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The Chern number is a crucial invariant for characterizing topological features of two-dimensional quantum
systems. The real-space Chern number allows us to extract topological properties of systems without involving
translational symmetry, and hence plays an important role in investigating topological systems with disorder or
impurity. On the other hand, the twisted boundary condition (TBC) can also be used to define the Chern number
in the absence of translational symmetry. Based on the perturbative nature of the TBC under appropriate gauges,
we derive the two real-space formulas of Chern number (namely, the noncommutative Chern number and the Bott
index formula), which are numerically confirmed for the Chern insulator and the quantum spin Hall insulator.
Our results not only establish the equivalence between the real-space and TBC formulas of the Chern number,
but also provide concrete and instructive examples for deriving the real-space topological invariant through the
twisted boundary condition.
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I. INTRODUCTION

Topological band theory has achieved great success in
characterizing the topological nature of quantum matters in
the past decades [1–4]. Beyond the well-known spontaneous
breaking theory, topological quantum states are classified by
intrinsic topological invariants [4,5]. In the context of band
theory, topological invariants are usually defined on the Bloch
manifold. A fascinating nature of topological quantum state is
that it is immune to perturbations, i.e., disorder and impurity,
provided that the spectral gap and the underlying symmetry
are preserved. However, the translational symmetry will be
broken in a spatially disordered system, invalidating the band
structure. In this situation, the topological band theory fails to
give the topological invariant in systems without translational
symmetry.

To characterize the topological nature in the presence of
disorder, one may use the twisted boundary condition (TBC)
to formulate topological invariants [6–11]. One of the promi-
nent features of the TBC is that it operates in real space. This
method works in quasiperiodic boundary condition and does
not require any translational symmetry. Physically, topologi-
cal invariants are closely related to the system’s response of
current to the external perturbation. The TBC is equivalent to
piercing magnetic flux through the system [7,12,13], which
results in adiabatic currents in the system [14]. Hence, one is
able to compute the corresponding response of current in the
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system to obtain the topological invariant, e.g., the quantum
Hall conductance [7,8,15] and polarization [6,9,16–18]. The
twist angle is related to the quasimomentum of the eigenstate
under certain gauge choice in disorder-free systems, connect-
ing the topological invariant defined through quasimomenta
and twist angles [19].

Recently, the real-space formula of topological invariant
draws many attentions. Unlike the momentum-space topo-
logical invariant that is defined on a Brillouin manifold, one
can construct topological invariants directly in real space, al-
lowing computation without translational symmetry. Roughly
speaking, the real-space formula of topological invariant
can be classified into two types: (i) the noncommutative
form [20–24] and (ii) the Bott index form [25–29]. In one-
dimensional (1D) topological insulators with chiral symmetry,
the winding number can be well expressed by these two
methods in real space [11,30]. Moreover, in 1D systems, they
are proved to be equivalent to the winding number defined
through the TBC in the thermodynamic limit, and hence
these two real-space formulas are also equivalent [11]. In
two-dimensional (2D) Chern insulators, the real-space Chern
number is also found to possess the noncommutative form
and the Bott index form. Both methods have been extensively
used in studying disorder effect to topological insulators.
However, it is still unclear whether the real-space formulas of
Chern number can be related to the Chern number defined via
the TBC.

In this paper, we show that the Chern number defined via
the TBC and the two real-space formulas (the noncommuta-
tive method and the Bott index method) are equivalent in the
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thermodynamic limit. The key point of the proof is to make
use of the perturbative nature of the twist angles in TBC and
expand operators and eigenstates up to the first order of θ j/Lj

with Lj being the number of cells in the j = x, y direction.
With the perturbative analysis, the Chern number defined via
TBC is reduced to the real-space formulas of Chern num-
ber. This provides a useful approach to attain the real-space
formula of topological invariants. We also show that the real-
space formula of the spin Chern number in quantum spin
Hall (QSH) insulator can be also derived from a generalized
TBC. By imposing different generalized TBCs, one can attain
different real-space formulas. In addition, we note that the
Berry curvature defined via TBC becomes constant in the
thermodynamic limit and away from the phase boundary. In
finite systems, the flatness of the Berry curvature will affect
the accuracy of the noncommutative method, while the Bott
index method is immune to the nonflat effects. To verify our
arguments, we present numerical calculations for the Haldane
model and the Kane-Mele model. We compute the flatness of
Berry curvature defined via TBC, and show that it tends to
be a constant in the thermodynamic limit except for the phase
transition point. We also numerically verify the equivalence of
Chern number given by noncommutative method and the Bott
index method.

The rest of this paper is organized as follows: In Sec. II,
we briefly introduce the Chern number defined via the TBC.
We consider a noninteracting system and target gapped eigen-
states. In Sec. III, we perform numerical calculations for
the Haldane model and Kane-Mele model to verify our ar-
guments, including the flatness of Berry curvature and the
calculation of Chern number in real space. In Sec. IV, we
briefly summarize and discuss the results.

II. CHERN NUMBER: FROM
TWISTED-BOUNDARY-CONDITION TO REAL-SPACE

FORMULAS

A. Chern number defined via twisted boundary condition

In this section, we introduce the TBC and the Chern num-
ber defined through TBC. Under the TBC, the lattice’s edges
are “glued” together pairwise as a 2D torus, just like the pe-
riodic boundary condition (PBC). The core is that we enforce
particles to gain an extra phase θ after they tunnel through
the boundary, as demonstrated in Fig. 1(a). Apparently, θ = 0
corresponds exactly to the PBC.

Next, we consider a noninteracting 2D system under
TBC. The system’s Hamiltonian satisfies Ĥ (θx + 2π, θy) =
Ĥ (θx, θy + 2π ) = Ĥ (θx, θy). Then, we target a set of single-
particle eigenstates that are gapped to other eigenstates. Note
that, if translation symmetry is preserved, these eigenstates
correspond to gapped bands. For simplicity, we collect these
eigenstates and introduce the following notation:

�θ = (|ψ1(θ)〉 |ψ2(θ)〉 . . . |ψN (θ)〉), (1)

where |ψμ(θ)〉 is the μth eigenstate of the Hamiltonian under
TBC, and N is the total number of these targeted states.
There is �†

θ
�θ = IN with IN being the N × N identity

matrix, and the projector of this subspace can be expressed
as �θ�

†
θ

= ∑
μ |ψμ(θ)〉〈ψμ(θ)|. These targeted states are

FIG. 1. Schematic illustration of the TBC in a 2D simple lattice.
In both configurations, edges are glued together in the same manner
as the periodic boundary condition. (a) A general form of the TBC.
The gauge field only appears at the boundary, and the particle gains
extra phase when it tunnels through the boundary, as indicated by
color arrows. (b) Transformed from (a) via a large gauge transforma-
tion. The gauge field distributes uniformly throughout the bulk, and
the field strength is diluted.

assumed to remain gapped for θx, θy ∈ [0, 2π ], which is true
in the thermodynamic limit. The Chern number of these
targeted states can be expressed through the twist angles
(θx, θy) [8]:

CTBC = 1

2π

∫ 2π

0

∫ 2π

0
Tr[F (θ)]d2θ, (2)

in which F (θ) is the non-Abelian Berry curvature

F (θ) = ∂θxAy(θ) − ∂θyAx(θ) + [Ax(θ),Ay(θ)],

A j (θ) = −i�†
θ
∂θ j �θ, j = x, y. (3)

Note that A j (θ) is an N × N matrix. The minus sign in
A j (θ) is related to the sign of twist angles defined in the
TBC. Equation (2) can well capture the topological property
(quantum Hall conductance) of the system [8].

Alternatively, by introducing the projector that projects
onto the targeted states P̂θ = �θ�

†
θ
, the Chern number can be

equivalently expressed as [31]

CTBC = 1

2π i

∫ 2π

0

∫ 2π

0
Tr
(
P̂θ

[
∂θx P̂θ, ∂θy P̂θ

])
d2θ. (4)

Given that the targeted states are gapped, the projector will
finally return to itself after the twist angle changes 2π , that is,
P̂θ+2π ê j = P̂θ , with e j the unit vector along j = x, y direction.
In other words, the projector is a periodic function of twist
angles.

B. Large gauge transformation and uniform gauge

Under the TBC, the extra phase gained by particle at the
boundary can be regarded as a result of gauge field, and there-
fore there exists gauge freedom. It is beneficial to transform
the gauge field at the boundary to a uniformly distributed
gauge field throughout the whole system. By introducing the
twist operator [32,33]

Ûθ = exp

(
i
θx

Lx
r̂x + i

θy

Ly
r̂y

)
, (5)

where r̂ j = ∑
r r j n̂r is the position operator in the j = x, y

direction, we can bring the original system under TBC to a
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unitarily equivalent system via the large gauge transformation

H̃ (θ) = ÛθĤ (θ)Û −1
θ . (6)

Here, H̃ (θ) indicates the transformed Hamiltonian. The two
unitarily equivalent systems are illustrated in Fig. 1. To dis-
tinguish these two gauges, we use the tilde notation to stress
that the operator (eigenstate) is under the gauge that the twist
angles uniformly distribute. For convenience, we will call this
gauge the uniform gauge, while the original TBC is called
boundary gauge. In this case, the Chern number can still be
written as the same form

C̃TBC = 1

2π

∫ 2π

0

∫ 2π

0
Tr[F̃ (θ)]d2θ, (7)

and

F̃ (θ) = ∂θxÃy(θ) − ∂θyÃx(θ) + [Ãx(θ), Ãy(θ)],

Ã j (θ) = −i�̃
†
θ∂θ j �̃θ, j = x, y. (8)

Note that �̃θ = Ûθ�θ . It can be proved that Eqs. (3) and (8)
are equivalent: C̃TBC = CTBC (see the proof in Appendix A).
Similar to Eq. (4), we can formulate the Chern number
through the projector P̃θ = �̃θ�̃

†
θ ,

C̃TBC = 1

2π i

∫ 2π

0

∫ 2π

0
Tr
(
P̃θ

[
∂θx P̃θ, ∂θy P̃θ

])
d2θ, (9)

in which the projector satisfies

P̃θ = ÛθP̂θÛ
−1
θ . (10)

In the transformed Hamiltonian (6), the twist angle θ is trans-
formed to distribute in all tunneling terms of the system.
Particles gain a “diluted” phase factor during the tunneling
process, that is,

Ûθ ĉ†
r+dcrÛ

−1
θ = e

i
(

θx
Lx

dx+ θy
Ly

dy

)
ĉ†

r+dcr. (11)

When the tunneling range is finite dx,y � Lx,y, the twist angle
appears as θ j/Lj, j = x, y, which can be considered as a
perturbation. Hence, it is desirable to expand operators or
eigenstates up to the first order of 1/Lj for sufficiently large
system away from the critical point. This also explains why
the gapped eigenstate will remain gapped for arbitrary θx,y in
the thermodynamic limit Lx,y → ∞, as the energy gap is only
weakly perturbed. In the next subsections, we shall make use
of the perturbative nature of the twist angle to derive the two
real-space formulas of the Chern number.

C. Real-space Chern number via noncommutative method

In this subsection, we derive the the noncommutative real-
space formula of the Chern number. This formula is first
proposed in Refs. [20,23], which is based on the momentum-
space formula of the Chern number [34]

C = 1

2π i

∫
BZ

Tr
{
P̂ (k)

[
∂kx P̂ (k), ∂ky P̂ (k)

]}
d2k, (12)

where P̂ (k) = ∑
n∈occ. |un

k〉〈un
k| is the projector onto Bloch

states of occupied bands with momentum k. To derive the
real-space formula, their idea is to transform the partial deriva-
tive and the integral in Brillouin zone to real space [20,23],

which leads to the following noncommutative form of Chern
number:

C = −2π i
∑

α

〈r0, α|P̂[[r̂x, P̂], [r̂y, P̂]]|r0, α〉, (13)

where P̂ is the projector onto eigenstates in occupied bands,
and |r0, α〉 is the real-space basis denoting the cell at r0 and α

is the label of internal orbits within the cell. This formula has
been successfully applied to various systems [20,35,36].

Next, we would like to show that the noncommutative
Chern number can be equivalently derived through the TBC
Chern number [Eq. (9)]. For this purpose, we will make use
of the perturbative nature of the twist angle under the uniform
gauge. First, we expand the projector in terms of θ j/Lj up to
the first order near θ = 0:

P̃θ = P̂ + θx

Lx

∂P̃θ

∂ (θx/Lx )

∣∣∣∣
θ=0

+ θy

Ly

∂P̃θ

∂
(
θy/Ly

) ∣∣∣∣∣
θ=0

+ O

(
1

Lx
2 + 1

Ly
2

)
, (14)

where we use the fact that P̂ = P̃θ=0 since θ = 0 corresponds
to general systems under PBC. Substituting Eq. (14) into (9)
and keeping up to the leading order leads to

P̃θ

[
∂θx P̃θ, ∂θy P̃θ

] ≈ P̂
[ (

∂θx P̃θ

)∣∣
θ=0,

(
∂θy P̃θ

)∣∣
θ=0

]
(15)

which is independent on the twist angle. This fact implies that
the trace of the Berry curvature defined through TBC should
be also independent on the twist angle Tr[F̃ (θ)] ≈ constant in
the thermodynamic limit Lx, Ly → ∞. We shall examine this
point in Sec. III.

Since the trace of the Berry curvature is a constant for
sufficiently large systems, the Chern number [Eq. (9)] can be
approximated without implementing integrations [37]:

C̃TBC ≈ −2π i Tr
(
P̂
[ (

∂θx P̃θ

)∣∣
θ=0,

(
∂θy P̃θ

)∣∣
θ=0

])
. (16)

Next, we let θx = 2π, θy = 0, which maintains the perturba-
tive condition since 2π/Lx � 1. According to Eq. (10), we
find the following useful relation:

P̃(2π,0) = P̂ + 2π

Lx

∂P̃θ

∂ (θx/Lx )

∣∣∣∣
θ=0

+ O

(
1

Lx
2

)
(17)

= Û x
2π P̂

(
Û x

2π

)−1
,

where we introduce the twist operator along single direction
Û j

θ j
≡ exp(iθ j r̂ j/Lj ), j = x, y, for simplicity. A similar result

can be obtained by letting θx = 0, θy = 2π . Up to the first
order of 1/Lj, j = x, y, Eq. (17) provides a very convenient
approach to approximate the partial derivative with respect to
the twist angle:

2π

Lj

∂P̃θ

∂ (θ j/Lj )

∣∣∣∣
θ=0

= 2π
∂P̃θ

∂θ j

∣∣∣∣
θ=0

≈ P̃2πe j − P̃

= Û j
2π P̂

(
Û j

2π

)−1 − P̂. (18)
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Furthermore, by using the Baker-Campbell-Hausdorff for-
mula, we have

e
i 2π

L j
r̂ j P̂e

−i 2π
L j

r̂ j = P̂ + i
2π

Lj
[r̂ j, P̂] + O

(
1

Lj
2

)
, (19)

and therefore the partial derivative of the projector can be
further written as

∂P̃θ

∂θ j

∣∣∣∣
θ=0

≈ i

L j
[r̂ j, P̃], j = x, y. (20)

By combining Eqs. (9), (15), and (20), we consequently obtain
the following real-space form of the Chern number:

C̃TBC ≈ 2π i

LxLy
Tr(P̂[[r̂x, P̂], [r̂y, P̂]])

= 2π i

LxLy

∑
r,α

〈r, α|P̂[[r̂x, P̂], [r̂y, P̂]]|r, α〉. (21)

It can be found that this formula is quite similar to the non-
commutative Chern number [Eq. (13)] proposed before (up
to a minus sign, depending on the convention of the coor-
dinate). A minor difference is that Eq. (13) performs trace
only within a single cell, while Eq. (21) traces for all cells
and then averages them. For clean systems with translation
symmetry, one can easily deduce that these two approaches
are well consistent. As for disordered system, they are also
consistent if we average over many random realizations. If the
system is inhomogeneous, i.e., a harmonic trap is imposed, it
is more reasonable to consider an average over all sites. We
also point out that the approximation in Eq. (18) is relatively
rough in finite systems. One can use a higher-order finite-
difference method to gain a more accurate result (see details
in Appendix B).

D. Real-space Chern number via Bott index method

In this section, we derive the Bott index form of the real-
space Chern number through the TBC. The Bott index form
of the Chern number is proposed to efficiently calculate the
intrinsic topological nature in real space [25–29,38], and has
been applied widely in various systems [39–44]. It is pointed
out that the Bott index is equivalent to the quantum Hall
conductance [45]. The Bott index is considered as a winding
number index of matrices that almost represents the disk or
annulus [27,45]. For Chern insulators, the Bott index reads as

Bott(Ux,Uy) = 1

2π i
tr[log(UxUyUx

†Uy
†)], (22)

where U j = �†Û j
2π�, j = x, y. Here, the notation “tr(. . . )”

means the trace operation of the matrix, which implies the
trace in the subspace spanned by targeted states.

Next, we show that the Bott index Chern number can be de-
rived from the Chern number defined through TBC [Eq. (7)].
The idea is also to use the perturbative nature of the twist
angle. However, to derive a Bott index form, we shall take
another route. First, it can be proved that the Chern number
can be written as a winding of Berry phase (line integral) [31]

C̃TBC = 1

2π

∫ 2π

0
dθx

∂

∂θx
φ

y
Berry(θx ) (23)

in which

φ
y
Berry(θx ) =

∫ 2π

0
dθy tr[Ãy(θ)] (24)

is the Berry phase along the y direction. Using the perturbative
nature of the twist angle, one can obtain the Berry phase in real
space via the following expression [19]:

φ
y
Berry(θx ) = −i tr

[
exp

(∫ 2π

0
Ãx(θ)dθy

)]
≈ −i tr

{
log

[
�̃

†
(θx,0)�̃(θx,2π )

]}
= −i tr

{
log

[
�†

(θx,0)Û
y
2π�(θx,0)

]}
, (25)

where we have used the fact that �̃(θx,2π ) = Û y
2π �̃(θx,0). The

above formula can be equivalently formulated via the pro-
jected position operator P̂y(θx ) ≡ P̃(θx,0)Û

y
2π P̃(θx,0) such that

φBerry(θx ) ≈ −i Tr[log(P̂y(θx ))]. (26)

By differentiating Eq. (26) with respect to the twist angle θx,
we find (see detailed derivation in Appendix D)

∂

∂θx
φBerry(θx ) = −i Tr

[
P̂y(θx )† ∂

∂θx
P̂y(θx )

]
. (27)

Together with Eq. (23), one may find the Chern number is the
winding number of projected position operator.

Next, we further treat the twist angle θx/Lx as a perturba-
tion term, and expand the projected position operator P̂y(θx )
up to the first order

P̂y(θx ) = P̂y(0) + θx

[
∂

∂θx
P̂y(θx )

]
θx=0

+ O

(
1

Lx
2

)
. (28)

This fact means, up to the first order of 1/Lx, the Berry
phase (polarization) along the y direction is a linear function
of θx, which is consistent with previous studies [46–48]. By
substituting the expansion in Eq. (28) into Eq. (26) and inte-
grating the twist angle θx, we find the Chern number can be
approximated to

C̃TBC = −i Tr

{
P̂y(0)†

[
∂

∂θx
P̂y(θx )

]
θx=0

}
+ O

(
1

Lx
2

)
. (29)

Then, we can make use of the approximation

P̂y(2π ) − P̂y(0) ≈ 2π

[
∂

∂θx
P̂y(θx )

]
θx=0

, (30)

and then approximately we have

C̃TBC ≈ 1

2π i
Tr[P̂y(0)†P̂y(2π ) − P̂y(0)†P̂y(0)]. (31)

To obtain the Bott index form, we convert the trace operation
(Tr) to the matrix trace (tr) in the subspace spanned by the
targeted states

Tr[P̂y(0)†P̂y(2π ) − P̂y(0)†P̂y(0)]

= tr(Uy
†UxUyU†

x − Uy
†Uy). (32)

In Eq. (32), we have used the fact that P̂y(2π ) =
Û x

2π P̂y(0)(Û x
2π )−1 and [Û x

2π , Û y
2π ] = 0. For gapped targeted

states, matrices Ux,y are quasiunitary Uy
†Uy ≈ IN (see proof

174204-4



CALCULATIONS OF THE CHERN NUMBER: EQUIVALENCE … PHYSICAL REVIEW B 108, 174204 (2023)

in Appendix C), in which IN is the N × N identity matrix
in the subspace spanned by the targeted states. In practical
calculations with finite length, one can perform the singular
value decomposition (SVD) for these two matrices: Ux,y =
U�V −1, in which U ,V ∈ U(N ) are unitary matrices, and �

is a diagonal matrix. The singular values are nonzero and close
to identity as long as the targeted states are gapped. Then, one
can enforce all singularity to be identity � = IN , and then
the unitarity of the matrix can be guaranteed: Ux,y = UV −1 ∈
U(N ). Finally, given that Uy

†UxUyU†
x is close to the identity

matrix, we can utilize the matrix logarithm and approximate
Eq. (31) as

C̃TBC = 1

2π i
tr[log(Uy

†UxUyUx
†)], (33)

which is consistent with Eq. (22). Note that the order of these
matrices can be circularly permuted in 32 due to the trace
operation. The derivation is quite similar to the real-space
representation of the winding number in Ref. [11]. Owing
to the unitarity of the matrices Ux,y, one can conclude that
det(Uy

†UxUyU†
x ) ∈ R, and therefore the Chern number (Bott

index) here should be strictly an integer.

E. Real-space formulas of the spin Chern number in quantum
spin Hall insulator

In this subsection, we focus on the QSH insulator [49,50]
and derive the corresponding real-space topological invari-
ant. Unlike the Chern insulator, the QSH insulator obeys the
time-reversal symmetry, resulting in a vanishing total Chern
number for the gapped band. Generally speaking, the QSH
insulator cannot be classified using the conventional Chern
number approach. However, in Ref. [51], Kane and Mele
demonstrate that it can be classified by a Z2 quantity instead.
For a spin- 1

2 system with well conserved sz, one can faithfully
define a spin Chern number. In this case, the QSH insulator
can be simply seen as a two copies of Chern insulators that
preserve the time-reversal symmetry. The spin Chern number
can be easily computed in the two different spin sectors in
momentum space.

When the conservation of sz is violated, the two spin
sectors become mixed and a well-defined formula for com-
puting the spin Chern number in momentum space is not
readily available. However, the topological property of the
QSH insulator should remain as long as the spectral gap is
not closed. To properly capture the topological invariant of
QSH insulators, one of the effective methods is to split the
projector onto the occupied band into two sectors: P̂ (k) =
P̂+(k) ⊕ P̂−(k) [21,22]. Subsequently, the Chern number can
be computed in each sector using Eq. (12) individually. With
this approach, one can derive the real-space formula of the
spin Chern number for QSH as the Chern insulator, including
the noncommutative method [21,22]:

C± = −2π i
∑

α

〈r0, α|P̂±[[r̂x, P̂±], [r̂y, P̂±]]|r0, α〉, (34)

where P̂± is the spectral projector onto the sector with pos-
itive (+) or negative (−) eigenvalues of P̂σ̂zP̂. The Bott
index method can be also constructed through this spectral

decomposition [41,42]:

C± = 1

2π i
{tr[log(V y

±V x
±V y

±
†V x

±
†)]}, (35)

with V j
± = P̂±ei 2π

L r̂ j P̂± + (I − P̂±), j = x, y. The spin Chern
number is then identified as Cs = (C+ − C−)/2.

On the other hand, it is still possible to define a generalized
TBC for the spinful system [21,52]:

ĉ†
ri

tri j ĉ j →
{

ĉ†
ri

tri j e
iθx
x ĉr j

ĉ†
ri

tri j e
iθy
y ĉr j

, r j → ri across boundary (36)

in which ĉ†
r j

= (ĉ†
↑,r j

, ĉ†
↓,r j

), ti j is 2 × 2 tunneling matrix, θx,y

are twist angles, and 
x,y are 2 × 2 matrices called internal
generators. Such kind of boundary condition is a generaliza-
tion from the conventional TBC mentioned above. Then, one
can use the TBC formula of Chern number to compute the
spin Chern number:

Cs = 1

4π

∫ 2π

0

∫ 2π

0
Tr[F (θ)]d2θ, (37)

in which there is an extra 1
2 factor compared to the general for-

mula of Chern number in Eq. (2). Similarly, we can introduce
the generalized twist operator

Û 

θ = exp

(
i
θx

Lx

∑
r

rxĉ†
r 
xĉr + i

θy

Ly

∑
r

ryĉ†
r 
yĉr

)
(38)

to transform the boundary term to the bulk

H̃ (θ) = Û 

θ Ĥ (θ)

(
Û 


θ

)−1
. (39)

According to Ref. [52], we can choose 
x = Ŝ and 
y = 1
with Ŝ being the spin operator. In this case, the system obeys
the general TBC along the y direction, and the generalized
TBC along the x direction. If the system has conserved spin
S, then Eq. (39) will lead to a uniformly distributed gauge
field (twist angle). When S is not conserved, the gauge field
is not uniform in the x direction. More precisely, the tunnel-
ing matrix will be slightly rotated along the x direction (see
Appendix E for details). However, as long as the tunneling of
particles is finite range, the gauge field can still be treated as a
perturbation.

Following the same route in Sec. II, we can replace the
position operator by a generalized position operator along x:

r̂x → r̂

x ≡

∑
r

rxĉ†
r
xĉr, (40)

and we leave the y direction unchanged. Then, we can obtain
the noncommutative formula of the spin Chern number:

Cs = π i

LxLy

∑
r,α

〈r, α|P̂[[r̂

x , P̂

]
, [r̂y, P̂]

]|r, α〉 (41)

and the Bott index form

Cs = 1

4π i
tr
[
log

(
Uy

†U

x UyU


x
†)]

, (42)

with U

x = �† exp(i 2π

Lx
r̂


x )�. It can be noted that these two
formulas are slightly different from those in Eqs. (34) and
(39). In fact, the choice of the generalized TBC is not unique.
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For example, Refs. [53,54] introduce the concept of Chern
number matrix based on the TBC. This will also allow us to
establish a real-space formula of the Chern number matrix.
For spin- 1

2 QSH insulator, the twist angles, dubbed θσ
x,y, σ =↑

,↓, are addressed respectively to the two spinful particles
when they tunnel through the boundary. This allows one to
define the 2 × 2 Chern number matrix [54,55]:

Cσ,σ ′ = 1

2π i

∫ 2π

0

∫ 2π

0
Tr
(
P̂θ

[
∂θσ

x
P̂θ, ∂θσ ′

y
P̂θ

])
dθσ

x dθσ ′
y , (43)

and the TBC spin Chern number can be obtained via [54]

Cs = 1

2

∑
σ,σ ′

sgn(σ )Cσ,σ ′ , (44)

where we denote sgn(σ ) = +1 if σ =↑ and vice versa. The
Chern number matrix method has been proven valid [54–56].

Equation (43) allows us to follow the strategy in Sec. II
to derive the real-space formula of the spin Chern number.
Without loss of generality, we shall consider a spin- 1

2 system
below. First, we need to introduce position operators in each
spin sector: r̂σ

j = ∑
r r j n̂σ

r , j = x, y; σ =↑,↓, and the associ-
ated twist operator along j = x, y direction:

Û j,σ
θσ

j
= exp

(
i
θσ

j

L j
r̂σ

j

)
. (45)

Under the large gauge transformation, which is similar to
Eq. (39) with this twist operator, one can also transform the
gauge field at the boundary to the bulk. Although such kind
of transformation can not make the gauge field distributed
uniformly, particles will only feel a slowly changing gauge
field, and the change rate is in the order of 1/Lx,y. Hence, the
perturbative analysis in Sec. II B can be applied. With some
similar calculations, the real-space version of the spin Chern
number matrix reads as

Cσ,σ ′ = π i

LxLy

∑
r,α

〈r, α|P̂[[r̂σ
x , P̂

]
,
[
r̂σ ′

y , P̂
]]|r, α〉 (46)

and

Cσ,σ ′ = 1

4π i
tr
[

log
(
Uσ ′

y
†Uσ

x UyUσ ′
x

†)]
, (47)

Uσ
j = �† exp(i 2π

L j
r̂σ

j )�, j = x, y; σ =↑,↓.

III. NUMERICAL VERIFICATIONS IN THE HALDANE
MODEL AND THE KANE-MELE MODEL

In this section, we present some numerical calculations to
verify our results, including the flatness of the Berry curva-
ture defined through TBC and applications of the two real-
space formulas of the Chern number. We shall use the Haldane
model to verfiy our result for the Chern insulator, and use the
Kane-Mele model for the QSH insulator.

A. The Haldane model

Here, we consider the celebrated Haldane model [57],
which realizes the Chern insulator without requiring net
magnetic field. The Haldane model has been experimen-
tally simulated via ultracold atom platform [58,59]. The

FIG. 2. (a) Schematic illustration of the tunneling relations
within a single hexagon in Haldane model and (b) the typical band
structure. The lattice constant is set to unity for convenience.

Hamiltonian of Haldane model reads as

Ĥ0 = −
∑
〈r,r′〉

t1ĉ†
r ĉr′ −

∑
〈〈r,r′〉〉

t2ei�r,r′ ĉ†
r ĉr′ + H.c.

+�0

2

∑
r

ξrĉ
†
r ĉr′ (48)

in which t1 is the nearest-neighbor (NN) tunneling strength,
t2 is the next-nearest-neighbor (NNN) tunneling strength, and
�r,r′ is the gauge field addressed to the NNN tunneling, as
demonstrated in Fig. 2, and ξr = ±1 is the energy bias for the
two sublattices. Here 〈r, r′〉 and 〈〈r, r′〉〉, respectively, repre-
sent the NN sites and NNN sites.

The phase diagram of the system under PBC is computed
through the two real-space formulas, as shown in Fig. 3. The
noncommutative method produces relatively smooth results
near the phase boundary, while the Bott index method presents
a sharp boundary due to the quantized nature. The phase
boundary of the noncommutative method is expected to be
sharp in the thermodynamic limit. Both two real-space for-
mulas can well capture the topological property of the Chern
insulator.

1. Flatness of the Berry curvature

In Sec. II B, we have shown that the trace of non-Abelian
Berry curvature defined through the TBC should tend to be a
constant in the thermodynamic limit. The flat Berry curvature
allows us to compute the Chern number without integration,

FIG. 3. Phase diagram of the Haldane model. Panels (a) and
(b) are, respectively, computed via the noncommutative method
[Eq. (21)] and the Bott index method [Eq. (33)]. The system’s size is
chosen as Lx = Ly = 11. Other parameters: t1 = 1, t2 = 0.2.

174204-6



CALCULATIONS OF THE CHERN NUMBER: EQUIVALENCE … PHYSICAL REVIEW B 108, 174204 (2023)

which is important to derive the real-space Chern number. In
this subsection, we shall verify this point numerically.

To compute the Berry curvature numerically through TBC,
one should discretize the twist angle and use appropriate nu-
merical method. Generally, one can adopt the link variable
method [60]

Tr[F̃ (θ)]δθxδθy = ln det
[
�̃

†
(θx,θy )�̃(θx+δθx,θy )

]
+ ln det

[
�̃

†
(θx+δθx,θy )�̃(θx+δθx,θy+δθy )

]
+ ln det

[
�̃

†
(θx+δθx,θy+δθy )�̃(θx,θy+δθy )

]
+ ln det

[
�̃

†
(θx,θy+δθy )�̃(θx,θy )

]
, (49)

which produces a gauge-invariant result.
Alternatively, based on Eq. (9), one can use the finite-

difference method to approximate the partial derivative

∂θ j P̃θ ≈ P̃θ+δθ j − P̃θ

|δθ j | , j = x, y (50)

and then we have

Tr[F̃ (θ)] ≈ Tr

{
P̃θ

[
P̃θ+δθx − P̃θ

|δθx| ,
P̃θ+δθy − P̃θ

|δθy|

]}
. (51)

It should be noted that the projector P̃θ is gauge invariant, and
therefore Eq. (51) is gauge invariant as well.

We then numerically compute the Berry curvature using
these two methods, as shown in Figs. 4(a) and 4(b). As ex-
pected, the Berry curvature defined through the TBC is very
flat. By summing over all discretized terms, one will obtain
the Chern number. It can be seen that the link variable method
[Eq. (49)] strictly gives a integer Chern number, which is
accurate, while the finite-difference method [Eq. (51)] only
produces a Chern number close to integer. The deviation in the
finite-difference numerical method is brought by finite grid
points.

According to the perturbative expansion in Eq. (15), the
Berry curvature (after tracing) is expected to be a constant in
the thermodynamic limit. Next, we examine the flatness of the
Berry curvature under different system sizes. We define the
following quantity to reflect the degree of flatness:

f = max{Tr[F̃ (θ)]} − min{Tr[F̃ (θ)]}. (52)

The numerical results are shown in Fig. 4(c). It can be ob-
served that the flatness of the Berry curvature tends to zero
when L → ∞, which is in accordance with our argument.

We then further investigate the flatness of the TBC Berry
curvature across topological phase boundary. As illustrated in
Fig. 4(d), the flatness remains nearly unchanged for various
parameter values except at the phase point. Near the phase
boundary, the TBC berry curvature strongly fluctuates. This
observation aligns with our findings, where we demonstrate
that the flatness of the Berry curvature solely relies on the
system’s size. Near the phase boundary, the spectral gap is
extremely small, and the perturbative expansion with respect
to twist angles up to the first order loses accuracy here, which
explains why the flatness becomes parameter dependent in
this regime.

FIG. 4. Numerical computation of the Berry curvature defined
through the TBC [Eq. (8)] with t2/t1 = 0.5. The Chern number is ob-
tained by summing the Berry curvature C = 1

2π

∑
θ Tr[F̃ (θ)]δθxδθy.

We have used two different numerical methods to compute the Berry
curvature: (a) the link variable method [Eq. (49)], and (b) the finite-
difference method [Eq. (51)] with 30 × 30 grid points. (c) Scaling of
the flatness of Berry curvature [Eq. (52)] under different system sizes
Lx = Ly = L. (d) Flatness versus the different sublattice bias energy
�/t1 crossing the phase boundary with t2/t1 = 0.2. The topologi-
cal phase transition occurs at �0/t1 ≈ 2 here. The system’s size is
chosen as Lx = Ly = 11. Other parameters are set to t1 = 1, � =
π/2.

2. Real-space Chern number in finite systems

In Sec. II B, we have seen that the real-space Chern num-
ber is based on the flatness of the Berry curvature defined
through TBC. Nevertheless, the flat Berry curvature is only
true in the thermodynamic limit. In finite systems, the Berry
curvature may be dependent on twist angle, and therefore the
real-space Chern number may deviate from the correct result.
To see this effect, we compute the Chern number using the
real-space formulas [Eqs. (21) and (33)] with different sys-
tem sizes. For finite systems, we follow the idea proposed in
Refs. [20,23] to better approximate the finite difference of P̃θ

for the noncommutative Chern number. Detailed illustration
of this higher-order finite-difference method is presented in
Appendix B. Numerical results are shown in Fig. 5. It can
be seen that both methods tend to produce an integer number
when L → ∞.

It can be observed that the noncommutative method
[Eq. (21)] is strongly affected by the system’s size. This is
because the noncommutative method relies on the flatness of
Berrry curvature. In Eq. (16), we only keep up to the linear
terms of 1/Lj , and regard the Berry curvature as a constant.
Higher-order terms become considerable in finite systems,
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FIG. 5. Chern number as a function of system size calculated
through the two real-space formulas. Other parameters are set to
t1 = 1, t2 = 0.5, �0 = 0, and � = π/2.

and the Berry curvature is not necessarily a constant, as
already shown in the previous subsection. To gain more ac-
curate results through this method, one may take into account
higher terms in the expansion of the projector P̃θ , or increase
the system’s size.

On the other hand, it is surprising to observe that the Bott
index method presents a very exact result C = 1 even for small
size. In other words, the nonflatness of the Berry curvature
will not affect the result of the Bott index. In fact, the Bott
index in Eq. (33) is approximately related to the following
path integral:

Uy
†UxUyUx

† ≈ exp

(∮
D
Ã(θ) · dθ

)
, (53)

where Ã(θ) = (Ãx(θ), Ãy(θ)), and D : (0, 0) →
(0,−2π ) → (2π,−2π ) → (2π, 0) → (0, 0) is a closed
path in (θx, θy) plane. With Stokes theorem, this integral is
equivalent to the sum of the Berry curvature in Eq. (49), as
depicted in Fig. 6. This means the Berry curvature is not
necessarily flat when applying the Bott index method to
calculate the Chern number in real space. In addition, one
may recall that the Stokes theorem fails when Chern number
is nonzero in topological band theory. This is because one
can not find a globally smooth gauge for the Bloch state on
the Brillouin manifold if the Chern number is nonzero. Here,
we instead consider gapped states �θ parametrized by twist
angle and use the non-Abelian form of the Berry connection.
There is no obstruction in applying the Stokes theorem, which

FIG. 6. The integral of Berry connection (indicated by blue
arrows) defined through the TBC along the closed path D is equiv-
alent to the sum of integral in each small plaquette on the (θx, θy )
plane.

FIG. 7. Numerical computations of the real-space Chern num-
ber as a function of disorder strength W on a Lx × Ly = 30 × 30
system. Gray points are from each random realization, while circles
are the averaged results. We have performed computations over 500
random realizations. The error bar represents the standard deviations
of Chern numbers among these random realizations. Other parame-
ters are set to t1 = 1, t2 = 0.5, �0 = 0, � = π/2.

explains why the Bott index produces an exactly quantized
Chern number.

3. Chern number in the presence of disorder

As mentioned in previous sections, the real-space formula
allows us to compute the Chern number without requiring the
translation symmetry. To examine this fact, we consider onsite
energy disorder on each site in the Haldane model,

Ĥ = Ĥ0 + W
∑

r

εrn̂r, (54)

where W is the strength of the disorder, and εr ∈ [−0.5, 0.5]
is a uniformly distributed random number. We numerically
diagonalize the Hamiltonian under PBC and focus on the
lowest band. The parameter is chosen to be t1 = 1, t2 = 0.5,
� = π/2, corresponding to the C = 1 topological phase in
the clean system. Then, we increase the strength of the dis-
order, and the topological band theory fails in this situation.
By employing the real-space formula (the noncommutative
method [Eq. (21)]) and the Bott index method [Eq. (33)], we
compute the Chern number as a function of disorder strength
W (see results in Fig. 7). The result is averaged over 500
random realizations. It can be seen that the Chern number
remains C = 1 for moderate disorder and then there appears
a disorder-induced topological transition for stronger disor-
der. One can find that results from the two real-space Chern
numbers are well consistent, despite some differences due
to the finite-size effect. As expected, the Bott index method
will exactly produce an integer for all realizations, while the
noncommutative method will give a nonquantized result near
the phase transition point. These two methods are expected to
be equivalent in the thermodynamic limit.
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FIG. 8. (a) Enlarged energy spectrum near EF = 0 as a function
of sublattice bias �0 under OBC. (b) Chern number as a function of
sublattice bias �0 under OBC. We set δL = 3 to truncate the range of
the position operator. System’s size is chosen to Lx = Ly = 30. Other
parameters: t1 = 1, t2 = 0.2, � = π/2.

4. Open boundary condition

Previously, we only focus on the PBC or TBC. In both
cases, the system is in a torus geometry and there is no
boundary state. As for the open boundary condition (OBC),
there may exist gapless boundary states, bringing problems
to numerical computations. Since these boundary states only
localize near the boundary, one can change the definition of
the position operators such that the boundary area is excluded:
r̂ j = ∑

δL<r j<L j−δL
r j n̂r, j = x, y. This trick can circumvent

the influence of the boundary state. In numerical computation,
it is sufficient to set δL as a length of few unit cells. The cor-
responding system’s size shrinks to L′

j = Lj − 2δL, j = x, y.
We then compute the Chern number under OBC for different
parameters using the reduced position operators (see results in
Fig. 8). The Fermi energy is set to EF = 0 here, and we target
those states below it. It can be clearly seen that the topological
phase transition occurs at about �0/t1 ≈ 2, where the in-gap
boundary states become absent. The two real-space formulas
can still correctly capture the Chern number.

B. Kane-Mele model

Now, we briefly discuss the application of the real-space
formula of Chern number derived from the generalized TBC
for the QSH insulator. One of the famous models realizing
the QSH effect is proposed by Kane and Mele [49,51]. The
tight-binding Hamiltonian of the Kane-Mele model reads as

Ĥ = −t
∑
〈i j〉

ĉ†
i ĉ j + iλSO

∑
〈〈i j〉〉

νi j ĉ
†
i σzĉ j

+ iλR

∑
〈i j〉

ĉ†
i (σ × êi j )zĉ j + �0

2

∑
i

ξiĉ
†
i ĉi, (55)

FIG. 9. (a) Spin Chern number and (b) elements of spin Chern
number matrix calculated through real-space formulas. The results of
noncommutative method and the Bott index introduced in Sec. II E
are, respectively, marked by red and blue colors. System size is
chosen to Lx = Ly = 40. Other parameters: t = 1, λSO = 0.06, λR =
0.015.

in which ĉ†
j = (ĉ†

↑, j, ĉ†
↓, j ), λSO is the intrinsic spin-orbit (SO)

coupling strength, and λR is the Rashba SO coupling strength.
νi j = +1 (−1) if the particle tunnels in clockwise (anticlock-
wise) direction, êi j is the normalized vector pointing from i to
j, and �0 is the onsite potential bias. If λR = 0, this model
simply consists of two copies of Haldane model with opposite
NNN tunneling phase � = ±π/2, and sz is conserved. In this
case, one can directly compute the Chern number in each spin
sector to attain the spin Chern number. For λR �= 0, the two
subspaces are coupled and it becomes an obstacle to compute
the spin Chern number in a conventional momentum-space
method.

We numerically compute the spin Chern number and the
Chern number matrix using the noncommutative method and
the Bott index method derived in Sec. II E. As shown in Fig. 9,
the spin Chern number and the Chern number matrix are
both capable to produce a correct spin Chern number for the
Kane-Mele model. The noncommutative and the Bott index
fomulae derived from the generalized TBC are also confirmed
to be valid.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, in the thermodynamic limit we have shown
that the noncommutative Chern number and the Bott index
form of Chern number can be both derived from the Chern
number defined via TBC. Thus, these two real-space formulas
and the TBC formula for the Chern number are equivalent.
Our derivation is based on the perturbative nature of the twist
angles under the uniform gauge of TBC. The key point is
to expand the eigenstate and operator to the linear terms of
1/Lx and 1/Ly. The trace of non-Abelian Berry curvature is
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shown to be a constant in the thermodynamic limit. Hence,
the integration with respect to twist angles in the TBC Chern
number will be reduced, providing feasibility to deriving the
real-space Chern number. We further derive the real-space
formula of spin Chern number throughout the generalized
TBC. For different generalized TBCs in QSH insulator, one
may obtain different real-space formulas. Later, the flatness of
the trace of Berry curvature defined via TBC is later verified
numerically. The nonflatness effect to the real-space formula
of Chern number is discussed. We also show that the real-
space Chern number can be applied to disordered system.
We would like to stress that using the formula of topological
invariants defined via TBC to derive the real-space topological
invariant may be potentially generalized to other topologi-
cal systems, such as higher-order topological insulators [18,
61–63] and periodically driven systems in 2D [64]. This will
benefit the search of real-space formula of topological invari-
ants in unconventional topological insulators.

Throughout this paper, we restrict ourselves to the single-
particle system. In fact, the TBC method can be well applied
to gapped many-body eigenstates. Since the real-space for-
mulas of Chern number can be derived from the TBC Chern
number, we expect the real-space Chern number can be ex-
tended to multiparticle systems. However, it seems that the
Bott index can not work for unique many-body ground state
|�GS〉 because Ux,y is only a U(1) number in this case. Hence,
Eq. (33) will only produce a trivial result due to the multi-
value nature of the exponential function in complex space.
In other words, one can not numerically distinguish trivial
and nontrivial topological insulators through the Bott index
formula if the ground state is unique. To circumvent this
problem, we recall that the Bott index can be considered
as an integral of Berry connection, as mentioned in Fig. 6.
Hence, it is possible to implement the integral for half of
the area under TBC with uniform gauge, that is, the triangle
region D′ : (0, 0) → (0,−2π ) → (2π,−2π ) → (0, 0). This
leads to the following expression:

C̃TBC ≈ 1

iπ
log〈�̃GS(0, 0)|�̃GS(0,−2π )〉

× 〈�̃GS(0,−2π )|�̃GS(2π,−2π )〉
× 〈�̃GS(2π,−2π )|�̃GS(0, 0)〉

= 1

iπ
log〈�GS|

(
Û y

2π

)−1|�GS〉〈�GS|Û x
2π |�GS〉

× 〈�GS|
(
Û x

2π

)−1
Û y

2π |�GS〉, (56)

which is quite similar to the real-space marker of the Chern
insulator proposed recently in Refs. [65,66]. In addition, it
should be noted that this quantity also relies on the flatness
of the Berry curvature, and it is not necessarily quantized
in finite systems. We only expect it to be quantized in the
thermodynamic limit.

As for the noncommutative method [Eq. (21)], we can
consider a more fundamental formula described in Eq. (16)
for better approximation, which yields

C̃TBC ≈ −2π i〈�GS|
[(

∂θx P̃θ

)∣∣
θ=0,

(
∂θy P̃θ

)∣∣
θ=0

]|�GS〉. (57)

By using finite difference to approximate the partial deriva-
tive, one is also able to obtain an approximated Chern number.

We also note the half-quantized Hall effect has drawn many
attentions recently [67–70]. This is related to gapless surface
states, in which the formula of the Chern number [Eq. (2)]
generally fails. How to capture the half-quantized nature of
Hall conductance through the TBC is challenging. In such a
scenario, it is possible to modify the computation method of
the Hall conductance. Then, following the idea in Sec. II B,
one may derive a real-space formula for this system by pertur-
batively expanding the system up to the first order with respect
to twist angles. We believe this could be an intriguing topic in
the future.
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APPENDIX A: INVARIANCE OF CHERN NUMBER UNDER
DIFFERENT GAUGES

We would like to prove that the formulas of TBC Chern
number under the boundary gauge and uniform gauge have the
same form. According to Eq. (6), there is �̃θ = Ûθ�θ . Then,
we find the Berry connection is transformed as

Ã j (θ) = �̃
†
θ∂θ j �̃θ

= �†
θ
Û −1

θ ∂θ j (Ûθ�θ )

= �†
θ
∂θ j �θ + �†

θ

(
Û −1

θ ∂θ j Ûθ

)
�θ

= A j (θ) + �†
θ

r̂ j

L j
�θ, j = x, y. (A1)

Hence, it can be found that the Berry curvature satisfies

F̃ (θ) = F (θ) + [
∂θy r̄x(θ) − ∂θx r̄y(θ)

]
, (A2)

where we denote r̄ j (θ) ≡ �†
θ

r̂ j

L j
�θ for simplicity. It can be

seen that generally F̃ (θ) �= F (θ). Note that, when the twist
angle changes a flux quanta, which is 2π here, the system re-
turns to the origin. Meanwhile, it can be immediately checked
that r̄ j (θ) is a single-value and gauge-invariant periodic func-
tion of twist angle. Hence, there should be

Tr[r̄ j (θ + 2πe j′ )] = Tr[r̄ j (θ)], j, j′ = x, y (A3)

where e j′ represents the unit vector along j′ = x, y direction.
After integrating over twist angles, there is∫ 2π

0

∫ 2π

0
dθxdθy Tr

[
∂θ j′ r̄ j (θ)

] = 0, j, j′ = x, y. (A4)

Thus, we can conclude that the Chern number defined through
TBC is the same under the boundary gauge and the uni-
form gauge. In other words, the large gauge transformation
in Eq. (6) will not affect the Chern number.

APPENDIX B: APPROXIMATION FOR FINITE
DIFFERENCE

To better approximate the partial derivative of the pro-
jector matrix numerically, one can use a higher-order
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finite-difference method for this first-order derivative intro-
duced in Refs. [20,23]. To see how it works, we write a series
expansion of the projector with respect to θ/L:

Pθ/L = P0 +
∞∑

k=1

(
θ

L

)k 1

k!

[
∂k

∂ (θ/L)k
Pθ/L

]
θ=0

. (B1)

As a demonstration, we assume that the projector is only
parametrized by θ . The result can be readily extended to
the 2D system discussed in the main text. By construction,
there is

Pθ/L − P−θ/L

2
=

∞∑
m=1

(
θ

L

)2m−1 1

(2m − 1)!

×
[

∂2m−1

∂ (θ/L)2m−1 Pθ/L

]
θ=0

. (B2)

Thus, by choosing a set of parameters {cn} to eliminate higher-
order terms, the first-order derivative can be written as

θ

L

[
∂

∂ (θ/L)
Pθ/L

]
θ=0

≈
∑

n∈Z+

cn

2
(Pnθ/L − P−nθ/L ). (B3)

The coefficient {cn} can be solved through a set of linear
equations according to the series expansion. By truncating the
expansion to Q terms with Q < L/2 (to ensure the conver-
gence of the expansion), it can be written in a matrix form

(
c1 c2 . . . cQ

)⎛⎜⎜⎝
Pθ/L − P−θ/L

P2θ/L − P−2θ/L
...

PQθ/L − P−Qθ/L

⎞⎟⎟⎠× 1

2

= θ

L

[
∂

∂ (θ/L)
Pθ/L

]
θ=0

. (B4)

Then, we can convert this problem to solving a set of linear
equations, which can be expressed as⎛⎜⎜⎜⎝

1 2 . . . Q
13 23 . . . Q3

...
...

. . .
...

12Q−1 22Q−1 . . . Q2Q−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

c1

c2
...

cQ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
0
...

0

⎞⎟⎟⎠.

(B5)

Hence, by taking the matrix inverse, {cn} can be solved nu-
merically through⎛⎜⎜⎝

c1

c2
...

cQ

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 2 . . . Q
13 23 . . . Q3

...
...

. . .
...

12Q−1 22Q−1 . . . Q2Q−1

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎝

1
0
...

0

⎞⎟⎟⎠.

(B6)

Next, by using the fact that

P2nπ/L = (Û2π )nP0(Û−2π )n (B7)

we can let θ = 2π and then

2π

L

[
∂

∂ (θ/L)
Pθ/L

]
θ=0

≈
Q∑

n=1

cn

2

[
(Û2π )

n
P0(Û−2π )

n

−(Û−2π )
n
P0(Û2π )

n]
, (B8)

which can be evaluated numerically and produces a good
approximation for the partial derivative.

APPENDIX C: QUASIUNITARITY OF THE MATRICES Ux,y

Below, we show that the matrix U j = �†
0Û

j
2π�0, j = x, y,

mentioned in the main text is a unitary matrix in the thermo-
dynamic limit Lj → ∞ through the TBC. First, note that

U j = �†
0Û

j
2π�0, U†

j = �†
0

(
Û j

2π

)−1
�0. (C1)

The vector is normalized: �†
0�0 = IN , and N is the

number of targeted states. Meanwhile, we have �0�
†
0 =∑

μ∈target |ψμ(0)〉〈ψμ(0)| = 1 in the subspace spanned by tar-
geted states without the TBC. There is

U j
2π

(
U j

2π

)† = �†
0Û

j
2π�0�

†
0

(
Û j

2π

)−1
�0

= �†
0Û

j
2π

⎛⎝∑
μ

|ψμ(0)〉〈ψμ(0)|
⎞⎠(Û j

2π

)−1
�0

= �†
0

⎛⎝∑
μ

|ψ̃μ(2πe j )〉〈ψ̃μ(2πe j )|
⎞⎠�0. (C2)

Approximately, there is∑
μ

|ψμ(θ)〉〈ψμ(θ)| =
∑

μ

|ψμ〉〈ψμ| + O

(
1

L

)

= 1 + O

(
1

L

)
(C3)

which implies that
∑

μ∈target |ψμ(2π )〉〈ψμ(2π )| is close to the
identity matrix in this subspace. Hence, we find MM† = IN
in the thermodynamic limit. One can also prove that M†M =
IN using the same analysis. In summary, we have shown
that the matrix M is approximately a unitary matrix in the
thermodynamic limit. Similar conclusions can be found in
Refs. [26,27].

APPENDIX D: DERIVATIONS OF EQ. (27)

Here we show how to derive the partial derivative of the
Berry phase formulated by projected position operator. The
projected position operator reads as

P̃(θx,0)Û
y
2π P̃(θx,0) =

∑
μ,μ′∈target

[Uy(θx )]
μ,μ′ |ψμ(θx )〉〈ψμ′ (θx )|.

(D1)

One can diagonalize the matrix Uy(θx ) to find

P̃(θx,0)Û
y
2π P̃(θx,0) =

∑
n

ei�n (θx )|�n(θx )〉〈�n(θx )|, (D2)

where we assumed Uy(θx ) is unitary and hence its eigenval-
ues are U(1) numbers. Then, the logarithm of the projected
position operator can be equivalently expressed as

log
[
P̃(θx,0)Û

y
2π P̃(θx,0)

] = i
∑

n

�n(θx )|�n(θx )〉〈�n(θx )|. (D3)
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Taking the partial derivative yields

∂

∂θx
log

[
P̃(θx,0)Û

x
2π P̃(θx,0)

]
= i

∑
n

[
∂

∂θx
�n(θx )

]
|�n(θx )〉〈�n(θx )|

+i
∑

n

�n(θx )
∂

∂θx
[|�n(θx )〉〈�n(θx )|]. (D4)

The second term will vanish under the trace operation, and
then we have

Tr

{
∂

∂θx
log

[
P̃(0,θx )Û

x
2π P̃(0,θx )

]} = i
∑

n

∂

∂θx
�n(θx ). (D5)

Note that, in band insulator, �n(θx ) is proportional to the
center of Wannier function. In the same vein, one can
find that

Tr

{[
P̃(θx,0)

(
Û y

2π

)−1
P̃(θx,0)

] ∂

∂θx

[
P̃(0,θx )Û

y
2π P̃(θx,0)

]}
= i

∑
n

∂

∂θx
�n(θx ) = Tr

{
∂

∂θx
log

[
P̃(θx,0)Û

y
2π P̃(θx,0)

]}
,

(D6)

which gives rise to Eq. (27).

APPENDIX E: GAUGE TRANSFORMATION FOR THE
GENERALIZED TBC

Note that the twist operator manifests that

Û 

θ ĉ†

i

(
Û 


θ

)−1 = ĉ†
i ei

(
rx θx
Lx


x+ ryθy
Ly


y

)
. (E1)

Therefore, the tunneling term will be transformed to

Û 

θ ĉ†

ri
ti j ĉr j

(
Û 


θ

)−1 = ĉ†
ri
t̃i j (θ)ĉr j , (E2)

where the tunneling matrix is rotated

t̃ri j (θ) = ei
(

rxi θx
Lx


x+ ryi θy
Ly


y

)
tri j

e−i
( rx j θx

Lx

x+

ry j θy

Ly

y

)
. (E3)

For 
x = S, 
y = 1, the tunneling matrix becomes uniform
along the y direction and spatially modulated along the x
direction if [S, tri j ] �= 0. The rotation degree is in order of 1/Lx

between two adjacent sites provided the tunneling is finite
range.
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