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Origin of minimal conductivity in Dirac materials: Momentum-dependent self-energy
function from long-ranged disorder scattering
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We present a unified understanding of the experimentally observed minimal dc conductivity in Dirac materials.
First, based on the linear response theory, we reveal that the momentum-dependent self-energy function induces
a tunable minimal conductivity in Dirac electrons, the magnitude of which is directly related to the coefficient
of the momentum-dependent part in the self-energy function. Taking the long-ranged Gaussian and Coulomb
potentials as examples, the momentum-dependent self-energy function is perturbatively derived using the Born
approximation and supplemented by the self-consistent Born approximation and renormalization group analysis.
Moreover, we further validate our theory via numerical simulations using the large-scale Lanczos algorithm.
The explicit momentum dependence of the self-energy on the intensity, concentration, and range of potential are
critically addressed. Therefore, our theory provides a reasonable interpretation of the sample-dependent minimal
conductivity observed in experiments.
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I. INTRODUCTION

In the past decades, a large class of materials that possess
linear energy dispersion described by the effective Dirac-like
electrons has been discovered, of which monolayer graphene
is a representative example. The earliest experimental mea-
surements on graphene reported a finite dc conductivity
σmin ≈ 4e2

h at the Dirac point at low temperature [1,2], dubbed
the minimal conductivity. The observed value is larger than
the earlier prediction of σmin = 4e2

πh [3–6], giving rise to the
famous “missing π” problem [7]. To address this problem,
subsequent experiments have been carried out [8–17], which
show that the minimal conductivity is strongly sample depen-
dent, i.e., σmin = C 4e2

πh , with the factor C varying from 1.7 to
10, indicating the crucial role of randomness or disorder in
these Dirac materials.

The transport properties of two-dimensional disordered
Dirac fermions have been intensively studied for the d-wave
superconductivity in the cuprate superconductors [5,6] and the
plateau transition in the integer quantum Hall effect [3]. The
discovery of graphene rejuvenated this problem. The previous
theoretical results for σmin can be mainly summarized as (i) a
scattering-independent value σmin = 4e2

πh [3–6,18–22], which
is independent of the strength and nature of the disorder; (ii) a
universal value σmin ≈ 4e2

h , which is due to the quantum crit-
icality of graphene in the vicinity of the Dirac point [23–25];
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(iii) a universal value σmin = πe2

2h [26,27], from the ac Kubo
formula, derived by removing the smearing of the single-
particle Green’s functions before taking the dc limit; (iv) a
disorder-dependent σmin [28–34]. In particular, although some
previous studies have yielded a disordered-dependent minimal
conductivity, most of these are based on semiclassical Boltz-
mann transport theory [28–31], ignoring the disorder induced
quantum corrections near the Dirac point. Since Boltzmann
theory is not applicable around the Dirac point [7], a fully
quantum mechanical treatment is highly desirable in order to
address the minimal conductivity.

In parallel, numerical calculations have also addressed this
problem using various approaches [32,35–38]. Noro et al.
find that the minimal conductivity at the Dirac point remains
universal in the clean limit, but increases with disorder and
becomes nonuniversal for long-range scatterers, by numeri-
cally solving the self-energy and current vertex function [35].
Nomura and MacDonald numerically calculated σmin using
the Kubo formula and found that σmin is a few times larger
for long-ranged Coulomb scatterers than for short-range scat-
terers [36]. Similar results were also obtained by numerically
calculating the transmission matrix [37]. In addition, Lima
and Lewenkopf numerically studied the effect of charge pud-
dles, which are generated by a long-range local potential, on
the conductivity minimum of graphene, and also concluded
that the transmission is enhanced at the charge neutrality point
[38]; however, a full analytical understanding beyond the nu-
merical calculation is still lacking. These numerical results,
which are beyond the aforementioned theoretical descriptions,
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TABLE I. Dimensionless parameter α for different types of dis-
order potentials. Ri and Nimp are the location and total number of
impurities, ξ is the characteristic length scale of Gaussian potential,
the strength ±u0 is randomly distributed with equal probability, κ is
the static dielectric constant, Ac is the area of the primitive cell, qs is
the Thomas-Fermi screening constant, kc is the ultraviolet momen-
tum cutoff, and ni is the concentration of the impurities.

Length
Potential scale α

Gaussian [Eq. (3)] ξ � a
niu

2
0

2(h̄v f )2
Ack2

c ξ2

8π
[Eqs. (7) and (25)]

ξ � a
niu

2
0

2(h̄v f )2
πξ4

Ac
[Eqs. (7) and (25)]

Coulomb [Eq. (8)] 1/qs � a ( e2

κ
)2 2πnik

2
c

(h̄v f )2q4
s
[Eqs. (9) and (30)]

1/qs � a ( e2

κ
)2 2πni

(h̄v f )2q2
s
[Eqs. (9) and (30)]

urgently call for a reasonable analytical interpretation of the
minimal conductivity.

In this paper, we offer a general picture for understanding
the sample-dependent minimal conductivity in Dirac
materials by studying the effect of long-ranged random
potentials. The long-ranged randomness could be realized
by screened charges in the substrate [37–40], local strain
fluctuations [16,17], and other defects that vary smoothly
on the atomic scale [9,30]. In the presence of long-ranged
random potentials, we elucidate that the self-energy is
momentum dependent, which is overlooked in most of the
existing literature. Moreover, in some works that considered
the momentum dependence of the self-energy, its effect is
also eliminated due to the simultaneously applied on-shell
approximation [28–31]. Crucially, the electric minimal
conductivity, evaluated via the standard Kubo formula under
disorder configuration average by taking into account the
corrected self-energy, obeys the relationship σmin = 1

(1−α)2
4e2

πh
[Eq. (19)], where the leading momentum-dependent correc-
tion is parametrized by a dimensionless parameter α, the
expressions of which for different types of disorder potentials
are shown in Table I. This finding, in sharp contrast to the
disorder-independent values in previous studies [3–6,18–27],
provides a simple and physically appealing explanation for
the observed minimum conductivity in experiments.

The paper is organized as follows. In Sec. II, we present the
basis of our investigated model, including the Hamiltonian,
velocity, Green’s function, and disorder potentials we consid-
ered. Our main result is shown in Sec. III where the minimal
conductivity is calculated by the Kubo formula with an as-
sumed momentum-dependent self-energy function. Then, the
self-energy functions in the long-ranged disorder potentials
are derived and analyzed based on the Born approximation
in Sec. IV A, SCBA in Sec. IV B, renormalization group in
Sec. IV C, and numerical simulation in Sec. IV D. Finally,
the conclusion and discussion are summarized in Sec. V.
Various details of the analytical derivation are presented in
the Appendixes.

II. MODEL

The charge carriers of graphene near half filling can be
modeled by a Dirac Hamiltonian

H = h̄v f σ · k + U (r), (1)

where v f ≈ 106 m s−1 is the Fermi velocity, σ = (σx, σy) are
the Pauli matrices of pseudospin (sublattice), k = (kx, ky) is
a two-component wave vector, and U (r) describes the long-
ranged random potential that is experienced by the Dirac
electrons. For simplicity, we model U (r) by several typical
forms (see Table I). We ensure that the results shown below
are not sensitive to the form of the potentials. In the disorder-
free case, the eigenvalue and eigenfunction of the Hamiltonian
Eq. (1) are

Eks = sh̄v f k, �ks(r) = eik·r
√

2V

(
1

s eiθk

)
, (2)

where s = ± denotes the band index, V is the sample area, and
θk = arctan(ky/kx ). Based on the eigenfunction, the matrix Uk

which implements the rotation from pseudospin to eigenstates
basis has the form

Uk = 1√
2

(
1 1

eiθk −eiθk

)
. (3)

Therefore, the velocity operator along the x direction in the
eigenstates basis is

vx(k) = U †
k

∂H

∂ h̄kx
Uk = v f (cos θkσz + sin θkσy). (4)

In this work, we consider two typical long-ranged dis-
orders: long-ranged Gaussian and Coulomb potential. The
long-ranged Gaussian potential in graphene lattice is ex-
pressed as

U (r) =
Nimp∑
i=1

±u0e
− |r−Ri |2

ξ2 , (5)

where ξ is the characteristic length scale, Nimp is the number of
impurity, and impurities of ±u0 are randomly distributed with
equal probability. The correlation function of the long-ranged
Gaussian potential in the momentum space is

KG(q) = 〈U (q)U (−q)〉 = K0(h̄v f )2e− ξ2q2

2 , (6)

where K0 is a dimensionless parameter parametrizing the
magnitude of the potential, which has different expressions
for sharp (ξ � a) and smooth (ξ � a) potentials [37,39]

K0 = niu2
0

(h̄v f )2

{Ac
2 , ξ � a,

2π2

Ac
ξ 4, ξ � a,

(7)

where a = 1.42 Å is the carbon-carbon distance of graphene,
Ac = 3

2 a2 is the area of the primitive cell, and ni = Nimp/N is
the impurity concentration.

Another disorder we considered, long-range screened
Coulomb potential, has the form in real space as

V (r) = ± e2

κr
e−qsr, (8)

where κ is the static dielectric constant, scatters of ± are
randomly distributed with equal probability, and qs is the
Thomas-Fermi screening constant. The correlation function of
long-range screened Coulomb potential in momentum space
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is

KC (q) = 〈V (q)V (−q)〉 = niV 2
0

q2
s + q2

, with V0 = 2πe2

κ
, (9)

where ni are the concentration of impurities.
The Green’s function of the disordered system in the eigen-

state basis is given by

GR/A(k, E ) =
(

gR/A
+ (k, E ) 0

0 gR/A
− (k, E )

)
, (10)

with

gR/A
s (k, E ) = 1

E − Ek,s − 
(k, E )
, (11)

where 
(k, E ) is the self-energy induced by disorder poten-
tial.

III. MINIMAL CONDUCTIVITY WITH
MOMENTUM-DEPENDENT SELF-ENERGY

In general, the electron self-energy induced by the im-
purity scattering is both momentum and energy dependent.
For the short-ranged disorder potential, the momentum de-
pendence of the self-energy is negligible since the potential
can be Fourier transformed into the sum of equal-weighted
plane waves in the momentum space. The long-range dis-
order potential, the Fourier transformation of which is the
sum of momentum-dependent weighted plane waves, natu-
rally causes momentum-dependent scattering. However, the
momentum dependence in the long-ranged disorder-induced
self-energy function has also been neglected in most of the
previous works. One commonly used treatment is the on-
shell approximation (E = Eks) [28–31], i.e., the momentum
and energy dependence of the self-energy is coupled by the
dispersion relation in the clean limit. Moreover, the Feynman
diagram of the self-energy function is simplified by assuming
independence on the external momenta [19,41]. One of the
motivations for this paper is to elucidate that this on-shell
approximation is not well justified around the Dirac point,
leading to a decoupled momentum-dependent self-energy
function. The main result of this work is that we reveal the in-
fluence of such a momentum-dependent self-energy function
on the minimal conductivity.

Before performing the analytical derivation and numerical
calculation of the self-energy function for specific types of
disorder, we assume that the self-energy function contains a
nonzero momentum-dependent contribution,


(ks, E ) ≈ 
1(E ) − αsh̄v f k + i
2(E ), (12)

where 
1(E ) and 
2(E ) describe the real and imaginary
parts of the energy-dependent terms. Since the long-ranged
random scalar disorder we considered here does not on aver-
age break the particle-hole symmetry [42–44], the self-energy
in the eigenstate basis satisfies the relations Re
(k+, E ) =
−Re
(k−,−E ) and Im
(k+, E ) = Im
(k−,−E ), which
preserves the dispersion relation and broadens the width
of the conduction and valence bands symmetrically about
the Dirac point [45]. Then, we study the influence of this
momentum-dependent self-energy function Eq. (12) on the
minimal conductivity.

FIG. 1. (a) Self-energy diagram (bubble diagram) of dc conduc-
tivity. (b) Feynman diagram expansion of the self-energy modified
Green’s function. For the Born approximation, only the first-order di-
agram is considered. For the SCBA, a series of noncrossing diagrams
are considered. The contribution of other diagrams including the
crossed diagrams are evaluated in the numerical simulation. (c) The
vertex corrected diagram of dc conductivity. (d) The “dressed”
vertex.

Based on linear response theory, we can calculate the lon-
gitudinal conductivity at zero temperature using the Kubo
formula [46]

σxx(E ) = σ RA
xx (E ) − Re

[
σ RR

xx (E )
]
, (13)

with

σ RA
xx (E ) = 4

e2h̄

2πV Tr[GR(E )vxGA(E )vx]c, (14)

σ RR
xx (E ) = 4

e2h̄

2πV Tr[GR(E )vxGR(E )vx]c, (15)

where the factor 4 denotes the degeneracy of the real spin
and valley, Tr means the trace over both wave vector and
pseudospin (sublattice) spaces, and the subscript c indicates
a disorder configuration average. Here the RA contribution
is analogous to the transport of classical particles within the
relaxation time approximation and gives results close to con-
ventional Boltzmann theory, while the RR contribution comes
from calculations with a fully quantum mechanism and can be
ignored in the limit Eτ � 1 (but not when Eτ � 1).

Using the assumed momentum-dependent self-energy
function Eq. (12), we can write the Green’s function for quasi-
particle as

gR/A
s (k, E ) = 1

a − (1 − α)sh̄v f k ± iη
, (16)

where

a = E − 
1(E ),

η = −
2(E ). (17)

Plugging the velocity Eq. (4), Green’s function Eq. (10),
and Eq. (16) into the Kubo formula Eq. (13), the leading order
of the conductivity contributed from the bubble diagram, as
shown in Fig. 1(a), is given by (details in Appendix A)

σxx(E ) = 2e2

πh

1

(1 − α)2

(
1 + a

η
arctan

a

η

)

+ 2e2

πh

1

(1 − α)2

η

a
arctan

a

η
, (18)
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where the first and second terms denote the electron-hole
incoherent (related to the terms gR

+gA
+, gR

+gR
+, gR

−gA
−, and gR

−gR
−)

and coherent (related to the terms gR
+gA

−, gR
−gA

+, and gR
−gR

+)
contributions, respectively. Therefore, the corresponding min-
imal conductivity at the Dirac point (E = 0) is

σmin = 1

(1 − α)2

4e2

πh
. (19)

Here we would like to give some remarks. First, Eq. (19)
is similar to some other previous calculations based on
the Kubo formula [18,19], including electron-hole coherent
and incoherent contributions in RA and RR terms, which
is beyond traditional Boltzmann transport theory where the
electron-hole incoherent and retarded-retarded (RR) channel
contribution are usually discarded or not completely consid-
ered. Second, the Ward’s identity is not satisfied in the above
calculation, since we have calculated the self-energy correc-
tion in the single-particle Green’s function, but did not include
the corresponding correction in the vertex. Thus we also
estimate the vertex correction of the Kubo formula, which cor-
responds to the ladder Feynman diagrams shown in Figs. 1(c)
and 1(d), using the long-ranged Gaussian potential (details in
Appendix B). The vertex corrected minimal conductivity is

σ v
min = 4e2

πh

1

(1 − α)2

1

1 − [ K0
4π (1−α)2

]2 . (20)

Since typical experiment conditions of high mobility graphene
correspond to K0 � 1, the influence of vertex correction to
the minimal conductivity is much smaller than those induced
by the linear momentum dependent self-energy in the bubble
diagram. This is consistent with previous works showing that
the vertex correction is negligible for calculations of the mini-
mal conductivity [4,6]. In addition to the bubble and ladder
Feynman diagrams, the Cooperon diagram associated with
the weak and antiweak localization also contributes to the
minimal conductivity [33,34] but, in this work, we provide
an explanation for sample-dependent minimal conductivity
from the diffusive mode, so we do not consider it. Third,
σmin is significantly influenced by the momentum-dependent
term (αh̄v f k) of the self-energy, but independent of the
energy-dependent part [
1(E ) and 
2(E )], which explains
why the majority of previous theoretical studies predicted
σmin = 4e2

πh , independent of the strength and nature of the
disorder [3–6,18–22]. Fourth, for long range disorder, the
momentum contribution to the self-energy function has been
reported; however, the role of it on the transport was unfortu-
nately washed out in the widely used on-shell approximation
[28–31]. Therefore, we claim that the application of the on-
shell approximation around the Dirac point is questionable.
Finally, with all of these nontrivial improvements, we point
out that Eq. (19) shows that the minimal conductivity is en-
hanced by disorder. One interpretation is that the presence

of potential fluctuations smooth on the scale of the graphene
lattice spacing increases the conductivity through quantum
interference effects [31,32,35–37].

IV. SELF-ENERGY FUNCTION

In the previous section, we have shown that the minimal
conductivity is deeply related to the momentum-dependent
term in the self-energy function. In the following, we calculate
the self-energy function analytically and numerically in the
cases of the long-ranged Gaussian and Coulomb potential,
from which the explicit momentum dependence of the self-
energy on the intensity, concentration, and range of potential
are critically addressed.

A. Born approximation

1. Long-ranged Gaussian potential

At first, we consider the long-ranged Gaussian potential
based on the Born approximation; the corresponding self-
energy is given by


B(ks, E ) = 1

V
∑
k′,s′

KG(k − k′)gR
0 (k′s′, E )

1 + ss′ cos θ

2
,

(21)

where gR
0 (k′s′, E ) = (E − s′h̄v f k′ + i0+)−1 is the Green’s

function of the clean system and θ = θk − θk′ is the angle
between the wave vectors k and k′. We separate the calculation
of the self-energy function into real and imaginary parts, by
using Sokhotsky’s formula, 1

x+i0+ = P 1
x − iπδ(x), where P

denotes the Cauchy principal value.
The imaginary part of the self-energy can be solved as

(details in Appendix C)

Im
B(ks, E ) = −K0

4
|E |e− ξ2

2 (k2+ E2

h̄2v2
f

)

×
[

I0

(
ξ 2kE

h̄v f

)
+ sI1

(
ξ 2kE

h̄v f

)]
, (22)

where I0(x) and I1(x) are the zero and first order modified
Bessel functions of the first kind [47,48]. Therefore, the real
part of the self-energy is obtained as

Re
B(ks, E ) = K0

4π
P
∫ Ec

−Ec

dE ′|E ′|e− ξ2

2 (k2+ E ′2
h̄2v2

f
)

×
I0
(

ξ 2kE ′
h̄v f

)+ sI1
(

ξ 2kE ′
h̄v f

)
E − E ′ , (23)

where Ec is the ultraviolet energy cutoff. Focusing on the
Dirac physics ( |E |

h̄v f
, k � 1

ξ
), we expand the self-energy in

powers of k and E ,

Im
B(ks, E ) = −K0

4
|E | + · · · ,

Re
B(ks, E ) =
⎧⎨
⎩

K0
2π

E ln
∣∣ E

h̄v f kc

∣∣+ αE − sαh̄v f k + · · · , ξ � a,

K0
4π

E
(
γ + ln

∣∣ Eξ

h̄v f

∣∣− ln 2
)− sαh̄v f k + · · · , ξ � a,

(24)
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where γ ≈ 0.5772 is the Euler-Mascheroni constant and · · ·
stands for terms in the order of O(kE2, k2E , E3) in the imag-
inary part and O(kE2 ln E , k2E ln E , E3 ln E ) in the real part
and the dimensionless coefficient is

α =
{

K0k2
c ξ 2

8π
, ξ � a,

K0
4π

, ξ � a,
(25)

where K0 is given by Eq. (7). This is quite consistent with the
assumption Eq. (12) we set up in the previous section.

Here we stress that, in the literature, the Born ap-
proximation is widely applied together with the on-shell
approximation, so that the momentum dependence of the
self-energy is ignored [28,31]. Our findings show that in the
low energy regime the on-shell approximation is not well
justified, i.e., the momentum and energy dependence in the
self-energy are decoupled as shown in Eqs. (24). We also show
the derivation of the self-energy function in the high energy
regime ( |E |

h̄v f
, k � 1

ξ
) in Appendix C, which arrives at

Im
B(ks, E ) ≈ −K0(h̄v f )2

4ξ 2
δ(E − Eks), (26)

Re
B(ks, E ) ≈ K0(h̄v f )2

4π

E − Eks

ξ 2(E − Eks)2 + (h̄v f )2
. (27)

It is obvious that the results in the condition |E |
h̄v f

, k � 1
ξ

can
recover the on-shell approximation (E = Eks). This result is
further confirmed in the numerical simulation in Sec. IV D.
Moreover, we find that the momentum-dependent terms are
less important in the imaginary part of self-energy than those
in the real part, since in the former they are at least two orders
higher than the leading term.

2. Long-range screened Coulomb potential

Similar to the case of the long-ranged Gaussian potential,
the self-energy function in the presence of the long-range
screened Coulomb potential can be given by Eq. (21) with
the correlation function KG(k − k′) replaced by KC (k − k′),
so that


B(ks, E ) = 1

V
∑
k′,s′

niV 2
0

q2
s + k2 + k′2 − 2kk′ cos θ

× gR
0 (k′s′, E )

1 + ss′ cos θ

2
. (28)

Finally, we get the self-energy function in the presence of
the long-range Coulomb potential based on the Born approxi-
mation with the low energy limit k, E

h̄v f
� qs, as

Im
(ks, E ) = − niV 2
0

4(h̄v f )2q2
s

|E | + · · · ,

Re
(ks, E )

=

⎧⎪⎨
⎪⎩

niV 2
0

2π (h̄v f )2q2
s
E ln

∣∣∣ E
h̄v f kc

∣∣∣− sαh̄v f k + · · · , qs � 1
a ,

niV 2
0

2π (h̄v f )2q2
s
E ln

∣∣∣ E
h̄v f qs

∣∣∣− sαh̄v f k + · · · , qs � 1
a ,

(29)

with

α =

⎧⎪⎨
⎪⎩

niV 2
0 k2

c

2π (h̄v f )2q4
s
, qs � 1

a ,

niV 2
0

2π (h̄v f )2q2
s
, qs � 1

a .

(30)

Here · · · stands for terms in the order of
O(kE2 ln E , k2E ln E , E3 ln E ) in the imaginary part and
O(kE2 ln E , k2E ln E , E3 ln E ) in the real part.

It can be seen from the above results that the self-energy
function of the long-range screened Coulomb potential has
a similar expression as that of the long-ranged Gaussian po-
tential, although the coefficient of the momentum-dependent
term α is determined by the different parameters describing
these two potentials. Physically, it can be understood from
the following picture: around the Dirac point, the form of the
random potential is not important, because the wavelength
of the electron is longer than the spatial range of random
potentials. So the different forms of random potentials give
similar results, as we show in Eq. (24) and Eq. (29).

B. Self-consistent Born approximation (SCBA)

Furthermore, it should be noted that the Born approxi-
mation is essentially valid under weak disorder conditions
(K0 � 1) since it corresponds to the first order of the self-
energy perturbation expansion. In this respect, one may
wonder how the higher order expansions influence this
calculation. We address it by taking the long-ranged Gaus-
sian potential as an example and have also confirmed a
momentum-dependent self-energy function by considering
the self-consistent Born approximation (SCBA). Inspired by
the Born approximation, we assume the self-energy function
at the limit k, E

h̄v f
� 1

ξ
can be expressed in the form of


(ks, E ) = 
̃(E ) − sαh̄v f k, (31)

where 
̃(E ) = 
1(E ) + i
2(E ) is the part that depends only
on energy. Then, the self-energy is assumed to be the solution
of the self-consistent equation,


̃(E ) − sαh̄v f k = 1

V
∑
k′,s′

KG(k − k′)

× 1

E − s′(1 − α)h̄v f k′ − 
̃

1 + ss′ cos θ

2
.

(32)

From the derivation presented in Appendix E, we find that
the dimensionless parameter α, which controls the momentum
linear dependent term in the self-energy, is given by

α =

⎧⎪⎨
⎪⎩

1
2 −

√
1
4 − K0

ξ 2k2
c

8π
, ξ � a,

1
2 −

√
1
4 − K0

4π
, ξ � a.

(33)

It is noticed that this result can recover to that obtained by
the Born approximation, i.e., Eq. (24), at the weak disorder
limit. Furthermore, the above result has an upper limit 1

2 . This
implies that the coefficient α does not always increase with
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FIG. 2. One-loop RG diagrams responsible for the renormaliza-
tion of (a) the energy and velocity and (b), (c), (d) the disorder
coupling. Red lines denote external legs.

the increase of the disorder length scale and strength as given
in the Born result. The fact that α has an upper limit is shown
in the numerical simulations in Sec. IV D and shown in Fig. 5.
In conclusion, we prove that the self-energy function is mo-
mentum dependent via the SCBA. More Feynman diagrams
beyond the SCBA are hard to calculate, which will be further
validated by the renormalization group analysis and numerical
simulations.

C. One-loop renormalization group analysis

To further elucidate the above calculations, we perform
a Wilson renormalization group analysis in the case of the
long-ranged Gaussian potential. The purpose is twofold.
First, the renormalization group analysis could help to clar-
ify some effect beyond SCBA to the momentum-dependent
self-energy function. Second, physically, the obtained flow
equations clearly demonstrate the renormalized velocity to-
gether with the disorder coupling constant, which provides a
different angle to understand our main conclusion.

At first, we expand the generating functional with cutoff
prescription by setting the momentum ultraviolet cutoff � and
disorder averaging:

〈Z〉 =
∫

D[�̄,�]� exp

[
i
∫

dt d2x �̄x,t (i∂t + iv f ∇ · σ)�x,τ

]

×
〈
exp

[
−i
∫

dt d2xV (x)�̄x,t�x,t

]〉
. (34)

According to Wilson’s approach, we divide the field operator
�(k)[�̄(k)] into two groups: �<(k)[�̄<(k)] for [0,�/b] and
�>(k)[�̄>(k)] [�/b,�], where b > 1. Then, we can get the
correction of the energy, momentum, and disorder coupling
by integrating over �>(k)[�̄>(k)], whose one-loop Feynman
diagrams are shown in Fig. 2. More derivations in detail are
shown in Appendix F. Finally, after rescaling momentum and
fields to keep the free propagator unchanged, the one-loop
renormalization group equations of the running velocity ṽ f

0 1 2 3 4

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4
0

2

4

6

v
f
/v
f

Λ/ξ-1

K0=0.5

K0=1.0

K0=1.5

K0=2.0

K
0
/K
0

Λ/ξ-1

FIG. 3. One-loop RG flow of velocity ṽ f and disorder coupling K̃0.

and disorder coupling K̃0 are given by

d ṽ f

d ln �
= K̃0ξ

2�2

4π
e− ξ2�2

2 ṽ f ,

dK̃0

d ln �
= − K̃2

0

π
e− �2ξ2

2 , (35)

where the renormalization parameter is replaced by d� =
�/b − � → b = 1 − d ln �.

In Fig. 3, we show the one-loop RG flow of velocity ṽ(�)
and disorder coupling K̃0(�) by numerically solving Eq. (35)
with starting points ṽ f = v f and ṽ f = K0. As the momen-
tum scale shrinks, equivalently, the real-space scale expands
and the renormalized velocity decreases, which implies the
parameter α characterizing the momentum-dependent part of
the self-energy function is enhanced since the momentum-
dependent part of the self-energy function in Eq. (12)
effectively reduces velocity in energy dispersion. Moreover,
the decrease of velocity positively related to K0. Furthermore,
for K0 > 1, the numerical results of the renormalized disor-
der coupling constant K̃0 are extremely divergent, which also
leads to a discontinuous behavior of the renormalized velocity.
This implies the one-loop approximation may not be sufficient
for a strong disorder potential.

Below we would like to provide some remarks. First, by
setting ξ → 0, the flow equations (35) go back to the existing
results (e.g., Ref. [19]). That is, the renormalization of veloc-
ity is zero for short-ranged disorder potential. This is the main
reason why the previous work overlooked the renormalization
of velocity. Second, as we show here under the low energy
condition (kξ, Eξ < 1), a long-ranged fluctuation ξ �= 0 leads
to renormalization of the velocity. Importantly, the effective
velocity is reduced under the renormalization group flow.
Third, the renormalization group calculation is consistent
with the calculation of the self-energy function, because the
momentum-dependent part of the self-energy function, i.e.,
αh̄v f k in Eq. (12) and Eq. (24), effectively reduces velocity
in the energy dispersion of electron. Taken all together, the in-
dependent renormalization group calculation further supports
our conclusion.

174205-6



ORIGIN OF MINIMAL CONDUCTIVITY IN DIRAC … PHYSICAL REVIEW B 108, 174205 (2023)

FIG. 4. Numerical results in the presence of the long-ranged
Gaussian potential. (a),(b) Numerical results of E vs Re
 and E vs
Im
 with different momenta k and band index s. (c),(d) Numerical
results of k vs Re
 and k vs Im
 with different Fermi energies E
and band index s. Here we set an impurity concentration ni = 5%,
correlation length ξ = 3.6a, and impurity strength u0 = 0.16t .

D. Numerical simulations

Above, we have derived the momentum dependence of the
self-energy in the presence of long-range disorder potentials
from the perturbation theories, which do not consider the

crossed Feynmann diagrams shown in Fig. 1(b). To further
check these derivations, we next turn to numerical simula-
tions. The Green’s function g(ks, E ) of the disordered system
in the eigenbasis is directly calculated using the Lanczos
recursive method [49] and the self-energy is obtained by the
Dyson equation 
(ks, E ) = g−1

0 (ks, E ) − g−1(ks, E ). In or-
der to reach a high-energy resolution and reduce the finite-size
errors, we consider a large supercell with N = 2400×2400×
2 atoms. The data shown below are averaged over 50 random
configurations.

1. Long-ranged Gaussian potential

In Fig. 4, we display the self-energy functions versus Fermi
energy and momentum. Obviously, the self-energy depends
not only on the Fermi energy, but also on the momentum.
As shown in the E − Re
 plane of Fig. 4(a), the momentum
dependence of the real part of the self-energy is significant in
the low-energy region and gradually reduces with increasing
energy, while the situation is opposite for the imaginary part
shown in Fig. 4(b). From the curves in the k − Re
 plane
in Fig. 4(c), we see that the real part of the self-energy near
the Dirac point is linearly related to the momentum—positive
for s = −1 and negative for s = 1. These behaviors mean that
the estimation [Eq. (24)] without the on-shell approximation
is reasonable around the Dirac point and therefore the self-
energy in Eq. (12) is well justified.

FIG. 5. Numerical results in the presence of the long-ranged Gaussian potential. (a) α versus ξ with ni = 5% and u0 = 0.16t . (b)–(d) Real
part of the self-energy Re
 for different ξ = 3.6a (b), 4.4a (c), and 5.2a (d). (e) α versus u0 with ni = 5% and ξ = 3.2a. (f)–(h) Real part of the
self-energy Re
 for different u0 = 0.24t (f), 0.32t (g), and 0.44t (h). The dashed red lines (dotted blue lines) in (a),(e) are fitting curves based
on the Born approximation, which have α = 1.6(ξ/a)3.3 × 10−3 and α = 2.9(u0/t )2. The dotted blue lines in (a),(e) are fitting curves based on
the self-consistent Born approximation, which have α = 1

2 −
√

1
4 − 2.6(ξ/a)2.8 × 10−3 and α = 1

2 −
√

1
4 − 2.4(u0/t )2 . In (b)–(d) and (f)–(h),

the colors correspond to various momenta: Dirac point k = 0 (black), k = 0.048/a and s = −1 (red), k = 0.096/a and s = −1 (light red),
k = 0.048/a and s = 1 (green), and k = 0.096/a and s = 1 (light green).
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FIG. 6. Numerical results in the presence of the long-ranged
Gaussian potential. (a)–(e) Numerical results of Re
 vs E with dif-
ferent momentum. (f)–(j) Numerical results of Im
 vs E . Blue lines
denote subband with s = 1, while orange lines denote s = −1. Other
parameters: impurity concentration nimp = 1%, correlation length
ξ = 10a, and impurity strength u0 = 0.04t .

Figures 5(a)–5(d) exhibit the effect of the correlation
length ξ on the momentum dependence of the real part of the
self-energy. The squares connected by solid line in Fig. 5(a)
are the numerical results of parameter α versus correlation
length ξ . When the disorder strength is small, α has a positive
correlation with ξ , which can be fitted as α = 1.6(ξ/a)3.3 ×
10−3. This result is roughly consistent with the Born approxi-
mation which predicts α ∝ ξ 2 in the limit ξ � a and α ∝ ξ 4

in the limit ξ � a according to Eqs. (25) and (7). Upon
increasing ξ , the value of α tends to saturate and eventually
decreases. This behavior indicates that the Born approxima-
tion tends to be invalid away from the weak-scattering limit,
since the increase of ξ also enhances the disorder strength K0.

Figures 5(f)–5(h) show the effect of the impurity strength
u0. Similar to the correlation length, we fit the relation of ξ

and α in the weak disorder regime and obtain α = 2.9(u0/t )2.
This result is in agreement with the prediction from the
Born approximation: α ∝ K0 ∝ u2

0. Equivalent to the ξ , a
further increase of u0 will also cause the system to enter the
strong scattering limit. In addition, from Figs. 5(b)–5(d) and
5(f)–5(h), we find that the momentum dependence of the self-
energy gradually decreases at high energy, where the on-shell
approximation tends to be valid.

In Fig. 6, we further display the numerical simulation of
the self-energy functions in the limit k, E

h̄v f
� 1

ξ
with im-

purity concentration nimp = 1%, correlation length ξ = 10a,
and impurity strength u0 = 0.04t . For the very small Fermi
energy and momentum in Figs. 6(a) and 6(d), where the con-
dition k, E � 1

ξ
is still satisfied, the behavior of the real and

imaginary parts of self-energy is qualitatively consistent with
the results shown in Figs. 4(a) and 4(b). On the contrary, for
the large Fermi energy and momentum, the imaginary part of
self-energy tends to be a delta function which is the same as
the prediction from Born approximation Eq. (26). Similarly,
the numerical result of the real part of the self-energy is also
consistent with the analytical expression Eq. (27).
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FIG. 7. Numerical results in the presence of the long-range
screened Gaussian potential. (a) Numerical results of Re
 vs E .
(b) Numerical results of Re
 vs k. Inset in (a) is the same as (a) but
in a large energy range and only keeping the data of k = 0 and
k = 0.072/a. Other parameters: ni = 0.05, V0 = 0.1t , and qs = 0.1a.
In order to avoid the divergence at r → 0 in the discrete simulation,
we set a minimum radius rc = 0.01a.

2. Long-range screened Coulomb potential

In Sec. IV A 2, we have derived the self-energy function in
the presence of long-range screened Coulomb potential based
on the Born approximation. We also calculate it by numerical
simulation. In Fig. 7, we show the numerical results of Re

vs E and Re
 vs k near the Dirac point with parameters:
ni = 0.05, V0 = 0.1t , and qs = 0.1a. Additionally, in order
to avoid the divergence at r → 0 in the discrete simulation,
we set a minimum radius rc = 0.01a. Similar to the results in
the presence of the long-ranged Gaussian potential in Figs. 4
and 5, the real part of the self-energy function shows linear
dependence on the momentum, which is also consistent with
that obtained from the Born approximation shown in Eq. (29).

V. DISCUSSION AND SUMMARY

We have shown that, in the presence of a long-ranged dis-
order potential, the self-energy function of the Dirac electrons
has a peculiar dependence on the momentum and this momen-
tum dependence is of paramount importance for the transport
properties of graphene, i.e., it produces a nonuniversal mini-
mal conductivity. Furthermore, we elaborate the origin of this
momentum-dependent correction analytically and uncover its
dependence on the disorder potential, which is also verified by
unbiased numerical simulations.

In closing, we would like to make several remarks. First,
our findings offer an intuitive way for understanding the
existing numerical simulations where long-ranged impuri-
ties enhance the minimal conductivity. We believe that the
physics behind these numerical calculations is now clear, from
clarifying the self-energy function. Second, another main cau-
tionary message is that the on-shell approximation is not
well justified around the Dirac point. Third, both analytical
and numerical results show that the on-shell approximation
tends to be valid in the limit k, E

h̄v f
� 1

ξ
, which means that

in the high energy region the self-energy function becomes
momentum independent, in line with previous theories. Fi-
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nally, this work implies a consistent theory for the quantum
transport of graphene: two main experimental observations,
i.e., the linear dependence of the conductivity on carrier

density and the sample-dependent minimal conductivity, can
be well understood by the presence of long-ranged impurity
potentials.
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APPENDIX A: BUBBLE DIAGRAM OF KUBO FORMULA WITH MOMENTUM-DEPENDENT SELF-ENERGY

Here we present the calculation of the leading order of conductivity σ (0)
xx (E ) based on the Kubo formula Eq. (13) with a general

momentum-dependent self-energy Eq. (12). Considering the Green’s function and velocity in the eigenbasis of pseudospin, the
leading order of the conductivity is given by

σ (0)
xx (E ) = σ (0),RA

xx (E ) − Re
[
σ (0),RR

xx (E )
]
, (A1)

with

σ 0,LM
xx (E ) = 4

e2h̄

2πV Tr[GR(E )vxGA(E )vx]

= 2e2h̄v2
f

π

∫
d2k

(2π )2
Tr

[(
gL

+ 0

0 gL
−

)(
cos θk −i sin θk

i sin θk − cos θk

)(
gM

+ 0

0 gM
−

)(
cos θk −i sin θk

i sin θk − cos θk

)]

= 2e2h̄v2
f

π

∫
d2k

(2π )2

[
cos2 θk

(
gL

+gM
+ + gL

−gM
−
)+ sin2 θk

(
gL

+gM
− + gL

−gM
+
)]

= e2h̄v2
f

2π2

∫
k dk

(
gL

+gM
+ + gL

−gM
− + gL

+gM
− + gL

−gM
+
)
, (A2)

where L = R, A denotes the retarded or advanced Green’s function and gR/A
± is the abbreviation of gR/A

± (k, E ).
In order to analyze the contribution of electron-hole coherence, we rewrite Eq. (A1) as

σ 0
xx(E ) = σ 0,i

xx (E ) + σ 0,c
xx (E ), (A3)

with

σ 0,i
xx (E ) = e2h̄v2

f

2π2

∫
k dk[gR

+gA
+ + gR

+gA
+ − Re(gR

+gR
+ + gR

−gR
−)],

σ 0,c
xx (E ) = e2h̄v2

f

π2

∫
k dk[gR

+gA
− − Re(gR

+gR
−)], (A4)

where σ (0),i
xx (E ) denotes the electron-hole incoherent contribution due to the product of the Green’s function with the same band

index and σ (0),c
xx (E ) denotes the electron-hole coherent contribution due to the product of the Green’s function with opposite

band index. Plugging the Green’s function with a general self-energy in eigenbasis, i.e., Eq. (16), into the above equations, these
two terms are given by

σ 0,i
xx (E ) = e2h̄v2

f

2π2
Re
∫ ∞

0
k dk

{
1

[a − (1 − α)h̄v f k + iη][a − (1 − α)h̄v f k − iη]
+ 1

[a + (1 − α)h̄v f k + iη][a + (1 − α)h̄v f k − iη]

− 1

[a − (1 − α)h̄v f k + iη][a − (1 − α)h̄v f k + iη]
− 1

[a + (1 − α)h̄v f k + iη][a + (1 − α)h̄v f k + iη]

}

= 2e2

πh

1

(1 − α)2

(
1 + a

η
arctan

a

η

)
(A5)

and

σ 0,c
xx (E ) = e2h̄v2

f

π2
Re
∫ ∞

0
k dk

{
1

[a − (1− α)h̄v f k + iη][a + (1− α)h̄v f k − iη]
− 1

[a − (1− α)h̄v f k + iη][a + (1 − α)h̄v f k + iη]

}

= 2e2

πh

1

(1 − α)2

η

a
arctan

a

η
. (A6)
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Thus the total conductivity obtained by the bubble diagram is

σ 0
xx(E ) = 2e2

πh

1

(1 − α)2

(
1 + a

η
arctan

a

η

)
+ 2e2

πh

1

(1 − α)2

η

a
arctan

a

η
, (A7)

which is Eq. (18) in the main text.

APPENDIX B: VERTEX CORRECTION OF KUBO FORMULA WITH MOMENTUM-DEPENDENT SELF-ENERGY

The vertex corrected dc conductivity as shown in Figs. 1(c) and 1(d), i.e., ladder diagrams, can be calculated by

σ v
xx(E ) = σ v,RA

xx (E ) − Re
[
σ v,RR

xx (E )
]
, (B1)

with

σ v,RA
xx (E ) = 4

e2 h̄

2π

∫
d2k

(2π )2
Tr
[
GR(k, E )vx (k)GA(k, E )ṽRA

x (k)
]
, (B2)

σ v,RR
xx (E ) = 4

e2 h̄

2π

∫
d2k

(2π )2
Tr
[
GR(k, E )vx(k)GR(k, E )ṽRR

x (k)
]
. (B3)

Here, the “dressed” vertex function ṽLM
x is defined by the self-consistent Bethe-Salpeter equation

ṽLM
x (k, E ) = vx(k) +

∫
d2k′

(2π )2
K(k − k′)U †

k Uk′GL(k′, E )ṽLM
x (k′, E )GM (k′, E )U †

k′Uk, (B4)

where

U †
k Uk′ = 1

2

(
1 + eiθ 1 − eiθ

1 − eiθ 1 + eiθ

)
with θ = θk′ − θk (B5)

denotes the spin rotation as the momentum changes. In order to solve this self-consistent equation, we at first consider the first
order approximation in the following:

ṽ(1),LM
x (k, E ) = vx(k) +

∫
d2k′

(2π )2
K(k − k′)U †

k Uk′GL(k′, E )vx(k′)GM (k′, E )U †
k′Uk

= vx(k) + v f

∫
d2k′

(2π )2

K(k − k′)
4

(
1 + eiθ 1 − eiθ

1 − eiθ 1 + eiθ

)(
gL

+
gL

−

)

×
(

cos θk′ −i sin θk′

i sin θk′ − cos θk′

)(
gM

+
gM

−

)(
1 + e−iθ 1 − e−iθ

1 − e−iθ 1 + e−iθ

)

= vx(k) + v f

∫
d2k′

(2π )2

K(k − k′)
4

(
M11 M12

M21 M22

)
, (B6)

where the expressions of Mss′ are

M11 = 2 cos θ (gL
+gM

+ − gL
−gM

− ) cos θk + [2 cos2 θ (gL
+gM

+ + gL
−gM

− ) + 2 sin2 θ (gL
+gM

− + gL
−gM

+ )] cos θk,

M22 = 2 cos θ (gL
+gM

+ − gL
−gM

− ) cos θk + [2 cos2 θ (gL
+gM

+ + gL
−gM

− ) + 2 sin2 θ (gL
+gM

− + gL
−gM

+ )](− cos θk),

M12 = 2i cos θ (gL
+gM

− − gL
−gM

+ ) sin θk + [2 cos2 θ (gL
+gM

+ + gL
−gM

− ) + 2 sin2 θ (gL
+gM

− + gL
−gM

+ )](−i sin θk),

M21 = 2i cos θ (gL
+gM

− − gL
−gM

+ ) sin θk + [2 cos2 θ (gL
+gM

+ + gL
−gM

− ) + 2 sin2 θ (gL
+gM

− + gL
−gM

+ )](i sin θk). (B7)

Based on the expressions of Mss′ , we can rewrite ṽ(1),LM
x (k, E ) as

ṽ(1),LM
x (k, E )

v f
= f LM

0 (k, E ) cos θkσ0 + f LM
x (k, E ) sin θkσx + f LM

y (k, E ) sin θkσy + f LM
z (k, E ) cos θkσz. (B8)

For ṽ(1),RA
x (k, E ), the functions f RA

i (k, E ) with (i = 0, x, y, z) are

f RA
0 (k, E ) =

∫
d2k′

(2π )2

K(k − k′)
2

cos θ (gR
+gA

+ − gR
−gA

−)

≈ K0(h̄v f )2

8π2

∫
k′dk′dθ

[
1 − ξ 2

2
(k2 + k′2) + ξ 2kk′ cos θ

]
cos θ (gR

+gA
+ − gR

−gA
−)

≈ K0ξ
2a

4π (1 − α)3h̄v f
ln

(
E2

c

a2 + η2

)
k, (B9)
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f RA
x (k, E ) =

∫
d2k′

(2π )2

K(k − k′)
2

i cos θ (gR
0,+gA

0,− − gR
0,−gA

0,+)

≈ K0(h̄v f )2

8π2

∫
k′dk′dθ

[
1 − ξ 2

2
(k2 + k′2) + ξ 2kk′ cos θ

]
i cos θ (gR

+gA
− − gR

−gA
+)

≈ K0ξ
2η

4π (1 − α)3h̄v f
ln

(
E2

c

a2 + η2

)
k, (B10)

f RA
y (k, E ) = f RA

z (k, E ) = 1 +
∫

d2k′

(2π )2

K(k − k′)
2

[cos2 �θ (gL
+gM

+ + gL
−gM

− ) + sin2 �θ (gL
+gM

− + gL
−gM

+ )]

≈ 1 + K0(h̄v f )2

8π

∫
k′dk′(gL

+gM
+ + gL

−gM
− + gL

+gM
+ + gL

−gM
− )

≈ 1 + K0

4π (1 − α)2

(
a

η
+ η

a

)
arctan

a

η
. (B11)

For ṽRR
x (k, E ), the functions f RR

i (k, E ) with (i = 0, x, y, z) are

f RR
0 (k, E ) =

∫
d2k′

(2π )2

K(k − k′)
2

cos θ (gR
+gR

+ − gR
−gR

−)

≈ K0(h̄v f )2

8π2

∫
k′dk′dθ

[
1 − ξ 2

2
(k2 + k′2) + ξ 2kk′ cos θ

]
cos θ (gR

+gR
+ − gR

−gR
−)

≈ K0ξ
2(a + iη)

4π (1 − α)3h̄v f
ln

(
E2

c

a2 + η2

)
k, (B12)

f RR
x (k, E ) =

∫
d2k′

(2π )2

K(k − k′)
2

i cos θ (gR
+gR

− − gR
−gR

+) = 0, (B13)

f RR
y (k, E ) = f RR

z (k, E ) = 1 +
∫

d2k′

(2π )2

K(k − k′)
2

[cos2 θ (gR
+gR

+ + gR
−gR

−) + sin2 θ (gR
+gR

− + gR
−gR

+)]

≈ 1 + K0(h̄v f )2

8π

∫
k′dk′(gR

+gR
+ + gR

−gR
− + gR

+gR
+ + gR

−gR
−)

≈ 1 − K0

4π (1 − α)2
. (B14)

Plugging Eqs. (B9)–(B14) into Eqs. (B8), (B2), and (B3), we can get the first-order σ v,RA
xx and Re(σ v,RR

xx ) as

σ (1),RA
xx (E ) = e2h̄v2

f

2π2

∫
k dk

[
1 + K0

4π (1 − α)2

(
a

η
+ η

a

)
arctan

a

η

]
(gR

+gA
+ + gR

−gA
− + gR

+gA
− + gR

−gA
+)

+ K0ξ
2a

4π (1 − α)3h̄v f
ln

(
E2

c

a2 + η2

)
k(gR

+gA
+ − gR

−gA
−) − i

K0ξ
2η

4π (1 − α)3h̄v f
ln

(
E2

c

a2 + η2

)
k(gR

+gA
− − gR

−gA
+)

= 2e2

πh

{(
a

η
+ η

a

)
arctan

a

η

[
1 + K0

4π (1 − α)4

(
a

η
+ η

a

)
arctan

a

η

]
+ K0ξ

2(a2 − η2)

4π (h̄v f )2

[
1

(1 − α)3
ln

(
E2

c

a2 + η2

)]2
}

(B15)

and

Re[σ (1),RR
xx (E )] = e2h̄v2

f

2π2
Re
∫

k dk

[
1 − K0

4π (1 − α)2

]
(gR

+gR
+ + gR

−gR
− + gR

+gR
− + gR

−gR
+)

+ K0ξ
2(a + iη)

4π (1 − α)3h̄v f
ln

(
E2

c

a2 + η2

)
k(gR

+gR
+ − gR

−gR
−)

= 2e2

πh

{
−1 + K0

4π (1 − α)4
+ K0ξ

2(a2 − η2)

4π (h̄v f )2

[
1

(1 − α)3
ln

(
E2

c

a2 + η2

)]2
}

, (B16)
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where Ec = h̄v f kc. Thus the first-order vertex correction of dc conductivity is obtained as

σ (1)
xx (E ) = σ (1),RA

xx (E ) − Re
[
σ (1),RR

xx (E )
]

= 2e2

πh

[
1 +

(
a

η
+ η

a

)
arctan

a

η

]
+ K0

4π (1 − α)4

{[(
a

η
+ η

a

)
arctan

a

η

]2

− 1

}
, (B17)

from which we can see that coefficients f LM
0 and f LM

x can be ignored in the “dressed” vertex. Thus we can find that the dressed
vertex has the same matrix structure with the bare velocity and can be solved as

ṽRA
x (k, E ) = 1

1 − K0
4π (1−α)2

(
a
η

+ η

a

)
arctan a

η

v f (cos θkσz + sin θkσy),

ṽRR
x (k, E ) = 1

1 + K0
4π (1−α)2

v f (cos θkσz + sin θkσy). (B18)

Based on this corrected vertex, the total dc conductivity will arrive at

σ v
xx(E ) = 2e2

πh

1

(1 − α)2

[
1

1 + K0
4π (1−α)2

+
(

a
η

+ η

a

)
arctan a

η

1 − K0
4π (1−α)2

(
a
η

+ η

a

)
arctan a

η

]
(B19)

and the corresponding vertex corrected minimal conductivity is

σ v
min = 4e2

πh

1

(1 − α)2

1

1 − [ K0
4π (1−α)2

]2 K0�1−→ 4e2

πh

1

(1 − α)2
. (B20)

Since typical experiment conditions of high mobility graphene correspond to K0 � 1, the influence of vertex correction to the
minimal conductivity is much smaller than those induced by the linear momentum-dependent self-energy in the bubble diagram.

APPENDIX C: BORN APPROXIMATION OF THE SELF-ENERGY IN THE CASE
OF THE LONG-RANGED GAUSSIAN POTENTIAL

In this section, we evaluate the self-energy function in the presence of long-ranged Gaussian potential by the Born approxi-
mation,


(ks, E ) =
∑

s′

∫
d2k′

(2π )2
KG(k − k′)gR

0 (k′s′, E )
1 + ss′ cos θ

2
, (C1)

which is Eq. (21) in the main paper. After plugging the correlation function Eq. (6) into this equation, it can be rewritten as


B(ks, E ) = K0(h̄v f )2
∑

s′

∫
d2k′

(2π )2
e− ξ2 (k−k′ )2

2 gR
0 (k′s′, E )

1 + ss′ cos θ

2
. (C2)

Next we will evaluate the real part and imaginary part separately.
For E > 0, the imaginary part of the self-energy is

Im
B(ks, E ) = K0(h̄v f )2
∑

s′

∫
d2k′

(2π )2
e− ξ2 (k−k′ )2

2
1 + ss′ cos θ

2
[−πδ(E − s′h̄v f k′)]

= −πK0 h̄v f

2

∑
s′

∫
k′dk′dθ

(2π )2
e− ξ2 (k2+k′2−2kk′ cos θ )

2 (1 + ss′ cos θ )δ

(
E

h̄v f
− s′k′

)

= − K0

8π
E e

− ξ2

2 (k2+ E2

h̄2v2
f

)
∫ π

−π

dθ e
ξ2kE
h̄v f

cos θ
(1 + s cos θ )

= −K0

4
E e

− ξ2

2 (k2+ E2

h̄2v2
f

)
[

I0

(
ξ 2kE

h̄v f

)
+ sI1

(
ξ 2kE

h̄v f

)]
, (C3)

where I0/1(x) are modified Bessel functions of the first kind. Similarly, for E < 0, the imaginary part of the self-energy is

Im
B(ks, E ) = K0(h̄v f )2
∑

s′

∫
d2k′

(2π )2
e− ξ2 (k−k′ )2

2
1 + ss′ cos θ

2
[−πδ(E − s′h̄v f k′)]

= −πK0 h̄v f

2

∑
s′

∫
k′dk′dθ

(2π )2
e− ξ2 (k2+k′2−2kk′ cos θ )

2 (1 + ss′ cos θ )δ

(
E

h̄v f
− s′k′

)
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= K0

8π
E e

− ξ2

2 (k2+ E2

h̄2v2
f

)
∫ π

−π

dθ e
− ξ2kE cos θ

h̄v f (1 − s cos θ )

= K0

4
E e

− ξ2

2 (k2+ E2

h̄2v2
f

)
[

I0

(
−ξ 2kE

h̄v f

)
− sI1

(
−ξ 2kE

h̄v f

)]
. (C4)

Combining two conditions, we can get

Im
B(ks, E ) = −K0

4
|E |e− ξ2

2 (k2+ E2

h̄2v2
f

)
[

I0

(
ξ 2kE

h̄v f

)
+ sI1

(
ξ 2kE

h̄v f

)]
. (C5)

The corresponding real part of the self-energy function can be calculated by the Kramer-Kronig relation,

Re
B(ks, E ) = 1

π
P
∫ Ec

−Ec

dE ′ Im
B(ks, E ′)
E ′ − E

= 1

π
P
∫ Ec

−Ec

dE ′ −
K0
4 |E ′|e− ξ2

2 (k2+ E ′2
h̄2v2

f
)[

I0
(

ξ 2kE ′
h̄v f

)+ sI1
(

ξ 2kE ′
h̄v f

)]
E ′ − E

. (C6)

In the following, we evaluate the self-energy function in two limits: k, E
h̄v f

� 1
ξ

and k, E
h̄v f

� 1
ξ
. Moreover, for the limit k, E

h̄v f
�

1
ξ
, we will further consider the integral in Eq. (C6) into two conditions, ξ � a and ξ � a, which compares the lattice constant

with the scale of the disorder potential. When the potential approaches short range, the former one satisfies.
(i) For the limit k, E

h̄v f
� 1

ξ
, the imaginary part of the self-energy function can be expanded as

Im
B(ks, E ) = −K0

4
|E |
[

1 − ξ 2

2

(
k2 + E2

h̄2v2
f

)
+ O(k4, E4, k2E2)

][
1 + s

ξ 2kE

2h̄v f
+ O(k2E2)

]

= −K0|E |
4

[
1 − ξ 2

2

(
k2 + E2

h̄2v2
f

)
+ sξ 2kE

2h̄v f

]
+ O(k4, E4, k2E2)

= −K0|E |
4

+ O(kE2, k2E , E3), (C7)

which is Eq. (17) in the main paper. The modified Bessel functions are expanded as I0(x) = 1 + x2

4 + o(x3) and I1(x) = x
2 +

o(x3). Meanwhile, the real part of the self-energy function is given by

Re
B(ks, E ) = 1

π
P
∫ Ec

−Ec

dE ′ −
K0
4 |E ′|e− ξ2

2 (k2+ E ′2
h̄2v2

f
)[

I0
(

ξ 2kE ′
h̄v f

)+ sI1
(

ξ 2kE ′
h̄v f

)]
E ′ − E

= K0

4π
P

⎧⎪⎪⎨
⎪⎪⎩
∫ 0

−Ec

dE ′ E
′e

− ξ2

2 (k2+ E ′2
h̄2v2

f
)[

I0
(

ξ 2kE ′
h̄v f

)+ sI1
(

ξ 2kE ′
h̄v f

)]
E ′ − E

−
∫ Ec

0
dE ′ E

′e
− ξ2

2 (k2+ E ′2
h̄2v2

f
)[

I0
(

ξ 2kE ′
h̄v f

)+ sI1
(

ξ 2kE ′
h̄v f

)]
E ′ − E

⎫⎪⎪⎬
⎪⎪⎭

= K0 h̄v f

4π
P

⎧⎨
⎩
∫ kc

0
dẼ ′ Ẽ

′e− (k2+E ′2 )ξ2

2 [I0(ξ 2kẼ ′) − sI1(ξ 2kẼ ′)]
Ẽ ′ + Ẽ

−
∫ kc

0
dẼ ′ Ẽ

′e− (k2+Ẽ ′2 )ξ2

2 [I0(ξ 2kẼ ′) + sI1(ξ 2kẼ ′)]
Ẽ ′ − Ẽ

⎫⎬
⎭

= −K0 h̄v f

2π
P
∫ kc

0
dẼ ′e− (k2+Ẽ ′2 )ξ2

2
Ẽ Ẽ ′I0(ξ 2kẼ ′) + sẼ ′2I1(ξ 2kẼ ′)

Ẽ ′2 − Ẽ2

≈ −K0 h̄v f

2π
P
∫ kc

0
dẼ ′e− Ẽ ′2ξ2

2
Ẽ Ẽ ′ + sẼ ′2 ξ 2kẼ ′

2

Ẽ ′2 − Ẽ2
. (C8)

Here, Ẽ = E
h̄v f

, Ẽ ′ = E ′
h̄v f

, and kc = Ec
h̄v f

. Since kc ∼ 1/a, we can further separate this result into two different conditions, ξ � a
and ξ � a,

Re
B(ks, E ) ≈
⎧⎨
⎩

K0
2π

E ln
∣∣ E

h̄v f kc

∣∣+ αE − sαh̄v f k, ξ � a,

K0
4π

E
(
γ + ln

∣∣ Eξ

h̄v f

∣∣− ln 2
)− sαh̄v f k, ξ � a,

(C9)
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with

α =
⎧⎨
⎩

K0k2
c ξ 2

8π
, ξ � a,

K0
4π

, ξ � a,
K0 = niu2

0

(h̄v f )2

⎧⎨
⎩

Ac
2 , ξ � a,

2π2

Ac
ξ 4, ξ � a,

(C10)

where γ ≈ 0.5772 is the Euler-Mascheroni constant.
(ii) For the limit k, E

h̄v f
� 1

ξ
, the imaginary part of the self-energy function has the following asymptotic expression:

Im
B(ks, E ) = −K0

4
|E |e− ξ2

2 (k2+ E2

h̄2v2
f

)
e

ξ2k|E |
h̄v f

√
h̄v f

2πξ 2k|E | [1 + s sgn(E )]

= −K0

4
|E |e− ξ2

2 (k− |E |
h̄v f

)2

√
h̄v f

2πξ 2k|E | [1 + s sgn(E )]

≈ −K0(h̄v f )2

4ξ 2
δ(E − Eks), (C11)

where sgn(E ) is sign function of E . The exponential decay term e
− ξ2

2 (k− |E |
h̄v f

)2

and the term [1 + s sgn(E )] in the above at the
second equation imply that the on-shell approximation (E = Eks = sh̄v f k) is valid in this condition based on the approximation
limσ→0

1√
2πσ

exp(−x2/2σ ) = δ(x). In this condition, the modified Bessel functions I0(x) and I1(x) are approximated as

I0(x → ∞) = 1√
2π |x| exp [|x|]

[
1 + o

(
1

|x|
)]

≈ 1√
2π |x|e|x| (C12)

and

I1(x → ∞) = sgn(x)
√

2π |x| 4

√
1 + 1

x2

exp

[
−arsinh

(
1

|x|
)

+ |x|
√

1 + 1

x2

]⎡⎢⎣1 + o

⎛
⎜⎝ 1

|x|
√

1 + 1
|x|2

⎞
⎟⎠
⎤
⎥⎦ ≈ sgn(x)√

2πx
e|x|, (C13)

where I0(x) is an even function and I1(x) is an odd function. The corresponding real part of the self-energy function is

Re
B(ks, E ) = 1

π
P
∫ ∞

−∞
dE ′ Im
B(ks, E ′)

E ′ − E
≈ 1

π
P
∫ ∞

−∞
dE ′ −

K0(h̄v f )2

4ξ 2 δ(E ′ − Eks)

E ′ − E

= −K0(h̄v f )2

4ξ 2

1

π
P
∫ ∞

−∞
dE ′ δ(E ′ − Eks)

E ′ − Eks − (E − Eks)
= −K0(h̄v f )2

4ξ 2

1

π
P
∫ ∞

−∞
dω

δ(ω)

ω − (E − Eks)

= −K0(h̄v f )2

4ξ 2

1

2π
P
[∫ ∞

−∞
dω

δ(ω)

ω − (E − Eks)
+
∫ ∞

−∞
dω

δ(ω)

−ω − (E − Eks)

]

≈ −K0(h̄v f )2

4ξ 2

1

2π

∫ ∞

−∞
dω

2(E − Eks)δ(ω)

ω2 − (E − Eks)2 − (h̄v f /ξ )2
= K0(h̄v f )2

4π

E − Eks

ξ 2(E − Eks)2 + (h̄v f )2
, (C14)

where we introduced a quantity h̄v f /ξ to simulate the broadening of the delta function and smear the divergence at the point
E = Eks.

To sum up, we obtain the self-energy function in two different regimes.
For |E |

h̄v f
, k � 1

ξ

Im
B(ks, E ) = −K0

4
|E | + O(kE2, k2E , E3), (C15)

Re
B(ks, E ) =
⎧⎨
⎩

K0
2π

E ln
∣∣ E

h̄v f kc

∣∣+ αE − sαh̄v f k + O(kE2 ln E , k2E ln E , E3 ln E ), ξ � a,

K0
4π

E
(
γ + ln

∣∣ Eξ

h̄v f

∣∣− ln 2
)− sαh̄v f k + O(kE2 ln E , k2E ln E , E3 ln E ), ξ � a,

(C16)

with

α =
⎧⎨
⎩

K0k2
c ξ 2

8π
, ξ � a,

K0
4π

, ξ � a,
K0 = niu2

0

(h̄v f )2

⎧⎨
⎩

Ac
2 , ξ � a,

2π2

Ac
ξ 4, ξ � a.

(C17)
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For k, E
h̄v f

� 1
ξ
,

Im
B(ks, E ) ≈ −K0(h̄v f )2

4ξ 2
δ(E − Eks), (C18)

Re
B(ks, E ) ≈ K0(h̄v f )2

4π

E − Eks

ξ 2(E − Eks)2 + (h̄v f )2
. (C19)

While the results in the condition |E |
h̄v f

, k � 1
ξ

can recover the on-shell approximation (E = Eks), those in the condition |E |
h̄v f

, k � 1
ξ

are the main result of this work.

APPENDIX D: BORN APPROXIMATION OF THE SELF-ENERGY IN THE CASE
OF THE LONG-RANGE SCREENED COULOMB POTENTIAL

Similar to the long-ranged Gaussian potential, the self-energy of long-range screened Coulomb potential based on the Born
approximation is given by


B(ks, E ) =
∑

s′

∫
d2k′

(2π )2

niV 2
0

q2
s + k2 + k′2 − 2kk′ cos θ

gR
0 (k′s′, E )

1 + ss′ cos θ

2
, (D1)

where Ni and ni = Ni/V are the number and concentration of impurities and V0 = 2πe2

κ
.

For E > 0, the imaginary part of the self-energy is obtained as

Im
B(ks, E ) =
∑

s′

∫
d2k′

(2π )2

niV 2
0

q2
s + k2 + k′2 − 2kk′ cos θ

1 + ss′ cos θ

2
[−πδ(E − s′h̄v f k′)]

= −πniV 2
0

2

∫
k′dk′dθ

(2π )2

1 + s cos θ

q2
s + k2 + k′2 − 2kk′ cos θ

δ(E − h̄v f k′) = − niV 2
0 Ẽ

8π h̄v f

∫
dθ

1 + s cos θ

q2
s + k2 + Ẽ2 − 2kẼ cos θ

= − niV 2
0 Ẽ

8π h̄v f

(
− 1

2kẼ

)∫
dθ

s(q2
s + k2 + Ẽ2 − 2kẼ cos θ ) − [s(q2

s + k2 + Ẽ2) + 2kẼ ]

q2
s + k2 + Ẽ2 − 2kẼ cos θ

= niV 2
0

16π h̄v f k

{
2πs − [s(q2

s + k2 + Ẽ2) + 2kẼ ]
∫

dθ
1

q2
s + k2 + Ẽ2 − 2kẼ cos θ

}

= niV 2
0

8h̄v f k

⎡
⎢⎣s − s(q2

s + k2 + Ẽ2) + 2kẼ√
(q2

s + k2 + Ẽ2 − 2kẼ )(q2
s + k2 + Ẽ2 + 2kẼ )

⎤
⎥⎦ = niV 2

0

8h̄v f k
s

⎡
⎣1 −

√
q2

s + (k + sẼ )2

q2
s + (k − sẼ )2

⎤
⎦

= niV 2
0

8h̄v f k
s

⎡
⎣1 −

√
1 + 4skẼ

q2
s + (k − sẼ )2

⎤
⎦ ≈ − niV 2

0

4h̄v f

Ẽ

q2
s + (k − sẼ )2

, (D2)

where Ẽ = E
h̄v f

, and we approximate the above equation at the limit k, Ẽ � q2
s .

For E < 0, the imaginary part of the self-energy is

Im
B(ks, E ) =
∑

s′

∫
d2k′

(2π )2

niV 2
0

q2
s + k2 + k′2 − 2kk′ cos θ

1 + ss′ cos θ

2
[−πδ(E − s′h̄v f k′)]

= −πniV 2
0

2

∫
k′dk′dθ

(2π )2

1 − s cos θ

q2
s + k2 + k′2 − 2kk′ cos θ

δ(E + h̄v f k′) = niV 2
0 Ẽ

8π h̄v f

∫
dθ

1 − s cos θ

q2
s + k2 + Ẽ2 + 2kẼ cos θ

= niV 2
0 Ẽ

8π h̄v f

(
1

2kẼ

)∫
dθ

−s(q2
s + k2 + Ẽ2 + 2kẼ cos θ ) + [s(q2

s + k2 + Ẽ2) + 2kẼ ]

q2
s + k2 + Ẽ2 + 2kẼ cos θ

= niV 2
0

16π h̄v f k

{
−2πs + [s(q2

s + k2 + Ẽ2
)+ 2kẼ

] ∫
dθ

1

q2
s + k2 + Ẽ2 + 2kẼ cos θ

}

= − niV 2
0

8h̄v f k

⎡
⎢⎣s − s(q2

s + k2 + Ẽ2) + 2kẼ√
(q2

s + k2 + Ẽ2 − 2kẼ )(q2
s + k2 + Ẽ2 + 2kẼ )

⎤
⎥⎦ = − niV 2

0

8h̄v f k
s

⎡
⎣1 −

√
q2

s + (k + sẼ )2

q2
s + (k − sẼ )2

⎤
⎦

= − niV 2
0

8h̄v f k
s

⎡
⎣1 −

√
1 + 4skẼ

q2
s + (k − sẼ )2

⎤
⎦ ≈ niV 2

0

4h̄v f

Ẽ

q2
s + (k − sẼ )2

. (D3)
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Combining two conditions, we can get

Im
B(ks, E ) = − niV 2
0

4h̄v f

|Ẽ |
q2

s + (k − sẼ )2
. (D4)

Then the corresponding real part of the self-energy function can be calculated by the Kramer-Kronig relation

Re
B(ks, E ) = 1

π
P
∫ Ec

−Ec

dE ′ Im
(ks, E ′)
E ′ − E

= − niV 2
0

4π h̄v f

∫ Ec

−Ec

dẼ ′ 1

Ẽ ′ − Ẽ

|Ẽ ′|
q2

s + (k − sẼ ′)2

= − niV 2
0

4π h̄v f

{∫ Ẽc

0
dẼ ′ Ẽ ′

(Ẽ ′ − Ẽ )
[
q2

s + (k − sẼ ′)2
] +

∫ 0

−Ẽc

dẼ ′ −Ẽ ′

(Ẽ ′ − Ẽ )
[
q2

s + (k − sẼ ′)2
]
}

= − niV 2
0

4π h̄v f

{∫ Ẽc

0
dẼ ′ Ẽ ′

(Ẽ ′ − Ẽ )
[
q2

s + (k − sẼ ′)2
] +

∫ Ẽc

0
dẼ ′ Ẽ ′

(−Ẽ ′ − Ẽ )
[
q2

s + (k + sẼ ′)2
]
}

= − niV 2
0

4π h̄v f

∫ Ẽc

0
dẼ ′
{

Ẽ ′

(Ẽ ′ − Ẽ )
[
q2

s + (k − sẼ ′)2
] − Ẽ ′

(Ẽ ′ + Ẽ )
[
q2

s + (k + sẼ ′)2
]
}

≈ − niV 2
0

4π (h̄v f )2q2
s

[
E ln

k2
c q2

s

Ẽ2
(
k2

c + q2
s

) + 2k2
c

k2
c + q2

s

sh̄v f k

]
, (D5)

where Ec = h̄v f kc.
Similar to the case of long-range Gaussian potential discussed in Appendix C, we can further separate this result into two

different conditions, qs � 1
a and qs � 1

a , where a denotes the lattice constant and 1
a ∼ kc. Finally, we get the self-energy function

in the presence of long-range Coulomb potential based on the Born approximation with the low energy limit k, E
h̄v f

� qs, as

Im
(ks, E ) = − niV 2
0

4(h̄v f )2q2
s

|E | + O(kE2 ln E , k2E ln E , E3 ln E ), (D6)

Re
(ks, E ) =

⎧⎪⎨
⎪⎩

niV 2
0

2π (h̄v f )2q2
s
E ln

∣∣ E
h̄v f kc

∣∣− sαh̄v f k + O(kE2 ln E , k2E ln E , E3 ln E ), qs � 1
a ,

niV 2
0

2π (h̄v f )2q2
s
E ln

∣∣ E
h̄v f qs

∣∣− sαh̄v f k + O(kE2 ln E , k2E ln E , E3 ln E ), qs � 1
a ,

(D7)

with

α =

⎧⎪⎨
⎪⎩

niV 2
0 k2

c

2π (h̄v f )2q4
s
, qs � 1

a ,

niV 2
0

2π (h̄v f )2q2
s
, qs � 1

a .

(D8)

APPENDIX E: SCBA OF THE SELF-ENERGY FUNCTION IN THE CASE OF THE LONG-RANGED GAUSSIAN POTENTIAL

Inspired by the Born approximation, we assume the self-energy function at the limit k, E
h̄v f

� 1
ξ

can be expressed in the form
of


(ks, E ) = 
1(E ) − sαh̄v f k + i
2(E ) = 
̃(E ) − sαh̄v f k, (E1)

where 
̃(E ) = 
1(E ) + i
2(E ) is the part that depends only on energy. Thus the self-energy function based on the SCBA
Feynman diagram at the limit k, E

h̄v f
� 1

ξ
is given by


(ks, E ) =
∑

s′

∫
d2k′

(2π )2
K(k − k′)G(k′s′, E )

1 + ss′ cos θ

2

= K0(h̄v f )2
∑

s′

∫
d2k′

(2π )2
e− ξ2 (k−k′ )2

2
1

E − Ek′s′ − 
(k′s′, E )

1 + ss′ cos θ

2

= K0(h̄v f )2
∑

s′

∫
d2k′

(2π )2
e− ξ2 (k−k′ )2

2
1

E − s′(1 − α)h̄v f k′ − 
̃

1 + ss′ cos θ

2

= K0(h̄v f )2

2

∫
k′dk′dθ

(2π )2
e− ξ2 (k−k′ )2

2

[
1 + s cos θ

(E − 
̃) − (1 − α)h̄v f k′ + 1 − s cos θ

(E − 
̃) + (1 − α)h̄v f k′

]
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= K0(h̄v f )2

2π2

∫ kc

0
k′dk′

∫ π

0
dθ e− ξ2 (k2+k′2−2kk′ cos θ )

2
(E − 
̃) + s cos θ (1 − α)h̄v f k′

(E − 
̃)2 − (1 − α)2(h̄v f k′)2

= K0(h̄v f )2

2π

∫ kc

0
k′dk′e− ξ2 (k2+k′2 )

2

[
(E − 
̃)

(E − 
̃)2 − (1 − α)2(h̄v f k′)2
I0(kk′ξ 2)

+ s(1 − α)h̄v f k′

(E − 
̃)2 − (1 − α)2(h̄v f k′)2
I1(kk′ξ 2)

]

= K0(h̄v f )2

2π

∫ kc

0
k′dk′[1 + o(k2ξ 2)]e− ξ2k′2

2
(E − 
̃)[1 + o(k2ξ 2)] + s(1 − α)h̄v f k′[ kk′ξ 2

2 + o(k2ξ 2)]

(E − 
̃)2 − (1 − α)2(h̄v f k′)2

≈ K0(h̄v f )2

2π

∫ kc

0
k′dk′ (E − 
̃)e− ξ2k′2

2

(E − 
̃)2 − (1 − α)2(h̄v f k′)2
+ s(1 − α)h̄v f k

ξ 2k′2
2 e− ξ2k′2

2

(E − 
̃)2 − (1 − α)2(h̄v f k′)2

= K0

4π (1 − α)2

[
(E − 
̃)e−(E−
̃)2 ξ̃ 2(

Ei[(E − 
̃)2ξ̃ 2] − Ei[(E − 
̃)2ξ̃ 2 − �2ξ̃ 2]
)− s(1 − α)h̄v f k(1 − e−�2 ξ̃ 2

)

+ s(1 − α)h̄v f k(E − 
̃)2ξ̃ 2e−(E−
̃)2 ξ̃ 2(
Ei
[
(E − 
̃)2ξ̃ 2]− Ei

[
(E − 
̃)2ξ̃ 2 − �2ξ̃ 2])], (E2)

where ξ̃ 2 = ξ 2

2(h̄v f )2(1−α)2 , k̃ = s(1 − α)Ec, Ec = h̄v f kc, and � = (1 − α)(h̄v f kc). Ei(x) is an exponential integral function. The
first term in square brackets is consistent with the short-range disorder when assuming α → 0 and ξ → 0, which can be solved
in two limits |E | � �0 and |E | � �0. �0 = Ece−2π/K0 is an exponential small energy scale defined by the imaginary part of
self-energy at the Dirac point [19]. Similarly, in the following, we will solve this self-consistent equation in two limits: |E | � �0

and |E | � �0. According to the Born results [Eqs. (C15) and (C16)], in the case of the long-range potential, it is necessary to
further consider two conditions, ξ � a and ξ � a, which compare the lattice constant with the scale of the disorder potential.
When the potential approaches short range, the former one satisfies.

To sum up, we obtain the self-energy function based on SCBA as follows.

1. ξ � a

At this limit, Eq. (E2) is reduced as


(ks, E ) ≈ K0

4π (1 − α)2

{
(E − 
̃)

[
ln

(E − 
̃)2

(E − 
̃)2 − �2
+ �2ξ̃ 2

]
− s(1 − α)h̄v f k

[
�2 − (E − 
̃)2 ln

(E − 
̃)2

(E − 
̃)2 − �2

]
ξ̃ 2

}
.

(E3)

Then, for |E | � �0, Eq. (E3) can be further reduced as


(ks, E ) ≈ K0

4π (1 − α)2

{
(E − 
1) ln


2
2

�2
+ 2(E − 
1) − i
2 ln


2
2

�2
− s(1 − α)h̄v f k�2ξ̃ 2

}
. (E4)

The above self-consistent equation can be separated into three parts corresponding to the 
1, i
2, and −sαh̄v f k parts in the
self-energy function,


1 ≈ K0

4π (1 − α)2

[
(E − 
1) ln


2
2

�2
+ 2(E − 
1)

]
, i
2 ≈ K0

4π (1 − α)2
(−i
2) ln


2
2

�2
,

−sαh̄v f k ≈ K0

4π (1 − α)2
[−s(1 − α)h̄v f k]�2ξ̃ 2. (E5)

Solving the above self-consistent equations, we can approximately obtain


1 ≈ − 2π (1 − α)2

K0
E , 
2 ≈ −� e− 2π (1−α)2

K0 , α ≈ 1

2
−
√

1

4
− K0

ξ 2k2
c

8π
. (E6)

For |E | � �0, Eq. (E3) can be further reduced as


(ks, E ) ≈ K0

4π (1 − α)2

{
E ln

E2

�2
− iπ |E | + (E − i
2)�2ξ̃ 2 − s(1 − α)h̄v f k�2ξ̃ 2

}
. (E7)
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Similarly, this self-consistent equation can be solved by separating into three parts:


1 ≈ K0

4π (1 − α)2

(
E ln

E2

�2
+ E�2ξ̃ 2

)
, i
2 ≈ K0

4π (1 − α)2
(−iπ |E | − i
2�

2ξ̃ 2),

sαh̄v f k ≈ K0

4π (1 − α)2
[−s(1 − α)h̄v f k]�2ξ̃ 2. (E8)

Solving the above self-consistent equations, we can approximately obtain


1 ≈ K0

4π (1 − α)2
E ln

E2

�2
+ K0ξ

2k2
c

8π (1 − α)2
E , 
2 ≈ − πK0

4π (1 − α)2
|E |, α ≈ 1

2
−
√

1

4
− K0

ξ 2k2
c

8π
. (E9)

Combining Eq. (E6) and Eq. (E9), the resulting self-energy function obtained from SCBA is


(ks, E ) ≈

⎧⎪⎨
⎪⎩

− 2π (1−α)2

K0
E − sαh̄v f k − i� e

− 2π (1−α)2

K0 , |E | � �0,

K0
4π (1−α)2 E ln E2

�2 + α
1−α

E − sαh̄v f k − i πK0
4π (1−α)2 |E |, |E | � �0,

(E10)

with

α = 1

2
−
√

1

4
− K0

ξ 2k2
c

8π
. (E11)

2. ξ � a

At this limit, Eq. (E2) is reduced as


(ks, E ) ≈ K0

4π (1 − α)2
{(E − 
̃)Ei[(E − 
̃)2ξ̃ 2] − s(1 − α)h̄v f k + s(1 − α)h̄v f k(E − 
̃)2ξ̃ 2Ei[(E − 
̃)2ξ̃ 2]}. (E12)

Then, for |E | � �0, Eq. (E12) can be further reduced as


1 + i
2 − sαh̄v f k ≈ K0

4π (1 − α)2
{(E − 
1)(2 + γ + 2 ln |
2ξ |) − i
2(γ + 2 ln |
2ξ |) − s(1 − α)h̄v f k}. (E13)

The above self-consistent equation can be separated into three parts corresponding to the 
1, i
2, and −sαh̄v f k parts in the
self-energy function,


1 ≈ K0

4π (1 − α)2
[(E − 
1)(γ + 2 ln |
2ξ |) + 2(E − 
1)], i
2 ≈ K0

4π (1 − α)2
(−i
2)(γ + 2 ln |
2ξ |),

−sαh̄v f k ≈ K0

4π (1 − α)2
[−s(1 − α)h̄v f k]. (E14)

Solving the above self-consistent equations, we can approximately obtain


1 ≈−2π (1 − α)2

K0
E , 
2 ≈ −

√
2(1 − α)h̄v f

ξ
e− 2π (1−α)2

K0 , α ≈ 1

2
−
√

1

4
− K0

4π
. (E15)

On the other hand, for |E | � �0, Eq. (E12) can be further reduced as


1 + i
2 − sαh̄v f k ≈ K0

4π (1 − α)2
{E (γ + 2 ln |Eξ |) − iπ |E | − i(2 + γ + 2 ln |Eξ |)
2 − s(1 − α)h̄v f k}. (E16)

Similarly, this self-consistent equation can be solved by separating into three parts:


1 ≈ K0

4π (1 − α)2
E (γ + 2 ln |Eξ |), i
2 ≈ K0

4π (1 − α)2
[−iπ |E | − i
2(2 + γ + 2 ln |Eξ |)],

sαh̄v f k ≈ K0

4π (1 − α)2
[−s(1 − α)h̄v f k]. (E17)

Solving the above self-consistent equations, we can approximately obtain


1 ≈ K0

4π (1 − α)2
E (γ + 2 ln |Eξ |), 
2 ≈ − πK0

4π (1 − α)2
|E |, α ≈ 1

2
−
√

1

4
− K0

4π
. (E18)
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Combining Eq. (E15) and Eq. (E18), the resulting self-energy function obtained from SCBA is


(ks, E ) ≈

⎧⎪⎨
⎪⎩

− 2π (1−α)2

K0
E − sαh̄v f k − i

√
2(1−α)h̄v f

ξ
e
− 2π (1−α)2

K0 , |E | � �0,

K0
4π (1−α)2 E (γ + 2 ln |Eξ |) + α

1−α
E − sαh̄v f k − i πK0

4π (1−α)2 |E |, |E | � �0,

(E19)

with

α = 1

2
−
√

1

4
− K0

4π
. (E20)

APPENDIX F: WILSON’S RENORMALIZATION GROUP

In the following, we perform a Wilson’s renormalization group calculation in the presence of the long-ranged Gaussian
potential.

a. Generating functional. At first, we expand the generating functional with cutoff prescription and disorder averaging. For
simplicity, we set sources η̄ = 0 and η = 0:

〈Z〉 =
〈∫

D[�̄,�]� exp

[
i
∫

dt d2x �̄x,t (i∂t + iv f ∇ · σ)�x,τ

]
exp

[
−i
∫

dt d2xV (x)�̄x,t�x,t

]〉

=
∫

D[�̄,�]� exp

[∫
dω

2π

d2k
(2π )2

�̄kω(iω − v f k · σ)�kω

]
1 + 1

2

∫
dτ dτ ′ d

2q d2k d2k′

(2π )6
K(q)�̄k,τ�k−q,τ �̄k′,τ ′�k′+q,τ ′

+ 1

8

∫
dτ1dτ2dτ3dτ4

d2q d2k1d2k2

(2π )6

d2q′d2k3d2k4

(2π )6
K(q)K(q′)�̄k1,τ1�k1−q,τ1�̄k2,τ2�k2+q,τ2�̄k3,τ3�k3−q′,τ3�̄k4,τ4�k4+q′,τ4

+ · · · . (F1)

Notice that there are three combinations of 〈V (x1)V (x2)〉〈V (x3)V (x4)〉. Here, we have transformed real time into imaginary time
through Wick’s rotation, it → τ , since it is convenient to use Matsubara Green’s functions in the following calculations.

b. Momentum shell decomposition. According to Wilson’s approach, we divide the field operators �̄(k) and �(k) into two
groups by a dimensionless variable b > 1,

�̄(k) =
{

�̄<(k), 0 � |k| < �/b,

�̄>(k), �/b � |k| < �,
�(k) =

{
�<(k), 0 � |k| < �/b,

�>(k), �/b � |k| < �.
(F2)

We replace the old �̄ and � with �̄< + �̄> and �< + �> and rewrite the generating functional as

〈Z〉 =
∫

D[�̄<,�<]eS0[�̄<,�<]

{∫
D[�̄>,�>]eS0[�̄>,�>]

}{
1 + 1

2

∫
dτ dτ ′ d

2q d2k d2k′

(2π )6
K(q)�̄<

k,τ�
<
k−q,τ�

<
k′+q,τ ′�̄

<
k′,τ ′

−
∫

dτ dτ ′ d2k
(2π )2

�̄<
k,τ�

<
k,τ ′

∫
d2 p

(2π )2
K(k − p)G>,0(p, τ − τ ′)

+ 1

2

∫
dτ1dτ2dτ3dτ4

d2q d2k d2k′

(2π )6
�̄<

k,τ1
�<

k−q,τ3
�̄<

k′,τ4
�<

k′+q,τ2

∫
d2 p

(2π )2
K(k − p)K(p + q − k)G>,0

p,τ1−τ3
G>,0

k′+q−k+p,τ4−τ2

+ 1

2

∫
dτ1dτ2dτ3dτ4

d2q d2k d2k′

(2π )6
�̄<

k,τ1
�<

k−q,τ4
�̄<

k′,τ2
�<

k′+q,τ3

∫
d2 p

(2π )2
K(k − p)K(p − k + q)G>,0

p,τ1−τ4
G>,0

k+k′−p,τ2−τ3

+
∫

dτ1dτ2dτ3dτ4
d2q d2k d2k′

(2π )6
�̄<

k,τ1
�<

k−q,τ1
�̄<

k′,τ4
�<

k′+q,τ3

∫
d2 p

(2π )2
K(q)K(k′ − p)G>,0

p,τ2−τ3
G>,0

p+q,τ4−τ2
+ · · ·

}
, (F3)

where S0[�̄<,�<] = ∫ dω
2π

d2k
(2π )2 �̄

<
k,ω(iω − v f k · σ )�<

k,ω is the unperturbed action in the momentum shell |k| < �/b,

S0[�̄>,�>] = ∫ dω
2π

d2k
(2π )2 �̄

>
k,ω(iω − v f k · σ)�>

k,ω is the unperturbed action in the momentum shell �/b < |k| < �, and

〈�̄>
1 �>

2 〉 =
∫

D[�̄>,�>]�>
1 �̄>

2 eS0[�̄>,�>]∫
D[�̄>,�>]eS0[�̄>,�>] = −G>,0

12 denotes the unperturbed correction function for the fields �̄> and �>. The four

terms containing the integral of G>,0 in the brace correspond in turn to the four one-loop RG diagrams shown in Fig. 2.
The diagram (a) is responsible for the renormalization of the energy and velocity, while others are for disorder coupling.
Additionally, diagram (a) has two degenerates due to the exchange τ ↔ τ ′. Diagrams (b) and (c) have four degenerates due
to the exchanges τ1 ↔ τ2 and (τ1, τ2) ↔ (τ3, τ4). Diagram (d) has eight degenerates due to the exchanges τ1 ↔ τ2, τ3 ↔ τ4,
and (τ1, τ2) ↔ (τ3, τ4).
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c. Corrections of the energy, momentum, and disorder coupling. According to Eq. (F3), we can get the corrections of the
energy, momentum, and disorder coupling after performing the integral over �̄>(�>). The corresponding four RG diagrams in
Fig. 2 are calculated one by one. When calculating the diagrams of the renormalization of disorder coupling, we assume that the
momenta of the external lines are zero:

I (a) = −
∫

[�/b,�]

d2 p
(2π )2

K(k − p)G0(p, ω)

= −K0(h̄v f )2
∫

[�/b,�]

d2 p
(2π )2

e− ξ2 |k−p|2
2

1

iω − h̄v f p · σ
= −K0(h̄v f )2

∫
[�/b,�]

d2 p
(2π )2

e− ξ2 |k−p|2
2

iω + h̄v f p · σ

ω2 + (h̄v f p)2

= K0(h̄v f )2

4π2

∫ π

−π

dθ

∫ �

�/b
p d p e− ξ2 (k2+p2−2kp cos θ )

2

[
iω

ω2 + (h̄v f p)2
+ h̄v f p cos θ

ω2 + (h̄v f p)2

k · σ

k

]

≈ K0

4π2

∫ π

−π

dθ

∫ �

�/b
d p e− ξ2 (k2+p2−2kp cos θ )

2

[
iω

p
+ cos θ

h̄v f k · σ

k

]

= K0

2π

∫ �

�/b
d p e− ξ2 (k2+p2 )

2

[
I0(kpξ 2)

iω

p
+ I1(kpξ 2)

h̄v f k · σ

k

]

≈
[(

1 − 1

b

)
K0

2π
e− ξ2�2

2

]
iω +

[(
1 − 1

b

)
K0ξ

2�2

4π
e− ξ2�2

2

]
h̄v f k · σ. (F4)

Here, we have assumed kξ � 1, and the modified Bessel functions are expanded as I0(x) = 1 + x2

4 + o(x3) and I1(x) = x
2 +

o(x3). Meanwhile, θ is the angle between the momenta k and p. The p · σ in the above derivation is transformed by

p · σ = p cos θpσx + p sin θpσy = p cos(θk + θ )σx + p sin(θk + θ )σy

→ p

k
[k cos θk cos θσx + k sin θk cos θσy]

= p

k
cos θk · σ,

(F5)

where the terms proportional to sin θ are omitted based on the parity analysis of the integral:

I (b) =
∫

[�/b,�]

d2 p
(2π )2

K(−p)K(p)G0(p, ω)G0(p, ω) = K2
0 (h̄v f )4

∫
[�/b,�]

d2 p
(2π )2

e−ξ 2 p2 1

iω − h̄v f p · σ

1

iω − h̄v f p · σ

= K2
0 (h̄v f )4

∫
[�/b,�]

d2 p
(2π )2

e−ξ 2 p2 (iω + h̄v f p · σ)2

[ω2 + (h̄v f p)2]2
≈
(

1 − 1

b

)
K2

0 (h̄v f )2

2π
e−ξ 2�2

, (F6)

I (c) =
∫

[�/b,�]

d2 p
(2π )2

K(−p)K(p)G0(p, ω)G0(−p, ω) = K2
0 (h̄v f )4

∫
[�/b,�]

d2 p
(2π )2

e−ξ 2 p2 1

iω − h̄v f p · σ

1

iω + h̄v f p · σ

= K2
0 (h̄v f )4

∫
[�/b,�]

d2 p
(2π )2

e−ξ 2 p2 (iω + h̄v f p · σ )(iω − h̄v f p · σ )

[ω2 + (h̄v f p)2]2
≈ −

(
1 − 1

b

)
K2

0 (h̄v f )2

2π
e−ξ 2�2

, (F7)

I (d ) =
∫

[�/b,�]

d2 p
(2π )2

K(0)K(−p)G0(p, ω)G0(p, ω) = K2
0 (h̄v f )4

∫
[�/b,�]

d2 p
(2π )2

e−ξ 2 p2/2 1

iω − h̄v f p · σ

1

iω − h̄v f p · σ

= K2
0 (h̄v f )4

∫
[�/b,�]

d2 p
(2π )2

e−ξ 2 p2/2 (iω + h̄v f p · σ)2

[ω2 + (h̄v f p)2]2
≈
(

1 − 1

b

)
K2

0 (h̄v f )2

2π
e− ξ2�2

2 , (F8)

where the results of RG diagrams (b) [I (b)] and (c) [I (c)] cancel each other out.
Plugging Eqs. (F4)–(F8) into Eq. (F3), therefore, we can get the effective generating functional in the shell |k| < �/b as

〈Z〉eff =
∫

D[�̄<,�<]eS0[�̄<,�<]

{
1 + 1

2

∫
dτ dτ ′ d

2q d2k d2k′

(2π )6
K(q)�̄<

k,τ�
<
k−q,τ�

<
k′+q,τ ′�̄

<
k′,τ ′

+
∫

dω

2π

d2k
(2π )2

�̄<
k,ω�<

k,ω(�E iω + αh̄v f k · σ ) + �K

∫
dτ1dτ2

d2q d2k d2k′

(2π )6
�̄<

k,τ1
�<

k−q,τ1
�̄<

k′,τ2
�<

k′+q,τ2

}
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≈
∫

D[�̄,�]�/b exp

{∫
dω

2π

d2k
(2π )2

�̄k,ω[(1 + �E )iω − (1 − α)h̄v f k · σ]�k,ω

+ 1

2

∫
dτ dτ ′ d

2q d2k d2k′

(2π )6
[K(q) + 2�K ]�̄k,τ�k−q,τ�k′+q,τ ′�̄k′,τ ′

}
, (F9)

with

�E =
(

1 − 1

b

)
K0

2π
e− ξ2�2

2 , α =
(

1 − 1

b

)
K0ξ

2�2

4π
e− ξ2�2

2 , �K =
(

1 − 1

b

)
K2

0 (h̄v f )2

2π
e− ξ2�2

2 . (F10)

The coefficient {∫ D[�̄>,�>]eS0[�̄>,�>]} is eliminated since it will be absorbed into the normalization of the generating function.
d. Renormalization group flow. Let us now rescale momenta and fields in the effective generating functional according to

k′ = bk, �̄ ′(� ′) = b−3/2�̄(�), (F11)

so that the momentum k′ is integrated over |k′| < �. The rescaling of fields is to keep the free propagator unchanged. The
rescaled effective generating functional is

〈Z〉eff =
∫

D[�̄ ′, � ′]� exp

{∫
dω

2π

d2k′

(2π )2
�̄ ′

k′,ω[b(1 + �E )iω − (1 − α)h̄v f k′ · σ]�k′,ω

+ 1

2

∫
dτ dτ ′ d

2q d2k d2k′

(2π )6
[K(q) + 2�K ]�̄<

k,τ�
<
k−q,τ�

<
k′+q,τ ′�̄

<
k′,τ ′

}
, (F12)

which gives the transformation laws of energy, velocity, and disorder,

E ′ = b(1 + �E )E = b

[
1 +

(
1 − 1

b

)
K0

2π
e− ξ2�2

2

]
E , v′

f = (1 − α)v f =
[

1 −
(

1 − 1

b

)
K0ξ

2�2

4π
e− ξ2�2

2

]
v f ,

K ′
0 = K0 +

(
1 − 1

b

)
K2

0

π
e− ξ2�2

2 ,

(F13)

where we only consider the leading term of disorder coupling K(q) → K0(h̄v f )2 and do the analytic continuation for energy,
iω → E + i0+.

Then we replace the renormalization parameter by b = edl ≈ 1 + dl , where dl is the running ultraviolet cutoff length. Thus
the one-loop renormalization group equations of the running energy Ẽ , velocity ṽ f , and disorder coupling K̃0 are given by

dẼ

dl
=
(

1 + K̃0

2π
e− �2ξ2

2

)
Ẽ ,

d ṽ f

dl
= − K̃0ξ

2�2

4π
e− ξ2�2

2 ṽ f ,
dK̃0

dl
= K̃2

0

π
e− �2ξ2

2 . (F14)

We can also express the result in the form of momentum space running with dl = −d ln �. This amounts to changing the sign
of the derivations and the RG equations are rewritten as

dẼ

d ln �
= −

(
1 + K̃0

2π
e− �2ξ2

2

)
Ẽ ,

d ṽ f

d ln �
= K̃0ξ

2�2

4π
e− ξ2�2

2 ṽ f ,
dK̃0

d ln �
= − K̃2

0

π
e− �2ξ2

2 . (F15)
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