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Universality classes of thermalization for mesoscopic Floquet systems
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We identify several distinct phases of thermalization that describe regimes of behavior in isolated, periodically
driven (Floquet), mesoscopic quantum chaotic systems. In doing so, we also identify a Floquet thermal ensemble,
the “ladder ensemble,” that is qualitatively distinct from the “featureless infinite-temperature” state that has long
been assumed to be the appropriate maximum-entropy equilibrium ensemble for driven systems. The phases
we find can be coarsely classified by (i) whether or not the system irreversibly exchanges energy of order ω

with the drive, i.e., Floquet thermalizes, and (ii) the Floquet thermal ensemble describing the final equilibrium
in systems that do Floquet thermalize. These phases are representative of regimes of behavior in mesoscopic
systems, but they are sharply defined in a particular large-system limit where the drive frequency ω scales up with
system size N as the N → ∞ limit is taken: we examine frequency scalings ranging from a weakly N-dependent
ω(N ) ∼ log N , to stronger scalings ranging from ω(N ) ∼ √

N to ω(N ) ∼ N . We show that the transition where
Floquet thermalization breaks down happens at an extensive drive frequency and, beyond that, systems that do
not Floquet thermalize are distinguished based on the presence or absence of rare resonances across Floquet
zones. We produce a thermalization phase diagram that is relevant for numerical studies of Floquet systems and
experimental studies on small-scale quantum simulators, both of which lack a clean separation of scales between
N and ω. A striking prediction of our work is that, under the assumption of perfect isolation, certain realistic
quench protocols from simple pure initial states can show Floquet thermalization to a type of Schrodinger-cat
state that is a global superposition of states at distinct temperatures. Our work extends and organizes the theory
of Floquet thermalization, heating, and equilibrium into the setting of mesoscopic quantum systems.
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I. INTRODUCTION

Breakthrough experimental developments in building iso-
lated quantum systems have led to significant recent progress
in quantum statistical mechanics. This has fueled advances
in our understanding of fundamental questions surrounding
the process of thermalization and its various exceptions in
isolated many-body systems [1–7].

In the common case of a system governed by a time-
independent Hamiltonian, the system thermalizes if, at late
times, probability distributions of local observables are in-
distinguishable from those in a relevant thermal ensemble.
The appropriate thermal ensemble is determined by the princi-
ple of entropy maximization, constrained by the conservation
laws of the system. The eigenstate thermalization hypothesis
(ETH) [1,8–13] posits conditions for thermalization on in-
dividual eigenstates of the dynamics, and empirically these
conditions hold in examples of thermalizing systems [14–19].

Upon the addition of a periodic drive of frequency ω, i.e.,
making the system “Floquet,” the Hamiltonian and eigen-
states of the stroboscopic dynamics gain a periodic time
dependence. The drive breaks the conservation of energy
and the appropriate long-time maximum-entropy equilibrium
is assumed to be a featureless “infinite-temperature” state
[20,21]. Exceptions to this “heat death” are possible [22,23],
notably in many-body localized (MBL) or integrable Floquet
systems [24–27], in which case the system may thermalize
to a generalized periodic Gibbs ensemble [28,29] and/or

realize novel ordered phases such as the discrete time-crystal
[30–34] or the anomalous Floquet insulator [35,36]. Heating
can also be suppressed for a time exponential in the drive
frequency, a transient phenomenon called Floquet prethermal-
ization [37–50]. All of these results on Floquet thermalization
and its exceptions were obtained in works aimed at the limit
where the drive frequency ω is finite and the number of de-
grees of freedom in the system N is infinite.

However, as we show in this paper, this limit provides
an incomplete description of thermalization in chaotic Flo-
quet systems. In particular, in mesoscopic systems where N
is finite, there are other regimes of thermalization captured
by thermal ensembles that are qualitatively distinct from a
featureless infinite-temperature state. These regimes, and the
crossovers between them, occur at drive frequencies that
depend on the system size N , so to study them we allow
for a drive frequency ω ∝ �(N ) that is scaled up with N .
We examine frequency scalings ranging from a weakly N-
dependent �(N ) = log N , to stronger scalings ranging from
�(N ) = √

N to �(N ) = N . The distinctions between the dif-
ferent regimes we obtain can be made sharp in a particular
large-N limit [51–55], discussed later, where N → ∞ is taken
with ω/�(N ) held constant, i.e., a large-ω limit is taken at
the same time.1 This limit may appear nonstandard when

1The width of the crossovers [in the control parameter ω/�(N )]
scales as �(N )−1 and sharpens up as the limit is taken.
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compared to conventional thermodynamic limits studied in
many-body physics, but is standard in studies of mesoscopic
systems where interaction strengths and/or other parameters
are often taken to scale with N [51].

One motivation for studying the different possible regimes
of thermalization in mesoscopic Floquet systems is that many
settings, for instance, experiments on near-term quantum sim-
ulators, allow controlled access to “intermediate-scale” [56]
many-body quantum systems where there is not a clean sep-
aration of scales between N and ω (measured in units of a
microscopic energy scale). This is also true for numerical
studies of Floquet phenomena, which are limited to small sys-
tem sizes [57]. There is currently a major gap in the literature
in theoretically and systematically addressing thermalization,
Floquet heating, and equilibrium in this setting, which we
hope to bridge with this work.

A. Summary of results

We identify a number of distinct regimes of thermalization,
and crossovers between them, that can occur in mesoscopic
Floquet systems. In this work, we are only considering iso-
lated chaotic many-body systems subject to periodic driving,
focusing on the delocalization of energy across Floquet zones;
in particular, all the crossovers we consider are between
chaotic regimes with different degrees of energy conservation,
so the physics of many-body localization or integrability will
play no role in our discussion. Reference [58] instead con-
siders the fate of finite-size driven integrable systems, with
an N-dependent driving amplitude. The different regimes of
thermalization we find are summarized below and in Fig. 1(a),
and explained in detail later:

(i) At the smallest frequencies, the system irreversibly
exchanges energy with the drive and Floquet thermalizes to
a conventional featureless infinite-temperature state, i.e., the
relevant Floquet thermal ensemble is a uniform distribution
over all states [Fig. 1(b)].

(ii) At larger frequencies, beyond ω = ωladder (N ) ∼ log N
[or, in some physically relevant cases discussed later,
ωladder (N ) ∼ √

N], the system instead Floquet thermalizes to
a ladder ensemble. In this regime, energy conservation is
not completely destroyed, but downgraded to an approximate
conservation of energy modulo ω. Thus, energy becomes de-
localized across a “ladder” of narrow energy windows that are
spaced by ω. This is the relevant maximum-entropy Floquet
thermal ensemble under the constraint of conservation of en-
ergy modulo ω [Fig. 1(c)]. While in some cases this ensemble
can have the same average energy as the infinite-temperature
ensemble, the distribution of energy is distinct.

(iii) At yet larger frequencies beyond ω = ωpartial(N ) ∼
N , the system only partially thermalizes across the rungs of
the ladder. We call this the regime of partial Floquet thermal-
ization. In this regime, a version of Floquet heating may still
occur for many initial states.

(iv) Finally, at the largest frequencies, beyond ω =
ωloc(N ) ∼ N , the system does not exchange energy of order
ω or more with the drive, i.e., it does not Floquet thermalize
and instead becomes energy localized. In this regime, there
exists an extensive energy, defined by a quasilocal effective
Hamiltonian, that is approximately conserved for all times.

FIG. 1. Distinct regimes of thermalization in mesoscopic Floquet
systems. (a) A sketch of the different regimes of thermalization,
listed in Sec. I A. The various frequencies marked along the axis
depend on the system size N as shown, and also on (quasi) energy, so
the line shown is a cut through the full 2D phase diagram of Fig. 2.
(b), (c) A depiction of the (b) “featureless infinite-temperature” and
(c) “ladder” ensembles. These are probability distributions over a
suitable definition of energy (for example, an effective Hamiltonian)
that can be relevant descriptions of the final equilibrium of a Floquet
system. In the featureless ensemble (b), the distribution over energy
follows the density of states. In contrast, for the ladder ensemble,
the distribution of energy is peaked (with peak widths �) around
energies with the same E mod ω. The weights of the peaks follow
the density of states (DOS) at those energies, PE ∝ DOS(E ). The
featureless ensemble corresponds to a loss of energy conservation
under the Floquet dynamics, while the ladder ensemble corresponds
to maintaining an approximate conservation of E mod ω.

While the extensive many-body bandwidth furnishes an upper
bound for ωloc(N ), we find that energy localization sets in at a
smaller scale, and distinct nontrivial energy-localized regimes
exist that can be distinguished by the presence or absence of
isolated Floquet many-body resonances in rare states.

A few points are of note. First, complete Floquet thermal-
ization occurs for frequencies less than ωpartial(N ) ∼ N , in the
sense that the system effectively exchanges energy with the
drive. In most of this regime, i.e., between the two scales
ωladder (N ) ∼ log(N ) and ωpartial(N ) ∼ N , the ladder ensemble
is the relevant description of the final thermal equilibrium.
In contrast, the regime in which the system thermalizes to a
featureless infinite-temperature state is parametrically smaller,
extending only up to ωladder (N ) ∼ log(N ). Second, while we
have only focused on the frequency dependence of the differ-
ent regimes in the discussion above [and in Fig. 1(a)], there is
also a strong dependence on (quasi)energy which we explore
below. In Fig. 2, we map out the full two-parameter phase
diagram of the different types of thermalization mentioned
above, and one important message of our work is that some-
times the thermalization of Floquet systems needs to be state
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FIG. 2. Phases of thermalization in Floquet systems. (a) The phase diagram in the two-zone approximation. The purpose of this diagram
is to show the qualitative organization of the phases, but we have used numerical data from simulations of small systems to draw the curves
for concreteness. The solid lines are obtained using only N ∈ {12, 14} data, and the dashed curves are sketched extrapolations. For example,
the middle of the red curve corresponds to the point at which the N = 12 and 14 curves of Fig. 4 intersect. See Sec. III C for a full description.
The outer black square marks the edges of the spectrum of H0. A point on the diagram specifies two energy densities, e1 and e2, which can
also be labeled by ē and �e (i.e., the frequency ω = N�e is implied by the point, and is constant along lines of constant �e). The phase
which that point belongs to indicates the extent to which the Floquet dynamics mixes those two energy densities. The pink dashed line denotes
�e = 0, which contains the commonly considered case of finite ω and N → ∞. The distinct behaviors are as described in Fig. 1(a) and in the
main text. The terms “resonances” and “no res.” indicate energy-localized phases with and without rare Floquet resonances. (b), (c) Depictions
of two-way and one-way thermalization. In two-way thermalization, initial states at either energy density thermalize to have the correct
equilibrium populations at those energies. In one-way thermalization, states at a high density of states do not decay into a window of energy at
a much lower density of states, so there is heating but not the “reverse heating” needed to produce full Floquet thermalization.

or energy resolved instead of uniformly averaging over all
Floquet eigenstates or initial states.

Finally, a notable consequence of our results is that under
a suitable quench protocol, isolated systems in pure states
can thermalize to Schrodinger cat states of temperature, i.e.,
superpositions of states at globally different energy densities
[Fig. 1(c)]. Although the coherences of such states are notori-
ously fragile, the ladderlike distribution of energy is a stable
signature of this form of Floquet thermalization.

The rest of this paper is organized as follows: In Sec. II we
set up our theoretical understanding of the different regimes of
thermalization that occur in mesoscopic Floquet many-body
quantum systems. We support our theoretical reasoning with
numerical evidence using a concrete model in Sec. III. In
Sec. IV we explore some of the prospects for studying the
physics discussed in this work experimentally, and show that
indeed experimental studies seem to be accessible on some
near-term platforms for quantum simulation. Finally, we sum-
marize and discuss our findings in Sec. V.

II. THEORY

A. Setup and review of Floquet heating

For the purpose of discussion, we consider N qubits evolv-
ing under a time-periodic Hamiltonian H (t ) = H0 + gω(t )V0,
where gω is an O(1)-valued periodic function of time that
time averages to zero, with period T = 2π

ω
. The most basic

case to consider is a monochromatic gω(t ), with weight only
on the frequency ω, e.g., cos(ωt ), but higher harmonics can
also be present, e.g., sign[cos(ωt )]. H0 is a quantum chaotic
Hamiltonian that is a sum of one- and two-body terms, and
V0 couples the system to the drive, also consisting of a sum of
one- and two-body terms. A characteristic microscopic energy
scale of H is set to one here. We are generally interested
in behavior at ω � 1, although in practice ω � ω0 can be a

more accurate condition, where ω0 is O(1) and depends on
the specific system. Both H0 and V0 are traceless, so the en-
ergy corresponding to infinite temperature is zero. 1

N2N tr(H2
0 ),

1
N2N tr(V 2

0 ), and 1
N2N tr([H0,V0]2) are all of order one, so the

only small parameters present are 1/ω and 1/N . The strobo-
scopic dynamics are governed by the Floquet unitary UF =
T exp(−i

∫ T
0 H (t )dt ) that time evolves the system by one

period. The Floquet unitary defines the Floquet Hamiltonian
HF via UF ≡ e−iHF T . The quasienergies θ are defined such
that the eigenvalues of UF are e−iθT , so θ is only defined
modulo ω and is strictly conserved by the dynamics, and this
may be the only such strict conservation law. The specific
model we use for later numerical demonstrations is given in
Sec. III, but our results are more general.

The process of Floquet heating entails a system resonantly
exchanging energy with the drive in quanta of size ∼ ω. In
this work, we will ideally consider frequencies ω that are
large compared to the microscopic energy scale of H , which
is set to 1 here [the regime when ω is comparable to the
local energy scales leads to rapid heating, but the ω ∼ O(1)
boundary between these two regimes is system dependent]. In
this high-frequency regime, absorbing a quanta ∼ ω of energy
requires a high-order process involving O(ω) local energy
moves, which occurs at a rate that is exponentially suppressed
in ω. Because these processes can happen anywhere in the
system, the system as a whole exchanges “photons” with the
drive at a rate [37–41]

� ∼ Ne−ω/ω0 , (1)

with some microscopic (order one) ω0 that may, in general,
depend on the energy density.2 This is the behavior in the

2In one dimension there is a logarithmic correction such that the
heating rate is bounded by � ∼ Ne−(ω log ω)/ω0 [59–61]. We focus
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drive frequency range ω0 � ω 
 Nω0, and, in this regime,
there is an effective (“prethermal”) quasilocal Hamiltonian
Heff that captures the dynamics of the system on timescales
shorter than t ∼ �−1. Heff can be obtained perturbatively, and
represents the most optimal quasilocal truncation of a high-
frequency Magnus expansion for HF [39]. The leading term
in the expansion is the time-averaged Hamiltonian H0 (see
Appendix A).

The timescale �−1 sets the crossover time between the
prethermal regime with dynamics governed by Heff (which
has an extensive conserved energy), and the regime of Floquet
thermalization, where the system thermalizes across different
Floquet zones due to a resonant drive-mediated coupling be-
tween states separated in energy by ω and therefore becomes
delocalized in energy [23]. The slow thermalization across
Floquet zones is reflected in the nonperturbative, nonlocal
character of HF . The difference between UF = e−iHF T and
e−iHeff T is the thermalization process across Floquet zones
visible on times t > �−1.

B. Floquet thermal ensembles and nonstandard
large-N limits

We now discuss the featureless infinite-temperature and
ladder ensembles for Floquet thermalization, the crossover
between these, and how this crossover sharpens in a particular
large-N limit.

For a system that absorbs or emits energy slowly enough,
an eigenstate of UF with eigenvalue e−iθT will be supported
on eigenstates of Heff near a “ladder” of energies that differ in
steps of ω, i.e., with energies

Eeff = θ ± nω (2)

with n ∈ Z. However, due to the nonzero heating rate, each
of the “rungs” of the energy ladder will have an energy un-
certainty ∼ � ∼ Ne−ω/ω0 [see Fig. 1(c) for a depiction]. In
the commonly prioritized limit of finite ω and N → ∞, the
rate � grows with N and eventually becomes larger than ω

(when N ∼ ωeω/ω0 ). For N well in excess of this, the ladder is
not resolvable as the width of the rungs exceeds the spacings
between rungs, and the energy conservation (even modulo
ω) is fully lost. The resulting equilibrium is then “infinite
temperature” in a strict sense because the relevant Floquet
thermal ensemble is a uniform distribution over all energy
eigenstates, as shown in Fig. 1(b).

The strict infinite-temperature property of Floquet thermal-
ized states (and eigenstates of UF ) can break down to various
degrees when � 
 ω. This can occur in systems with finite
N and ω, or in large-N systems where we allow ω to scale
up with N in such a way that some behavior characteristic
of finite-size systems is retained in the limit. For example,
consider ωladder (N ) = ω0 log N : If ω is scaled up with N faster,
so that ω � ωladder (N ), then � 
 ω at large enough N . In
this regime, the distributions of energy in the eigenstates of
UF have significant weight only near a well-resolved ladder

on the general case in higher dimensions for our discussion and
numerical studies below, but the results are qualitatively the same
in one dimension.

of energies with spacing ω, as shown in Fig. 1(c). In other
words, the energy defined by Heff is conserved modulo ω to a
precision of ∼ �.

This “energy ladder” is a maximum-entropy Floquet ther-
mal ensemble that is distinct from “infinite temperature”
and notably it sets in already at a frequency scale ωladder =
ω0 log N that is only weakly dependent on N . If we con-
sider the rescaled frequency ν = ω

ωladder (N ) = ω
ω0 log N , then the

crossover from the featureless infinite-temperature ensemble
to the ladder ensemble happens near ν = 1. This crossover
in the rescaled variable ν becomes sharp in the large-N limit
as can be seen from the behavior of �

ω
= Ne−ω/ω0

ω
= N1−ν

νω0 log(N )
near ν = 1: it diverges with N if ν < 1 and approaches
zero if ν > 1.

The ladder ensemble sets in at ω ∼ log(N ) and extends to
parametrically larger frequency scalings ω = ωpartial(N ) ∼ N .
First consider ω ∼ Nα , with 0 < α < 1. As long as α < 1,
consecutive rungs on the ladder have different energies but
the same energy density as N → ∞, i.e., the spacing in en-
ergy density between the rungs tends to zero. Each Floquet
quasienergy θ corresponds to populating a ladder of energies
Eeff mod ω = θ that spans across all energy densities. In par-
ticular, the ladder contains a subset of rungs that have the
same energy (and entropy) density as infinite temperature in
the N → ∞ limit, E∞

eff/N = 1
N2N Tr[Heff ] = 0. Thus, the final

equilibrium is one where the average energy density corre-
sponds to infinite temperature, but the distribution of energy
is markedly distinct from the uniform distribution and instead
concentrated near a ladder of well-spaced energies.

Finally, we have the case of ω ∝ N (α = 1). In this case,
the frequency ω is extensive and corresponds to transitions
between different energy densities e; thus we denote �e ≡ ω

N
in the rest of this paper. Since ω is extensive in this case,
it is not generally true that the system thermalizes to the
same average energy density as infinite temperature in the
N → ∞ limit, even when it does equilibrate across Floquet
zones (Floquet thermalizes). This is because the final energy
distribution resides on a ladder of different energy densities,
and the infinite temperature energy density (e = 0) is not
generally one of them (see Fig. 5 for a demonstration).

This brings us to an important point: Floquet thermaliza-
tion (also referred to as Floquet heating) refers to reaching the
appropriate equilibrium ensemble with energies distributed
either according to the uniform infinite-temperature ensemble
or the appropriate ladder ensemble. The ladder ensemble is
always a distinct ensemble from infinite temperature, and need
not even have the same average energy density as infinite
temperature. Thus, Floquet thermalization does not imply that
the system thermalizes to infinite temperature, even on average.

Some comments are in order before concluding this sec-
tion. When defining the ladder ensemble, we considered
energies defined according to Heff , the most optimal quasilocal
truncation of HF . In this case, the energy defined by Heff is
conserved modulo ω to a precision of ∼ � set by the heating
rate. However, if Heff is not chosen optimally, for instance, if
energy is defined with respect to the leading term H0, then the
precision is lower and the width of the rungs is accordingly
broader, as discussed in Appendix A. Likewise, if we consider
thermalization of generic initial states (instead of eigenstates
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of UF ), then the energy uncertainty of the initial state also
contributes to the broadening of the rungs. A typical product
initial state has energy uncertainty ∝ √

N , and hence requires
ω ∼ Nα with α > 1

2 to resolve the rungs of the ladder for
large enough N . In this case, the crossover from the featureless
infinite-temperature ensemble to the ladder ensemble happens
at ωladder (N ) ∼ √

N and it does not sharpen up in the large-N
limit.

In sum, in this section we have discussed different Floquet
thermal ensembles that are relevant for the different ways
in which a system can Floquet thermalize. This has been in
the context of mesoscopic systems, but also using the notion
of nonstandard large-N limits, with N-dependent frequencies,
that help us sharply distinguish the different regimes. As also
mentioned, beyond a certain scale ωloc ∝ N , Floquet thermal-
ization does not occur and the effect of the drive is perturbative
for almost all eigenstates. In those cases, energy is localized
to the microcanonical window of states near the initial energy,
which is conserved.

In the next section, and in much of the rest of the paper,
our goal is to map out a phase diagram delineating various
thermal and nonthermal Floquet regimes. In order to do this,
we discuss the structure present at the scaling ω ∝ N , where
both Floquet thermalization and various partially thermalizing
or non-Floquet-thermal phases exist in the large-N and large-
ω limits. Note that at this scale, we are no longer probing the
crossover between the infinite-temperature and ladder ensem-
bles (which happens at parametrically smaller frequencies);
instead, our goal is to study different degrees of thermalization
to the appropriate ladder ensemble.

C. Thermalization phase diagram

Our goal is to map out the various types of thermalization
that can occur in mesoscopic Floquet systems and, relatedly,
in Floquet systems in nonstandard large-N limits. In the for-
mer, these are regimes of behavior with smooth crossovers
between them, while in the latter they are idealized sharp
phases representative of the finite-Nand -ω regimes. To do this
we fix ω ∝ N and consider the matrix elements of the drive
operator V0 between eigenstates of H0 separated in energy
density by �e, and the relevant density of states of H0, in order
to argue for or against interzone thermalization and Floquet
resonances. Note that the rungs of the ladder represent differ-
ent Floquet zones, so thermalization to the ladder ensemble
corresponds to interzone thermalization. We use the leading
order H0 as our definition of energy because Heff → H0 as
N, ω → ∞, and because it is the simplest option, e.g., using
H0 results in a notion of energy that is not ω dependent,
as Heff is (also see the discussion in Appendix A). We also
corroborate our findings numerically with the full dynamics
generated by UF for our model system in Sec. III.

We refer to the inverse energy-level spacing of H0 as the
density of states (DOS), so that it is the number density, in
energy (not in energy and volume), of many-body energy
levels. At large N , the DOS of H0 is of the form

D(e) = exp[Ns(e)], (3)

up to subexponential factors, where s(e) is the entropy density
at energy density e.

A similar form is motivated for the matrix elements of
V0, which are suppressed exponentially in ω [19,62,63], in
accordance with the exponentially slow heating rate. As we
are considering ω ∝ N now, the matrix elements are exponen-
tially small in N for a fixed �e. Therefore, we assume that the
leading behavior of the size of the matrix elements is

V (e1, e2) = exp[−N f (�e, ē)], (4)

where e1 and e2 are the energy densities of the two eigenstates
of H0, and f is a function of the difference and mean

�e = ω

N
= |e2 − e1| and ē = e1 + e2

2
. (5)

Note that the form of Eq. (4) matches to the ETH [1] and to the
heating behavior discussed above, with f (�e, ē) ∼= 1

2 [s(ē) +
�e
ω0

] for small �e. However, here we are dealing with matrix
elements between extensively different energies, so we allow
a more general form for f .

We have now completed the essential setup for understand-
ing the main features of the thermalization phase diagram,
which we explain here and support with numerical evidence
in Sec. III. The presence or absence of thermalization and/or
resonances between Floquet zones should be governed by
comparing the relevant energy-level spacing with the relevant
matrix elements or rates for those processes. When the fre-
quency is extensive, this comparison is nontrivial because the
exponents in Eqs. (3) and (4) are both ∝ N .3

Since the frequency and many-body bandwidth of H0 are
both extensive in N , the number of rungs in the relevant ladder
ensemble is finite. To simplify the analysis, we truncate the
ladder to two rungs and work in a two-zone approximation,
where we consider Floquet thermalization and resonances
involving two narrow windows of energy density near e1 and
e2 (this implies the frequency via ω = N |e1 − e2|, and the
quasienergy via θ = Ne1 mod ω), and we discuss the minor
modifications that come with considering the rest of the Flo-
quet zones in the energy-density ladder in Appendix C. We
find four distinct phases, ordered from the most thermalizing
to the least: “two-way (full) thermalization,” “one-way (par-
tial) thermalization,” and two energy-localized phases with
“isolated resonances,” and with “no resonances.” The phase
with two-way Floquet thermalization contains a sliver of
vanishing relative size that is thermalization to the infinite-
temperature ensemble or to a ladder ensemble with zero
average energy density. The phase diagram is shown in Fig. 2;
we will explain the ideas behind each phase below, and sup-
port the diagram with numerical evidence later on.

3In one dimension there is a correction such that ω ∝ N/ log N (a
slightly subextensive frequency) is instead the scaling needed to have
(1/D) and V scale similarly [59–61]. We proceed with the ω ∝ N
scaling presented above, which appears to be correct for systems in
more than one dimension, and is consistent with the numerics for
an all-to-all quantum dot model that we study below. The finite-size
regimes in our phase diagram are all still present for the modified
scaling in one dimension, although the precise scaling of ω needed
to remain in any one of the phases as one takes the large-N limit is
slightly altered by the 1/(log N ) factor.
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1. Two-way (full) thermalization

In the phase with two-way Floquet thermalization, states
at e1 and e2 get fully mixed by the presence of the drive
in the sense that in the N → ∞ limit, any initial state at
either energy density will thermalize to occupy states at both
energy densities with weight proportional to D(e1) and D(e2),
respectively. Another way of saying this is that the Floquet
eigenstates of UF will all have weight on both rungs of the
corresponding energy ladder, with weights proportional to the
DOS.

This phase occurs when the rate for transitioning from
one energy to the other is larger than the level spac-
ing at the initial energy, a symmetric condition given by
limN→∞ V (e1, e2)2D(e1)D(e2) = ∞. Using Eqs. (3) and (4)
this translates to

2 f (�e, ē) < s(e1) + s(e2). (6)

Intuitively, this says that each energy has a high enough
density of states that states at the other energy “see” them
as an effective continuum and transition to them at a Fermi
golden rule (FGR) rate [62–66]. If we label e2 as the energy
closer to zero with higher DOS, so that D(e2) � D(e1), then
FGR is valid for transitions from e1 to e2, so that a system
initialized at e1 thermalizes to acquire weight at both e1 and
e2 in proportion to the DOS at the two energies. We call
this process “heating” since the e2 is at a higher (absolute
value of) temperature than e1. Due to the heating process,
the resultant broadening of the levels at the lower DOS is
larger than the level spacing there, thus both DOS act as a
continuum. As a result, a state initialized at e2 would also
thermalize to acquire a small weight on e1 that is proportional
to D(e1), a process we called “reverse heating” [see Fig. 2(b)].
In general, since the DOS is exponentially larger (in N) for e2,
the system thermalizes on average to e2, the energy with the
higher entropy density, when N is large.

A special case occurs when D(e1) = D(e2). This occurs
in models with D(e) = D(−e) when both energies are
situated symmetrically about zero, so that e2 = −e1 = ω

2N .
This corresponds to Floquet eigenstates at eigenvalue
e−iθT = ei ω

2
2π
ω = −1, i.e., with quasienergy θ = π/T . In

this case, the final thermal equilibrium is an equal-weight
superposition of two different energy densities, one
corresponding to positive temperature and the other to
negative temperature. Because the final equilibrium is a
superposition of states in two well-separated narrow energy
windows, and those states look locally like they are described
by the Boltzmann distribution, this final local Floquet
equilibrium is approximately described by

ρ = 1

2Z

(
e−βH0 + eβH0

) = 1

Z
cosh(βH0), (7)

where the inverse temperature β is set by e1. This is a
different type of Floquet ETH ensemble distinct from infinite
temperature: even though the average energy corresponds to
that of infinite temperature, the distribution is bimodal with
weight at positive and negative temperature states, and almost
no weight at zero energy [see Fig. 5(a)].

A consequence of this is that if we start with a simple initial
pure state at energy E1 and drive it with frequency 2|E1|, the

state will thermalize to spontaneously become a type of pure
Schrodinger-cat state of temperature, i.e., a global superpo-
sition of thermal pure states at two different temperatures!
While the coherences of such states are extremely sensitive
to imperfect isolation, the ladderlike distribution of energy is
a much more robust signal of this type of Floquet thermaliza-
tion. We explore the prospects of realizing these equilibrium
distributions experimentally in Sec. IV.

2. One-way (partial) thermalization

The phase with one-way, or partial, Floquet thermalization
is subtly different in that the higher entropy density appears
as a continuum to the lower, but the converse is not true. The
condition for this phase is the validity of Fermi’s golden rule
(FGR) in one direction but not the other, which translates to

s(e1) + s(e2) < 2 f (�e, ē) < 2s(e2), (8)

if we label the higher DOS as e2. This is equivalent to
V (e1, e2)2D(e1)D(e2) vanishing with N but V (e1, e2)2D(e2)2

diverging. Under this condition, a system initialized at e1

would heat to thermalize to e2, as in the two-way phase, but a
state initialized at e2 would generally not thermalize to acquire
a small weight on e1 that is proportional to D(e1) [Fig. 2(c)].
Such a subtle entropically suppressed “reverse heating” could
be unimportant if N is large, due to D(e1) 
 D(e2). In that
case, the union of the phases with one-way and two-way Flo-
quet thermalization is the more physically important concept.

3. Energy localized

We now move on to the two remaining phases where Flo-
quet thermalization fails, so they are energy localized. This
sets in when

s(e1), s(e2) < f (�e, ē). (9)

This condition means that typical states no longer cou-
ple to other Floquet zones under the dynamics. Notably,
our arguments show transparently why the boundary of the
energy-localized regime occurs at an extensive frequency be-
cause both V (e1, e2) and D(e) scale exponentially with N . In
particular, this rules out other seemingly plausible scalings
such as ωloc ∝ √

N which could be argued for, for instance, by
comparing the frequency to the standard deviation in energy
of the DOS [21].

The energy-localized phase is further divided into two
phases distinguished by the presence or absence of rare Flo-
quet many-body resonances [67], by which we mean rare
Floquet eigenstates UF that are superpositions of eigenstates
of H0 in different Floquet zones, while most eigenstates
are energy localized. Unlike the matrix elements responsible
for many-body resonances in many-body localized systems,
which can have very broad distributions [68–71], the distribu-
tion of the matrix elements of V0 between energy eigenstates
of H0 at e1 and e2 should be Gaussian and thus well character-
ized by a single value V (e1, e2) because the energy eigenstates
of H0 are thermal. Thus, the expectation of any rare Floquet
many-body resonances is heralded by comparing the size of
these matrix elements to the smallest energy gap E2 − E1 − ω,
where E1,2 are within the energy windows we have been dis-
cussing. The minimum gap scales as [D(e1)D(e2)]−1, so such
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rare resonances are expected to be present in typical samples
in the energy-localized phase with isolated resonances, the
condition for which is

s(e1), s(e2) < f (�e, ē) < s(e1) + s(e2). (10)

When f (�e, ē) is even larger than s(e1) + s(e2), the system is
in the “no resonances” phase, which also contains the trivial
regime of e and ω such that both (e + �e) and (e − �e) are
outside of the many-body bandwidth of the system, and Heff

is good for describing the dynamics of all states for all times
(there is no nonperturbative effect of the periodic drive).

4. Crossovers

The relevant quantities governing the crossovers between
the phases discussed in this section all have the form

eN[as(e1 )+bs(e2 )−c f (�e,ē)] (11)

for integers a, b, and c (up to subexponential corrections). This
is because all the conditions derived in Eqs. (6)–(10) were
obtained by comparing powers of matrix elements and DOS,
which have the exponential forms shown in Eqs. (4) and (3).

This implies that as we tune through the crossovers by
varying, e.g., �e = ω/N , their widths sharpen up as ∝ N−1,
which superficially looks like a transition with critical ex-
ponent ν = 1. However, to the best of our knowledge this
scaling does not correspond to any diverging length scale and
associated critical exponent ν, and thus these sharp crossovers
are not like continuous phase transitions in that sense.

In this and the previous sections, we have explained
our theoretical understanding of the idealized phases that
represent different regimes of Floquet thermalization and
many-body resonances that occur in isolated mesoscopic
periodically driven systems. In the next section, we cor-
roborate these ideas with numerical evidence to obtain the
phase boundaries for the different phases plotted in the phase
diagram in Fig. 2(a).

III. NUMERICAL EVIDENCE

As a model system we take N-qubit degrees of freedom
evolving under the time-periodic Hamiltonian

H (t ) = H0 + sgn[cos(ωt )]V0, (12)

where

H0 = HZ + HX , V0 = HZ − HX , (13)

HZ =
∑
i< j

Ji jZiZ j +
∑

i

hiZi, HX = g
∑

i

Xi. (14)

Equivalently, the dynamics are governed by the Floquet
unitary

UF = e−i HZ T
2 e−iHX T e−i HZ T

2 , (15)

where T = 2π
ω

is the period of the drive. We take the couplings
to be random variables and average over realizations. For each
realization, the N (N−1)

2 couplings Ji j , and the N longitudinal
fields hi, are first sampled from a standard normal distribution,

FIG. 3. Matrix elements of V0 between eigenstates of H0 at differ-
ent energy densities. V (e1, e2) is obtained by averaging the absolute
value of the matrix elements over states and samples. These data are
for samples with N = 14 qubits.

then shifted and scaled such that

〈Ji j〉 = 〈hi〉 = 0 and
1

2

〈
J2

i j

〉 = 〈
h2

i

〉 = 1

N
. (16)

The transverse field is g = 1 unless otherwise stated. At
strict infinite temperature (ρ ∝ I), this model satisfies 〈H2

Z 〉 =
〈H2

X 〉 = N .4

We choose to study this all-to-all quantum dot model
because the main effects we are examining involve long
timescales that are beyond what the Thouless time would
be in an alternative geometrically local model, so on the
relevant timescales those systems would also behave effec-
tively as a quantum dot. Thus, the lack of geometric locality
in our model is not important. We also use a square-wave
drive to make the Floquet unitary easier to construct nu-
merically. We do not expect the higher harmonics present
in the Fourier spectrum of the square wave to play a
significant role due to the exponential dependence on fre-
quency of the relevant matrix elements and rates discussed
earlier.

In Fig. 3 we show contours of V (e1, e2) for our model
system with N = 14 qubits. The evenly spaced, rather straight,
contours indicate the expected exponential suppression in ω,
and a weak dependence of f (�e, ē) on ē.

A. Floquet thermalization when e2 = −e1 = �e
2

As the most straightforward case of a crossover between
the phases discussed in Sec. II C, and shown in Fig. 2, we take
e2 = −e1 and tune �e = ω/N to see when the thermalization
across zones (Floquet heating) turns on or off. In this case
D(e1) = D(e2) and we imagine a system initialized at energy
density e1 = −�e

2 and driven at frequency ω = N�e. In order
to determine if the system will exchange energy with the
drive and equally populate states at e2 = +�e

2 in its final

4Without the hi fields we would have 〈HZ〉 = N − 1, so we include
them to reduce this potential source of finite-size effects. These terms
also break the Ising symmetry.
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FIG. 4. Crossover between Floquet thermalization and energy
localization along e2 = −e1 = �e

2 : linear response. (a) The entropy
density s and a slice of the matrix element scaling function f for
e2 = −e1 = �e

2 . s is shown in red and f in blue. System sizes N
are 9–14 (light to dark). The horizontal black lines are the N → ∞
expectations s(0) = log 2 and f (0, 0) = log 2

2 from random matrix
theory. The right edge of the plot corresponds to the realization-
averaged edge of the spectrum. (b) The quantity G1↔2 = V 2

12D1D2

for the same data as (a).

equilibrium, i.e., becomes delocalized in energy, we want to
test the condition (6). Note that the equality of the DOS at
e1, e2 means that there is no one-way thermalization phase to
discuss for this line cut through the phase diagram. We test the
condition (6) in the two following ways:

First, we include finite-size corrections to Eqs. (3) and (4)
(see Appendix B), and extract s( �e

2 ) and f (�e, 0) from data
at N ∈ [9, 14]. When these two quantities cross, that indicates
a change in the condition of Eq. (6). The result is shown
in Fig. 4(a). There we see a crossover at �e

2 � 0.4 at large
N . This corresponds to ω � 0.8N . For context, the energy
difference between the ground state and highest excited state
is, on average, ω � 2.7N so energy localization sets in at
frequencies significantly less than the many-body bandwidth.
The main finite-size effect appears to be the existence of a
flat region of width ∝ 1

N in f (�e, 0) near �e = 0. This is
simply the width O(1) window of frequencies, for which a
photon can be absorbed by O(1) degrees of freedom in O(1)
time, that exists before the widely studied exponential-in-ω
dependence is incurred, and we can also see this plateau in
the middle of Fig. 3.

Second, we consider the related, but more direct, quantity

G1↔2 = V (e1, e2)2D(e1)D(e2). (17)

This quantity corresponds to the condition (6) in that G1↔2 in-
creases (decreases) exponentially with N when the condition
is met (not met), modulo finite-size corrections to Eqs. (3) and
(4). In Fig. 4(b), we directly compute the quantity G1↔2 for
various system sizes. The finite-size crossings indeed appear
to be consistent with our earlier analysis shown in Fig. 4(a),

and some drift is expected due to the aforementioned finite-
size effects.

An independent way to corroborate the existence of this
sharp crossover between the two-way Floquet thermalizing
phase and the energy-localized phase with only isolated reso-
nances (see Fig. 2 along the line e2 = −e1 where the one-way
phase vanishes) is to examine the eigenstates of the Floquet
operator UF near θ = π/T , which corresponds to the ladder of
energy densities e ∈ [. . . ,− ω

2N ,+ ω
2N , . . . ] that we have been

considering. Note that since ω ∝ N , the number of rungs on
the ladder is finite and constant in N . In the phase where the
system freely (but slowly) exchanges energy with the drive,
the eigenstates of UF will have energy distributions that have
weight on all rungs of the energy ladder, with the weight on
each rung set by the density of states there (as in Fig. 1).
In contrast, when the system cannot Floquet thermalize, the
eigenstates will be well localized (in energy) on a single rung.
As a measure of this crossover we compute the entropy of the
sign of the energy,

Ssign = −P− log2(P−) − P+ log2(P+), (18)

for eigenstates of UF with eigenvalue near −1 (θ = π/T ),
where P± is the probability of sgn(E ) = ±1. This quantity
tends to zero in the energy-localized phase, and to one bit
for states at quasienergy θ = π/T in the two-way Floquet
thermalizing phase. In Fig. 5(a) we show the distribution of
energy density for the Floquet eigenstate closest to θ = π/T
in a single sample of UF at ω = 0.8N . The sign entropy is
shown in Fig. 5(b), where we again see a finite-size crossing
near �e

2 � 0.4 at accessible sizes, consistent with the picture
developed around Fig. 4.

Note that the widths of the peaks in Fig. 5(a) are not set by
the thermalization rate �, as in Fig. 1, because we are using
H0 rather than the optimal local Heff here (Appendix A). The
peaks can be made much narrower by including corrections
to H0 [67].

Finally, in Fig. 6 we further examine the distribution of
energy density in Floquet eigenstates at θ = π/T as we tune
�e = ω/N : In Fig. 6(a) we plot the cumulative distribution
function (CDF) of e for �e ∈ [0.36, 1.29]. This range of �e
is chosen to span the infinite-temperature regime, the regime
of the ladder ensemble, and the energy-localized regime.
Importantly, we average over 10 samples and the 10 states
closest to θ = π/T in each sample. However, for each state,
we artificially flip the sign of the energy e so that there is
more weight on e < 0 than e > 0. We do this so that we do
not generate averaged energy distributions that are symmetric
about e = 0 by averaging over states and samples, which
would hide the trace of energy localization. In Fig. 6(a),
we see that at low frequencies the distribution follows an
infinite-temperature curve; at moderate frequencies the distri-
bution is still balanced about e = 0, but is peaked at positive
and negative e and not e = 0, characteristic of the ladder
ensemble; at high frequencies the distribution becomes im-
balanced about e = 0, indicating energy localization. In the
lower panel, Fig. 6(b), we show the value of the CDF at
e = 0 in red, and the probability density function (PDF) at
e = 0 normalized by the infinite-temperature (β = 0) value
in blue. We compute the PDF as the slope of the CDF. In
that panel we see that the PDF at e = 0 begins to be reduced
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FIG. 5. Crossover between Floquet thermalization and energy
localization along e2 = −e1 = �e

2 : full Floquet dynamics. (a) An
example of the probability distribution Pe over energy density (with
respect to H0), for the eigenstate of UF closest to θ = π/T in a single
sample with N = 13 and �e = 0.8. The shaded red and blue halves
indicate the probability of the sign P±. (b) The complement of the
entropy of the sign of the energy. The result is averaged over samples
of UF and the two eigenstates on either side of θ = π/T within each
sample. System sizes N = 9–14 correspond to light to dark curves.

relative to the infinite-temperature value already at �e � 0.4
(for N = 14), whereas the CDF deviates from the balanced
value of 1

2 around �e � 0.8, in agreement with our earlier
finding that energy localization begins to set in near that
point (Figs. 4 and 5). This demonstrates that even in small
numerically accessible systems of size N = 14 the regimes of
applicability for the infinite-temperature and ladder ensembles
are distinguishable: Floquet thermalization to the ladder en-
semble extends significantly beyond the regime in which the
system thermalizes to a featureless infinite-temperature state.

B. Floquet heating the ground state

Another scenario of interest is one where the system is
initialized in the ground state of H0, and driven at a frequency
ω = N�e so as to potentially cause heating to higher energy
densities (e1 = egs and e2 = egs + �e). Here, too, there is
a sharp “heating crossover,” in the limit of large N , as a
function of �e, but it is of a slightly different nature than the
earlier case of e2 = −e1 = �e

2 . In this crossover, the ground
state will not serve as a continuum to transition to, from
higher-energy densities, because of its vanishing entropy den-
sity, so the question is whether or not states at e2 appear to
be a continuum to the ground state at e1. This question is
closely related to the very recently investigated “Emergence
of Fermi’s Golden Rule” [66], where a single state coupled

FIG. 6. Distributions of energy density in Floquet eigenstates at
θ = π/T . (a) The cumulative distribution function (CDF), averaged
over 10 samples of UF and 10 eigenstates near θ = π/T in each
sample. We flip the sign of e as needed for each state before averaging
over states so that if the states are imbalanced in energy, the average
over states is too. �e ∈ [0.36, 1.29] are evenly spaced and corre-
spond to dark-to-light curves. All data are for N = 14 qubits. (b) The
CDF (red) and normalized probability density function (PDF) (blue)
at e = 0. The CDF at e = 0 takes a value 1

2 (dashed red line) when the
distribution is balanced about e = 0. This happens when the system
Floquet thermalizes. The normalized PDF at e = 0 takes the value
1 (dashed blue line) when the system thermalizes to the featureless
infinite-temperature ensemble.

to a pseudocontinuum produced by a finite system was con-
sidered. The corresponding crossover is from the one-way
Floquet thermalizing phase directly to the energy-localized
phase with no resonances, so in Fig. 7(a) we examine the
quantity

G1→2 = V (e1, e2)2D(e2)2, (19)

which corresponds to, e.g., the right-side condition in Eq. (8).
There we see an indicated crossover, which sharpens up with
increasing N , at about �e � 0.96 for the largest system sizes
we can access. We also note that the quantity G1→2 corre-
sponds [up to an O(1) factor] to the quantity γ from Ref. [66],
which is the unitless tuning parameter of a universal scaling
function for the emergence of FGR. That emergence occurs
over an O(1) scale in log γ ∼ 2[logV (e1, e2) + log D(e2)] ∝
N , consistent with the aforementioned statement that the
width of the crossovers at ω ∝ N studied in this work are
asymptotically ∝ N−1.

Again as an independent check of the sharpening crossover
in Fig. 7(a), we also compute the probability that the ground
state of H0 will remain indefinitely within the initial Floquet
zone under the full dynamics of UF . We define the boundary of
the ground state’s Floquet zone as E = Egs + ω

2 . This is shown
in Fig. 7(b), and we see that there is a finite-size crossing in
agreement with our analysis of G1→2.
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FIG. 7. Ground-state heating crossover. (a) The quantity G1→2

(see main text) indicating the validity of Fermi’s golden rule for heat-
ing from the ground-state energy density e1 = egs to e2 = egs + �e.
Darker curves correspond to larger N . The vertical dashed line marks
the point at which e2 is at the center of the spectrum. The horizontal
axis is shared with the bottom panel. (b) The probability that the
ground state of H0 stays within its Floquet zone (e ∈ [egs, egs + �e

2 ])
indefinitely, under time evolution by UF .

C. The full phase diagram

So far, we have considered two cuts through the full (e1, e2)
plane, and examined the crossovers that occur along them
while the (extensive) frequency of the drive is tuned. These
crossovers separate different degrees of thermalization that
can occur in Floquet systems. We now expand our analysis
to the full two-dimensional (2D) phase diagram in this plane,
with all of the phases discussed in Sec. II. A notable feature of
the phase diagram is the strong dependence of phase bound-
aries on the Floquet quasienergy (set by e1, e2), an issue that
is mostly ignored in conventional studies of Floquet systems
that typically do not explore the dependence on quasienergy.

The phase diagram is shown in Fig. 2. The solid lines and
dots on that diagram are obtained using only the N ∈ {12, 14}
data, and the dashed lines are sketched extrapolations. The
boundary between the phases with two-way and one-way
Floquet thermalization marks the point at which G1↔2 goes
from increasing with N to decreasing. (For the curves in
Fig. 2, the range of N we use to determine whether a quantity
is increasing or decreasing with N contains only N = 12
and 14.) Similarly, the boundary between the one-way
Floquet thermalizing phase and the energy-localized phase
with isolated resonances marks where G1→2 goes from
increasing to decreasing with N . The union of the two-way
and one-way phases is where full or partial interzone
thermalization occurs, e.g., Floquet heating, so the blue

boundary in Fig. 2 is the most experimentally relevant. The
middle and edge of this boundary are the crossovers observed
in Figs. 4 and 7. Lastly, the boundary between having isolated
resonances and not having Floquet resonances is marked
by the quantity Gr = V (e1, e2)D(e1)D(e2) increasing and
decreasing, respectively, with N because Gr corresponds to
the condition on the right side of Eq. (10). As mentioned
earlier, the curves in Fig. 2 will drift with system size, but an
understanding of the qualitative organization of the phases is
what we are trying to achieve here.

IV. EXPERIMENTAL CONSIDERATIONS

Since one inspiration for our work is that many experi-
mental platforms for exploring isolated quantum many-body
physics are mesoscopic in size, in this section we discuss
some experimental considerations and simulate an exper-
iment that could be performed on such small near-term
platforms.

Ideally (in theory), we are studying features of systems
that occur at large N-dependent drive frequencies. Floquet
thermalization rates (when Floquet thermalization does oc-
cur) at those frequencies are exponentially suppressed in ω ∝
�(N ), where �(N ) is an increasing function of N , and this
slowness is one of the main obstacles for any experimental
realizations of the physics discussed in this work. However,
as we show in this section, for small systems it may be
possible to observe some nontrivial phenomena on exper-
imentally realistic timescales. Other obstacles for potential
experiments are that the resolution with which the energy
distribution can be probed can be limited by both the initial
states that can be prepared and the type of measurements
that are possible. Platforms with an intermediate number
(tens) of qubits, atoms, ions, etc., long coherence times (in
units of the relevant interaction time), and “site-resolved”
measurement capabilities would be the most appropriate for
experimental explorations of some of the physics presented in
this paper.

As an example, here we explore the specific goal of probing
the kind of ladderlike Floquet thermal equilibrium shown in
Figs. 1(c) and 5(a), where the average energy density corre-
sponds to infinite temperature, but the system actually relaxes
to a linear combination of positive and negative temperature
states, with almost no weight on states with zero energy
density, a situation quite different from the conventional fea-
tureless infinite-temperature ensemble. For the purpose of
demonstration, we continue to use the N-qubit model detailed
in Sec. III.

The system must be in the Floquet thermalizing phase
for this to work, so first we choose a value for �e =
ω
N such that the system will eventually exchange energy
with the drive. The initial state will be a pure state with
energy density −�e

2 , and must have energy density uncer-
tainty 
 �e. We then allow the system to evolve for long
enough times that Floquet thermalization occurs and the
system populates a ladder of distinct energy densities. In
this situation, while 〈H0〉/N converges to zero, the vari-
ance of the energy density is O(1) rather than ∝ 1

N , as
is the case in the featureless infinite-temperature ensemble.
Ideally, this can be observed via few-body energy-density
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FIG. 8. The distribution of measurements of Xtot . The data are for
one sample of the system described in the main text of Sec. IV, with
N = 20. (a) The time evolution of the (negative) mean and standard
deviation of Xtot/N . Time is measured in microscopic units, not
Floquet cycles. (b) The full distribution of outcomes when measuring
Xtot at time t = 103. The initial state is an eigenstate of Xtot with
eigenvalue indicated by the small black arrow.

correlations; some variation of the system size would be
needed in order to differentiate a small O(1) value from a
value that is vanishing with N . However, a simpler proto-
col would be of more practical value, and that is what we
discuss below.

Projectively measuring the global energy H0 is not
realistically possible, so the distribution of H0 (not to mention
some ideal Heff ) cannot be probed exactly. However, if
a substantial part of the Hamiltonian can be measured,
e.g., HX = g

∑
i Xi in our model (see Sec. III), then this

simple piece can act as a good proxy for the global energy
in some respects. For example, in our model, extensive
energy fluctuations can be detected through long-range
XX correlations in the system. Better yet, one can look
at the full distribution (“full counting statistics” [72–75])
of measurement outcomes of the total X magnetization
Xtot = ∑

i Xi, which is a realistic observable in many
platforms that can take simultaneous snapshots of all degrees
of freedom in the system. (Alternatively, one could measure
all Z operators and thus look at that component of the energy.
But we will focus on the X part of the energy since one-qubit
operators can generally be measured with higher fidelity.)

The above discussion suggests that we should set g > 1 so
that HX is a larger component of H0, so here we set g = 2,
which turns out to be sufficient for the present purposes.
We consider the unitary evolution of the initial pure state

|ψ (0)〉 = |+〉N+|−〉N−N+ , i.e., N+ qubits in the X = +1 state
and N − N+ in the X = −1 state. This initial state has energy
density e1 = −g(1 − 2N+

N ) and energy density uncertainty 1√
N

(the prefactor is 1). We drive the system at frequency ω =
2N |e1| to induce transitions to e2 = −e1 and other energies in
the “ladder.” In Fig. 8 we show data for a system with N = 20
qubits, initialized in the aforementioned state with N+ = 8,
and driven at the frequency ω = 16. Importantly, this fre-
quency is not so large that we should worry about coupling the
state space of the idealized model to other “nonmodel” states
that would exist in a real experimental system. For the above
values of N , N+, and ω, the initial state has σE

2|E | � 0.28, so we
can hope to resolve an energy-ladder-like equilibrium at long
times by measuring Xi on all of the qubits simultaneously. We
limit ourselves to the times t � 103 so as to not require times
far beyond what may be experimentally feasible on near-term
platforms. Figure 8(a) shows the time evolution of the mean
and standard deviation of Xtot , both normalized by N based on
the expectation of extensive fluctuations. Figure 8(b) shows
the full quantum distribution, at t = 103, of Xtot normalized
by the DOS of Xtot , so that the state ρ ∝ I would result in a
flat graph. The distribution clearly shows a ladder of spacing
ω
g that develops, which corresponds to an energy ladder of
spacing ω.

From the above numerical experiment, we conclude that
some aspects of the more complete description of Floquet
thermalization that we have provided in this work should be
experimentally accessible on near-term quantum simulation
platforms.

V. SUMMARY AND DISCUSSION

In this paper we present a more complete picture of Flo-
quet thermalization and its absence in many-body quantum
systems than was previously established, thus advancing our
understanding of fundamental aspects of isolated periodically
driven systems. By allowing the drive frequency ω to scale
up with N , we identify a variety of phases, separated by
crossovers that sharpen as N → ∞; these are representative
of different regimes of thermalization that can be present
in mesoscopic Floquet systems. We find a different Floquet
thermal ensemble, the ladder ensemble, which is qualitatively
distinct from the featureless infinite-temperature state that is
achieved in the conventionally studied case where ω remains
finite as N → ∞. In fact, we show that the conventional
infinite-temperature ensemble is valid only in a vanishing
fraction of the phase diagram where Floquet thermalization
does occur. Thus, we show that Floquet thermalization does
not imply that the system thermalizes to infinite tempera-
ture, even on average. Two of the phases we detail host full
or partial Floquet thermalization (delocalization in energy),
but their equilibrium distribution over energy is qualitatively
different from an infinite-temperature state. The other two
phases fail to Floquet thermalize and thus are localized in
energy, but are distinguished by the presence or absence of
rare Floquet many-body resonances in typical samples. We
present a phase diagram delineating these various regimes,
and the phase boundaries show strong dependence on Floquet
quasienergy, or the energy of an initial state, a feature that is
mostly ignored in conventional studies.

174303-11



MORNINGSTAR, HUSE, AND KHEMANI PHYSICAL REVIEW B 108, 174303 (2023)

We also explored the feasibility of experimentally ob-
serving our findings, and found that some interesting types
of Floquet thermalization elucidated in this work should be
realizable on near-term quantum simulation platforms. In par-
ticular, we simulated an experiment in which a small Floquet
system thermalizes on an accessible timescale to a superposi-
tion of thermal states at a set of evenly spaced and extensively
different energies.

One of our primary motivations for studying Floquet ther-
malization in mesoscopic systems is that many physically
relevant settings only have access to small or moderate-size
systems, and our theoretical understanding of thermaliza-
tion and equilibrium in this setting is still quite incom-
plete, as illustrated by our findings. These settings include
numerical experiments limited to small sizes, and exper-
iments on near-term quantum simulators operating in the
intermediate-scale regime [56]. For example, recent works
have studied Trotter approximations for digital quantum sim-
ulation [76–78], and identified thresholds as a function of
the Trotter step size separating regimes with controllable
and uncontrolled Trotter errors. These Trotterization protocols
are simply Floquet evolutions with frequency controlled by
the step size, and our work elucidates the theoretical ba-
sis behind these topical studies: the observed thresholds are
simply Floquet heating thresholds that occur at an exten-
sive frequency, ω ∝ N , a scaling that was not identified in
these works.

A second motivation for our work draws on the fact that
finite-size and finite-time crossovers between fully and par-
tially or nonthermalizing regimes have become increasingly
important in a number of contexts, most notably in the study
of many-body localization, but also in, e.g., integrability
breaking [55]. Here, recent work has led to the under-
standing that the numerically and experimentally observed
crossovers between thermalizing and MBL-like regimes have
distinct physics from that of the asymptotic phase transition
[69,79,80]. Indeed, an MBL-to-thermal phase transition may
not even exist in the standard thermodynamic limit in higher
dimensions or with power-law interactions, even though a
crossover is clearly observed in these settings [52–54,81].
Understanding the universal properties of such crossovers is
an important open question, and our hope is that developing a
more complete theory of the finite-size crossovers associated
with the onset of Floquet heating and rare Floquet resonances
will also prove illuminating for these other, arguably more
challenging, cases.

We note that the crossovers we have studied in this work
are examples of boundaries between different types of thermal
phases since even the energy-localized phase is described
by a chaotic Heff . In contrast, the relevant processes for
crossovers into or between many-body localized regimes have
extremely broadly distributed matrix elements that may need
to be taken in to account [69,71]. Nonetheless, both Flo-
quet thermalization crossovers studied in this work, and the
observable crossover between thermal and MBL regimes,
have some similarities. For example, these crossovers have
apparent critical exponents ν ∼= 1. In the case of Floquet
thermalization (setting some factors to 1 for brevity) this is
a result of the interzone relaxation time �−1 ∼ eω = e(ω/N )N

passing through the relevant Heisenberg time τH ∼ esN as a

function of the control parameter ω/N , as discussed above.
In the case of the numerically observable MBL crossover,
the apparent ν ∼= 1 in finite-size systems is similarly a result
of a thermalization time that behaves as ∼ ek(W )N near the
crossover [69,79,80,82–85] passing through the Heisenberg
time as a function of the control parameter W . It may be
that understanding the simpler cases of thermal-to-thermal
crossovers, as we have done in this work, will provide
some insights that are helpful for addressing the more chal-
lenging situations where the crossover involves nonthermal
states.

In future studies it would be interesting to realize some
of the phenomenology explored in this work experimentally,
as we have shown that it should be within reach of some
current experimental platforms for quantum simulation. It
would also be interesting to consider Floquet systems where
H0, the time-averaged Hamiltonian, is not fully chaotic, as an
intermediate problem where the energy-localized phase may
thermalize only asymptotically slowly, or not at all. Another
interesting direction is to consider an H0 with quantum scars
to explore the thermalization of the scar state across Floquet
zones as a function of the drive frequency and energy of
the scar state. Further studies of the dynamics throughout
the phase diagram that we have mapped out here would
also be interesting, as our work is primarily concerned with
the final equilibrium that is achieved. Finally, many of our
findings should have analogs in static settings where, for ex-
ample, a system is governed by a Hamiltonian Ĥ = K̂ + �M̂,
where M̂ has an integer spectrum, � is a large parame-
ter, and K̂ couples states within and across eigenspaces of
M̂ [41]. Examples of such settings include systems with a
weakly broken U(1) symmetry corresponding to conservation
of total charge, or scarred Hamiltonians derived from parent
Hamiltonians with a spectrum generating algebra [86–88],
or systems with approximate Hilbert space fragmentation
due to weakly broken conservation of charge and dipole
moment [89,90].
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APPENDIX A: THE EFFECTIVE HAMILTONIAN Heff

In Sec. II we use the concept of an effective Hamiltonian
Heff . This is a concept that is helpful in discussions of Floquet
prethermalization and thermalization, but in later sections we
use H0 as a sufficient definition of energy. Here we want to
clarify the difference between Heff and an approximation to it,
like H0.

A good Heff is one that captures the processes that do
not result in resonant transitions across Floquet zones, e.g.,
interzone transitions that are mediated by virtual transitions
to other Floquet zones. A nearly optimal Heff therefore ap-
proximates the dynamics of the system on timescales shorter
than �−1, the long timescale on which quanta of energy ∼ω

are resonantly exchanged with the drive. For nearly optimal
Heff and large enough ω, Heff modω will be approximately
conserved for all times, up to a precision � (Fig. 1). For
our considerations, we can think of Heff as being “obtained”
perturbatively until the series stops improving the approxi-
mation e−iHeff T ≈ UF , although we do not actually need to
have a strict definition of Heff or a method for constructing
it. The perturbative series is in the small parameter (J/ω),
where J is a microscopic energy scale and it goes up to order
n ∼ O(ω/J ). When ω/J ∼ N , there are terms with support on
O(N ) qubits, but those terms are suppressed by coefficients
that are ∼ [1/O(N )]O(N ). Due to this extreme suppression, as
we scale ω up faster with N , the effective Hamiltonian gets
more local, not less local, in the sense that all terms but H0

go to zero in the limit of large N due to their coefficients
vanishing.

Thus, for our purposes, using H0 as a notion of energy
in the system is sufficient due to the large overlap between
H0 and Heff . H0 is approximately conserved on timescales
shorter than �−1, too, but the precision of that approximate
conservation law is not good enough for H0 to describe the
full dynamics of the system on long timescales because it does
not capture the perturbative processes mediated by virtual
transitions to other Floquet zones. Importantly, this means that
the widths of the peaks of the distribution of H0 in eigenstates
of UF will not be ∼ �, but will be substantially broader due
to intrazone dynamics that are captured by Heff but not by H0.
More specifically, due to the correction Heff − H0 = 1

ω
H1 +

· · · , we expect an additional broadening of the energy peaks
(in energy H0) of ∼

√
N

ω
.

APPENDIX B: ESTIMATING s(e) AND f (�e, ē)
FROM FINITE-SIZE DATA

Near E = 0, where most of the spectral weight is, the
density of states is Gaussian with variance σ 2 = 2N (from
Sec. III). Thus, we expect D(0) = (4πN )−

1
2 eN log 2 and so we

extract s from small-N numerical data via

s

(
�e

2

)
= 1

N
log

[√
4πND

(
�e

2

)]
. (B1)

For the matrix elements, we assume the form
V (−�e

2 , �e
2 ) = Ae−N f (�e,0) and take the N and �e depen-

dence of A [1] to be subleading within the small window of N

we have data for. Thus, we extract f from numerical data via

f (�e, 0) = − 1

N
log

[
1

A
V

(
−�e

2
,
�e

2

)]
, (B2)

and fit A in order to collapse the data beyond �e ∼ 1
N

[ω ∼ O(1)].

APPENDIX C: THE TWO-ZONE APPROXIMATION

The Floquet thermalization and resonances phase diagram
of Fig. 2 was generated using the two-zone approximation. In
this approximation we are ignoring the Floquet zones outside
of the two being considered (at energy densities e1 and e2).
Minor quantitative modifications to the phase diagram can
occur due to considering the other zones. The concern is that,
when considering the point (e1, e2), if there is another e3 in
the energy ladder that has a larger density of states than e1

and e2, it may be relevant. More specifically, if (e1, e2) is in
the one-way Floquet thermalization phase, and e3 has a larger
density of states and (e2, e3) are in the two-way phase, then
we should update the DOS of e2 to include the states at e3,
and that may cause (e1, e2) to become part of the two-way
phase.

We will first state which areas of the phase diagram are
completely safe from the influence of extra zones, i.e., the rest
of the energy ladder. Since the phase diagram is symmetric,
we consider the tile that has positive �e and negative ē (see
Fig. 2), so D(e1) < D(e2). Now as long as e2 ∈ [−�e

2 , �e
2 ],

then it is the rung in the ladder with the highest density of
states. This means that the phase diagram (in the tile consid-
ered) could only be modified by third-zone effects below the
line e2 = e1

3 .
But this region can be constrained even further because

the danger comes from other pairs of rungs in the ladder that
are in the two-way phase. Thus, a line of constant �e that is
tangent to the top of the two-way phase also bounds the region
of concern.

From these considerations, we can deduce that the two-way
phase may bulge out into the one-way phase a little more than
is shown in Fig. 2 in the lower left and upper right corners
of that phase diagram, but that is all that can be modified by
going beyond the two-zone approximation.

APPENDIX D: FINITE-TIME FLOQUET
THERMALIZATION CROSSOVER

IN INFINITE SYSTEMS

For completeness, in this Appendix we note a few aspects
of the Floquet thermalization crossover that occur in systems
of effectively infinite size when tuning the drive frequency ω

and observing at fixed time t . Large enough systems do even-
tually thermalize to infinite temperature (see Sec. II), and the
energy density changes at a rate � ∼ e−ω/ω0 . As we increase
ω, most of the heating that occurs in the system will go from
happening before time t to after time t . Thus, a crossover in
the energy density e at time t will occur, and here we show
that this crossover sharpens in a sense as the observation time
t is increased.

Consider a system initialized with e = O(−1) energy den-
sity and driven to heat up to e = 0 eventually. We have
a fixed observation time t and our tuning parameter is ω.
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The change in the energy density by the observation time is
δe(ω) ∼ te−ω/ω0 as long as the heating is far from complete.
This hits a set threshold value when ω ∼ ω0 log t . The width
of the crossover through that threshold value is

∣∣∣∣∣
dδe

dω

∣∣∣∣
ω=ω0 log t

∣∣∣∣∣
−1

∼ ω0. (D1)

Therefore, the width of the Floquet thermalization crossover
is down by a factor of log t from the location of the

crossover, and this means that the crossover sharpens up
logarithmically as a function of increasing observation
time t .

If we exit the regime where N is effectively infinite
and allow the observation time to approach the inverse
many-body level spacing of the system, then log t ∝ N
so the crossover sharpens linearly in N . This is con-
sistent with statements in the main text that the width
of the crossovers (in ω/N) shown on the phase diagram
scale as N−1.
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