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Engineering mobility in quasiperiodic lattices with exact mobility edges
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We investigate the effect of an additional modulation parameter δ on the mobility properties of quasiperiodic
lattices described by a generalized Ganeshan-Pixley-Das Sarma model with two onsite modulation parameters.
For the case with bounded quasiperiodic potential, we unveil the existence of self-duality relation, independent
of δ. By applying Avila’s global theory, we analytically derive Lyapunov exponents in the whole parameter
space, which enables us to determine mobility edges or anomalous mobility edges exactly. Our analytical results
indicate that the mobility edge equation is described by two curves and their intersection with the spectrum gives
the true mobility edge. Tuning the strength parameter δ can change the spectrum of the quasiperiodic lattice, and
thus engineers the mobility of quasiperiodic systems, giving rise to completely extended, partially localized, and
completely localized regions. For the case with unbounded quasiperiodic potential, we also obtain the analytical
expression of the anomalous mobility edge, which separates localized states from critical states. By increasing
the strength parameter δ, we find that the critical states can be destroyed gradually and finally vanish.
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I. INTRODUCTION

In condensed matter physics, mobility is a fundamental
property of physical systems, which refers to the ability of
a particle, such as an electron, to move through a material.
In metal, it is responsible for the transport properties such as
conductivity and resistance. In the context of semiconductors,
it is an important parameter that determines the performance
of electronic devices. Generally, mobility is influenced by
factors like crystal structures, interactions, defects, and im-
purities, among others. More than 60 years ago, Anderson in
his seminal work [1] investigated the role that the disordered
onsite potential played on the mobility of particles in certain
random lattices. From then on, Anderson localization [1,2]
has attracted large and broad attention worldwide. Typically,
for three-dimensional systems subjected to disorder of finite
strength, localized and extended eigenstates can coexist in the
energy band. Two intervals in the energy dimension corre-
sponding to eigenstates with different mobility property are
separated by a critical energy value, namely, the mobility edge
[3]. Tuning the strength of disorders may shift the value of
mobility edge. Accordingly, the proportion between extended
and localized eigenstates may also change, finally leading to
the modulation of system’s mobility.

While mobility edge is usually absent for the above-
mentioned uncorrelated disorders in low-dimensional systems
[2,4], one-dimensional (1D) quasiperiodic systems offer an
appealing platform to study localization-delocalization tran-
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sition [5–11] and mobility edge [12–15]. Among these,
the most famous one is the Aubry-André (AA) model [5],
which analytically demonstrates the existence of localization-
delocalization transition by utilizing the self-duality property.
Subsequently, various generalizations to the standard AA
model confirmed the existence of mobility edge in 1D
quasiperiodic lattices, for example, lattice models with slowly
varying quasiperiodic potentials [16,17], generalized AA
model [12], incommensurate lattices with exponentially de-
caying hoppings [18], and the recently proposed mosaic
model [14]. Hidden duality is revealed and simple ansatz is
proposed to estimate the mobility edge for a variety of generic
quasiperiodic models [19–23]. So far, the existence of mobil-
ity edges in low-dimensional systems has been demonstrated
in various models [13,14,24–40]. Notably, potential applica-
tions of mobility edges in quantum devising like quantum
thermal machine [41] and current rectifications [42,43] have
been explored. Very recently, the concept of mobility edge has
found its new territory in the emerging field of non-Hermitian
physics [44–52].

In this work, we study quasiperidoic lattices described by
a generalized Ganeshan-Pixley-Das Sarma (GPD) model with
two tunable strength parameters of quasiperiodical potential.
In comparison with the GPD model proposed by Ganeshan
et al. [12], also referred as generalized AA model model
in references, our model includes an additional modulation
parameter δ [see Eq. (2)]. By applying Avila’s global theory,
we analytically derive the Lyapunov exponent in the whole
parameter space, which enables us to determine the mobility
edge exactly. Our analytical results indicate that the mobility
edge equation is independent of δ and generally described by
two curves, whose intersection with the spectrum of system
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gives the true mobility edges. Tuning the strength parameter δ

can change the spectrum of the quasiperiodic lattice, and thus
provides a scheme to engineer the mobility of quasiperiodic
systems. In this manner, with the anchored mobility edge
as a separation, the ratio of eigenstates on both sides then
is changed, leading to the engineering of system’s mobility.
Numerically calculating inverse participation ratios (IPRs)
and Lyapunov exponents, we demonstrate that eigenstates of
the system with bounded quasiperiodic potential successively
cross the stationary mobility edge and undergo three sce-
narios, namely, completely extended, partially localized, and
completely localized. For the case with unbounded quasiperi-
odic potential, we also obtain the analytical expression of
the anomalous mobility edge, which separates localized states
from critical states. By increasing the strength of δ, we find
that the critical states are destroyed gradually and finally
vanish.

The paper is organized as follows. First, we introduce our
model in Sec. II A. Subsequently, in Sec. II B, we unveil the
existence of self-duality relation for the system with bounded
quasiperiodic potentials, independent of the modulation pa-
rameter δ. In Sec. II C, by applying Avila’s global theory,
we derive analytically the expression of Lyapunov exponent
and mobility edge. In Sec. II D, we discuss the engineer-
ing of mobility and further verify our analytical results by
numerically calculating the inverse participation ratios and
Lyapunov exponents. The unbounded potential case is dis-
cussed in Sec. II E. Discussion on experimental design of the
model is mentioned in Sec. II F. Finally, we give a summary
in Sec. III.

II. MODEL AND RESULTS

A. Model

We consider a one-dimensional quasiperiodic lattice de-
scribed by the following eigenvalue equation:

t (φn−1 + φn+1) + Vn(λ, δ, α)φn = Eφn, (1)

with

Vn(λ, δ, α) = λ cos(2πnb + θ ) + δ

1 − α cos(2πnb + θ )
, (2)

where n is the index of lattice site, and t is the nearest-
neighbor hopping amplitude. The quasiperiodic potential is
regulated by two modulation parameters λ, δ and a deforma-
tion parameter α. The parameter θ denotes a phase factor and
b is an irrational number responsible for the quasiperiodicity
of the onsite potential. To be concrete, in this work we choose
b = (

√
5 − 1)/2, however, the obtained results are also valid

for any other choice of the irrational number b. For conve-
nience, we shall set t = 1 as the energy unit in the following
calculation.

When δ = 0, the model reduces to the generalized AA
model (GPD model) studied in Ref. [12], for which an exact
mobility αE = 2 sgn(λ)|t | − λ is identified by the existence
of a generalized duality symmetry for the case of α ∈ (−1, 1).
On the other hand, the limit of λ = 0 was recently studied in
Ref. [36] for the unbounded case α > 1. The onset of anoma-
lous mobility edges at the energies E = ±2|t | is unveiled via
the calculation of the Lyapunov exponent.

In this work, we shall consider the general case in the
presence of both λ and δ terms. For the bounded case with
α ∈ (−1, 1), we unveil the existence of a self-dual symmetry
even in the presence of δ term, which enables us to get an
expression of mobility edge. By applying Avila’s global the-
ory, we can derive the mobility edges and anomalous mobility
edges analytically by calculating the Lyapunov exponents for
both cases of |α| < 1 and |α| > 1.

B. Self-duality relation

At first, we consider the case of α ∈ (−1, 1) and demon-
strate the existence of a generalized duality symmetry for the
model with the quasiperiodic potential (2) under a generalized
dual transformation, from which we can derive the exact mo-
bility edges by searching the self-duality relation. Following
Ref. [12], we define

χn(β, θ ) ≡ sinh β

cosh β − cos(2πnb + θ )
.

Since Eq. (2) can be represented as

Vn(λ, δ, α) = −λ

α
+

λ
α

+ δ

1 − α cos(2πnb + θ )
, (3)

the model described by Eqs. (1) and (2) can be straightfor-
wardly rewritten into a form as

t (φn−1 + φn+1) + Gχn(β, θ )φn = (E + λ cosh β )φn, (4)

in which β is defined as cosh β ≡ 1/α for α ∈ (0, 1), and the
parameter G is given by G = (λ cosh β + δ) coth β.

By using a well-established mathematical relation [12] as
follows:

sinh β

cosh β − cos(2πnb + θ )
=

∞∑
r=−∞

e−β|r|eir(2πnb+θ ), (5)

we can implement consecutively three transformations
to recover Eq. (4) into its initial form. Define up =∑

n ein(2πbp+qπ )φn, where
∑

n is short for
∑∞

n=−∞ and q is an
integer. Multiplying ein(2πbp+qπ ) with both sides of Eq. (4) and
performing a summation, we get

ωχ−1
p (β0, 0)epθ up = G

∑
r

e−β|p−r|erθ ur, (6)

where β0 is defined through relation E + λ cosh β ≡
(−1)q2t cosh β0 and ω is defined as ω ≡ (−1)q2t sinh β0.
Subsequently, we move on to implement the second transfor-
mation vm = ∑

p eip(2πbm+θ+qπ )χ−1
p (β0, 0)up. By multiplying

eip(2πbm+qπ ) with both sides and making a sum over p, Eq. (6)
is correspondingly transformed into

ωχ−1
m (β, qπ )vm = G

∑
r

e−β0|m−r|vr . (7)

Then it comes to the last step where the transformation is
defined as zk = ∑

m eim(2πbk+θ )vm. We multiply Eq. (7) by
eim(2πbk+θ ) and sum over m. Finally, one obtains the following
tight-binding model about zk:

t (zk+1 + zk−1) + G
sinh β

sinh β0
χk (β0, θ ) zk = (−1)q2t cosh β zk.

(8)
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It is not difficult to notice that Eq. (8) can be managed to
be equivalent to Eq. (4), if one lets β = β0. Accordingly, we
have E + λ cosh β = (−1)q2t cosh β, which in terms of the
original parameter α is

αE = (−1)q2t − λ. (9)

Since q may take even or odd integers, this actually gives out
the analytical formula of a pair of exact mobility edges. As for
the other case α ∈ (−1, 0), one can also arrive at Eq. (9) by
conducting similar derivations as above.

C. Analytical formula of the exact mobility edge

Next we apply Avila’s global theory [53] to calculate
the Lyapunov exponent and derive the exact mobility edge
[54,55]. For convenience, we will absorb t into λ and E in
the derivation process by setting t = 1.

For the spectral problem with incommensurate potential,
the Lyapunov exponent γ (E ) is defined as

γ (E ) = lim
L→∞

1

L
ln ||TL(θ )||,

where ||TL(θ )|| is the norm of the 2 × 2 transfer matrix TL(θ ),
given by

TL(θ ) =
L∏

n=1

Mn, (10)

in which

Mn =
(

E − Vn −1
1 0

)
, (11)

with Vn given by Eq. (2).
We adopt the conventional procedure to calculate Lya-

punov exponent. First, we need to complex the phase, i.e.,
letting θ → θ + iε. In order to apply global theory more con-
veniently, we introduce a new matrix M̃ j , which can be written
as

M̃ j (θ ) = [1 − α cos(2π jb + θ )]Mj . (12)

Then the transfer matrix for M̃ j (θ ) can be expressed as

T̃L(E , θ ) =
L∏

j=1

M̃ j (θ ).

And the Lyapunov exponent about T̃L(E , θ + iε) is

γ̃ (E , θ + iε) = lim
L→∞

1

L
ln ||T̃L(E , θ + iε)||.

In the limit of L → ∞, we can replace the sum of j by an
integral

γ̃ (E , θ + iε) = 1

2π

∫
ln ||T̃L(E , θ + iε)||dθ.

Then it follows

γ (E , ε) = γ̃ (E , ε) − 1

2π

∫
ln[1 − α cos(θ + iε)]dθ. (13)

In this part, we focus on the case −1 < α < 1 and the result
of the integral in Eq. (13) is

1

2π

∫
ln[1 − α cos(θ + iε)]dθ = ln

1 + √
1 − α2

2
,

if |ε| < ln | 1+√
1−α2

α
|. From Eq. (13), we can find that

γ (E , ε) and γ̃ (E , ε) has the same slope about ε when |ε| <

ln | 1+√
1−α2

α
|.

In the large-ε limit, we get

T̃L(E , ε) =
L∏

j=1

1

2
e−i2πb je|ε|

(−αE − λ α

−α 0

)
+ o(1). (14)

According to the Avila’s global theory, γ̃ (E , ε) is a convex,
piecewise linear function about ε ∈ (−∞,∞). Combined
with the result of Eq. (14), we can see that the slope about ε is
always 1. Thus, the Lyapunov exponent about T̃L(E , θ + iε)
can be written as

γ̃ (E , ε) = |ε| + ln f (E )

for large enough ε, where

f (E ) =
∣∣∣∣∣ |αE + λ| +

√
(αE + λ)2 − 4α2

4

∣∣∣∣∣.
Considering the convexity of the Lyapunov exponent, the
slope of γ (E , ε) might be 1 or 0 in the region 0 � |ε| <

ln | 1+√
1−α2

α
|. Besides, the slope of γ (E , ε) in a neighborhood

of ε = 0 is nonzero if the energy E is in the spectrum.
Therefore, when E is in the spectrum,

γ̃ (E , ε) = |ε| + ln f (E ), (15)

for any ε ∈ (−∞,∞). Based on Eq. (13) and the non-
negativity of Lyapunov exponent γ (E , ε), we have

γ (E , 0) = max

{
ln

2 f (E )

1 + √
1 − α2

, 0

}
. (16)

Then the mobility edge can be determined by γ (E ) = 0,
which gives rise to ∣∣∣∣α E

t
+ λ

t

∣∣∣∣ = 2, (17)

where we have already explicitly included t .
Although Eq. (17) takes a different form from Eq. (9), it

can be checked that they are actually equivalent. This result
suggests that the mobility edges may be composed of two
curves. The appearance of the mobility edge depends on an-
other condition: a true mobility edge exists only if these curves
are within the energy spectrum. Therefore, the energy spec-
trum and the mobility edge equation together determine the
mobility properties of the system. In order to determine which
curve determines the mobility edge for different parameters,
we import the operator theory and give more accurate results.
By comparing the expression of curves with the range of the
physical possible energy spectrum (more details can be found
in Appendix A), we arrive at the expression

Ec = 2 sgn(λ + δα)|t | − λ

α
. (18)
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FIG. 1. Numerical spectrum E of the model in Eq. (1) as a
function of α with model parameters L = 10 000, θ = 0, and t = 1.
The IPR of each eigenstate is also calculated, which is indicated by
the color of each eigenvalue in the spectrum. The lines in magenta
and blue are exact mobility edges predicted by analytical formula
(9). (a) λ = 0.5, δ = 2, (b) λ = 0.5, δ = −2, (c) λ = −1.5, δ = 1,
(d) λ = 1.5, δ = 1.

When δ = 0, we see that the mobility edge reduces to Ec =
2 sgn(λ)|t |−λ

α
, consistent with the result in Ref. [12]. In this case,

for a given λ parameter, e.g., λ > 0 and t = 1, the mobility
edge is only determined by the curve Ec = 2−λ

α
. However, in

the presence of nonzero δ, the mobility edge can be given by
either Ec = 2−λ

α
or Ec = −2−λ

α
depending on the value of λ +

δα, as displayed in Fig. 1.
To gain an intuitive understanding, we display some nu-

merical results in Fig. 1 for system with various parameters
λ and δ, in which we display the energy spectrum versus α

and plot the mobility edges given by Eq. (9) and the inverse
participation ratios (IPRs) [56] as a function of α. The IPR for
an eigenstate with eigenvalue E is given as

IPR(Ei ) =
∑

n |φn(Ei )|4(∑
n |φn(Ei )|2

)2 , (19)

where Ei is the ith energy eigenvalue. For an extended eigen-
state, the probability tends to be distributed evenly among
the lattice, thus, the IPR is expected to be the order of 1/L.
While for a localized eigenstate, the probability is usually well
confined to a few lattice sites, therefore the IPR approaches 1
in the limiting case. It is shown that the localized and extended
regions are separated by the mobility edge. In Figs. 1(a) and
1(b), the mobility edges are determined by different curves be-
cause the sign of λ + δα is changed in the process of adjusting
α from −1 to 1. In contrast, the mobility edges in Figs. 1(c)
and 1(d) are determined by only one curve because adjusting
α does not change the sign of λ + δα.

D. Engineering the mobility property

Although the equation of mobility edges are simply two
straight lines described by E = 2

α
− λ

α
and E = − 2

α
− λ

α
,

FIG. 2. Numerical spectrum E of the model in Eq. (1) as a
function of δ with different parameters. (a) λ = −0.5, α = −0.36.
(b) λ = −0.5, α = 0.36. We choose L = 10 000, θ = 0, and t = 1 in
all cases. The lines in magenta and blue are exact mobility edges pre-
dicted by analytical formula (9). The dashed lines denote transition
points separating different regions.

which are independent of δ, tuning δ can change the spectrum
of the system dramatically. By tuning δ, we can access five
different regions as shown in Fig. 2.

By comparing the energy spectrum and the equation of
mobility edges, we can approximately obtain transition points
separating these different regions of δ (details about the
transition points can be found in Appendix B). For the case
of −1 < α < 0, as shown in Fig. 2(a), the five different
regions are as follows: (i) For −∞ < δ < − λ

α
+ 2(1−α)

α
,

all the eigenstates are localized. (ii) For − λ
α

+ 2(1−α)
α

<

δ < − λ
α

+ 2(1+α)2

α
, there is a mobility edge determined

by E = − λ
α

+ 2
α

, below which the states are localized,
whereas above which the states are extended. (iii) For
− λ

α
+ 2(1+α)2

α
< δ < − λ

α
− 2(1+α)2

α
, all the eigenstates are

extended. (iv) For − λ
α

− 2(1+α)2

α
< δ < − λ

α
− 2(1−α)

α
, there

is a mobility edge determined by E = − λ
α

− 2
α

, below
which the states are extended, whereas above which the
states are localized. (v) For − λ

α
− 2(1−α)

α
< δ < +∞, all

the eigenstates are localized. For the case of 0 < α < 1, as
shown in Fig. 2(b), the five different regions are as follows:
(i) For −∞ < δ < − λ

α
− 2(1+α)

α
, all the eigen-

states are localized. (ii) For − λ
α

− 2(1+α)
α

< δ <

− λ
α

− 2(1−α)2

α
, there is a mobility edge determined

by E = − λ
α

− 2
α

, below which the states are local-
ized, whereas above which the states are extended.
(iii) For − λ

α
− 2(1−α)2

α
< δ < − λ

α
+ 2(1−α)2

α
, all the

eigenstates are extended. (iv) For − λ
α

+ 2(1−α)2

α
< δ < − λ

α
+

2(1+α)
α

, there is a mobility edge determined by E = − λ
α

+ 2
α

,
below which states are extended, whereas above which
states are localized. (v) For − λ

α
+ 2(1+α)

α
< δ < +∞, all the

eigenstates are localized.
To see how the mobility is engineered by the strength of δ,

we show the change of IPRs and Lyapunov exponents of all
eigenstates in Fig. 3 by choosing several typical parameters
corresponding to Fig. 2(a). The Lyapunov exponents [17]
(LEs) for finite-size lattices can be numerically calculated by
using [57,58]

γ (Ei ) = 1

L − 1

∑
j �=i

ln

∣∣∣∣Ei − Ej

t

∣∣∣∣. (20)
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FIG. 3. Engineering the system’s mobility by varying the
strength parameter δ while mobility edge is kept fixed by the strength
parameter λ. The left column shows the inverse participation ratios
(IPRs) of all single-particle eigenstates for different values of δ. The
lattice size is L = 10 000 with parameters t = 1, θ = 0, α = −0.36,
and λ = −0.5. The right column gives the corresponding Lyapunov
exponents (LEs). (a), (e) δ = 1.5, (b), (f) δ = 3.0, (c), (g) δ = 5.0,
(d), (h) δ = 7.0. The vertical line in [(a)–(h)] denotes position of the
anchored mobility edge.

It is well known that Lyapunov exponent is the inverse of
localization length, thus, for an extended eigenstate it ap-
proaches to a vanishing value as the lattice size L increases.
On the other hand, the Lyapunov exponent is nonzero for
localized states. The IPRs for all single-particle eigenstates
under different strengths of δ are shown in Figs. 3(a)–(d) and
the LEs are correspondingly given in Figs. 3(e)–(h). For all
of them the strength of λ is fixed at λ = −0.5. The lattice
size is L = 10 000 and other parameters are α = −0.36 and
θ = 0. From top to bottom, the corresponding strengths of the
second quasiperiodic potential are δ = 1.5, 3.0, 5.0, and 7.0.
It is clearly shown that as the strength of δ is modulated from
δ = 1.5 to 7.0, the system is engineered to undergo different
situations, initially wholly extended, then partially localized,
and at last completely localized. Notably, during the whole
process, the mobility edge denoted by vertical line in Fig. 3
is fixed and rather robust against the variation of the strength
of δ. As the strength of δ is varied, single-particle eigenstates
change their mobility properties by leapfrogging the fixed
mobility edge consecutively, one by one.

In the above calculation, δ is chosen as an independent
parameter. Nevertheless, we can also choose δ as a function
of λ. Although the form of δ(λ) does not change the mobil-
ity edge equation, it can modulate the structure of spectrum
and thus enable us engineering the mobility properties of
the quasiperiodic lattices. In Figs. 4(a) and 4(b), we dis-
play the energy spectrum and corresponding IPRs versus λ

for systems with δ = 1
α

sin(λ) and δ = λ
α

sin(λ), respectively.
While the extended states and the mobility edges occur only
in a region around λ = 0 as shown in Fig. 4(a), we find
that the mobility edges occur periodically in Fig. 4(b) with
the increase of λ. Intuitively, periodically occurring mobility

FIG. 4. Examples of energy spectrum engineering with the free-
dom granted by the modulation of δ as a function of λ. IPR is
indicated by the color of the eigenvalue point. The lattice size is
L = 10 000. (a) δ = 1

α
sin (λ), (b) δ = λ

α
sin(λ). Other parameters are

α = 0.5, t = 1, θ = 0.

edges can be attributed to the periodical occurrence of zero
points of λ

α
+ δ(λ). According to the expression of Eq. (3),

when λ
α

+ δ(λ) = 0, the quasiperiodic potential vanishes, and
the corresponding eigenstates must be extended states. When
λ
α

+ δ(λ) �= 0, localized states may occur if the energy spec-
trum exceeds the mobility edge curves.

E. Anomalous mobility edges for the case of |α| > 1

For the case of |α| > 1, the quasiperiodic potential given
by Eq. (2) is in principle an unbounded potential, which,
however, does not diverge at any lattice site for a finite-size
lattice. According to the Simon-Spencer theorem [59], ex-
tended states are forbidden for an unbounded quasiperiodic
potential, and thus the self-duality mapping does not work.
Nevertheless, we can use Avila’s global theory for unbounded
quasiperiodic operators to derive the analytical expression of
anomalous mobility edges [36,39]. The derivation of mobil-
ity edges for |α| > 1 is similar to the case of |α| < 1 until
Eq. (13). The result of the intergal in Eq. (13) for |α| > 1 is

1

2π

∫
ln[1 − α cos(θ + iε)]dθ = |ε| + ln

(α

2

)
.

Thus, we can get the Lyapunov exponent in the large-ε limit
as

γ (E , ε) = ln

(
2 f (E )

α

)

for any ε. The Lyapunov exponent γ (E , ε) is independent of
ε. Similar to the discussion in Ref. [36], there is an anomalous
mobility edge determined by γ (E ) = 0. Here the anomalous
mobility edge means an edge separating localized states and
critical states. Through straightforward calculations, we arrive
at an exact analytical formula of the anomalous mobility edge
as

Ec = ±2|t | − λ

α
. (21)

Before proceeding with further discussion, we set t = 1 for
convenience. In regions of E > 2 − λ

α
and E < −2 − λ

α
,

γ (E ) > 0 and the eigenstates are localized eigenstates with
localization length ξ = 1/γ (E ). In the region −2 − λ

α
< E <
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FIG. 5. (a) Mobility edges and anomalous mobility edges. The
lattice size is L = 10 000. Other parameters are t = 1, θ = 0, δ = 2,
and λ = 0.5. The lines in magenta and blue are exact mobility edges
predicted by analytical formula (9). The lines in black are anomalous
mobility edges predicted by analytical formula (21). (b) βmin as a
function of the inverse Fibonacci index 1/m for different α. From
top to bottom, data points in different colors represent extended
eigenstates (in the energy interval [ 2

−α
− λ

α
, 2

α
− λ

α
]) with α = 0.7,

critical eigenstates (in the energy interval [−2 − λ

α
, 2 − λ

α
]) with

α = 1.5, localized eigenstates (outside the energy interval [ 2
−α

−
λ

α
, 2

α
− λ

α
]) with α = 0.7, localized eigenstates (outside the energy

interval [−2 − λ

α
, 2 − λ

α
]) with α = 1.5.

2 − λ
α

, the energy spectrum is singular continuous and the
eigenstates are critical.

Next we carry out numerical analysis to unveil the exis-
tence of anomalous mobility edges in the regime of |α| > 1. In
Fig. 5(a), we display the energy spectrum and corresponding
IPRs versus α for both the regions of |α| < 1 and |α| > 1.
In order to distinguish the extended eigenstates and critical
eigenstates displayed in Fig. 5(a), we make multifractal anal-
ysis and calculate the scaling exponent βmin. The multifractal
analysis demands considering a series of finite systems with
different sizes. We thus choose the system size L as the mth
Fibonacci number Fm. The scaling exponent βmin can be ex-
tracted as follows. For a given wave function ψ

j
n , one can

extract a scaling exponent β
j
n from the nth onsite probabil-

ity P j
n = |ψ j

n |2 ∼ (1/Fm)β
j
n . Here we use the minimum value

β
j
min = minn(β j

n ) to characterize eigenstate properties. As the
system size increases, β

j
min → 1 for the extended eigenstates,

whereas β
j
min → 0 for the localized eigenstates. For the criti-

cal eigenstates, the β
j
min approaches to a value in the interval

(0,1). In order to reduce the fluctuations among different
critical eigenstates, we define an average scaling exponent
βmin = 1

L′
∑L′

j=1 β
j
min, where L′ is the number of eigenstates

in the corresponding region. In Fig. 5(b), the numerical result
of scaling analysis is shown. For the regime of |α| > 1, there
appear anomalous mobility edges. On the other hand, there
are normal mobility edges for the regime of |α| < 1.

From Eq. (21), we see that the pair of anomalous mobility
edges is completely independent of δ. Thus, in the unbounded
case, one is also granted a degree of freedom to engineer
the system’s spectrum while the position of the anomalous
mobility edge is kept fixed. As the strength of δ varies,

FIG. 6. Modulations of eigenstate properties by varying the
strength parameter δ while the anomalous mobility edge is kept fixed
by the strength parameter λ. The left column shows the inverse par-
ticipation ratios (IPRs) of all single-particle eigenstates for different
values of δ. The lattice size is L = 10 000 with parameters t = 1,
θ = 0, α = −2, and λ = −0.5. The right column gives the corre-
sponding Lyapunov exponents (LEs). (a), (d) δ = 0, (b), (e) δ = 2.0,
(c), (f) δ = 5.7. The vertical lines in [(a)–(f)] denote positions of the
anchored anomalous mobility edges given by Eq. (21).

certain eigenstates may hop across the anomalous mobility
edge and the property of the eigenstate changes. In Fig. 6,
we show this manner of modulations of eigenstate properties
by numerically calculating IPRs (left column) and LEs (right
coloumn) for all eigenstates. The two vertical lines denote the
anomalous mobility edges predicted by Eq. (21). Data points
in-between stand for critical eigenstates while those points
outside denote localized eigenstates. From top to bottom, the
strengths of the second quasiperiodic potential are δ = 0, 2,
and 5.7. It is clearly shown that as δ varies, the critical states
are killed gradually and finally all critical states vanish. For
the unbounded case of |α| > 1, we notice that the spectrum is
very wide and thus a region with all eigenstates being critical
states is hard to be accessed by tuning δ, which is in contrast
with the bounded case where a completely extended region is
accessible.

F. Experimental prospects

The model considered in this work may be experimentally
implemented with the state-of-the-art techniques. Thanks to
the rapid advancement in experimental techniques, a lot of
quasiperiodic potentials in reduced dimensions have already
been successfully realized in experiments based on ultracold
atoms [10,11,13,60–63]. To realize the model in Eq. (1),
one may hopefully work along the lines of synthetic lat-
tices in momentum space [62,64]. In that scheme, a pair
of counterpropagating lasers is used to drive Bragg transi-
tions which can change the atomic momentum discretely with
fixed increments. One of the lasers has a single frequency
while the other has many different components. Together,
the pair of lasers drive a set of two-photon Bragg transi-
tions, and thus a synthetic lattice in momentum space is
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created. What is particularly commendable of the scheme is
the ability of generic site energy control [62]. By indepen-
dently modulating the strength, phase, and detuning for each
of the Bragg transitions, the site-to-site energy difference in
the synthetic lattice is engineered. Taking advantage of this
ability, the quasiperiodic potential in Eq. (2) is then within the
reach of experiment experts. Alternatively, one can adopt the
strategy of Ganeshan-Pixley-Das Sarma [12] to experimen-
tally realize the model (1) in real space other than momentum
space mentioned above. The onsite potential in Eq. (2) can
be expressed as a sum of cosine Fourier series. Each cosine
term is AA-model like and realizable in experiment. Thus, one
can manage to obtain the quasiperiodic potential in Eq. (2)
by superimposing several cosine terms together, especially
when considering α with small values. Additionally, the pho-
tonic waveguide platform is also a good candidate to realize
quasiperiodic models [11,65]. Moreover, it is particularly con-
venient to further implement Floquet engineering for this
setup.

III. SUMMARY

In summary, we study 1D quasiperiodic lattices described
by a generalized GPD model with an additional tunable pa-
rameter δ in the whole parameter space, including cases with
both the bounded and unbounded quasiperiodic potentials.
By applying Avila’s global theory, we derive the analytical
expression of Lyapunov exponent, which permits us to get the
exact expression of mobility edges and anomalous mobility
edges. Although the mobility edge equation and anomalous
mobility edge equation do not include the introduced pa-
rameter δ explicitly, the parameter can modulate the energy
spectrum and thus provides a way to engineering the mobility
properties of the system. By numerically calculating the IPRs
and Lyapunov exponents, we show that the mobility can be
flexibly engineered by modulating the strength of a new pa-
rameter while the mobility edge equation is kept unchanged.
For the bounded case, the modulation of δ can lead to com-
pletely extended, partially localized, and completely localized
regions. For the unbounded case, the modulation of δ can only
lead to partially localized and completely localized states,
whereas a completely critical region is hard to be accessed.
Our study unveils the richness of quasiperiodic localization
and provides a scheme to engineer the mobility properties of
quasiperiodic lattices.
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APPENDIX A: ACCURATE EXPRESSION
OF THE MODEL’S MOBILITY EDGE

FOR THE CASE WITH |α| < 1

The mobility edge can be determined by letting Lyapunov
exponent γ (E ) = 0, which gives∣∣∣∣αE + λ

t

∣∣∣∣ = 2. (A1)

To be specific, it consists of two parts,

Ec1 = 2|t | − λ

α
, (A2)

Ec2 = −2|t | − λ

α
. (A3)

To get a more accurate formula for the mobility edge,
one has to resort to operator theory. According to the op-
erator theory, the range of the physical possible energy
spectrum E of the model (1) can be estimated as E ⊆ [−2|t | +
min(Vn), 2|t | + max(Vn)].

Before proceeding, we note that the onsite potential can be
rewritten as

Vn = λ/α + δ

1 − α cos(2πnb + θ )
− λ/α. (A4)

Thus, when λ/α + δ > 0 and α > 0, we have

{E} ⊆
[
−2|t | + λ/α + δ

1 + α
− λ/α, 2|t | + λ/α + δ

1 − α
− λ/α

]
,

(A5)

while when λ/α + δ > 0 and α < 0, we have

{E} ⊆
[
−2|t | + λ/α + δ

1 − α
− λ/α, 2|t | + λ/α + δ

1 + α
− λ/α

]
.

(A6)

And when λ/α + δ < 0 and α > 0, we have

{E} ⊆
[
−2|t | + λ/α + δ

1 − α
− λ/α, 2|t | + λ/α + δ

1 + α
− λ/α

]
,

(A7)

while λ/α + δ < 0 and α < 0, we have

{E} ⊆
[
−2|t | + λ/α + δ

1 + α
− λ/α, 2|t | + λ/α + δ

1 − α
− λ/α

]
.

(A8)

According to the above-obtained ranges of the energy spec-
trum E under four different cases, we can arrive at more
accurate mobility edges by excluding the un-physical part.

First, we consider the case with λ/α + δ > 0 and α > 0.
In this case, it is obviously that Ec1 > Ec2. And we have the
following relation:

−2|t |α + λ + δα

1 + α
> −2|t |. (A9)
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So, accordingly, one can get

Ec2 < −2|t | + λ/α + δ

1 + α
− λ/α. (A10)

This means that Ec2 is even below the lower limit of the energy
spectrum. So Ec2 should be omitted and only Ec1 is valid in
this case.

Second, we turn to the case λ/α + δ > 0 and α < 0, for
which we have Ec2 > Ec1. Noting that λ + δα < 0, it is easy
to find that the following relation is fulfilled:

2|t |(1 + α)(1 − α) > λ + δα. (A11)

Thus, we can see that Ec1 is lower than the minimum of the
model’s energy spectrum E , i.e.,

Ec1 < −2|t | + λ/α + δ

1 − α
− λ/α. (A12)

So in this case, Ec1 is excluded and Ec2 is kept.
Third, we consider the case λ/α + δ < 0 and α > 0. In this

case, we have Ec1 > Ec2 and the relation

λ/α + δ

1 + α
< 0 < 2|t |

(
1

α
− 1

)
. (A13)

It is straightforward to arrive at

Ec1 > 2|t | + λ/α + δ

1 + α
− λ/α, (A14)

which means Ec1 is outside the range of the model’s energy
spectrum. Therefore, in this case, the model’s mobility edge
is determined by Ec2.

Fourth, we check the case λ/α + δ < 0 and α < 0. Obvi-
ously, we have Ec2 > Ec1 in this case. Also noting the relation

λ/α + δ

1 − α
< 0 < −2|t |

(
1

α
+ 1

)
, (A15)

we can get

Ec2 > 2|t | + λ/α + δ

1 − α
− λ/α. (A16)

This means Ec2 is above the upper limit of the physical
model’s energy spectrum E . Therefore, the mobility edge in
this case is determined by Ec1.

In summary, when α > 0, the mobility edge can be de-
scribed by

Ec = 2 sgn(λ/α + δ)|t | − λ

α
, (A17)

and on the other hand, for α < 0, we have

Ec = −2 sgn(λ/α + δ)|t | − λ

α
. (A18)

Furthermore, the mobility edge can be written in a briefer
form

Ec = 2 sgn(α)sgn(λ/α + δ)|t | − λ

α
. (A19)

Finally, we arrive at

Ec = 2 sgn(λ + δα)|t | − λ

α
. (A20)

APPENDIX B: TRANSITION POINTS BY TUNING δ

Here we focus on the interval −1 < α < 0 and estimate the
range of energy spectrum, while the discussion in the interval
0 < α < 1 is similar. For the discussion below, the hopping
amplitude t is set to be 1. Observing the onsite potential (2),
a special point is obvious: λ

α
+ δ = 0. At this point, the range

of energy spectrum is [−2, 2] and the eigenstates are always
extended. For convenience, we define a new parameter � ≡
λ
α

+ δ from now on. In the following, we will discuss from
two aspects.

(i) � > 0. The energy spectrum only has cross points
with the upper mobility edge line E = − 2

α
− λ

α
. When � is

small, the approximate range of energy spectrum spectrum
is [−2 + �

1−α
− λ

α
, 2 + �

1+α
− λ

α
]. Thus, a transition point ap-

pears when the mobility edge line intersects with the energy
spectrum. It is determined by

− 2

α
= 2 + �

1 + α
. (B1)

So the transition point is given as

� = −2(1 + α)2

α
→ δ = −λ

α
− 2(1 + α)2

α
. (B2)

When � is large, all the eigenstates become localized
states. In this regime, the range of energy spectrum is well
approximated as [ �

1−α
− λ

α
, �

1+α
− λ

α
]. And the transition point

upon which all the states become localized is determined by

− 2

α
= �

1 − α
(B3)

and the transition point is

� = −2(1 − α)

α
→ δ = −λ

α
− 2(1 − α)

α
. (B4)

(ii) � < 0. The energy spectrum only has cross points
with lower mobility edge line E = 2

α
− λ

α
. When |�| is small,

the approximate range of energy spectrum is [−2 + �
1+α

−
λ
α
, 2 + �

1−α
− λ

α
]. So the transition point upon which the mo-

bility edge line meets the energy spectrum is determined by

2

α
= −2 + �

1 + α
(B5)

and the transition point is

� = 2(1 + α)2

α
→ δ = −λ

α
+ 2(1 + α)2

α
. (B6)

When |�| is large, all the eigenstates become localized
states. In this region, [ �

1+α
− λ

α
, �

1−α
− λ

α
] is a good approx-

imation for the range of energy spectrum. And the transition
point where all the states become localized is determined by

2

α
= �

1 − α
(B7)

and thus the transition point given as

� = 2(1 − α)

α
→ δ = −λ

α
+ 2(1 − α)

α
. (B8)

One can find that these transition points are symmetric
about δ = − λ

α
. As δ varies, we can obtain systems which

are fully localized, partially localized, and fully extended. For
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intervals of δ possessing true mobility edges, it is worth noting
that when � < 0, the low-energy eigenstates are localized and

the high-energy eigenstates are extended, while contrarily the
situation reverses when � > 0.
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