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Bulk-edge correspondences for surface plasmon polaritons: A circuit approach
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In this study, we establish circuit-theoretical bulk-edge correspondences to indicate the existence of surface
plasmon polaritons topologically. First, we reveal an essential topological transition in a minimal circuit model
of a composite right-/left-handed transmission line. We then demonstrate that the circuit model can accurately
explain the dielectric-metal transition. Using mirror symmetry and Foster’s reactance theorem, we prove a parity-
reactance correspondence that relates the parities of the bulk wave functions to the sign of the surface reactance.
The parity-reactance correspondence describes the underlying mechanism of surface-plasmon-polariton forma-
tion without focusing on the Zak phase. Zero flat bands play an essential role in this mechanism, allowing us to
define a topological integer that classifies the direct-current (DC) response. The conventional surface-reactance
formula using the Zak phase requires plasmonic modification by the defined topological integer. Finally, we
develop alternative bulk-edge correspondences based on the DC response without invoking mirror symmetry.
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I. INTRODUCTION

Metals are fundamental materials used in the production of
optical elements such as mirrors, and they have been used for
over 5000 years [1]. However, despite this extensive history,
wave propagation involving metals has received negligible
attention because electromagnetic waves are attenuated in
metals due to their negative responses. As free electrons in
a metal are sensitive to oscillating electric fields, the electric
field and induced electric dipole can have opposite phases.
Since the 20th century, researchers have been investigating
extraordinary light propagation enabled by this negative re-
sponse. A prominent example is the discovery of a negative
refractive index, which can be realized in a medium with si-
multaneous negative responses to electric and magnetic fields
[2]. Remarkably, a negative refractive index can be applied
to realize a flat lens that can help overcome the diffraction
limit [3]. Since there is no natural material with a negative re-
fractive index, these theoretical advances have stimulated the
development of artificial materials called metamaterials [4,5],
in which negative refraction was eventually demonstrated [6].
These findings indicate the potential of a negative response in
optics.

A negative response not only impacts the spatial wave
propagation, but also the surface wave formation. In fact, a
metallic surface supports surface plasmon polaritons, which
are hybridized waves comprising plasmonic electron oscil-
lations and electromagnetic waves [7,8]. The subwavelength
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confinement of surface plasmon polaritons has been fully
exploited in nanophotonics for nanoscale manipulation of
light. Although extensive applications have been explored
for over half a century, their fundamental origins remain
obscure. Stimulated by the discovery of topological insula-
tors, the recent topological paradigms have provided fresh
insights into this problem. A key idea is the bulk-edge cor-
respondence that generally relates the bulk characteristics of
materials to the presence of surface modes [9,10]. The bulk
properties are characterized by topological integers, and the
surface modes generally appear at the interface between two
materials with different topological integers. The bulk-edge
correspondence is a powerful guiding principle for identifying
the existence of a surface mode, and it implicitly explains the
topological origins of surface plasmon polaritons. However,
the bulk-edge correspondence is often empirical and requires
indirect exact proof for each case. For plasmonic systems,
Bliokh et al. and Yang et al. proposed the complex helicity
spectrum [11] and the Zak phase [12] as topological invari-
ants, respectively. Subsequently, they observed the bulk-edge
correspondences, which predicted the formation of surface
plasmon polaritons. However, it remains unclear why the
bulk-edge correspondence holds for plasmonic systems. In
fact, it is difficult to connect the bulk-mode helicity to the
surface-mode properties. As noted later in this paper, the con-
ventional surface-reactance formula using the Zak phase [13]
cannot be naively applied to plasmonic systems. Moreover,
the applicability of the bulk-edge correspondence remains
limited. Helicity is not a good quantum number in general
nonuniform systems [14], whereas the Zak phase is not quan-
tized in systems without mirror symmetry.
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In this study, we investigated the essential mechanisms
of plasmonic bulk-edge correspondences using circuit the-
ory. Circuit theory is simple but sufficiently rich to capture
essential wave physics, including topological effects [15].
Moreover, it can handle general constraints on physical
frequency responses and define positive energy even for dis-
persive materials. These advantages are fully exploited to
formulate plasmonic bulk-edge correspondences. In Sec. II,
we propose a minimal circuit model to explain the underlying
physics of the continuous transition between a metal and di-
electric. This transition is interpreted as a crossover between
the electric and magnetic zero modes. Foster’s reactance theo-
rem, as a general constraint on circuit response, can prove the
parity-reactance correspondence, which relates the parities of
the bulk wave functions to the sign of the surface reactance.
This correspondence does not rely directly on the Zak phase,
but on a more fundamental concept of parity. The parity-
reactance correspondence is a fundamental building block for
more complicated bulk-edge correspondences. We then reveal
the mechanism underlying the formation of surface plasmon
polaritons by leveraging the parity-reactance correspondence.
In Sec. III, we define a topological integer based on the direct-
current (DC) response by circuit theory. This integer requires
a plasmonic correction to the conventional surface-reactance
formula. Finally, we develop alternative bulk-edge correspon-
dences that assume neither mirror symmetry nor half-space
uniformity.

II. ESSENTIAL FORMATION MECHANISM OF SURFACE
PLASMON POLARITONS BASED ON CIRCUIT THEORY

Surface plasmon polaritons at a dielectric-metal interface
are attributed to the surface characteristics of the dielectric
and metallic half-spaces. Using circuit theory, we demonstrate
that these surface characteristics are determined by the bulk
properties of the half-spaces. To this end, we consider the
continuous transition between a metal and dielectric [12].
Although the exact configuration can be considered in the
analysis, its complexity obscures the underlying physics, and
therefore we adopt a different approach. First, we propose
and analyze a minimal circuit model that induces a topolog-
ical transition. Considering the circuit model as an elemental
example, we prove a parity-reactance correspondence that re-
lates the bulk-band parity to the sign of the surface reactance.
We then demonstrate that the minimal model can accurately
explain the essential transition between a metal and dielec-
tric. Thus, the parity-reactance correspondence can determine
the surface characteristics of metals and dielectrics. Finally,
we analyze the essential mechanism of surface-plasmon-
polariton formation at the dielectric-metal interface after
carefully interpreting the particular behaviors of the dielectric
and metallic half-spaces. Our approach clearly highlights the
essential physics of surface-plasmon-polariton formation.

A. Composite right-/left-handed transmission line

The composite right-/left-handed (CRLH) transmission
line has been used to investigate negative refractive indices
from a circuit-theory perspective [4,16,17]. Here, we show
that the CRLH transmission line can be considered as a min-
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FIG. 1. CRLH transmission line: (a) Unit cell with period �x.
The subscripts L and R denote the left- and right-handed components,
respectively. (b) Typical dispersion relation of a CRLH transmission
line. Here, we define ω0 = 1/

√
LRCR, and the parameters are set to

ζ = CL/CR = 0.4 and η = LL/LR = 0.9 (or ζ = 0.9 and η = 0.4).
(c) Symmetric and (d) antisymmetric eigenmodes at k(Bloch)

x = 0,
representing shunt and series resonances, respectively.

imal model for inducing a topological transition with duality.
The parity determined by the mirror symmetry is considered
to be the topological invariant of the bulk band, and the parity-
reactance correspondence relates it to the surface response as
a bulk-edge correspondence.

1. Model

Figure 1(a) shows the unit cell of a CRLH transmission line
composed of inductors and capacitors. The unit cell is period-
ically arranged in the x-direction with period �x. When the
left-handed parameters are set to CL → ∞ and LL → ∞, the
model becomes a conventional transmission line. The right-
handed components are characterized by ω0 = 1/

√
LRCR and

R0 = √
LR/CR. For the left-handed components, we introduce

dimensionless parameters ζ = CL/CR and η = LL/LR. The
dispersion relation of the CRLH transmission line for ζ =
0.4 and η = 0.9 is shown in Fig. 1(b) (see Appendix A for
calculation details). Here, k(Bloch)

x and ω represent the Bloch
wave number along x and angular frequency, respectively. The
left-handed components CL and LL produce a remarkable first
band with a phase velocity opposite to the group velocity,
indicating a negative refractive index. The first band of the
CRLH transmission line can model the wave propagation in
a double-negative medium (permittivity ε < 0 and perme-
ability μ < 0). In the double-negative medium, the electric
field, magnetic field, and wave vector (Ẽ, H̃, k) form a left-
handed triad, resulting in the phase velocity opposite to the
Poynting vector. Note that a tilde represents a phasor (i.e.,
a complex amplitude) in this paper. In contrast, a double-
positive medium (ε > 0 and μ > 0), which corresponds to the
conventional transmission line, has the right-handed triad.
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FIG. 2. (a) Topological phase diagram of gapped CRLH trans-
mission lines. They are divided into two topological classes: ζ < η

and ζ > η. (b) Dispersion relations at points D, S, and M along
the arrow in (a). At k(Bloch)

x = 0, the symmetric eigenmode involves
the shunt resonance at ωsh = ω0/

√
η, whereas the antisymmetric

eigenmode represents the series resonance at ωse = ω0/
√

ζ . These
eigenmodes are swapped in the transition. Note that D, S, and M
correspond to dielectric, self-dual, and metallic points, respectively,
when we consider the dielectric-metal transition.

The name “CRLH transmission line” reflects the fact that it
involves both right- and left-handed propagation.

2. Series and shunt resonances

We characterize the eigenmodes in a CRLH transmission
line according to mirror symmetry. The CRLH transmission
line has the mirror symmetry under x → −x when the order
of the inductor and capacitor positions in the series impedance
Z = jωLR + 1/( jωCL ) and shunt admittance Y = jωCR +
1/( jωLL ) is ignored [18]. Parity under mirror reflection char-
acterizes the eigenmodes at highly symmetric points in the
Brillouin zone. At k(Bloch)

x = 0, ±π/�x, the eigenmodes are
classified as symmetric and antisymmetric due to mirror sym-
metry considering the periodicity of the Brillouin zone. We
focus on the eigenmodes with k(Bloch)

x = 0. The symmetric
mode must not be accompanied by a series current flowing
through LR, whereas the antisymmetric mode results in zero
voltage at the upper node of LL and CR. Therefore, symmetry
requires the shunt resonance Y = 0 or series resonance Z = 0.
The corresponding resonant modes are depicted in Figs. 1(c)
and 1(d), and their respective angular eigenfrequencies can
be expressed as ωsh = ω0/

√
η and ωse = ω0/

√
ζ . The node

potentials shown in Fig. 1(c) are symmetric, and the series
current shown in Fig. 1(d) is antisymmetric with respect to
mirror reflection. A band gap appears between ωsh and ωse.

3. Topological phase diagram

The parameter space of a gapped system with a certain
symmetry can be divided into equivalent classes based on
the symmetry-induced topological property of the eigenfunc-
tions over the Brillouin zone. The topological property is
preserved under the continuous variation of the parameters
within each equivalent class. As shown in Fig. 2(a), gapped
CRLH transmission lines with mirror symmetry can be di-
vided into two classes: (i) ζ < η and (ii) ζ > η. For ζ = η,
the dispersion curves are crossing at k(Bloch)

x = 0 and the Dirac
point is formed. When the parameters are gradually changed
from (i) to (ii), the eigenmodes at k(Bloch)

x = 0 are swapped, as
illustrated in Fig. 2(b). Although the dispersion relations in (i)
and (ii) are similar, the parity of the eigenmode at k(Bloch)

x = 0

(a)

CL

LR

CR

LL

(b)

FIG. 3. Duality in the CRLH transmission line: (a) Dual circuit
for a CRLH transmission line and (b) dispersion relation of the self-
dual CRLH transmission line with ζ = η = 0.65.

in each band discontinuously changes between (i) and (ii).
This observation indicates that a topological transition occurs
between (i) and (ii). The parity induced by mirror symmetry is
a topological invariant that distinguishes the two topological
classes of the CRLH transmission lines with a finite band gap.

4. Duality

The two topological classes are implicitly related by circuit
duality. Considering a dual circuit [19] for a CRLH transmis-
sion line with respect to the reference resistance R, as shown
in Fig. 3(a), we obtain the following dual quantities:

C�
R = LR

R2
, L�

R = CRR2, (1)

C�
L = LL

R2
, L�

L = CLR2. (2)

Equation (1) becomes self-dual, that is, C�
R = CR and L�

R = LR,
provided that we set R as follows:

R = R0 =
√

LR

CR
. (3)

Under the duality transformation, the left-handed components
are transformed into

C�
L = ηCR, L�

L = ζLR. (4)

Therefore, the duality transformation induces an interchange
between ζ and η. In particular, the swap maintains the shape
of the dispersion relation, whereas the symmetry of the
eigenmodes is interchanged at k(Bloch)

x = 0. Self-duality char-
acterizes the transition boundary between the two topological
classes as ζ = η. Figure 3(b) shows the dispersion curve when
ζ = η = 0.65. We can clearly observe Dirac-point formation
at k(Bloch)

x = 0, which is protected by self-duality.

5. Parity-reactance correspondence

The surface reactance represents the response of semi-
infinite circuits and is expressed by Im[Z (Bloch)], where the
Bloch impedance Z (Bloch) is the ratio between the current
and voltage of the Bloch wave function as defined in Ap-
pendix A. Each topological class has a definite sign of the
band-gap surface reactance determined by the parity of the
bulk wave function just below the band gap. We prove this
parity-reactance correspondence from a circuit-theoretical
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FIG. 4. Continuous transition between dielectric and metal: (a) Configuration of a plasmonic/photonic crystal with dielectric permittivity
ε and Drude permittivity εM = ε0[1 − (ωp/ω)2]. The permittivity distribution is uniform in the y and z directions. A unit cell is denoted by
the dashed line and periodically arranged in period a. (b) TM Bloch wave number and impedance with respect to the frequency in different
metal portions (wM ). The solid and dotted/dashed lines indicate the exact and CRLH-model calculations, respectively. The band gap between
the first and second bands is colored (light pink, capacitive; light blue, inductive). The calculation parameters were set as ε = ε0, kya = 1, and
ωpa/c0 = 100, where c0 is the speed of light in vacuum. The Bloch wave number and impedance were chosen to represent those of half-space
(x � 0+) physical modes that can be excited at x = 0, where the bottom of one unit cell with mirror symmetry is aligned at x = 0. The speed
of light in vacuum is represented by c0. The Bloch impedance was normalized by the vacuum impedance Z0 = √

μ0/ε0 and evaluated at the
bottom of the unit cell.

perspective. Eigenmode symmetry requires Z (Bloch)(ωsh ) =
∞ and Z (Bloch)(ωse ) = 0, as shown in Figs. 1(c) and 1(d),
respectively. The band gap is denoted by (ω1, ω2), with
ω1 = min(ωsh, ωse ) and ω2 = max(ωsh, ωse ). In ω1 < ω <

ω2, Z (Bloch) is purely imaginary, and Z (Bloch) has no zeros
or poles. Now, let us consider semi-infinite circuits ar-
ranged in x � 0+ and focus on a physical mode that can
be excited at x = 0. Subsequently, Z (Bloch) is selected as
its surface impedance at x = 0. Inside the band gap, we
may terminate (short/open) the circuit at x → +∞ with-
out influencing its response because the wave decays at x =
+∞. Therefore, the circuit can be approximated using a
finite number of elements, and we can use Foster’s reac-
tance theorem [20,21] in the band gap. Because Im[Z (Bloch)]
increases monotonically with increasing ω according to Fos-
ter’s reactance theorem, the band-gap behavior in ω1 < ω <

ω2 is determined as follows: (i) the capacitive response
Im[Z (Bloch)(ω)] < 0 occurs when ωsh < ωse, or (ii) the in-
ductive response Im[Z (Bloch)(ω)] > 0 occurs when ωsh > ωse.
Therefore, we complete this proof. The above proof is still
valid for other band gaps enclosed by bulk bands in a contin-
uous (distributed circuit) model, as shown in Appendix I.

Notably, the parity at k(Bloch)
x �x = ±π remains unchanged

during the transition between the two topological classes of
(i) and (ii). Thus, it does not affect the surface impedance
inside the band gap. Moreover, the parity at k(Bloch)

x �x = ±π

depends on the choice of unit cell. In fact, 	 and T unit
cells provide different parities at k(Bloch)

x �x = ±π (see Ap-
pendix A). Therefore, the Zak phase depends on the choice
of unit cell because the parity determines the Zak phase.
Thus, the conventional surface-reactance formula using the
Zak phase [13] cannot be naively applied to plasmonic sys-
tems. The required modification is described in Sec. III B.

B. Circuit model of dielectric-metal transition

We show that the CRLH transmission line reflects the un-
derlying physics of the topological dielectric-metal transition.
Let us consider periodically arranged dielectric and metallic

layers, which are uniform in the y- and z-directions, as indi-
cated in Fig. 4(a). The bottom of a unit cell is selected as the
center of the metal and is located at x = 0. Thus, the Bloch
impedance is simplified due to mirror symmetry of the unit
cell. We analyze a transverse magnetic (TM) wave with wave
number ky > 0 in the y-direction. The TM wave induces a
magnetic field H in the z-direction. The period of the unit
cell in the x-direction is denoted as a. The dielectric layer has
thickness (1 − wM )a and permittivity ε. The speed of light in
the dielectric layer is given by c = 1/

√
εμ0, where μ0 is the

vacuum permeability. The permittivity of the metallic layer
with thickness wMa is given by the Drude model [22]:

εM = ε0

[
1 −

(
ωp

ω

)2]
, (5)

where ε0 and ωp represent the vacuum permittivity and plasma
angular frequency, respectively. By changing the metal por-
tion wM , we can induce a topological phase transition [12]. To
theoretically derive the CRLH transmission line, we focus on
ω � ωp, in contrast to Ref. [12]. To induce a band inversion
in ω � ωp, cky � ωp is required.

TM mode propagation along x in the dielectric and metal
can be analyzed using F matrices, as described in Appendixes
B–D. Moreover, the dielectric and metal are modeled using
one-dimensional circuits, as described in Appendixes E and
F. To develop the circuit model of a binary unit cell, we
approximate each dielectric and metallic layer by a single
circuit block of Fig. 15 and assume the positions of the shunt
admittance and series impedance can be freely exchanged
in the unit cell. This assumption is justified in Appendix G.
Finally, we obtained the CRLH transmission-line model of
the unit cell shown in Fig. 4(a). The circuit parameters were
evaluated as follows:

LR = μ0a + ky
2wMa

ε0ωp
2

, (6)

CR = [ε(1 − wM ) + ε0wM]a, (7)
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LL = 1

ωp
2ε0wMa

, (8)

CL = 1

(cky)2μ0(1 − wM )a
. (9)

Next, we analyze the continuous model and simplified
CRLH transmission line and compare the results. First, we de-
scribe our calculation setup. Henceforth, the dielectric layers
are regarded as vacuum with ε = ε0. The following calcu-
lation parameters were selected: kya = 1 and ωpa/c0 = 100.
Here, c0 is the speed of light in vacuum. For a given frequency,
the Bloch wave number k(Bloch)

x along x is calculated. The
Bloch impedance Z (Bloch) in the exact model is evaluated at the
bottom of the unit cell (i.e., the center of the metal). The con-
tinuous model is treated as described in Appendix H, whereas
the CRLH model is analyzed according to Appendix A. The
CRLH model exhibits ambiguity in the definition of Z (Bloch).
It is calculated for the 	 unit cell such that Z (Bloch) is induc-
tive near ω = 0 (see Appendix A). Symmetry considerations
indicate the following properties: (i) The Bloch wave number
and impedance are real or purely imaginary, and (ii) the Bloch
impedance must be zero or ±∞ at k(Bloch)

x = 0, ±π/a, as de-
scribed in Appendix I. In both systems, we focus on physical
modes in x � 0+, which can be excited at x = 0. To select
a solution that does not diverge at x = +∞, the following
condition is imposed:

∣∣exp
(− jk(Bloch)

x a
)∣∣ � 1. (10)

Furthermore, we impose the following condition, considering
the energy transmission:

Re[Z (Bloch)] � 0. (11)

As k(Bloch)
x and Z (Bloch) can be imaginary, we plot the real and

imaginary parts with respect to frequency.
Figure 4(b) shows the Bloch wave number and impedance

evaluated for the exact configuration and CRLH model. The
CRLH-model solution (dotted and dashed lines) agrees well
with the exact solution (solid) below the bottom of the second
real band. Therefore, the CRLH model substantially captured
the band inversion between the first and second bands. We
stress that the CRLH model does not involve any fitting
parameter. At high frequencies, the CRLH model does not ap-
proximate an exact solution. This disagreement is reasonable,
considering that the simplified CRLH model involves only a
few degrees of freedom, whereas the exact model has infinite
degrees of freedom. In fact, the exact treatment produces an
infinite number of bands, whereas the CRLH model yields
only two bands. We currently approximate each dielectric and
metallic layer by a single circuit block, but one may employ
a much finer discretization without series-shunt swapping to
obtain more accurate models. When considering a sufficiently
small discretization, the circuit model perfectly corresponds
to the continuous model, as indicated in Appendixes E and
F. However, the system becomes complex, and understanding
the underlying physics becomes difficult. Instead of such a
complicated model, the simplified CRLH transmission line is
far more useful in elucidating the essential physics.

We explain the vacuum-metal transition in terms of the
CRLH transmission line. Using Eqs. (6)–(9) with ε = ε0, we
determined the CRLH parameters as follows:

ω0 = c0

a
√

1 + wM
( c0ky

ωp

)2
, (12)

R0 = Z0

√
1 + wM

(
c0ky

ωp

)2

, (13)

ζ = 1

ky
2a2(1 − wM )

, (14)

η = c0
2

ωp
2a2wM

[
1 + wM

( c0ky

ωp

)2] . (15)

Here, Z0 = √
μ0/ε0 represents the vacuum impedance. There-

fore, ωsh < ωse (ζ < η) holds for a small wM , whereas ωsh >

ωse (ζ > η) holds for a large wM . Figure 4(b) shows the
crossover between them. Mirror symmetry leads to Z (Bloch) =
∞ at ωsh, whereas antisymmetry results in Z (Bloch) = 0 at
ωse. For ωsh < ωse, Im[Z (Bloch)]|ω=ωsh+0+ = −∞ is required
by the reactance theorem. Thus, the gap behaves capaci-
tively; Im[Z (Bloch)] < 0 when ωsh < ω < ωse. By contrast,
ωse < ωsh requires Im[Z (Bloch)]|ω=ωsh−0+ = +∞; thus, the gap
behaves inductively: Im[Z (Bloch)] > 0 when ωse < ω < ωsh.
These parity-reactance correspondences are confirmed for the
filled regions in Fig. 4(b). It must be noted that in those
regions, Z (Bloch) generally has no zero or pole inside a band
gap, as described in Appendix I.

We now consider wM → 0+ and wM → 1− = 1 − 0+. The
dielectric limit wM → 0+ yields η → ∞; thus, ωsh → 0+ and
ωse → c0ky, where c0ky is the cutoff frequency of vacuum.
The metallic limit wM → 1− leads to ζ → ∞, resulting in
ωse → 0 and ωsh → ωp. Therefore, a plasmonic gap forms
when 0 < ω < ωp [23]. Shunt and series zero modes with
different symmetries at wM = 0+ and 1− are responsible for
the frequency responses in the quasistatic regime, which are
given by Im Z (Bloch)|ω=0+ = −∞ and Im Z (Bloch)|ω=0 = 0, re-
spectively. In summary, electric and magnetic zero modes
exist at wM = 0+ and 1−. They demonstrate the essential
differences between dielectrics and metals. The change in wM

from 0+ to 1− induces an interchange between the electric and
magnetic zero modes, which results in a phase transition.

C. Uniform half-spaces

The uniform cases of wM = 0 and 1 are qualitatively differ-
ent from the limits of wM = 0+ and 1−, respectively. In fact,
uniform dielectric and metal do not possess zero flat bands
that correspond to the first band of the CRLH transmission
line. Therefore, we clarify what occurs in the dielectric and
metallic limits. To simplify the discussion, we consider vac-
uum with ε = ε0 as the dielectric material.

1. Dispersion relation and impedance

The first example is vacuum. From Eqs. (C4) and (D1),
we can calculate the dispersion relation kx(ω) and TM surface
impedance ZV for a half-space vacuum in x � 0+. Fig-
ures 5(a) and 5(b) show the dispersion relation and TM surface
impedance of a half-space vacuum for kya = 1.0, respectively,
where a > 0 is the length for normalization. Im ZV |ω=0+ =
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FIG. 5. (a) Wave number kx and (b) TM surface impedance ZV

for a vacuum in x � 0+ as functions of frequency with kya = 1.0.
(c) Wave number kx and (d) TM surface impedance ZM for a metal
in x � 0+ as functions of frequency with εM = ε0[1 − (ωp/ω)2],
ωpa/c0 = 1.5, and kya = 1.0, where c0 is the speed of light in vac-
uum. The horizontal gray line represents the plasmonic frequency.
The length a > 0 is introduced for normalization, and the impedance
is normalized by Z0 = √

μ0/ε0.

−∞ clearly holds, and the vacuum is capacitive near zero fre-
quency. Despite the resonant behavior of Im ZV |ω=0+ = −∞,
it is not protected by mirror symmetry because the nonpropa-
gating zero mode has x-component wave number kx = − jky,
which does not possess the mirror symmetry under x → −x.
By contrast, ZV |ω=c0ky = 0 is protected by mirror symmetry
because of kx = 0. Bulk-band formation for ω � c0ky causes
ZV to change from imaginary to real at ω = c0ky. The sec-
ond example is a metal, which can be modeled according to
Drude permittivity in Eq. (5). Figures 5(c) and 5(d) show the
dispersion relation and TM surface impedance ZM of the half-
space metal in x � 0+, respectively, where we set kya = 1.0
and ωpa/c0 = 1.5. For ω � 0, ZM can be approximated as
ZM � j(ω/ωp)Z0

√
1 + (c0ky/ωp)2. Thus, the metallic half-

space behaves as an inductor near the DC limit. However,
ZM |ω=0 = 0 is not protected by mirror symmetry because of
nonzero kx. We stress that an electric field does not exist
(i.e., Ẽx = Ẽy = 0) at zero frequency because εM diverges.
In fact, Eq. (B2) is approximated as ωkyH̃z = ε0ωp

2Ẽx near
ω = 0. Therefore, Ẽx = 0 holds true, and H̃z �= 0 is possible
at ω = 0. Subsequently, Ẽy = 0 near ω = 0 is deduced from
Eq. (B1). Furthermore, ZM exhibits resonance ZM = ± j∞ at
ω = ωp ∓ 0+, where kx is nonzero without mirror symmetry.
By contrast, a bulk band is formed in ω �

√
ωp

2 + (c0ky)2,
and thus ZM is real there. Mirror symmetry ensures that
ZM |

ω=
√

ωp
2+(c0ky )2 = 0.

2. Flat bands in circuit models

In contrast to continuous models, circuit models allow us
to formulate zero flat bands explicitly at wM = 0 and 1. The

(a)

(b)

Vi0 0

Ii+1/2

FIG. 6. Zero modes in the circuit model: (a) Capacitive and
(b) inductive zero modes for wM = 0 and 1, respectively, for assump-
tion ω � ωp. In (a), the node voltage satisfies Vi �= 0 and Vl = 0
(l �= i), where the corresponding cut set across only capacitors is
depicted as a dotted line. In (b), a current Ii+1/2 flows along a loop
comprising only inductors.

DC responses at wM = 0 and 1 originate from the zero modes
illustrated in Fig. 6. These zero modes degenerate in the bulk
and form zero flat bands. They are dual and have constraints
on the total charge in a cut set of capacitors or flux penetrating
a loop of inductors. These constraints can be interpreted as DC
freezing under the limit η → ∞ or ζ → ∞. For wM = 1, the
circuit model in Fig. 15(b) possesses a flat band at the plasma
frequency. This flat band is induced by decoupled modes
involving the degenerate LC resonances about (L′

se2,C′
se ) and

(L′
sh,C′

sh ). Note that one of the flat bands folded in the first
Brillouin zone is roughly modeled by the curved second band
of the simplified CRLH transmission line. Therefore, the sec-
ond band of the CRLH transmission line comes from the flat
band at the plasmonic frequency.

3. Flat bands in continuous models

Next, we construct the corresponding flat bands in the
continuous model for ky > 0. These bands do not exist at
wM = 0 and 1; therefore, we consider wM = 0+ and 1−. In
the following, we formulate the corresponding modes directly.
Modes were identified according to concrete observations of
the field distributions in a continuous model with wM ≈ 0+
and 1−; however, we omit a tedious description and directly
provide the results.

First, we investigate wM → 0+. We consider the F0 matrix
of a single metallic layer to be at x = 0, where the layer has
infinitely thin thickness d → 0+. The complex amplitudes of
the electric field and electric displacement are denoted by Ẽ
and D̃, respectively. The F0 matrix connects the electrostatic
fields at x = ±d/2 as follows:

[
D̃x

(− d
2

)
Ẽy

(− d
2

)
]

= F0

[
D̃x

(
d
2

)
Ẽy

(
d
2

)
]
. (16)
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(a)

(b)

x

y

z

ky

a

0 0 0 0σ̃i

ε

xx = xi

φ̃

x

y

z

ky

a

0 0 0 0Φ̃i+1/2

εM

xx = xi+1/2

H̃z

FIG. 7. Zero modes in the continuous model: (a) Electric and
(b) magnetic zero modes localized at x = xi = ia and x = xi+1/2 =
(i + 1/2)a for wM = 0+ and 1−, respectively. The electric charge
(surface density) at xi is denoted as σ̃i exp(− jkyy) for i ∈ Z, and
the magnetic flux (line density) near xi+1/2 = (i + 1/2)a is rep-
resented by �̃i+1/2 exp(− jkyy). In (a), the electrostatic potential
ϕ̃(x) exp(− jkyy) with ϕ̃(x) ∝ exp ( − ky|x − xi|) is induced by the
charge layer satisfying σ̃i �= 0 and σ̃l = 0 (l �= i). In (b), the magnetic

field H̃z(x) exp(− jkyy) with H̃z(x) ∝ exp[−
√

ky
2 + (ωp/c0 )2|x −

xi+1/2|] is produced by magnetic flux trapped near xi+1/2.

Note that a variable with a tilde that depends only on x always
represents the complex amplitude omitting exp(− jkyy), ac-
cording to our convention for layered media. The electrostatic
solutions of exp(− jkyy) exp(±kyx) determine F0 as follows
[24]:

F0 =
[

cosh(kyd ) − jε sinh(kyd )

jε−1 sinh(kyd ) cosh(kyd )

]
, (17)

where ε is the constant permittivity in |x| � d/2. From
Eq. (17) with ε = εM → −∞ for ω → 0+, the Ey continuity
is deduced as Ey|x=0− = Ey|x=0+ . However, Dx may have a
discontinuity at x = 0, which represents the charge degree
of freedom in the layer. Although a charge cannot exist for
d = 0, the insertion of an infinitely thin metallic layer at
d = 0+ adds a degree of freedom. The infinitely thin metallic
layer works only for ω = 0, ωp, and does not contribute to the
frequency response for the other frequencies. This is because
the F matrix in Eq. (C6) becomes the identity matrix for d =
0+ at ω �= 0, ωp [25]. For a periodic system with wM = 0+,
we can construct a zero mode generated by a charge located
only in a single layer. The constructed mode is illustrated in
Fig. 7(a), which corresponds to Fig. 6(a). The zero modes
compose the zero flat band, considering that they form in
all layers. Therefore, insertion induces the emergence of an
electric zero flat band at an exceptional zero frequency.

Second, we analyze the metallic limit. We start with wM =
1. From Eqs. (B2)–(B4), H̃z(x) inside the Drude metal obeys

d2H̃z

dx2
= (

ky
2 − ω2εMμ0

)
H̃z, (18)

which reduces to d2H̃z/dx2 = [ky
2 + (ωp/c0)2]H̃z for ω →

0+. Therefore, zero-frequency solutions are given by

exp[±
√

ky
2 + (ωp/c0)2 x]. By contrast, the electric fields in-

side the metal approach zero for ω → 0+, as seen in Eqs. (B2)
and (B3). Now, we place a single vacuum gap at x = a/2
inside a Drude metal with an infinitely thin thickness d = 0+.
From Eq. (C6), we can conclude that H̃z is continuous at x =
a/2 for ω → 0+. However, Ẽy may have a discontinuity at
x = a/2, indicating a discontinuous dH̃z/dx at x = a/2 from
Eq. (B3). This discontinuity is interpreted as the magnetic
flux degree of freedom, which is induced by opposite currents
near the metal surfaces of the gap. For wM = 1−, we can
construct a magnetic zero mode, as shown in Fig. 7(b), which
corresponds to Fig. 6(b). Each gap has an individual zero
mode, and a zero flat band appears. Therefore, the insertion of
an infinitely thin vacuum into metal involves the emergence
of a magnetic zero flat band, whereas the frequency response
remains unchanged for ω �= 0.

A similar discussion can be applied to ω = ωp in the metal-
lic limit. Equation (B2) indicates that no magnetic field exists
for εM = 0. Consequently, Eqs. (B1) and (B4) are reduced to
the same forms as the electrostatic equations. The correspond-
ing decoupled state is formulated as the electric potential
ϕ̃(x) ∝ exp(−ky|x − ξ |) localized at any point of x = ξ when
wM = 1. For εM = 0, Dx is automatically continuous at x = ξ .
Therefore, the exceptional localized states form a flat band
at the plasmonic frequency. When we slightly decrease wM

from 1, the frequency of the band formed by the modes at
x = xi+1/2 (i ∈ Z) slightly decreases from ωp, and charges
appear near x = xi+1/2 ± (1 − wM )a/2. The localized mode
∝ exp(−ky|x − xi+1/2|) is related to the degrees of freedom on
surface charges on metals. In the circuit model [Fig. 15(b)],
this localized mode corresponds to the decoupled mode that
involves the degenerate LC resonances about (L′

se2,C′
se ) and

(L′
sh,C′

sh ) at ω = ωp.

D. Surface plasmon polaritons at the vacuum-metal interface

Using the parity-reactance correspondence, we reveal a
mechanism that ensures the existence of typical surface plas-
mon polaritons at the vacuum-metal interface. As seen above,
we can change the arrangement slightly to induce the flat
bands at ω = 0+ and ωp − 0+. Importantly, this process does
not alter the Bloch impedance for ω �= 0, ωp. Thus, we may
use wM = 0+, 1− instead of wM = 0, 1 when studying surface
mode formation. The unit cells with wM = 0+ are periodically
arranged in x � 0+, whereas those with wM = 1− are aligned
in x � 0−. Thus, LC resonance is predicted by the reactance
theorem. The vacuum reactance Im ZV changes capacitively
from −∞ to 0 for 0+ � ω � c0ky, whereas the metallic reac-
tance Im ZM varies inductively from 0 to +∞ for 0 � ω �
ωp − 0+. These behaviors originate from the protection of
the bulk modes at the band edges by mirror symmetry. When
c0ky � ωp is satisfied, the following conditions hold as shown
in Fig. 8(a): (i) ZV + ZM is purely imaginary in ω � c0ky,
(ii) Im(ZV + ZM ) = − j∞ for ω = 0+, (iii) Im(ZV + ZM ) � 0
for ω = c0ky, and (iv) Im(ZV + ZM ) increases monotonically
with ω. Therefore, the intermediate value theorem ensures
the existence of an ω value at which the resonant condi-
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(a) (b)

ImZ

ω
ωp

ImZM

ImZV
Im(ZM + ZV)

c0ky

0
ImZ

ω

ωp

ImZMImZV

Im(ZM + ZV)

c0ky

0

FIG. 8. Frequency dependence of surface reactance Im ZV (vac-
uum) and Im ZM (Drude metal) for (a) c0ky � ωp and (b) c0ky � ωp.
Here, c0 is the speed of light in vacuum. In both cases, the series
reactance Im(ZV + ZM ) crosses zero.

tion ZV + ZM = 0 is satisfied. A similar discussion holds for
c0ky � ωp as indicated in Fig. 8(b). Therefore, surface plas-
mon polaritons are always present at the interface due to
mirror symmetry protection.

For a given ky0 > 0, we may define the frequency-
independent permittivity as ε̄2 = εM |ω=ω(ky0 ) < 0, where
ω(ky) represents the dispersion relation of the surface plas-
mon polaritons at the vacuum-metal interface. We now
consider the interface between ε1 = ε0 and ε̄2. This inter-
face yields the original surface plasmon polariton only for
(ky, ω) = (ky0, ω(ky0)). When we gradually transform ε̄2 into
−ε1, the surface mode at (ky, ω) = (ky0, ω(ky0)) becomes a
CMx-symmetric zero mode [24]. Thus, the parity-reactance
correspondence predicts the mode originating from the CMx-
protected zero mode.

III. BULK-EDGE CORRESPONDENCE
BASED ON DC RESPONSE

The dielectric and metallic limits in Sec. II C can have
flat bands composed of electric and magnetic zero modes,
respectively. This observation indicates that the DC responses
can be classified as electric or magnetic. This classification
suggests modifying the topological surface-reactance formula
[13] for plasmonic systems. Furthermore, we can generally
establish alternative bulk-edge correspondences based on DC
response, ensuring the existence of surface plasmon polaritons
without mirror symmetry or half-space uniformity.

A. Classification of response at zero frequency

Here, we employ circuit theory to define the integer
number, without using either mirror symmetry or zero flat
bands. The passive driving impedance Z of a circuit compris-
ing resistors, (coupled) inductors, and capacitors must be a
positive-real function of s = jω, where ω is the angular fre-
quency [26]. If the circuit is lossless, Z (s) is an odd function
due to time-reversal symmetry. Consequently, a physically
possible lossless impedance is an odd positive-real function
that satisfies Im Z|ω=0 = 0 or Im Z|ω=0+ = −∞ [27]. The
reactance theorem ensures that Im Z increases monotonically
as ω increases. Therefore, Im Z|ω=0 = 0 indicates that Z be-
haves inductively near ω = 0. By contrast, Im Z|ω=0+ = −∞
suggests a capacitive response near ω = 0.

The above properties are valid even for a one-dimensional
continuous (distributed element) model periodic in x, because
the system can be modeled using inductors and capacitors

when the spatial discretization is sufficiently small for the typ-
ical length scale of the focusing phenomena. Inside the band
gap, the wave number becomes imaginary. Subsequently,
we may terminate the circuit at the far point to reduce the
circuit’s degree of freedom to finite numbers. Therefore, con-
ventional circuit theory can be applied. Thus, the surface
(Bloch) impedance Z of a half-space can be classified into
two topological classes when the gap exists near zero fre-
quency. We define W = +1 and −1 for Im Z|ω=0 = 0 and
Im Z|ω=0+ = −∞, respectively. The integer W is considered a
topological invariant that classifies DC responses into metallic
or dielectric. For the half-space x � 0+, the sign of W is
determined by whether a dielectric material or Drude metal
is placed at x = 0+, in which case the magnetostatic or elec-
trostatic field, respectively, vanishes.

Figure 5 confirms the above characteristics. The zero-
frequency responses are interpreted to originate from the
electric and magnetic zero modes, as discussed in Sec. II C.
In fact, a slight modification of the configuration can produce
a zero flat band without changing the frequency response for
almost all frequencies. The zero flat bands are magnetic with
W = +1 or electric with W = −1. The integer W is related
to the parity of the band-edge wave function in the zero flat
band when slightly modifying the system. Thus, W can be in-
terpreted as a bulk quantity. However, W is sometimes useful
because it does not necessarily require mirror symmetry or the
existence of a flat band.

B. Plasmonic correction to topological
surface-reactance formula

We propose the following plasmonic modification of the
topological surface-reactance formula. Let us consider an
artificial periodic crystal composed of dielectric and Drude
layers, which are uniform in the y- and z-directions. Therefore,
the boundaries are aligned parallel to x = 0. Different layers
can have different parameters. A dielectric layer has one pa-
rameter of the positive permittivity, whereas a Drude layer has
two parameters of the background permittivity εBG > 0 and
the plasmonic angular frequency ωp > 0 in the Drude permit-
tivity ε(ω) = εBG[1 − (ωp/ω)2]. The permeability of all the
layers is assumed to be μ0. To avoid flat-band singularity at
the plasmonic frequencies, we only consider the frequency re-
gion of ω < min{ωp} in the following discussion. The unit cell
is chosen as x ∈ [0, a], and we assume that it exhibits mirror
symmetry with respect to x = a/2. An example is shown in
Fig. 4(a). We analyze their dispersion relation on the x-axis for
TM waves with y-component wave number ky > 0. A finite
band gap including ω = 0+ is indexed by n = 0, where its ex-
istence is described in Appendix J. Here, we focus on the nth
highest band gap for n > 0. The nth gap surface impedance at
x = 0 for the crystal in x � 0+ is denoted by Z (gap)

n and it can
be evaluated as the Bloch impedance at x = 0. The number of
band-crossing points below the nth gap is denoted by �. The
propagating bands are indexed as m = 0, 1, . . . starting with
the lowest one, and the Zak phase of the mth band is denoted
by θ (Zak)

m (see Appendix K for the detailed definition of the
Zak phase). Subsequently, we propose the following formula
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as the bulk-edge correspondence for n � 1:

sgn
(
Im Z (gap)

n

) = W (−1)n+� exp

[
− j

n−1∑
m=0

θ (Zak)
m

]
, (19)

where W characterizes the DC response evaluated at x = 0
for the crystal in x � 0+. The DC response W depends on
whether a dielectric material or Drude metal is placed at
x = 0+. We stress that the factor W does not appear in the con-
ventional surface-reactance formula because a previous study
focused on the DC gapless limit of ky → 0 for all-dielectric
photonic crystals with a factor of W = −1 [13]. From Fig. 4,
we can easily verify the validity of Eq. (19) with W = 1. Next,
we consider two basic properties of one-dimensional systems
to justify Eq. (19).

First, we describe the essential characteristics at the edge
frequencies of a band gap. At the transition frequency be-
tween the propagating band and band gap, Z (Bloch) = 0 or
1/Z (Bloch) = 0 is required because the propagating and decay-
ing bands have real and purely imaginary Bloch impedance
values, respectively. Conversely, Z (Bloch) = 0 and 1/Z (Bloch) =
0 lead to the existence of bulk modes with wave numbers
k(Bloch)

x = 0, ±π/a, as shown in Appendix I. These obser-
vations and the reactance theorem indicate that each band
gap has a Bloch reactance with a definite sign. Thus, mode
splitting always occurs at k(Bloch)

x = 0 and ±π/a, involving a
pair of symmetric and antisymmetric modes.

Second, we explain the physical properties that determine
the general behavior of the dispersion relation. There are
typically two modes for a given angular frequency ω be-
cause the problem is formulated using 2 × 2 matrices. These
modes are related by mirror symmetry in the propagating
bands, whereas they are protected by time-reversal symme-
try inside the band gaps. When the half-space crystal in
x � 0+ is excited from x = 0, one of the modes that satis-
fies Im k(Bloch)

x � 0 and Re Z (Bloch) � 0 appears. We consider
that k(Bloch)

x and Z (Bloch) are defined for this half-space mode.
Considering the group velocity, ∂k(Bloch)

x (ω)/∂ω � 1/c0 is
physically required in the propagating bands. Therefore, the
physical configurations require that �x�0+ = exp( jk(Bloch)

x a)
rotates anticlockwise along the unit circle with increasing ω

in the propagating bands. After �x�0+ arrives at ±1, �x�0+

becomes �x�0+ < −1 or �x�0+ > 1 inside a band gap.
Now, we justify Eq. (19) for a typical dispersion, as shown

in Fig. 9. The parities at the lowest and highest frequencies
of the mth bands are denoted as p(L)

m and p(H)
m , respec-

tively. For example, we focus on the n = 2 and � = 1 case.
From the parity-reactance correspondence, sgn(Im Z (gap)

n=2 ) =
−p(H)

m=1 holds true. To extract the Zak phase terms, we uti-
lize p(L)

m=0(−W ) = p(L)
m=1 p(H)

m=0 = −1. Next, we can transform
sgn(Im Z (gap)

n=2 ) as follows:

sgn
(

Im Z (gap)
n=2

)
= −p(H)

m=1

= −(−1)n+�=3 p(H)
m=1(−1)

(
p(L)

m=1 p(H)
m=0

)(
p(L)

m=0(−W )
)

= (−1)n+�=3
(−p(H)

m=1 p(L)
m=1

)(
p(H)

m=0 p(L)
m=0

)
W

FIG. 9. Schematic of typical dispersion relation to justify the
modified surface-reactance formula. Note that the depicted curves
are hand-drawn. The points at zero frequency are shown as if there
were a zero flat band, but the existence of the zero flat band is not
necessary for the justification.

= W (−1)n+� exp

[
− j

n−1∑
m=0

θ (Zak)
m

]
. (20)

Here, the Zak phase is represented as exp(− jθ (Zak)
m ) =

p(L)
m p(H)

m for a band without a crossing point (see Appendix K).
If there is a crossing point with the degeneracy of the sym-
metric and antisymmetric modes, as in the case of m = 1,
then we use exp(− jθ (Zak)

m=1 ) = −p(L)
m=1 p(H)

m=1. In conclusion, we
justified the surface-reactance formula. This justification can
be extended to more general scenarios.

Equation (19) is noteworthy because it involves the Zak
phases of all the bulk bands below the focusing band gap. At
first glance, the properties of the nth gap appear to depend on
the characteristics of the lower n′th gaps (n′ < n). However,
this interpretation is incorrect. In fact, the properties of the
nth gap are determined entirely by the parity of the band-edge
wave function immediately below the band gap.

C. Bulk-edge correspondence without mirror symmetry

The classification of the DC responses does not require
mirror symmetry. Therefore, we can establish alternative bulk-
edge correspondences that rely on neither mirror symmetry
nor half-space uniformity.

1. Lemma for all-dielectric layers

As seen in Sec. II D, the occurrence of surface plasmon
polaritons is ensured by the intermediate value theorem. For
the application of the intermediate value theorem, the ranges
of Im ZV and Im ZM must include (−∞, 0] and [0,∞), re-
spectively, and ZV and ZM must be purely imaginary. These
properties originate from mirror symmetry protection, but we
can establish a similar statement for all-dielectric layers with-
out mirror symmetry.

For x � 0+, we consider a frequency-independent dis-
tributed permittivity ε(x) with vacuum permeability μ0. We
assume that ε(x) satisfies ε(x) � ε0 and ε(x) → ε0 (x → ∞).
The first assumption is reasonable because ε < ε0 usually
accompanies a strong frequency dispersion. In addition, the
second assumption is justified because it is sufficient to con-
sider a finite region for localized waves. Let Z1 be the surface
impedance of the half-space x � 0+ for a TM wave with wave
number ky > 0 in the y-direction. At ω → 0+, Im Z1 → − j∞
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holds because nonpropagating electric zero modes can be con-
structed by multiplying the F0 matrices from x = +∞ [24].

We now prove the following lemma: Z1 includes zero in
0 < ω � c0ky. This lemma is used in the proof of the bulk-
edge correspondences. We begin with a uniform vacuum. The
surface impedance of ZV is purely imaginary, and ZV is zero at
ω = c0ky. We prove that zero is maintained at 0 < ω � c0ky

even when we gradually insert dielectric slabs at x = 0. First,
we consider the addition of a dielectric slab with thickness
d and permittivity ε � ε0 (ε = ε/ε0). This slab is placed in
x ∈ [−d, 0]. Second, the entire system is translated by d along
x such that the surface is located at x = 0+. After extension
and translation, Z1 remains purely imaginary for ω � c0ky. At
ω = c0ky, the wave number along x and TM wave impedance

inside the added dielectric should satisfy kx =
√

εk0
2 − ky

2 �
0 and Z (TM) = kx/(ωε) � 0, respectively. If zero exists at
ω = c0ky for the initial Z1, the extension and translation result
in Z1|ω=c0ky = jZ (TM) tan(kxd ), as derived by Eq. (C6). For a
small d , we find that Im Z1|ω=c0ky � Z (TM)kxd � 0. Therefore,
the zero at c0ky always shifts to a lower frequency after the
gradual insertion of the dielectric. By contrast, Im Z1|ω=0+ =
− j∞ is maintained by the insertion of the dielectric. The
insertion is repeated until ε(x) is obtained. Since zeros are not
suddenly created or annihilated under the above continuous
procedures, the gradual insertion of the dielectric maintains
the existence of zero within (0, c0ky].

2. Application of lemma to bulk-edge correspondences

The previous lemma is useful for formulating the surface-
mode existence theorems for various configurations. For
example, we can combine it with previous results for mirror-
symmetric systems. We consider a unit cell introduced in
Sec. III B and periodically arrange it in x � 0−. We assume
that its unit cell has mirror symmetry and shows a plasmonic
response with W = 1. Then, a surface mode with ky > 0 al-
ways exists at the interface between the all-dielectric layers
described in the lemma with W = −1 and the plasmonic
crystal with W = 1.

We can construct another bulk-edge correspondence with-
out assuming mirror symmetry for x � 0−. To this end, we
place a Drude metal with vacuum permeability μ0 in x � 0−
in addition to the all-dielectric layers in x � 0+ described in
the lemma. The permittivity of the metal is given by

ε(ω, x) = εBG(x)

[
1 −

(
ωp(x)

ω

)2
]
. (21)

Here, we introduced background permittivity εBG(x) > 0
and plasma angular frequency ωp(x) > 0 for x � 0−. To
prevent energy leakage as x → −∞, we assume 0 <

limx→−∞ εBG(x) � ε0. The half-spaces x � 0+ and x � 0−
possess W = −1 and +1, respectively, and a TM surface
mode exists at x = 0.

This bulk-edge correspondence is proven as follows. In-
side the Drude metal, the electric fields vanish as ω → 0+.
As x → −∞, waves cannot propagate in x for ω � ωNP =√

(ωp|x=−∞)2 + ky
2/(μ0ε̄BG) with ε̄BG = limx→−∞ εBG(x).

Because we assume ε̄BG � ε0, ωNP � c0ky holds true. There-

ε1
ε0

εM

a

ky

y
x

z

H

(a) (b)

FIG. 10. TM surface waves at the interface between a dielectric
slab and metal: (a) Setup. The permittivities are given by ε1 = 4ε0

and εM = ε0[1 − (ωp/ω)2] with ωpa/c0 = 10, where c0 is the speed
of light in vacuum. (b) Dispersion relations of nonradiative surface
waves. The plasmonic first band is shown in orange, and the leaky
region ω � c0ky above the light line is filled with gray.

fore, Z2 is purely imaginary for 0 < ω � c0ky. Finally, we
complete the proof of the existence theorem. The lowest
angular frequency satisfying Z1 = 0 inside 0 < ω � c0ky

is denoted as ω = ω0. First, we consider the case where
Im Z2|ω=ω0 � 0. The following three conditions are satisfied:
(i) Z1 + Z2 is purely imaginary in 0 < ω � c0ky, and Im(Z1 +
Z2) increases monotonically with ω; (ii) limω→0+ Im(Z1 +
Z2) = −∞; and (iii) Im(Z1 + Z2)|ω=ω0 � 0. Under these con-
ditions, the intermediate value theorem ensures that there is an
angular frequency ω ∈ (0, c0ky] at which Z1 + Z2 = 0 is sat-
isfied. There may be poles of Im(Z1 + Z2) = ±∞, and the in-
termediate value theorem should be extended to handle infin-
ity. Even if Im Z2|ω=ω0 < 0 unexpectedly holds, we can intro-
duce ω1 as the lowest angular frequency in (0, ω0], satisfying
Z2|ω1−0+ = j∞ and Z2|ω1+0+ = − j∞. Finally, we can apply
a similar discussion to (0, ω1] to ensure the existence of a zero
in Z1 + Z2. Thus, a surface-localized mode always exists at the
interface between W = ±1 media under certain assumptions.

We confirm the above theorems for a specific example. We
consider a dielectric layer of thickness a placed on the Drude
metal, as shown in Fig. 10(a). The dielectric layer has per-
mittivity ε1 = 4ε0, and the metal has the Drude permittivity
as defined in Eq. (5) with ωpa/c0 = 10. It should be stressed
that we cannot define a mirror-symmetric unit cell in x � 0+.
The TM dispersion relations for nonradiative surface waves
are calculated by numerically determining the frequency that
satisfies Z1 + Z2 = 0 for a given ky > 0. The calculated results
are shown in Fig. 10(b). We can observe the plasmonic first
band and higher modes originating from multiple reflections
in the layer. In contrast to those of the multireflection modes,
the frequency of the plasmonic first band always exists for
arbitrary ky > 0 within the white region of ω � c0ky. The
robustness of the first band is suggested by the proof of the
lemma when considering a gradual increase of a from 0. In
summary, the existence of a surface wave can be ensured
at the interface between the two half-spaces, even without
uniformity or mirror symmetry.

IV. CONCLUSIONS

In this study, we revealed the essential mechanism of the
parity-reactance correspondence and established its gener-
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alizations and alternatives based on the circuit theory. We
discovered the topological nature of a CRLH transmission line
with duality and used it to completely explain the essential
physics underlying the topological transition between a metal
and dielectric material. The dielectric-metal transition was
interpreted as the crossover between the electric and magnetic
zero modes. The constraint of the physical frequency response
leads to the parity-reactance correspondence, which can ex-
plain the underlying mechanism of surface-plasmon-polariton
formation without Zak phases. The zero modes indicated
another formulation of the bulk-edge correspondence based
on the DC response. We then defined a topological integer
characterizing the inductive and capacitive responses at the
DC limit. The defined integer required the plasmonic mod-
ification of the conventional surface-reactance formula. In
addition, we formulated and confirmed alternative bulk-edge
correspondences that do not require mirror symmetry.

Finally, we summarize the implications of our results. This
study developed a circuit-theoretical description of plasmonic
bulk-edge correspondences, elucidating the essential roles of
the topology and physical frequency responses. The parity-
reactance correspondence and DC-response classification are
based on elaborate theorems about physical responses in cir-
cuit theory, and they are considered essential building blocks
for more complicated bulk-edge correspondences. The estab-
lished bulk-edge correspondences have the general predictive
power to ensure the existence of surface plasmon polaritons in
plasmonic crystals and complement the explicit understand-
ing of the origins of surface plasmon polaritons [24]. This
generality highlights the difference between our study and
pioneering studies that analyzed surface waves based on sur-
face impedances [28,29]. Compared to Ref. [13], our theory is
applicable even to plasmonic systems. Moreover, the essential
topological physics in dielectric-metal transition was simpli-
fied to the minimal CRLH transmission line. Our minimal
model characterizes the topological transition with duality,
and its simplicity is comparable to other fundamental mod-
els in topological physics, such as the Su-Schrieffer-Heeger,
Rice-Mele, Qi-Wu-Zhang, and Bernevig-Hughes-Zhang mod-
els [9]. Therefore, it can potentially be applied to broader
areas of physics beyond plasmonics, leading to future ad-
vances in duality-driven topological engineering.
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APPENDIX A: ANALYSIS OF LADDER CIRCUITS

To support Sec. II, we consider a one-dimensional circuit,
as shown in Fig. 11. The x-axis is discretized with �x, and the
shunt admittance Yi and series impedance Zi+1/2 are located
at xi = i�x and xi+1/2 = (i + 1/2)�x (i ∈ Z), respectively.
The complex amplitudes of the current Ĩi+1/2 flowing through

YiVi Yi+1Vi+1Yi−1Vi−1

Zi−1/2

Ii−1/2

Zi+1/2

Ii+1/2

x
xixi−1/2xi−1 xi+1/2 xi+1

Δx

FIG. 11. Transmission line with shunt admittance Yi and series
impedance Zi+1/2 along the x-axis.

Zi+1/2 and those of the voltage Ṽi along Yi satisfy the following
equations:

Ĩi+ 1
2
− Ĩi− 1

2
= −YiṼi, (A1)

Ṽi+1 − Ṽi = −Zi+ 1
2
Ĩi+ 1

2
. (A2)

For a periodic system, we assume that Yi and Zi+1/2 are
independent of i and denote them as Y and Z , respectively.
For the Bloch wave number k(Bloch)

x , Bloch’s theorem states
the following:

Ṽi+1 = exp
( − jk(Bloch)

x �x
)
Ṽi, (A3)

Ĩi− 1
2

= exp( jk(Bloch)
x �x)Ĩi+ 1

2
. (A4)

By substituting Eqs. (A3) and (A4) into Eqs. (A1) and (A2),
we obtain

4 sin2

(
k(Bloch)

x �x

2

)
= −ZY. (A5)

For k(Bloch)
x = 0, Eq. (A5) is reduced to Y Z = 0, indicating the

existence of symmetric (Y = 0) and antisymmetric (Z = 0)
modes. Equation (A5) is often used to calculate the disper-
sion relation ω(k(Bloch)

x ) for a given k(Bloch)
x . Instead of using

Eq. (A5), we can also determine exp(− jk(Bloch)
x �x) as

exp(− jk(Bloch)
x �x) = Y Z + 2 ± √

Y Z (Y Z + 4)

2
. (A6)

Equation (A6) is used to obtain the dispersion relation
k(Bloch)

x (ω) for a given ω.
We can intuitively understand the eigenmode symmetry at

highly symmetric points in the Brillouin zone. As shown in
Fig. 12, we define the node potentials {ϕi} and mesh currents
{Ji+1/2}, which represent the full degrees of freedom of the
differential modes restricted by Kirchhoff’s laws [19,30,31].
In addition, we introduce two mirror reflections Mxi and
Mxi+1/2 for x = xi and xi+1/2, respectively. First, we analyze
the k(Bloch)

x = 0 case, where ϕi and Ji+1/2 are independent of
i. The constant node potential clearly represents a symmetric
degree of freedom (for both Mxi and Mxi+1/2 ), where the
constant mesh current represents an antisymmetric degree of
freedom. These symmetric and antisymmetric modes appear
at k(Bloch)

x = 0. Next, we consider k(Bloch)
x �x = ±π . Thus,

(−1)iϕi and (−1)iJi+1/2 are constants regardless of i. Notably,
both degrees of freedom produce Mxi -symmetric (Mxi+1/2 -
antisymmetric) distributions. Therefore, the two modes at

174105-11



YOSUKE NAKATA et al. PHYSICAL REVIEW B 108, 174105 (2023)

φi

Y

φi+1

Y

φi−1

Y

Z Z

Ji−1/2 Ji+1/2

x
xixi−1/2xi−1 xi+1/2 xi+1

Δx

FIG. 12. Node potential ϕi and mesh current Ji+1/2 in a uniform
transmission line.

k(Bloch)
x �x = ±π have identical parity. The parity for Mxi and

that for Mxi+1/2 are opposite at k(Bloch)
x �x = ±π .

Next, we introduce the concept of Bloch impedance. For
its formal definition, we reconsider the above Bloch analysis
from the more general perspective of two-port networks. The
unit cell in a periodic ladder can be systematically treated
as a two-port network shown in Fig. 13. In the frequency
domain, the phasors of depicted currents I (i) and voltages V (i)

(i = 1, 2) are related by a 2 × 2 matrix F as follows:[
Ṽ (1)

Ĩ (1)

]
= F

[
Ṽ (2)

Ĩ (2)

]
. (A7)

The eigenequation for F is written as

Fv = �v, (A8)

where � and v are the eigenvalue and eigenvector, respec-
tively. The eigenvector v can represent the mode in the
periodic extension of the unit, where the units are periodically
arranged in the x-direction with period �x and are connected
to the neighbors. For each mode, we can define the Bloch
wave number and the Bloch impedance. The Bloch wave
number k(Bloch)

x is introduced in � = exp( jk(Bloch)
x �x). For

a specific example, the characteristic equation for Eq. (A8)
results in Eq. (A6). The Bloch impedance is the ratio between
the voltage and current at the port and is defined as Z (Bloch) =
Ṽ /Ĩ for the eigenvector v = [Ṽ Ĩ]T.

Bloch impedance is evaluated at the boundary port of unit
cell, so it depends on the choice of unit cell. Here, we consider
two configurations of unit cells, as shown in Fig. 14. For the
	 unit cell, the Bloch impedance can be evaluated as

Z (Bloch)
	 = 2Z

Y Z + 2
[
1 − exp

(− jk(Bloch)
x �x

)]

I(1) I(2)

I(2)I(1)

V(1) V(2)

x

Δx

FIG. 13. Two-port network.

(a)

Y/2 Y/2
Z

(b)

Y

Z/2 Z/2

FIG. 14. (a) 	 and (b) T unit cells.

= ∓ 2Z√
Y Z (Y Z + 4)

. (A9)

It is calculated for the T unit cell as

Z (Bloch)
T = Z

2
+ 1 − exp

(− jk(Bloch)
x �x

)
Y

= ∓
√

Y Z (Y Z + 4)

2Y
. (A10)

Circuit duality connects these impedances as follows:

Z (Bloch)
	 Z (Bloch)

T = Z

Y
. (A11)

It must be noted that Im Z (Bloch)
	 and Im Z (Bloch)

T can have
different signs when we assume that Z/Y > 0.

Finally, we consider a CRLH transmission line [Fig. 1(a)]
at angular frequency ω. The series impedance Z is expressed
as

Z = jωLR + 1

jωCL
. (A12)

Furthermore, the shunt admittance is given by

Y = jωCR + 1

jωLL
. (A13)

It is not essential to distinguish which capacitor or induc-
tor is on the left side of Z because the effective response
is unaffected by the interchange in the geometrical posi-
tions. We define the parameters ζ := CL/CR, η = LL/LR,
ω0 = 1/

√
LRCR, and R0 = √

LR/CR. Thus, Z and Y can be
expressed as follows:

Z (ω/ω0, ζ , R0) = R0

(
j
ω

ω0
+ 1

jζ ω
ω0

)
, (A14)

Y (ω/ω0, η, R0) = R0
−1

(
j
ω

ω0
+ 1

jη ω
ω0

)
. (A15)

From Eq. (A5), we obtain the following equation:[
2 sin

(
k(Bloch)

x �x

2

)]2

=
(

ω

ω0

)2

+ 1

ζη

(
ω0

ω

)2

− 1

ζ
− 1

η
,

(A16)
which can be solved for ω. Using Eq. (A6), we can also
calculate the complex dispersion relation.

APPENDIX B: BASIC EQUATIONS OF SURFACE
PLASMON POLARITONS

We assume that the electric permittivity ε(x) and magnetic
permeability μ(x) depend only on x. Let us consider a TM
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wave with wave number ky in the y-direction and angular
frequency ω. It has a z-component of the magnetic field, given
by Hz(t, x, y) = H̃z(x) exp[ j(ωt − kyy)] + c.c. at time t with
complex amplitude H̃z(x), where c.c. represents the complex
conjugate of the former term. Similarly, the complex ampli-
tudes of the electric displacement, electric field, and magnetic
flux density are denoted by D̃, Ẽ, and B̃, respectively. Here,
we use the convention that a variable with a tilde that depends
only on x always represents the complex amplitude omitting
exp(− jkyy). The Gauss, Ampére-Maxwell, and Faraday laws
are given by the following equations:

dD̃x

dx
− jkyD̃y = 0, (B1)

− jkyH̃z = jωD̃x, (B2)

−dH̃z

dx
= jωD̃y, (B3)

dẼy

dx
+ jkyẼx = − jωB̃z. (B4)

It must be noted that these equations are not independent.
Equations (B2) and (B3) lead to Eq. (B1) for ω �= 0, although
Eq. (B1) should be required independently at ω = 0.

APPENDIX C: F MATRIX OF SLAB FOR TM WAVES

A uniform slab with real scalar permittivity ε and perme-
ability μ is located in the region x ∈ [0, d] (d > 0). We derive
the relation between the fields at x = 0 and x = d . Consider-
ing a TM wave in which the magnetic field is oriented in the
z-direction, the angular frequency and wave number along the
y axis are represented by ω and ky, respectively. The complex
amplitude of the z component of the magnetic field is given
by

H̃z(x) = H̃1 exp(− jkxx) + H̃2 exp( jkxx), (C1)

where we omit the temporal variation exp( jωt ) and spatial
variation exp(− jkyy). The wave number kx satisfies the fol-
lowing condition:

kx
2 + ky

2 = εμω2. (C2)

Using the Ampére-Maxwell equation, we obtain the y compo-
nent of the electric field amplitude as

Ẽy(x) = − 1

jωε

dH̃z

dx

= Z (TM)[H̃1 exp(− jkxx) − H̃2 exp( jkxx)], (C3)

where we define the TM wave impedance Z (TM) as

Z (TM) = kx

ωε
. (C4)

From Eqs. (C1) and (C3), the fields at x = 0 and x = d are
related as follows: [

Ẽy(0)

H̃z(0)

]
= F

[
Ẽy(d )

H̃z(d )

]
. (C5)

The F matrix of the slab with thickness d is given by

F =
[

cosh θ Z (TM) sinh θ

(Z (TM))−1 sinh θ cosh θ

]
, (C6)

where θ = jkxd denotes the propagation constant. There are
two sign choices for kx in Eq. (C2); however, both choices
yield the same F matrix. Conventionally, kx is defined such
that the exp(− jkxx) term represents the physical mode in half-
space, as discussed in Appendix D. Equation (C6) satisfies

det F = 1 (C7)

for reasons related to reciprocity [32].

APPENDIX D: EFFECTIVE RESPONSE
OF UNIFORM HALF-SPACE

We characterize the effective response at x = 0 for a
uniform half-space with real scalar permittivity ε and per-
meability μ in x � 0+. We use the convention that the
exp(− jkxx) terms become physical in the half-space x � 0+.
We consider two cases separately: real kx and purely imagi-
nary kx. There are two propagating modes in the x-direction
for real kx. One carries energy from x = 0 to infinity, whereas
the other carries energy from x = +∞ to x = 0. When we
treat the effective response at x = 0 for the half-space, the
latter should be ignored. Therefore, Re Z (TM) � 0 is required
to ensure that exp(− jkxx) represents energy flow from x = 0
to x = +∞. Next, we treat the case of imaginary kx. When
the exp(− jkxx) terms must be finite at x → +∞, Im kx � 0
is required. In summary, the wave number along the x-axis is
defined as follows:

kx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
εμω2 − ky

2
(
ε > 0, μ > 0, εμω2 > ky

2
)
,

−
√

εμω2 − ky
2

(
ε < 0, μ < 0, εμω2 > ky

2
)
,

− j
√

ky
2 − εμω2

(
εμω2 � ky

2
)
.

(D1)
In this convention, the TM wave impedance is equivalent to
the surface impedance. The effective response of the half-
space is characterized by Eqs. (C4) and (D1).

APPENDIX E: ANALOGY BETWEEN CIRCUITS
AND ELECTROMAGNETIC SYSTEMS

To support Sec. II B, we present an analogy between
electrical circuits and electromagnetic systems. We consider
transverse-electromagnetic (TEM) wave propagation along x
with ky = 0. The electric field is parallel to the y-axis, and the
magnetic field is in the z-direction. The respective complex
amplitudes are denoted by Ẽy(x) and H̃z(x). The electric per-
mittivity and magnetic permeability are represented by ε(x)
and μ(x), respectively. The Ampère-Maxwell and Faraday
laws [Eqs. (B3) and (B4)] yield the following equations for
the angular frequency ω:

dH̃z

dx
= − jωεẼy, (E1)

dẼy

dx
= − jωμH̃z. (E2)
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TABLE I. Analogy between circuits and electromagnetic systems.

Circuit Ṽi Ĩi+1/2 Yi Zi+1/2

Maxwell Ẽy�x H̃z�x jωε�x jωμ�x

Equations (E1) and (E2) are clearly analogous to Eqs. (A1)
and (A2), respectively. The variable correspondence between
the two systems is summarized in Table I.

APPENDIX F: CIRCUIT MODELS
OF DIELECTRIC AND METAL

To support Sec. II B, we synthesize circuit models for the
dielectric and metal to reproduce their wave number (kx) and
wave impedance (Z (TM)).

1. Effective parameters for TM propagation

For the TM wave with ky, as described in Appendix B, we
can construct a one-dimensional model along x. The effective
permittivity and permeability in the one-dimensional model
are denoted by εeff and μeff , respectively. From Eq. (C4), we
obtain

εeff = kx

ωZ (TM)
. (F1)

Because ky = 0 in Eq. (C2) is considered in the one-
dimensional model, kx should satisfy the following equation:

kx
2 = εeffμeffω

2. (F2)

Thus, μeff can be obtained as

μeff = kxZ (TM)

ω
. (F3)

In summary, we have extracted the effective parameters εeff

and μeff in the one-dimensional model to reproduce the given
kx and Z (TM).

2. Circuit model of dielectric

We characterize a dielectric slab with permittivity ε > 0
and vacuum permeability μ0. Equations (C4) and (D1) rep-
resent the impedance and wave number, respectively. Using
Eqs. (F1) and (F3), we extract the effective parameters as
follows:

εeff = ε, (F4)

μeff = μ0

[
1 −

(
cky

ω

)2
]
, (F5)

where the speed of light in the slab is defined as c = 1/
√

εμ0.
Thus, the slab exhibits a magnetic response, which is rep-
resented by the Drude-like dispersion. Therefore, the slab
has a cutoff angular frequency of cky. This configuration is
similar to a magnetic dual configuration for parallel metallic
waveguides with transverse electric (TE) modes.

(a)
Lse

Cse

Csh

(b)
Lse1

Cse

Lse2
CshLsh

(c)
Lse

CshLsh

FIG. 15. Unit cells of circuit models for TM-wave propagation in
(a) dielectric and (b) metal. Under ω � ωp, (b) can be approximated
as (c).

By using Table I with Eqs. (F4) and (F5), we can synthesize
a circuit model, as shown in Fig. 15(a). The circuit parameters
are determined as follows:

Lse = μ0�x, (F6)

Cse = 1

(cky)2μ0�x
, (F7)

Csh = ε�x. (F8)

Here, the series impedance Z in Fig. 12 comprises Lse and Cse,
which induce the Drude-like response described in Eq. (F5) as
a series resonance.

3. Circuit model of metal

Next, we consider a Drude metal. A one-dimensional cir-
cuit model of the Drude metal is shown in Fig. 15(b). Table I
and Eqs. (5), (C4), (D1), (F1), and (F3) provide the following
circuit parameters:

L′
se1 = μ0�x, (F9)

L′
se2 = ky

2

ωp
2ε0

�x, (F10)

C′
se = ε0

ky
2�x

, (F11)

C′
sh = ε0�x, (F12)

L′
sh = 1

ωp
2ε0�x

. (F13)
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(a) (b)

(c) (d)

Z1 Z2
Y1 Y2 Y1 + Y2

Z1 + Z2

ZA ZB

ZC

Zab

Z b
cZ

ca

FIG. 16. (a) Unit cell, (b) approximated unit cell, (c) Y circuit,
and (d) � circuit.

The impedance ratio between Z ′
Cse = 1/( jωC′

se ) and
Z ′

Lse2 = jωL′
se2 is evaluated as∣∣∣∣Z ′

Lse2

Z ′
Cse

∣∣∣∣ =
(

ω

ωp

)2

. (F14)

Therefore, C′
se can be regarded as open if ω � ωp is satisfied.

In this case, the model is reduced to that in Fig. 15(c), where
L′

se is given by

L′
se = L′

se1 + L′
se2. (F15)

APPENDIX G: SWAPPING BETWEEN SERIES
AND SHUNT ELEMENTS

To support Sec. II B, the conditions for swapping between
the series and shunt elements are summarized. Let us consider
the unit cell shown in Fig. 16(a). When the shunt current is
small, the positions of the series and shunt elements can be
swapped to obtain the unit cell, as shown in Fig. 16(b). To
justify this transformation, we used the Y-� transformation
[33], which converts the Y circuit [Fig. 16(c)] into the � cir-
cuit [Fig. 16(d)]. The circuit parameters are related according
to the following equations:

Zab = ZAZB + ZBZC + ZCZA

ZC
, (G1)

Zbc = ZAZB + ZBZC + ZCZA

ZA
, (G2)

Zca = ZAZB + ZBZC + ZCZA

ZB
. (G3)

Now, we set ZA = Z1, ZB = Z2, and ZC = Y1
−1. Assuming

|Y1| � |Z1
−1 + Z2

−1|, we obtain Zab ≈ Z1 + Z2 and Zca
−1 +

Zbc
−1 = Y1. Next, the position of the unit cell is replaced, and

this approximation can be justified. When a dual circuit is
considered, |Zi| � |Y1

−1 + Y2
−1| provides another condition.

The shunt-series swapping used to obtain the CRLH trans-
mission line in Sec. II B is justified as follows. In the circuit
model, the series impedances of the vacuum and metallic
regions are denoted by Z (cir)

V and Z (cir)
M , respectively, and the

shunt admittances are represented by Y (cir)
V and Y (cir)

M , respec-
tively. Since we focus on c0ky, ω � ωp, and wM � 1, |Z (cir)

M |
is small. Thus, |(Z (cir)

M )−1 + (Z (cir)
V )−1| is large, except for

ω = ωse ≈ c0ky, where Z (cir)
V exhibits resonance. Therefore,

|Y (cir)
V | � |(Z (cir)

M )−1 + (Z (cir)
V )−1| is expected at ω �= ωse. At

ω = c0ky, |Z (cir)
V | becomes zero, and |Z (cir)

V | � |(Y (cir)
V )−1 +

(Y (cir)
M )−1| holds when ωsh is not close to c0ky. In conclusion,

both cases satisfy the swapping condition.

APPENDIX H: BLOCH ANALYSIS OF
PERIODIC BINARY DIELECTRICS

With regard to Sec. II B, we analyze TM wave propaga-
tion in a periodic arrangement of binary slabs. One layer of
thickness dA consists of dielectric (or metallic) material A
with permittivity εA, whereas the other layer of thickness dB is
made of B with permittivity εB. These layers are periodically
arranged in x as · · · ABABAB · · · with period a = dA + dB.
The F matrix of a unit cell is denoted by

F (unit) =
[

F (unit)
11 F (unit)

12

F (unit)
21 F (unit)

22

]
. (H1)

The x axis is chosen so that the unit is located in the
region of x ∈ [0, a]. For the simple unit AB, F (unit) is
calculated as F (εA, dA)F (εB, dB), where the F matrix in
Eq. (C6) is denoted by F (ε, d ) for a layer with permittiv-
ity ε, vacuum permeability μ0, and thickness d . Instead of
AB, we may consider a symmetric unit cell with F (unit) =
F (εA, dA/2)F (εB, dB)F (εA, dA/2). Note that the both cases
lead to the same tr F (unit). The Bloch wave number k(Bloch)

x is
given by

F (unit)

[
Ẽy

H̃z

]
= exp

(
jk(Bloch)

x a
)[Ẽy

H̃z

]
. (H2)

For the decaying wave in the positive x-direction,

Im
[
k(Bloch)

x

]
< 0 (H3)

is required, then exp( jk(Bloch)
x a) > 1 must be satisfied. By

using det F (unit) = 1, we can evaluate exp( jk(Bloch)
x a) as

exp
(

jk(Bloch)
x a

) = tr F (unit) ±
√

(tr F (unit) )2 − 4

2
. (H4)

The trace can be calculated as

tr F (unit) = F (unit)
11 + F (unit)

22

= 2 cos ϕA cos ϕB −
(

ZA

ZB
+ ZB

ZA

)
sin ϕA sin ϕB.

(H5)

Here, we introduced the x-component wave number k(X )
x , TM

wave impedance ZX = k(X )
x /(ωεX ), and ϕX = k(X )

x dX for X =
A, B. The Bloch impedance at x = 0 is given by

Z (Bloch) = Ẽy

H̃z
= F (unit)

12

exp
(

jk(Bloch)
x a

) − F (unit)
11

, (H6)

which depends on the choice of the unit cell.
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(a)

|Λi| = 1

Re

Im (b)

Λi < 0

Re

Im (c)

Λi > 0

Re

Im

FIG. 17. Time-reversal symmetry and reciprocity constraint on
locations of eigenvalues �i = exp( jk(Bloch)

x a) of an F matrix in the
complex plane. The eigenvalue locations are classified as (a) prop-
agating and (b),(c) decaying (in-gap) modes. Here, a represents the
period in x.

APPENDIX I: SYMMETRY CONSTRAINTS

To support Sec. II, we summarize the symmetry constraints
on the wave number and Bloch impedance. We consider TM
wave propagation in a layered photonic or plasmonic crystal
periodic in x with period a. An example is the model examined
in Appendix H. Here, we derive the symmetry constraints on
the Bloch wave number and impedance. The same constraints
also apply to electrical circuits. The assumption of the TM
mode is introduced to simplify the explanation and is not
essential.

1. Time-reversal symmetry and reciprocity

First, we discuss the time-reversal operation. For an
electric field E (t ) = Ẽ exp( jωt ) + c.c., Ẽ∗ provides the time-
reversal phasor of E (−t ). In contrast, the phasor H̃ of
the magnetic field is transformed into −H̃∗. Therefore, the
time-reversal operation for [Ẽ H̃ ]T is represented by J =
Kσz, where K is the complex conjugate operator and σz =
diag(1,−1). If the system has time-reversal symmetry, Ẽ∗ and
−H̃∗ yield the solution to the problem.

For a real ε and μ, F in Eq. (C6) is invariant under time
reversal. Let us examine the consequences of time-reversal
symmetry in Eq. (H2). The two eigenvalues of F (unit) are
denoted as �1 and �2. From det F (unit) = 1, according to
reciprocity, �1 and �2 depend on each other as �1�2 = 1.
For �1 �= �2, time-reversal symmetry requires (i) �1 = �∗

1,
�2 = �∗

2 or (ii) �1 = �∗
2. The distribution of � according to

these constraints is illustrated in Fig. 17, where ±1 denotes
the crossover points between the propagating and decay-
ing (in-gap) solutions. The time-reversal operation maintains
the eigenmode of the decaying solutions. Therefore, we ob-
tain Z (Bloch) = −(Z (Bloch))∗, which indicates that the Bloch
impedance inside the band gap is purely imaginary.

2. Mirror symmetry

Next, we consider a mirror-symmetric unit cell with time-
reversal symmetry and reciprocity. Figure 4(a) shows an
example. On the mirror-symmetric plane, there are constraints
on the Bloch impedance.

First, we consider a propagating mode with an angular
frequency ω > 0 and real k(Bloch)

x . Invariance under a combi-
nation of mirror reflection and time-reversal operations results
in Z (Bloch) = (Z (Bloch))∗. Notably, mirror reflection induces the
transformation H̃z → −H̃z, whereas the time-reversal opera-

tion induces H̃z → −H̃∗
z . Therefore, the Bloch impedance is

real in the propagating bands.
Second, we show that Z (Bloch) = ∞ or 0 on a mirror plane

for k(Bloch)
x = 0 and ±π/a. The period in x is denoted by a. As

k(Bloch)
x = 0 and ±π/a are invariant under mirror reflection,

the eigenmodes must be symmetric or antisymmetric with
respect to the mirror reflection. Due to field continuity, the
symmetric and antisymmetric solutions must satisfy H̃z = 0
and Ẽy = 0 in the mirror plane; consequently, Z (Bloch) = ∞
and 0, respectively [13].

Third, the opposite of the second statement holds:
Z (Bloch) = ∞ and Z (Bloch) = 0 indicate symmetric and anti-
symmetric modes in the propagating bands, respectively. We
prove this statement for Z (Bloch) = ∞. The x-axis is selected
such that the unit cell {(x, y, z)|x ∈ [0, a]} has mirror planes
at x = 0, a/2, and a. The eigenvector of the F matrix can be
selected as [Ẽy H̃z]T = [1 0]T, which is invariant under the
mirror reflection Ma on x = a. Therefore, the wave number
is restricted to the mirror-symmetric wave number k(Bloch)

x =
0, ±π/a, and the corresponding mode is included in the
propagating band. The field is symmetric or antisymmetric at
the unit boundary x = 0, a. Therefore, all fields inside the unit
cell must be symmetric or antisymmetric. A similar discussion
holds true for Z (Bloch) = 0.

Finally, we establish a definite sign of the Bloch reactance
in the band gap. The band gap is denoted by ω1 < ω < ω2.
The Bloch impedance must be real in the propagating band,
whereas it is purely imaginary in the band gap. Therefore,
Z (Bloch)(ωi) must be 0 or ∞ for i = 1, 2. Thus, the existence
of symmetric or antisymmetric modes is indicated. Moreover,
there is no zero or pole of Z (Bloch) in ω1 < ω < ω2 because
Z (Bloch) = 0, ∞ indicate the propagating modes, which may
be hidden as an example of a plasma-frequency flat band
in a Drude metal. The reactance theorem requires modeling
the continuous system by one-dimensional circuits. To handle
upper bands correctly, we need sufficiently small discretiza-
tion. For a semi-infinite circuit, we can terminate the circuit
at the far point without affecting band-gap responses. Then,
the reactance theorem holds and maintains a definite reactance
sign in each band gap.

APPENDIX J: EXISTENCE OF BAND GAP
NEAR ZERO FREQUENCY

We consider layered media composed of dielectric mate-
rials and Drude metals, as introduced in Sec. III B. We show
that there is a finite band gap near ω = 0+ for ky > 0. First,
we consider a unit cell that includes a dielectric-metal inter-
face. Near the DC limit, there is a large impedance mismatch
between the dielectric (Z (TM) = − j∞) and metal (Z (TM) =
0), where Z (TM) represents the TM wave impedance. Then, the
field cannot penetrate the interface when we excite the surface
at x = 0 for the crystal in x � 0+. Therefore, k(Bloch)

x diverges
as − j∞ at ω = 0+ and the band gap including ω = 0+ forms.
Second, we consider a unit cell with only dielectric materials.
Near the DC frequency, direct multiplications of F matrices
indicate that the F matrix of the unit cell satisfies tr F (unit) > 2
with the reciprocity condition det F (unit) = 1. Therefore, the
Bloch wave number becomes imaginary due to Eq. (H4),
which can be used beyond the binary case, and the band gap
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appears. A similar discussion holds for a unit cell with only
Drude metals.

APPENDIX K: DEFINITION OF ZAK PHASE

Here, we explain the concept of the Zak phase. We con-
sider a one-dimensional periodic system along x with the
periodicity denoted by a and focus on a nondegenerate band.
Its wave function is expressed by |ψ (k)〉 = exp(− jkx̂) |u(k)〉
with the cell-periodic wave function |u(k)〉 and the Bloch
wave number k. In the following calculations about the def-
inition of the Zak phase, the wave functions are assumed
to be normalized as 〈ψ (k)|ψ (k)〉 = 1 and 〈u(k)|u(k)〉 = 1,
where the inner product is taken over the unit cell. We define
G = 2π/a and discretize the first Brillouin zone [−G/2, G/2]
to ki = iG/(2N ) with i = −N, −N + 1, −N + 2, . . . , N . To
simplify the notation, |ψ (ki )〉 and |u(ki )〉 are denoted by |ψi〉
and |ui〉, respectively. The Zak phase θ (Zak) on the focusing
band is the phase that the cell-periodic wave function acquires
under a round trip in the Brillouin zone, when assuming the
following periodic gauge condition [10]:

|ψN 〉 = |ψ−N 〉 . (K1)

To characterize the Zak phase, we introduce the Wilson loop
comprising multiple projections along the round trip:

WL = 〈uN |uN−1〉 〈uN−1|uN−2〉 · · · 〈u−N+1|u−N 〉 . (K2)

Because we consider normalized |ui〉, |WL| → 1 must hold for
N → ∞. Under this limit, the Zak phase is determined by the
following equation up to modulo 2π :

exp(− jθ (Zak)) = lim
N→∞

WL. (K3)

Using Eq. (K1), we can express Eq. (K2) as the following
form:

WL = 〈uN |uN−1〉 〈uN−1|uN−2〉 · · ·
× 〈u−N+2|u−N+1〉 〈u−N+1| exp(− jGx̂)|uN 〉 . (K4)

Importantly, Eq. (K4) is gauge invariant because the bra and
ket are paired for each i.

If the system has the mirror symmetry under Mx : x �→
−x, the Zak phase can be determined by the parities at highly
symmetric points in the Brillouin zone. To explain this con-
sequence, we consider a noncrossing band, which is typically
represented by the first band in Fig. 9. For i �= 0, ±N , we
have

|u−i〉 = exp( jφi)M̂x |ui〉 (K5)

with phase φi. At the highly symmetric points, the eigenfunc-
tions can be classified as M̂x |ψ0〉 = p0 |ψ0〉 and M̂x |ψN 〉 =
pπ |ψN 〉, where p0, pπ ∈ {−1, 1} are parities. These equa-
tions can be expressed as follows:

M̂x |u0〉 = p0 |u0〉 , M̂x |uN 〉 = pπ exp(− jGx̂) |uN 〉 . (K6)

Using Eqs. (K5) with i = 1, 2, . . . , N − 1 and Eq. (K6), we
can evaluate Eq. (K4) as

lim
N→∞

WL = p0 pπ . (K7)

Therefore, the Zak phase is quantized to 0 or π in mirror-
symmetric systems. The generalization to crossing bands is

(a)
Lse/2

Ii−1/2

Cse

Ei−1/2

Lse/2

CshVi

(b)
Lse1/2

Ii−1/2

Ei−1/2
Lse1/2

Lse2 Ji−1/2

Cse

CshLsh

Ki

Vi

FIG. 18. Mirror-symmetric unit cells of circuit models for TM-
wave propagation in (a) dielectric and (b) metal based on Fig. 15.

straightforward. Finally, we describe the definition of the
wave function and inner product for electromagnetic configu-
rations in Appendix B. At first glance, [Ẽy(x) H̃z(x)]T appears
to be a wave function. However, this definition results in
an undesirable frequency-dependent inner product, because
it characterizes the internal dynamics in an effective manner.
Therefore, we define a wave function that includes all degrees
of freedom by considering circuit models. Circuit models
allow a systematic treatment of energy without focusing on
the detailed physics of the internal degrees of freedom. Even
for a continuous model, one can discretize the system into
sufficiently small pieces and derive a circuit model through
the correspondence in Table I, as in Appendix F.

First, we consider a dielectric region. Its symmetrized cir-
cuit model is shown in Fig. 18(a). As shown in the figure,
Ii−1/2 represents the series current flowing Lse/2 at x = xi−1/2,
whereas Vi expresses the shunt voltage along Csh at x = xi.
In addition, we define the voltage drop along Cse as Ei−1/2

at x = xi−1/2. Note that the internal variables are expressed
by the calligraphic font. Then, the total energy in a uniform
dielectric region RD is evaluated as

1

2

∑
[LseIi−1/2

2 + CseEi−1/2
2 + CshVi

2], (K8)

where the summation is taken over RD. Lse, Cse, and Csh terms
correspond to the magnetic energy by Hz, electric energy by
Ex, and that by Ey, respectively. This energy can lead to the
following inner product in the frequency domain. The vec-
torized phasors are denoted by Ṽ = [· · · Ṽ−1 Ṽ0 Ṽ1 · · · ], Ĩ =
[· · · Ĩ−1/2 Ĩ1/2 · · · ], and Ẽ = [· · · Ẽ−1/2 Ẽ1/2 · · · ]. Then, the
wave function can be defined as |ψ〉 = [Ṽ Ĩ Ẽ]T. Therefore,
it is reasonable to introduce the inner product for two dif-
ferent non-normalized wave functions |ψ (i)〉 = [Ṽ(i) Ĩ(i) Ẽ (i)]T

(i = 1, 2) in a uniform dielectric region RD as

〈ψ (1)|ψ (2)〉RD
=

∑ [
Lse

(
Ĩ (1)
i−1/2

)∗
Ĩ (2)
i−1/2

+ Cse
(
Ẽ (1)

i−1/2

)∗Ẽ (2)
i−1/2 + Csh

(
Ṽ (1)

i

)∗
Ṽ (2)

i

]
.

(K9)

174105-17



YOSUKE NAKATA et al. PHYSICAL REVIEW B 108, 174105 (2023)

Note that the above wave function is redundant due to the
constraints imposed by the capacitor-only cut set shown in
Fig. 6(a). For a nonzero frequency, the charge conservation
constraints are given by

− Ẽi−1/2

Cse
+ Ṽi

Csh
+ Ẽi+1/2

Cse
= 0. (K10)

Thus, the dynamics are restricted to the subspace, so we may
define the wave function and inner product in the subspace.

Second, we consider the Drude metal modeled by
Fig. 18(b). In addition to current Ii−1/2 flowing through
L′

se1/2 at x = xi−1/2 and voltage Vi at x = xi, we define
voltage drop Ei−1/2 along C′

se, currents Ji−1/2 through L′
se2,

and Ki through L′
sh, as shown in the figure. The wave

function is defined as |ψ〉 = [Ṽ Ĩ Ẽ J̃ K̃]T with the vec-
torized phasors. For non-normalized |ψ (i)〉 (i = 1, 2) in a
uniform metallic region RM , we define the inner product as
follows:

〈ψ (1)|ψ (2)〉RM
=

∑ [
L′

se1

(
Ĩ (1)
i−1/2

)∗
Ĩ (2)
i−1/2 + C′

se

(
Ẽ (1)

i−1/2

)∗Ẽ (2)
i−1/2 + C′

sh

(
Ṽ (1)

i

)∗
Ṽ (2)

i

+ L′
se2

(
J̃ (1)

i−1/2

)∗J̃ (2)
i−1/2 + L′

sh

(
K̃(1)

i

)∗K̃(2)
i

]
. (K11)

Here, the summation is taken over RM .

Note that this wave function is also redundant for a nonzero
frequency due to the inductor-only loop constraints:

−L′
shK̃i−1 + L′

se1 Ĩi−1/2 + L′
se2J̃i−1/2 + L′

shK̃i = 0. (K12)

Thus, we may define the wave function and the inner product
inside the subspace.

Equations (K9) and (K11) can be used straightforwardly
in nonuniform distributions. For a periodic system with
metal and dielectric combinations, we may take the sum of
Eqs. (K9) and (K11) in the unit cell to define 〈ψ (1)|ψ (2)〉. It

should be stressed that Eqs. (K9) and (K11) are inner products
satisfying the positive-definiteness condition, because 〈ψ |ψ〉
represents the non-negative total energy. The formulated inner
product is compared to the indefinite inner product often used
for metallic systems (e.g., see the supplemental information
of Ref. [12]). For an indefinite inner product, it is difficult to
exclude the possibility of WL = 0 in Eq. (K4). The circuit the-
oretical approach has an advantage in introducing the standard
inner product. For a continuous system, we can replace the
sum with an integration to define the inner product.
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