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Anomalous second-order skin modes in Floquet non-Hermitian systems
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The non-Hermitian skin effect under open boundary conditions is widely believed to originate from the
intrinsic spectral topology under periodic boundary conditions. If the eigenspectra under periodic boundary
conditions have no spectral windings (e.g., piecewise arcs) or a finite area on the complex plane, there will be
no non-Hermitian skin effect with open boundaries. In this article, we demonstrate another scenario beyond this
perception by introducing a two-dimensional periodically driven model. The effective Floquet Hamiltonian lacks
intrinsic spectral topology and is proportional to the identity matrix (representing a single point on the complex
plane) under periodic boundary conditions. Yet, the Floquet Hamiltonian exhibits a second-order skin effect that
is robust against perturbations and disorder under open boundary conditions. We further reveal the dynamical
origin of these second-order skin modes and illustrate that they are characterized by a dynamical topological
invariant of the full time-evolution operator.
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I. INTRODUCTION

Non-Hermitian physics has recently garnered significant
research interest. Many classical optical and mechani-
cal systems, electric circuits, open quantum systems, and
single-particle Green functions with nonzero self-energy
are described by non-Hermitian Hamiltonians or matrices
[1,2]. Several unique features of non-Hermitian systems
have been discovered, including PT symmetry [3–12], the
non-Hermitian skin effect [13–18], and exceptional points
[19–29]. These unique features lead to a variety of tantaliz-
ing effects and phenomena in non-Hermitian systems without
Hermitian counterparts [30–39]. Non-Hermitian systems have
much richer topological phases [40,41], as exemplified by
the 38-fold symmetry classes for time-independent point gap
topology [42,43], and 54-fold symmetry classes for time-
independent line gap topology and time-dependent systems
[44,45].

In previous studies, the paradigmatic non-Hermitian skin
effect has been attributed to the spectral topology under peri-
odic boundary conditions. Specifically, in the complex-energy
plane, the appearance of skin modes with open boundaries
depends on the existence of spectral winding [46,47] or finite
spectral area [48] under periodic boundary conditions. The
skin modes can be categorized into different orders, where
the nth-order (n � d) skin effect in d-dimensional systems

*xiongjunliu@pku.edu.cn

with Ld lattice sites indicates that the number of accumulated
eigenstates at the (d − n)-dimensional boundary scales as
O(Ld−n+1) [49–51]. The appearance of skin modes necessi-
tates the introduction of a generalized Brillouin zone, through
which the usual bulk-edge correspondence can be restored.
And it is widely believed that the non-Hermitian skin effect
(NHSE) is original from spectral winding.

In the Floquet Hermitian system, some papers have illus-
trated that topologically protected edge states can exist, even
when the periodic boundary condition Floquet Hamiltonian
is the identity matrix or indicates no topological edge modes
[52–54]. The topological Floquet systems are called anoma-
lous Floquet topological insulator (AFTI), which is beyond
the theory of static topological insulators. Inspired by the
AFTI, we propose a question: Is there any Floquet system
where second-order NHSE can occur, even if the periodic
boundary condition Floquet Hamiltonian is an identity ma-
trix or indicates no second-order skin effect? We call it the
anomalous Floquet second-order skin effect (AFSSE).

A rigorous theorem is the following: There is no NHSE
for a finite Hilbert space Floquet Hermitian system. It means
that some attempts based on a finite Hilbert space Floquet
Hermitian Hamiltonian cannot get AFSSE [55,56], although
the edge-effective model is the Hatano-Nelson model. To
get the AFSSE, we need to introduce non-Hermitian terms.
The topological classification of the Floquet non-Hermitian
systems has been presented in Ref. [45]. The nonzero topo-
logical number in Table I of Ref. [45] indicates that there
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FIG. 1. Schematics of the model (top view) and driving protocol.
(a) Honeycomb lattice with A (filled circles) and B (open circles)
sublattices. (b) Non-Hermitian Hamiltonian Hs j ( j = 1, 2, . . . , 5)
with nonreciprocal hoppings (marked by different lines) between
neighboring sites. Black bonds and sites represent the top layer
and the orange bonds and sites represent the bottom layer. (c) The
10-step driving sequence starting from Hs1. (d) Spatial profiles of the
eigenstates. The parameters are g0 = 0.2 and t1 = 0. The system size
is L × L = 20 × 20.

can be AFTI phases in the correspondence symmetry class
and dimensions. In the two-dimensional AFTI phases, if the
adjacent boundaries’ effective Floquet operators both have
NHSE and are localized at the same corner, then the corner
coupling of the adjacent boundaries does not break the NHSE.
This idea provides a method to construct the AFSSE.

This article presents a scheme that transcends the pre-
vious perception. As proof of principle, we introduce a
two-dimensional Floquet driving system whose Floquet
Hamiltonian is proportional to the identity matrix and has
no intrinsic spectral topology. However, the Floquet Hamilto-
nian exhibits the second-order non-Hermitian skin effect with
open boundaries. Furthermore, we demonstrate the robustness
of these skin modes against perturbations and disorders and
delve into their dynamical origins by explicitly working out
the edge theory. We show that the skin modes are charac-
terized by a dynamical topological invariant from the full
time-evolution operator.

II. MODEL

We consider a bilayer hexagonal lattice structure [see
Fig. 1(a)] and a 10-step Floquet driving sequence Hs1 →
Hs2 → · · · → Hs10. The nth time step inside a driving
period is governed by the time-independent Hamiltonian
Hsn. We set Hs6 = Hs3, Hs7 = Hs4, Hs8 = Hs5, Hs9 = −Hs2,

Hs10 = Hs1. They are given by

Hs1(k) =
[

HA 0
0 HA

]
, Hs2(k) =

[
0 −iI
iI 0

]
,

Hs3(k) =
[

H1(k, g0) 0
0 H3(k, g0)

]
,

Hs4(k) =
[

H2(k, g0) 0
0 H2(k, g0)

]
,

Hs5(k) =
[

H3(k, g0) 0
0 H1(k, g0)

]
, (1)

where

H1(k, g) =
[

0 eg+ik·a1

e−g−ik·a1 0

]
,

H2(k, g) =
[

0 e−g+ik·a2

eg−ik·a2 0

]
,

H3(k, g) =
[

0 e−g+ik·a3

eg−ik·a3 0

]
,

(2)

HA = H1(k, g1) + H2(k, g2) + H3(k, g3). (3)

Here, g0, g1, g2, g3 are tunable nonreciprocal parameters
between neighboring lattice sites. a1 = (− a

2 ,− a
2
√

3
), a2 =

(0, a√
3

), and a3 = ( a
2 ,− a

2
√

3
) (a = 1 is the lattice constant).

k is the lattice momentum and I is the identity matrix. The
time duration for each step is denoted as t1, t2,..., t10, respec-
tively. In this paper, we set t j = t11− j for j = 1, 2, 3, 4, 5 and
g1 = g2 = 0. Figures 1(b) and 1(c) sketch the nonreciprocal
Hamiltonians in each step and the Floquet driving protocol.

The above driven system fulfills a type-K symmetry in the
generalized Bernard-LeClair (GBL) class,

H (k, t ) = KH∗(−k,−t )K−1, KK∗ = −I, (4)

set by the driving protocol Hs j (k, t ) = KH∗
s11− j (−k,−t )K−1

( j = 1, 2, 3, 4, 5). Here, K = σy ⊗ I (σy is Pauli matrix). The
Floquet operator (U ) is defined as the time-evolution operator
in one full period T = ∑10

j=1 t j ,

U = e−iHs10t10 e−iHs9t9 · · · e−iHs1t1 . (5)

The Floquet Hamiltonian is the effective static Hamiltonian
that stroboscopically tracks the time evolution. It is defined as
HF = i

T ln(U ). We always take t2 = t3 = t4 = t5 = π
2 in this

article, unless otherwise stated.
Notably, when t1 = 0, the time-evolution operator is easily

solvable and given simply by U (k) = −I, with the cor-
responding bulk Floquet Hamiltonian being HF (k) = π

T I.
Surprisingly, there are O(L) eigenstates located at one single
corner under the open boundary condition, while the other
eigenstates are extended across the whole system, as shown in
Fig. 1(d) for g3 = 0.2. These localized states are known as the
second-order skin modes and have previously been associated
with the eigenspectra of a finite area on the complex plane or
topological properties [49–51] of the bulk Hamiltonian under
periodic boundary conditions. However, in this model, the
spectra of the Floquet Hamiltonian represent only a single
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FIG. 2. Stability of second-order skin modes against perturba-
tions. Spatial profiles of all eigenstates |ψ j (r, 1)|2 and |ψ j (r, 2)|2 for
(a) t1 = 0.8 and (b) t1 = 1. (c) MCIPR as a function of t1. (d) Bulk
spectral gap as a function of t1. The open boundary is taken along
a3 and its perpendicular direction. The non-Bloch band theory is
used to obtain the bulk spectra. The system size is L × L = 20 × 20.
g0 = 0.2 and g3 = −0.4.

point on the complex plane, without any topological struc-
ture or spectral area. Therefore, this model lacks any static
counterparts and a complete understanding of the appearance
of these skin modes requires an account of the full-time
evolution.

III. PERTURBATION AND DISORDER

Next, we demonstrate the robustness of the second-order
skin effect against perturbations (i.e., deviating from the ideal
case described above.) We introduce a nonzero value for
parameter t1 and investigate the interplay between the first-
and second-order skin effects. Additionally, we show that
the second-order skin effect is resistant to disorder: the skin
modes survive even in the presence of significant disorder
strength.

A. Perturbation

Let us deviate from the ideal case of Fig. 1 and
take g3 = −0.4, t1 = 0.8 with other parameters unchanged.
Figure 2(a) plots the spatial profiles of the eigenstates
|ψ j (r, 1)| and |ψ j (r, 2)| ( j = 1, 2, . . . , 4L2 − 4) with open
boundary condition. Here, z = 1 or 2 denotes the top or bot-
tom layer, j labels the eigenstate, and r = (x, y) labels the
lattice site. It is clear that there are O(L) eigenvectors located
at the bottom right corner and O(L2) eigenvectors located at
the top left corner. That is, the first-order skin modes start
to emerge, while the second-order skin modes persist. When
t1 increases to 1, all eigenvectors are located at the top left
corner, as depicted in Fig. 2(b).

To scrutinize the second-order skin effect, we define a
partial inverse partition ratio of eigenvector ψ j (r, z),

Icipr ( j) =
∑

r∈A[|ψ j (r, 1)|4 + |ψ j (r, 2)|4]∑
r[|ψ j (r, 1)|2 + |ψ j (r, 2)|2]

. (6)

It has support on the bottom right part of the lattice sites with

A = {(x, y)|(x + √
3y) >

√
3(L+1)

2 , y <
√

3(L−1)
4 }. We dub it as

the corner inverse partition ratio (CIPR) and define the mean
CIPR (MCIPR) over all eigenstates as

Imcipr =
∑

j Icipr ( j)

4L2 − 4
. (7)

In Fig. 2(c), the quantity Imcipr is plotted as a function of
t1. The decrease in Imcipr with increasing t1 is due to the
emergence of first-order skin modes and the growth of the
localization length for the second-order skin modes. The small
jittering in the plot may be due to finite-size effects or the
in-cell wave functions’ relative changes with the variation
of t1. In a broad range of values for t1, both first-order and
second-order skin modes can be found, localized on different
corners. However, as t1 increases beyond a certain threshold,
the first-order skin effect dominates, suppressing the second-
order skin modes and pulling them towards the top left corner,
as illustrated in Fig. 2(b). Imcipr can be used as an order pa-
rameter and the threshold value is reached at around t1 = 0.9,
where all second-order skin modes have been eliminated (i.e.,
they have infinite localization length). To estimate the thresh-
old value of Imcipr, the presence of a few extended states and
the rest being localized first-order skin modes is assumed. The
critical value of Imcipr scales as Imcipr ∝ 1/(16L2), where L is
the system size. In Fig. 2(d), the Floquet Hamiltonian real gap
at 0 of the bulk states [45] is plotted as a function of t1. The
Floquet Hamiltonian real gap is defined as the real line gap of
HF . Here, we take open boundary conditions along a3 and its
perpendicular direction and utilize the non-Bloch band theory
(or generalized Brillouin zone) to obtain the bulk spectra. The
gap decreases and closes around t1 = 0.5, indicating a bulk
topological transition that will be discussed later.

Consider directions a3 and b1 = ( a
2
√

3
, a

2 ); there is no
NHSE if we take the open boundary condition (OBC) for the
b1 direction and periodic boundary condition (PBC) for the a3

direction. It means that the bulk spectrum is not dependent on
the boundary conditions in the b1 direction for L → ∞. The
bulk spectrum of the open b1 and a3 directions is equivalent
to the bulk spectrum of the open a3 direction and PBC on
the b1 direction. Taking the Fourier transformation for the
b1 direction, the bulk spectrum of the open a3 direction and
PBC on the b1 direction transforms into a one-dimensional
problem. Thus, we can use the one-dimensional non-Bloch
band theory to get the spectrum. It is similar to case A in
Ref. [57], which also does not have NHSE in one direction.

If t1 = 0, HF (k) = π
T I. If t1 	= 0, HF (k) = Hs1(k) + π

T I.
In Ref. [49], Kawabata et al. found that there is a topo-
logical number defined by the Hamiltonian under PBC that
has correspondence with second-order skin modes. After
Fourier transforms HF (k) to real space, there is no second-
order skin effect in both the t1 = 0 and t1 	= 0 regions under
OBC. Thus, there is no topological number defined by HF (k)
that has correspondence with second-order skin modes for
our model.

In Ref. [55], they study the Hermitian Rudner-Lindner-
Berg-Levin (RLBL) model. They found that the edge-
effective Floquet operator of the RLBL model is the
Hatano-Nelson model. After cutting a hopping bound
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of the Hatano-Nelson model, the NHSE occurs for the
Hatano-Nelson model. The significant point is that there is
no NHSE in the two-dimensional cut hopping bound RLBL
model. The cutting bound and getting edge-effective Floquet
operator is not commutable. A rigorous theorem prohibits
the existence of NHSE for the Floquet operator of the finite
Hilbert space Hermitian system: There is no NHSE for the
Floquet operator of finite Hilbert space Hermitian systems.
The eigenstates of the finite Hilbert space unitary operator
U are the same as the eigenstates of ln(U ). ln(U ) is a finite
Hilbert space Hermitian operator. According to the theorem,
for a Hermitian operator with finite Hilbert space, its eigen-
states are orthogonal to each other, thus the eigenstates of
the finite Hilbert space unitary operator are also orthogonal
to each other. The Floquet operator of the finite Hilbert space
Hermitian system is a finite Hilbert space unitary operator; its
eigenstates are also orthogonal to each other. If the Floquet op-
erator of the finite Hilbert space Hermitian system has NHSE,
there will be O(Ld1 ) eigenstates located at d2-dimensional
boundary with d1 > d2, which means that the eigenstates
cannot be orthogonal to each other. It is not consistent with
the fact that the eigenstates of the Floquet operator of the
finite Hilbert space Hermitian system are orthogonal to each
other. Thus, we get that there is no NHSE for the Floquet
operator of finite Hilbert space Hermitian systems. The mod-
els discussed in Refs. [55,56] both belong to finite Hilbert
space Hermitian Floquet systems. Thus, there is no NHSE in
their models, although their models’ edge-effective Floquet
operator is the Hatano-Nelson model. Our models belong to
non-Hermitian Floquet systems, which is beyond the control
of this theorem. That is the reason why our model can have
NHSE.

Another method mentioned in Ref. [49] to understand the
second-order skin modes is to relate second-order skin modes
with the spectral of the edge states under OBC in one direction
and PBC in another direction. If there is a loop in the PBC’s
(only one direction) edge spectra, a second-order skin effect
may exist. This method is not rigorous and works well in
many cases. For the model in Sec. IV A of Ref. [45], there
is a loop in the PBC’s (only PBC in one direction) edge
spectra, and there is no second-order skin effect. In Sec. IV,
we give the effective edge theory of this model for t1 = 0
(the exactly solvable limit). The effective-edge theory gives
an intuitive understanding of the second-order skin modes.
For t1 	= 0, we give a topological invariant which is defined
by the full time-evolution operator protecting the second-
order skin modes. The topological invariant reveals that the
second-order skin effect is the origin from anomalous Flo-
quet topology, which may exist even for the PBC’s Floquet
Hamiltonian that is proportional to the identity matrix. This
origin leads to that the usual understanding of the second-
order skin effect in time-independent systems cannot be used
to understand this model’s second-order skin effect (there
is no anomalous Floquet topology for the time-independent
system).

B. Disorder

Now let us consider the effect of disorder and take t1 =
π/20, g0 = 0.2, and g3 = 0. We add a time-independent

(a) (b)

x x
y y

|Ψ
j|
^2

|Ψ
j|
^2

22

FIG. 3. Robustness of second-order skin modes with respect to
disorder. Spatial profiles of all eigenstates |ψ j (r, 1)|2 and |ψ j (r, 2)|2
for disorder strength (a) WD = 1 and (b) WD = 100. Other parameters
are t1 = π/20, g0 = 0.2, and g3 = 0. The system size is L × L =
20 × 20.

disorder Hdiso to each step of the system’s Hamiltonian,

Hdiso =
∑

r

[wd (r)a†
r,1ar,1 + wd (r)a†

r,2ar,2], (8)

where a†
r,z, ar,z (z = 1, 2) are creation and annihilation oper-

ations on the r lattice site in the z layer, respectively. wd (r)
is a random variable with constant probability distribution in
the interval [−WD,WD]. wd (ri ) and wd (r j ) (ri 	= r j ) are inde-
pendent of each other. Figures 3(a) and 3(b) plot the spatial
profiles of |ψ j (r, 1)| and |ψ j (r, 2)| ( j = 1, 2, . . . , 4L2 − 4)
with WD = 1 and WD = 100, respectively. We can see that the
second-order skin modes persist in a broad region of disorder
strength and coexist with Anderson localization states.

IV. EDGE THEORY AND TOPOLOGICAL NUMBER

A major advantage of our model is that it is analytically
solvable under certain conditions, e.g., in the absence of disor-
der and t1 = 0. This would greatly help us to gain an intuitive
understanding of the emergence of second-order skin modes.
For this case, the bulk Floquet operator is trivial. However, we
have nontrivial edge states which are dynamically induced and
the Floquet operator of the top, bottom, left, and right edges
(denoted as UT , UB, UL, and UR, respectively) are

UL =
∑

n

1

2
[e−4g0 (a†

uA,n+2 − a†
dA,n+2)auA,n

+ e4g0 (a†
uA,n − a†

dA,n)auA,n+2

+ e−4g0 (−a†
uA,n+2 + a†

dA,n+2)adA,n

+ e4g0 (a†
uA,n + a†

dA,n)adA,n+2]

−
∑

n

(a†
uB,nauB,n + a†

dB,nadB,n), (9)

UR =
∑

n

1

2
[e4g0 (a†

uB,n − a†
dB,n)auB,n+2

+ e−4g0 (a†
uB,n+2 − a†

dB,n+2)auB,n

− e4g0 (−a†
uB,n − a†

dB,n)adB,n+2

+ e−4g0 (a†
uB,n+2 + a†

dB,n+2)adB,n]

−
∑

n

(a†
uA,nauA,n + a†

dA,nadA,n), (10)
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UT =
∑

x

1

2
[e4g0 (a†

uB,x+2 − a†
dB,x+2)adB,x

+ e−4g0 (a†
uB,x + a†

dB,x )auB,x+2

− e4g0 (−a†
uB,x+2 − a†

dB,x+2)adB,x

+ e−4g0 (a†
uB,x + a†

dB,x )adB,x+2]

−
∑

x

(a†
uA,xauA,x + a†

dA,xadA,x ), (11)

UB =
∑

x

1

2
[e−4g0 (a†

uA,x − a†
dA,x )auA,x+2

+ e4g0 (a†
uA,x+2 + a†

dA,x+2)auA,x

− e−4g0 (a†
uA,x − a†

dA,x )adA,x+2

+ e4g0 (a†
uA,x+2 + a†

dA,x+2)adA,x]

−
∑

x

(a†
uB,xauB,x + a†

dB,xadB,x ). (12)

Here, a†
zm,x and azm,x (z = u, d and m = A, B) are the creation

and annihilation operators on the z layer, xth unit cell, and
m sublattice. x is the cell index along the x direction [see
Fig. 1(a)]. u and d represent the 1 and 2 layer, respectively.
Similarly, a†

zm,n and azm,n are the creation and annihilation
operators on the z layer, nth unit cell, and m site, respectively.
n is the cell index along the n direction [see Fig. 1(a)]. Fourier
transform of Eqs. (9)–(12) brings us to the momentum space
and we have

UL =
∑

k1

A†
k1

[
LA 0
0 −I

]
Ak1 ,

UR =
∑

k1

A†
k1

[−I 0
0 RB

]
Ak1 ,

UT =
∑

k2

B†
k2

[−I 0
0 TB

]
Bk2 ,

UB =
∑

k2

B†
k2

[
DA 0
0 −I

]
Bk2 . (13)

Here,

LA = 1

2

[
e−4g−2ik1 + e4g+2ik1 −e−4g−2ik1 + e4g+2ik1

−e−4g−2ik1 + e4g+2ik1 e−4g−2ik1 + e4g+2ik1

]
,

RB = 1

2

[
e−4g−2ik1 + e4g+2ik1 −e−4g−2ik1 + e4g+2ik1

−e−4g−2ik1 + e4g+2ik1 e−4g−2ik1 + e4g+2ik1

]
,

TB = 1

2

[
e4g−2ik2 + e−4g+2ik2 −e4g−2ik2 + e−4g+2ik2

−e4g−2ik2 + e−4g+2ik2 e4g−2ik2 + e−4g+2ik2

]
,

DA = 1

2

[
e4g−2ik2 + e−4g+2ik2 −e4g−2ik2 + e−4g+2ik2

−e4g−2ik2 + e−4g+2ik2 e4g−2ik2 + e−4g+2ik2

]
.

(14)

In our notation, Ak1 = [auAk1 , adAk1 , auBk1 , adBk1 ], Bk2 =
[auAk2 , adAk2 , auBk2 , adBk2 ], azmn = ∑

k1
eik1nazmk1 , and

azmx = ∑
k2

eik2xazmk2 , z = u, d and m = A, B. k1 and k2

are the momenta along the n and x directions, respectively.
The above edge Floquet operators can be considered as
similar to the Hatano-Nelson model, with nonreciprocal
hoppings. When a full open boundary is applied in both
directions, the eigenvectors of UL and UR are situated along
the bottom edges, while the eigenvectors of UT and UB are
located on the right edges. The combination of these edge
Floquet operators results in the accumulation of edge states at
the bottom right corner of all eigenvectors.

While the second-order skin effect can be intuitively un-
derstood through these effective-edge Floquet operators, the
stability of these skin modes and their origin are encoded
in a dynamical topological invariant, as discussed below. For
convenience, we denote U (k, t ) as the time-evolution operator
of this model. According to Table I of Ref. [45], this model
belongs to the GBL class K2a and has Z2 topological classi-
fication. For Floquet systems, the description of the system’s
topological properties needs to take into account its micro-
motion operator Ũ = U (k, t ) ∗ eiHF t , in which the ∗ operator
is defined in Ref. [45]. A Hermitianization procedure is then
applied and the associated Hermitian operator is defined as

HŨ =
[

0 Ũ (k, t )
Ũ (k, t )† 0

]
. (15)

By treating time t as another momentum, the Hamiltonian
HŨ can be classified as belonging to the three-dimensional
Hermitian CII class [58,59]. The derivation of the symmetries
of HŨ is given in Ref. [45]. It should be noted that whether
or not U (k, t ) is unitary, the HŨ is always Hermitian and
belongs to class CII. Denoting |ψα〉 (α = 1, 2, 3, 4) as the
occupied eigenstates of HŨ with negative eigenenergies, the
non-Abelian Berry connection is defined as

Aα,β (k, t ) = 〈ψα|∇kψβ〉 · dk + 〈ψα|∇tψβ〉 · dt . (16)

The desired Z2 topological invariant is then the second Chern-
Simons topological number WCS = CS mod 2 with [58,59]

CS = −1

8π2

∫
BZ×t∈[0,T ]

Tr

[
AdA + 2

3
A3

]
. (17)

Our numerical calculations show that WCS = 1 before the gap
closure in Fig. 2(d), while it is not well defined after the
gap closure. The Chern-Simons topological number dictates
the existence of topologically protected helical edge states.
The nonreciprocal couplings along the boundaries collapse
them into second-order skin modes under full open boundary
conditions.

A special case worth mentioning is when t2 = 0 and t3 =
t4 = t5 = π/2. In this case, the two layers are decoupled and
each layer reduces to a previously studied model (Sec. IV A
of Ref. [45]). The topological invariants of the layers are
given by three-dimensional winding numbers, with values of
1 and −1, respectively. These winding numbers dictate the
existence of topological edge states for each layer. If we
take periodic boundary conditions along the x direction and
open boundary conditions along the n direction, the type-K
symmetry enforces a twofold degeneracy (for the real part)
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FIG. 4. OBC spectrum of HF for parameters set as g0 = 0.2 and
g3 = −0.4. System size L × L = 20 × 20. The color represents the
Icipr of the corresponding eigenstate. (a) t1 = 0.01 and (b) t1 = 0.2.

at k = π at the top and bottom edges (see Appendix A for
details). As long as the real gap of the Floquet Hamiltonians
persists, this degeneracy cannot be removed. Therefore, the
topological edge states are stable and protected by the Floquet
Hamiltonian’s real gap, even when we deviate from the special
case (e.g., by tuning t1 and t2 to nonzero values).

Here, we demonstrate the stability of the second-order
skin modes. The second-order skin modes cannot hybridize
with first-order skin modes as long as the WCS is nonzero.
Figures 4(a) and 4(b) are the spectrum of the OBC’s HF for
t1 = 0.01 and t1 = 0.2, respectively [other parameters are the
same as in Fig. 2(a)]. And the color in Figs. 4(a) and 4(b)
represents the Icipr of the corresponding eigenstate. WCS = 1
for Figs. 4(a) and 4(b), which means that there are topolog-
ically protected real line gapless states for the OBC’s HF .
According to Figs. 4(a) and 4(b), we can get that the second-
order skin modes correspond to topologically protected edge
states. And the first-order skin modes and extended states
correspond to bulk states. Thus, the second-order skin modes
cannot hybridize with first-order skin modes as long as the
WCS is nonzero.

To get a well-defined WCS , we requires the symmetry given
by Eq. (4) and the real line gap at 0 for Floquet Hamiltonian
HF [45]. As long as the perturbations are much less than
the real line gap of HF at 0, the gap cannot close by adding
the perturbations. Thus, we can regard the perturbation as a
weak perturbation. Otherwise, we can regard the perturbation
as a strong perturbation. On the other hand, according to the
numerical results in Sec. III B, the second-order skin effect is
stable against disorder, given by Eq. (8). The disorder given
by Eq. (8) fulfills the symmetry, given by Eq. (4), and almost
breaks all other symmetries. The numerical results illustrate
that the second-order skin effect is stable and consistent with
the second-order skin modes being protected by WCS .

V. GENERALIZATION AND REALIZATION

One potential implementation of our model and driving
protocol (in GBL class K2a) is through the two-dimensional
unitary random walk (RW), a widely used platform of Flo-
quet topological phases. The recipe of our setup is the
anomalous Floquet topological insulator in class A [60]. By
coupling two such RWs with opposite three-winding numbers
(+1 and −1), we can obtain an anomalous Floquet topological
insulator in class AII. To implement the non-Hermitian terms
in the Floquet operators, we utilize polarization-dependent

photon gain/loss, which respects type-K symmetry [61]. The
appearance of second-order skin modes in this setup should
be confirmed by observing pronounced photon localizations
near one of the system corners. Another possible platform for
implementing our model is through open systems. A more de-
tailed discussion of this approach can be found in Appendix B.

VI. CONCLUSIONS

In conclusion, we have demonstrated the emergence of
second-order skin modes in a two-dimensional Floquet driv-
ing system, where the bulk Floquet band is trivially flat and
characterized by an identity Floquet operator −I. Our scheme
surpasses prior knowledge that the non-Hermitian skin effect
only arises from intrinsic bulk topology or the finite spectral
area under periodic boundary conditions in the static systems.
Additionally, we have shown that these second-order skin
modes are robust against perturbations and disorders. We have
further revealed the topological origin of these skin modes
from the edge theory and the Chern-Simons dynamical topo-
logical invariant. Generalization to high-dimensional systems
or other symmetry classes will be left for future study.
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APPENDIX A: PROOF OF THE REAL-PART
DEGENERACY OF THE FLOQUET SPECTRA AT HIGH

SYMMETRY POINT WITH TYPE-K SYMMETRY:
H (k, t ) = KH∗(−k,−t )K−1, KK∗ = −I

The type-K symmetry is

H (k, t ) = KH∗(−k,−t )K−1, KK∗ = −I. (A1)

According to Eq. (20) of Ref. [45], the Floquet operator fulfills

[U ∗(−k)]−1 = K−1U (k)K, KK∗ = −I. (A2)

It follows that the eigenfunction ψ j (k) and eigenenergy
Ej (k) of U (k) [Ej (k) = ρ j (k)eiθ j (k), ρ j (k) > 0, 0 � θ j (k) <

2π ] satisfy

U (k)ψ j (k) = Ej (k)ψ j (k). (A3)
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Thus, we have

Ej (k)ψ j (k) = U (k)ψ j (k) = K[U ∗(−k)]−1K−1ψ j (k)

⇐⇒ Ej (k)K−1ψ j (k) = [U ∗(−k)]−1K−1ψ j (k)

⇐⇒ Ej (k)U ∗(−k)K−1ψ j (k) = K−1ψ j (k)

⇐⇒ U (−k)(K∗)−1ψ∗
j (k)=[Ej (k)∗]−1(K∗)−1ψ∗

j (k). (A4)

At high symmetry point k0 (k0 = −k0), we have

U (k0)(K∗)−1ψ∗
j (k0) = [Ej (k0)∗]−1(K∗)−1ψ∗

j (k0). (A5)

The Floquet Hamiltonian at k0 is HF (k0) = i
T ln[U (k0)]. Here

we choose the imaginary part of the ln(·) function to be in
the [0, 2π ) interval. Note that both ψ j (k0) and (K∗)−1ψ∗

j (k0)
are eigenfunctions of HF (k0), with their associated eigenener-
gies 1

T {ln[ρ j (k0)]i − θ j (k0)} and 1
T {−ln[ρ j (k0)]i − θ j (k0)}.

If ψ j (k0) and (K∗)−1ψ∗
j (k0) are not degenerate (with the same

real part of eigenenergies), we have

ψ j (k0) = eiδ (K∗)−1ψ∗
j (k0). (A6)

Thus,

(K∗)−1ψ∗
j (k0) = (K∗)−1[eiδ (K∗)−1ψ∗

j (k0)]∗ = −e−iδψ j (k0)
(A7)

⇐⇒ ψ j (k0) = −eiδ (K∗)−1ψ∗
j (k0), (A8)

which contradicts Eq. (A6). Therefore, ψ j (k0) and
(K∗)−1ψ∗

j (k0) are degenerate eigenfunctions (with the
same real part of eigenenergies).

APPENDIX B: REALIZATION OF THE MODEL IN OPEN
QUANTUM SYSTEMS

Let us consider Markovian open quantum systems, which
are described by the Lindblad equation

dρ

dt
= L[ρ] = −i[H, ρ] +

∑
μ

(2LμρL†
μ − {L†

μLμ, ρ}),

(B1)

where ρ is the density matrix, H is the systems’ Hamil-
tonian, and Lμ is the Lindblad operator. They are all time
dependent. Similarly to Appendix D of Ref. [32], if each Lind-
blad operator is a linear combination of annihilate operators,
we have

|〈0|(a j2 (t )a†
j1

(0) + a†
j1

(0)a j2 (t ))|0〉|2 = |〈0|a j2 (t )a†
j1

(0)|0〉|2

= |〈0|eL(
t )†
t [eL(2
t )†
t [. . . [eL(t )†
t [a j2 (0)]] . . . ]]| j1〉|2

= |Tr[eL(
t )†
t [eL(2
t )†
t [. . . [eL(t )†
t [a j2 (0)]] . . . ]]| j1〉〈0|]|2

= |Tr[a j2 (0)eL(t )†
t [. . . [eL(2
t )†
t [eL(
t )†
t [| j1〉〈0|]]] . . . ]]|2

= |Tr[a j2 (0)e−iHeff (t )
t . . . e−iHeff (2
t )
t e−iHeff (
t )
t | j1〉〈0|]|2

= |Tr[e−iHeff (t )
t . . . e−iHeff (2
t )
t e−iHeff (
t )
t | j1〉〈0|a j2 (0)]|2

= |〈 j2|e−iHeff (t )
t . . . e−iHeff (2
t )
t e−iHeff (
t )
t | j1〉|2. (B2)

Here, Heff (t ) = H (t ) − i
∑L

μ Ll†
μ (t )Ll

μ(t ), and Ll
μ(t ) is a time-dependent Lindblad operator which is a linear combination of

the annihilate operator. j1 = (r1, z1, m1) and j2 = (r2, z2, m2), r1 and r2 are the two dimensional coordinates, z1, z2 = 1, 2 are
the layer index, and m1, m1 = A, B are the sublattice index. The single-particle evolution is governed by Heff (t ). Thus, we can
construct a 10-step driven open quantum system to realize the model in the main text. The Hamiltonian and Lindblad operators
in each step are

h1 =
∑

r,z=1,2

(a†
r,zAar+a1,zB + a†

r+a1,zBar,zA + a†
r,zAar+a2,zB + a†

r+a2,zBar,zA + β3a†
r,zAar+a3,zB + β3a†

r+a3,zBar,zA),

L1
r,1 = √

γ3(ar,1A − iar+a3,1B),

L1
r,2 = √

γ3(ar,1A − iar+a3,1B),

h2 =
∑

r

(a†
r,1Aar,2A + a†

r,1Bar,2B + H.c.),

h3 =
∑

r

β0(a†
r,1Aar+a1,1B + a†

r+a1,1Bar,1A + a†
r,2Aar+a3,2B + a†

r+a3,2Bar,2A),

L3
r,1 = √

γ0(ar+a1,1B − iar,1A),

L3
r,2 = √

γ0(−iar+a3,2B + ar,2A),

h4 =
∑

r

β0(a†
r,1Aar+a2,1B + a†

r+a2,1Bar,1A + a†
r,2Aar+a2,2B + a†

r+a2,2Bar,2A),
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L4
r,1 = √

γ0(ar+a2,1B − iar,1A),

L4
r,2 = √

γ0(ar+a2,2B − iar,2A),

h5 =
∑

r

β0(a†
r,1Aar+a3,1B + a†

r+a3,1Bar,1A + a†
r,2Aar+a1,2B + a†

r+a1,2Bar,2A),

L5
r,1 = √

γ0(ar,1A − iar+a3,1B),

L5
r,2 = √

γ0(ar+a1,2B − iar,2A),

h6 = h3, L6
r,1 = L3

r,1, L6
r,2 = L3

r,2, h7 = h4, L7
r,1 = L4

r,1, L7
r,2 = L4

r,2,

h8 = h5, L8
r,1 = L5

r,1, L8
r,2 = L5

r,2, h9 = −h2, h10 = h1, L10
r,1 = L1

r,1, L10
r,2 = L1

r,2. (B3)

Here, r is the two-dimensional coordinate, and a†
r,zm and

ar,zm (z = 1, 2 and m = A, B) are the creation and annihi-
lation operators on the r cell, zth layer, and m site. β0 =
1
2 (e−g0 + eg0 ), γ0 = 1

2 (eg0 − e−g0 ), β3 = 1
2 (e−g3 + eg3 ), and

γ3 = 1
2 (eg3 − e−g3 ). The driven sequences in one period are

(
h1, L1

r,z

) → (h2, 0) → (
h3, L3

r,z

) → (
h4, L4

r,z

) → (
h5, L5

r,z

)
→ (

h6, L6
r,z

) → (
h7, L7

r,z

) → (
h8, L8

r,z

) → (h9, 0)

→ (
h10, L10

r,z

)
. (B4)

The driven time for each step is t1, t2,..., t10, respectively.
According to Eq. (B2), for this system we have

|〈0|[a j2 (T )a†
j1

(0) + a†
j1

(0)a j2 (T )]|0〉|2

= |〈0|a j2 (T )a†
j1

(0)|0〉|2

= |〈 j2|e−iĤs10t10 . . . e−iĤs2t2 e−iĤs1t1 | j1〉|2. (B5)

Except for the shift by a constant matrix, Ĥs1, Ĥs2, . . . , Ĥs1

take the form of Hs1, Hs2, . . . Hs10 in momentum space, re-
spectively (under the basis AB = [ak,1A, ak,1B, ak,2A, ak,2B]).
Going beyond the static limit and using the conclusions in
Refs. [30,62,63], or Appendix A of Ref. [31], the Green func-
tion


r1z1m1,r2z2m2 (t ) = Tr[ρ(t )a†
r1z1m1

ar2z2m2 ] (B6)

satisfies


(nT ) = e−2nI(γ3t1+γ0(t3+t4+t5 ))(e−iHs10t10 . . . e−iHs2t2 e−iHs1t1 )n

× 
(0)(eiH†
s1t1 eiH†

s2t2 . . . .eiH†
s10t10 )n, (B7)

where I is the identity matrix and n is a positive integer.
According to Eq. (B7), the many-particle dynamics is also
governed by the model in the main text.
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