finally, for times t that scale exponentially with system
size γ t � eNK , such that | ln �(t )|  1, we find that the en-
tropy decays as

S̃(2) ≈ 2�(t ) ≈ 2 exp

(
−γ t

√
1 − g2

πN
e−NK

)
. (65)

2. Mixed phase—open boundary conditions

We now wish to compute the same quantity with open
boundary conditions in the mixed phase g < 1. In particular,
we are interested in the regime during which the entropy
decays very slowly. As such, we can separate out the bulk
single-particle eigenstates, whose energies lie above the bulk
gap � = (1 − g), from the Majorana edge mode, which is ex-
ponentially small in N . In particular, as long as one is not too

close to criticality (1 − g)  1/N , the Majorana eigenvalue
can be approximated as

λ0 ≈ (1 − g2)e−NK . (66)

This indicates that there is a regime of times �−1 � t � λ−1
0

during which the transient bulk modes have decayed away
exp(−tλi ) ≈ 0, while the Majorana mode has not decayed.
The approximate correlation matrix in this regime will then
take the form

�[−tD] = O tanh

(
− tE

2

)
O−1

≈ O

⎛
⎜⎜⎝

− tanh tλ0
2 0 0 0

0 −IN−1 0 0
0 0 tanh tλ0

2 0
0 0 0 IN−1

⎞
⎟⎟⎠O−1.

(67)

In Appendix VI in Ref. [48], we show that the form of
the eigenvectors O can be found explicitly and the parameter
� can be expressed using Vandermonde determinants. The
factorization of the latter is known, leading to the exact final
expression

�(t ) = e−tλ0
tanh NK

2

∏
l odd(cosh K − cos kl )

sinh K
∏

l even(cosh K − cos kl )
, (68)

where kl for 1 � l � N − 1 are the wavevectors of the bulk
modes, defined in Eq. (58), and K is the spatial decay rate of
the edge mode. As with the analogous expression for periodic
boundary conditions (54), this product can be evaluated with
the help of complex integration techniques, which we describe
in Appendix VII in Ref. [48]. We find that the large N asymp-
totic expression of � takes the form

ln �(t ) = 2e−NK

(√
N

π

√
1 − g2 − 1 − 1 − g2

2
t

)
. (69)

Again, we focus on the regime where t scales polynomially
with N , in which case the right hand side of the above is small.
Moreover, noting that � should be no greater than unity, we
find that the above expression should only be trusted in the
regime

t � tc = 2

√
N

(1 − g2)π
. (70)

We view the above constraint as a condition for validity of the
approximation (67) made earlier. Then, in this regime we can
make the same series of approximations as before to relate
�(t ) to the Rényi entropy. Thus, for tc � t � eNK , we find

S̃(2)(t ) = N ln |g| − ln t + ln
2

1 − g2
+ o(1). (71)

At very long times, when t scales exponentially with N such
that |ln �(t )|  1, we find that the entropy decays as

S̃(2) ≈ 2 exp(−(1 − g2)te−NK ). (72)

Together, Eqs. (71) and (72) characterize the salient features
of purification dynamics in our model in the mixed phase
sufficiently far from criticality (e−NK � 1).
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3. Purifying phase

The purifying case corresponds to the regime g > 1, where
measurements occur so often that they overcome the scram-
bling and an initially mixed state quickly becomes pure.
Looking at the spectrum of the single-particle matrix D, one
finds that all eigenvalues are at least as large as the bulk
gap � = (g − 1), which sets a timescale t � (g − 1)−1 after
which the correlation matrix �[−tD] will have converged
close to its t → ∞ limit.

Using Eq. (59), we see that there is exactly one root x0

in the interval 0 < x0 < ln g. For large enough N we have that
N ln g  1, so for the other roots tanh Nxq/2 ≈ 1. This means
that for t ∼ poly(N ), we can make the approximation

S̃(2)(t ) ≈ Nx0, (73)

so x0 is the entropy density in the chain at time t . The equa-
tion determining x0 can be written as

tanh(t
√

1 + g2 − 2gcosh x0) =
√

1 + g2 − 2gcosh x0

gcosh x0 − 1
. (74)

Taking t  1 we see that the solution is approximately

S̃(2)(t )/N ≈ x0 ≈ 2(g − 1)

g
e−t (g−1) (75)

and follows the expected decay rate set by the spectral gap
�. Since the system is disordered in this regime, the result is
expected to hold in the thermodynamic limit, irrespective of
the boundary conditions.

4. Critical point

We now address dynamics at the critical point g = 1. While
we are no longer able to reliably make an approximation of the
kind (67) in the open boundary condition case, we find that
the purification dynamics for periodic boundary conditions is
amenable to analytical treatment in this regime. In particular,
Eq. (59) continues to hold at g = 1, with the equation for the
roots xq now given as solutions to the equation

2t sinh
x

2
+ arctan sinh

x

2
= π

(
q + 1

2

)
. (76)

This equation is still transcendental, making it difficult to find
a universal expression for its solutions. However, we can study
the three regimes t � 1, 1 � t � N , and t  N separately.

Early times t � 1.—In the initial time frame t � 1, it can
be shown that the entropy is approximately given by

S̃(2) ≈ −N ln
t

2
. (77)

The logarithmic divergence at the origin has a simple intuitive
explanation: since the averaging is performed over the purities
rather than the entropies and we work in a d → ∞ system, the
only scenarios that contribute to the average purity at early
times are those where the entire chain is measured. If this

happens, the system is immediately purified, since we can
neglect the unitary evolution at t � 1. The entropy is then
simply the logarithm of the probability that all qudits are mea-
sured within the time t , which is p ≈ ( f t )N = (gt/2)N . This
intuitive picture matches the exact answer we found above at
criticality, and is expected to hold for all values of g in both
the periodic and open boundary conditions.

Intermediate times 1 � t � N.—In this regime, we can as-
sume Nxq  1 but xq � 1 for all solutions xq that contribute
meaningfully to the value of �. Using these approximations
we find that the xq are equally spaced and the formula for ln �

is calculated as a geometric sum. The final expression for the
entropy is

S̃(2) ≈ Nπ

2t + 1
. (78)

The algebraic relationship S̃(2) ∝ t−1 is an important fea-
ture and only occurs exactly at criticality.

Late times t  N.—Finally, in the long-time limit, we see
that we can approximate � by

� ≈ (e− Nπ
2t , e− Nπ

t )∞
(−e− Nπ

2t , e− Nπ
t )∞

≈
√

2e− πt
4N , (79)

where (a, q)∞ is the q-Pochammer symbol. This leads to an
exponential decay of the entropy

S̃(2) ≈ 2
√

2e− πt
4N . (80)

D. Comparison to result from field theory

Having derived expressions for the time dependence of the
Rényi entropy of our model of hybrid quantum dynamics, it is
instructive to compare our findings to the approach introduced
in Ref. [43]. There, the authors invoke an effective field theory
known as capillary-wave theory, which was first developed to
model the dynamics of domain walls in the low-temperature
phase of the Ising model. The correspondence between the
two is rooted in the mapping between discrete-time hybrid
quantum circuits and two-dimensional ferromagnets, see e.g.,
Refs. [14,27]. The parameters of the theory are a phenomeno-
logical surface tension σ and inverse temperature β, and once
these are fixed, it is possible to find approximations for the
time dependence of the Rényi entropy starting from a mixed
initial state in the associated discrete-time monitored quantum
circuit model.

Upon comparing their expression to our results, we find
that the same universal features hold. In particular, for both
cases, there is a marked regime of times t ∼ poly(N ) in the
mixed phase during which the entropy decays as an exten-
sive constant with a − ln t contribution. The sensitivity to
boundary conditions we see [Eq. (64) versus (71)] can also be
understood in the capillary-wave picture as a consequence of
the difference in configurational entropies of the endpoints of
a domain wall for periodic versus open boundary conditions.
Moreover, by looking at the prefactor of the term proportional
to N , we can relate the microscopic parameters of our model
to the phenomenological parameters of the field theory; in
particular, we can fix the code rate βσ = K = − ln g, which
vanishes nonanalytically at the transition g = 1.
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VI. DISCUSSION

Our work introduces a class of random unitary circuits
following a brickwork geometry, where each unit cell per-
forms an infinitesimally small unitary transformation. We
show that the limiting case of the construction above leads
to a continuous stochastic process through the many-body
Hilbert space. We show that the nonequilibrium behavior
of statistical averages of a large class of operator-space
entanglement measures (the Rényi entropies) of this dy-
namical process can be obtained as equilibrium partition
functions in an effective quantum spin system, governed by
a universal, time-independent Hamiltonian. The construction
relies on an initial microscopic Hamiltonian describing local
interactions, but we prove that this only enters the effec-
tive quantum information dynamics by setting the overall
timescale.

We only perform a thorough investigation of the second
Rényi entropy, where the effective theory is the spin-1/2
ferromagnetic TFIM, with an integrability breaking term that
becomes quadratically small in the local dimension d . The
appearance of the Ising model in the 2-replica theory is not
unique to the continuous-time model studied here, but is also
found in discrete models. A central difference is that discrete
models lead to 2d classical Ising models on triangular lattices
[17,19]. This shares similar critical characteristics with the
TFIM found here, but makes properties away from criticality
more difficult to obtain.

The ground state of the effective theory becomes degen-
erate in the thermodynamic limit and it is ferromagnetically
ordered. Taking a phenomenological perspective, the two
types of stable ordering roughly correspond to the measuring
agent having full knowledge or no knowledge about the state
of the system. The lowest energy excitations are topological
domain walls, and roughly represent the geometric boundaries
of our knowledge. We show that local measurements can also
be studied within the same framework by adding an extra state
to the spins of the effective system. When the local tumbling
rate of the microscopic Hamiltonian is sufficiently strong, this
extra state is adiabatically eliminated, and the effect of mea-
surements is to introduce a transverse magnetic field whose
strength is proportional to the measurement frequency. When
this exceeds a critical threshold, the system undergoes an
Ising-type phase transition into a disordered phase. This is
recognized as the purification transition observed in numer-
ical studies of similar models [34,36]. The signature of the
transition is a logarithmically decaying residual uncertainty
in the state of the system after a purification procedure using

uncorrelated local measurements, which is present only if the
system is in the ordered phase.

We identify the order parameter corresponding to the resid-
ual second Rényi entropy in the effective model and prove
exact product expansion formulas that can be used to calculate
it in both open and closed boundary conditions. Complex
integration techniques are used to find thermodynamic limit
approximations on various timescales, and we see that their
scaling agrees with field theoretic arguments. The method
is not restricted to the residual entropy of the whole chain,
and could be adapted to calculations of other second Rényi
entropies. Universal characteristics of the transition such as
the critical exponents must be the same as for the effective
1D quantum Ising theory. The transition in the von Neumann
entropy requires higher replica analysis and may be of a dif-
ferent universality class, but we expect a qualitatively similar
behavior away from criticality. We begin the investigation
of higher replica calculations by proving a formula for the
matrix elements of the effective Hamiltonian in Appendix II
in Ref. [48]. In contrast with similar models based on discrete
evolution studied in literature, our circuits are not expected to
lead to a percolation transition of the von Neumann entropy,
even in the d → ∞ limit. This is because the small gate action
limit �t → 0 is taken first, making the Hartley entropy S0

undefined for any d .
To simplify our calculations, we have set the local tumbling

rate � to infinity, but it may be interesting to investigate
how it affects the transition. This introduces measurement
inertia, wherein less information is gained by consecutively
measuring the same qudit at intervals less than ∼1/�. If the
measurement frequency grows beyond this, the qudits become
effectively Zeno-locked. To the best of our knowledge, the
growth of entanglement in this regime has not been previously
investigated.

From an experimental perspective, the large tumbling rate
limit of the model introduced here can be expected in physical
systems whenever the state of local spins is scrambled on
timescales much larger than those of interspin interactions.
Our theory predicts universal features of entanglement dy-
namics in this regime, irrespective of the nature of the local
interactions.
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