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Prediction for the elastic modulus of polycrystalline materials:
Theoretical derivation, verification, and application
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Based on our proposed layer-by-layer integrating method, the elastic modulus of an arbitrary inclined connec-
tion unit of two grains is derived. Furthermore, the derived formula is extended to the multibody connection of
polycrystalline grains. Then, the derived formulae are verified by the finite element method and the experimental
results available. Finally, an efficient software program is developed based on the derived formula to predict
the elastic moduli of polycrystalline materials through the orientation measurement by electron backscatter
diffraction, which is consistent with related experimental data. This work provides a simple method and software
to predict accurately the elastic modulus of polycrystalline materials.
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I. INTRODUCTION

The elastic modulus is a crucial material parameter that
is closely related to the deformation and fracture of materi-
als, affecting the operational safety of engineering structures.
Therefore, the research on the elastic modulus of materials
has always been a popular field [1–10]. From a mechanical
perspective, the elastic modulus can be regarded as the ability
of materials to resist elastic deformation under applied load-
ing, which is actually manifested at the atomic scale as the
strength of the binding forces between atoms [11]. In fact,
the elastic modulus not only determines the elastic deforma-
tion behavior, but also it affects plastic deformation and the
fracture behaviors of materials [11–13]. For instance, the dis-
location motion resistances (including Peierls-Nabarro stress
and dislocation-interaction stress) and the energy associated
with dislocation generation are both quantitatively related to
the elastic modulus [12]. Additionally, the surface energy that
must be overcome during the crack-growth process is directly
proportional to the elastic modulus [11]. Thus, predicting the
elastic modulus is of utmost importance for the analysis of
mechanical properties of materials.

The mechanical properties of polycrystalline materials can
be optimized and designed by adjusting their microstruc-
tures, such as grain size, grain-boundary structures, and
second phases [14–18]. Therefore, polycrystalline materials
are widely used in engineering structures. It is well known that
polycrystalline materials consist of different grains with vari-
ous orientations and grain boundaries [11,19,20]. The effect of
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grain boundaries on the macroscopic elastic properties can be
neglected when the coarse-grained materials are considered
because the volume fraction of the grain boundary phase is
very low [19,20]. The elastic modulus of various grains with
different orientations are quite different, and the macroscopic
elastic properties of polycrystalline materials result from the
aggregate of all the grains [21]. Therefore, this gives rise to
an open question: how does one calculate the accurate elastic
modulus of polycrystalline materials with multiple orienta-
tions in the component grains?

Several existing works have attempted to solve the afore-
said problem. Voigt [22] and Reuss [23] proposed the
well-known approximation methods for evaluating the elastic
modulus of multiphase materials. Their calculation formulae
can be expressed as

Ec = ∑n
i=1 EiViVoigtapproximation

1
Ec

= ∑n
i=1

Vi
Ei

Reussapproximation,
(1)

in which Vi is the volume fraction of the ith phase, Ei is the
elastic modulus of the ith phase, and Ec is the elastic modulus
of the composite. However, Voigt and Reuss approximations
can only determine the upper and lower bounds for the elastic
modulus of polycrystalline materials. Based on the formulae
in Eq. (1), some modified methods were proposed to predict
the elastic constants of the polycrystals [24–27]. Based on the
variational principles, Hashin and Shtrikman [28] proposed
a theoretical method to improve the calculation accuracy of
Voigt and Reuss bounds. By considering a particular periodic
arrangement of cubic inclusions and different connection se-
quences, Ravichandran [29] developed a method to predict
the elastic modulus of two-phase composites, which showed
a narrower limit than the method proposed by Hashin and
Shtrikman [28]. While these modified methods offer certain
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FIG. 1. The many-body connection of a polycrystal consists of
various two-phase connections: (a) a polycrystal containing numer-
ous grains with different orientations, (b) the parallel connection unit,
(c) the series connection unit, (d) the 45◦ inclined connection unit,
and (e) a general connection unit.

advantages over Voigt and Reuss approximations in terms of
predicting the elastic modulus with higher accuracy, most of
them tend to be more complex and difficult to apply. Fur-
thermore, these methods can only provide upper and lower
bounds for the effective elastic modulus of multiphase ma-
terials, rather than an exact value. To address this issue, this
work proposes a theoretical method to calculate accurately the
elastic modulus of polycrystalline materials and to develop a
software program to predict the elastic modulus efficiently.

This work is organized as follows. In Sec. II, we propose
the layer-by-layer integrating (LLI) method and derive the
elastic modulus of an arbitrary inclined connection of two-
phase materials, and then extend the solution to obtain the
elastic modulus of polycrystalline materials. In Sec. III, two-
dimensional bicrystal and three-dimensional polycrystalline
finite element models are established to verify the formu-
lae derived in Sec. II. In Sec. IV, an electron backscatter
diffraction (EBSD)-based software program is developed to
predict the elastic modulus of polycrystalline materials, and
the predicted results are verified by the corresponding ex-
periment data. Finally, in Sec. V, important conclusions are
summarized.

II. METHODOLOGY

A. Problem description

For a polycrystal consisting of numerous crystals, as de-
picted in Fig. 1(a), Voigt and Reuss approximations assumed
a parallel and a series connection unit of these crystals, respec-
tively. However, the actual case is neither of them, but rather
an intermediate case between them. To evaluate the elastic
modulus of a polycrystal, two problems need to be addressed:

1. As the connection modes between two grains are com-
plicated and vary between 0 ° and 90 ° connections, how does
one address the averaging problem of different-mode connec-
tion units?

FIG. 2. Illustrations of the analytical method for calculating the
modulus of a general inclined connection: (a) adding an infinitesimal
layer on the inner blue rectangle to generate an increment dE ; and
(b) SP and (c) PS connections for calculating E ′.

2. As the elastic moduli of all the grains are different
because of their varying orientations, how does one address
the many-body connection problem?

For simplification, we have to make certain assumptions.
First, these fundamental assumptions regarding the com-
posite structure connection problem can be described as
(i) strain compatibility between grains, (ii) perfect bonding
at grain boundaries, and (iii) negligible elastic interactions
between individual connection units (for detailed descrip-
tions, see Refs. [29,30]). In addition, we assume that the
grain orientation remains unchanged during the process of
elastic deformation. This ensures that the elastic modulus
of each grain remains constant in the computational pro-
cess. Although the shear deformation induced by tensile or
compressive stress can lead to changes in grain orientation,
this phenomenon primarily occurs during plastic deforma-
tion [19,31]. During elastic deformation, the grain orientation
remains largely constant, making such an assumption reason-
able. Finally, let us suppose that the polycrystalline material
contains only two kinds of orientations (called the two-
body connection problem in this work), which are uniformly
distributed among each other for structural macroscale homo-
geneity. Assuming that grain boundary planes are randomly
located, the parallel and series connections should be only
two special connection cases that are the upper and lower
bounds of them, as shown in Figs. 1(b) and 1(c), and a more
general connection mode should be with a random inclined
angle θ (0◦ � θ � 90◦), as illustrated in Fig. 1(e). For the uni-
form structure containing a large number of random inclined
connections, the 45◦ inclined connection may be regarded
as an averaging approximation, as shown in Fig. 1(d). This
treatment is a simplified solution to the first problem, i.e.,
the two-body connection problem. Based on these results, the
many-body connection problem may be solved by analogy
and extension methods, which is the solution to the second
problem.

B. Calculating the modulus of a general inclined connection

For a general case of inclined connection, a rectangle com-
posite with two right trapezoids of the same size is considered
along different loading directions, as shown in Fig. 2, in
which the moduli of the two right trapezoids are E1 and E2,
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respectively, and the edge lengths of the three right-angle sides
are C + A, B, and C, respectively. For an inner rectangle of the
two-phase composite (the small rectangle with blue solid lines
in Fig. 2), which is similar to the outer one, the modulus is
designated as E. When a layer of two phases with infinitesimal
thickness db on the top and bottom and dc = (a + 2c)db/b on
the two sides is added, as shown in Fig. 2, the modulus of the
rectangle composite (framed by red dashed lines in Fig. 2)
becomes E ′ = E + dE .

For the vertical loading case, there are two ways for evalu-
ating the value of E ′:

1. Let the inner blue rectangle first connect in series with
the upper and lower red rectangles, using the Reuss equation
to calculate the modulus Ecenter, and then connect in parallel
with the red rectangles on both sides, and using the Voigt
equation to calculate the modulus E ′, as shown in Fig. 2(b).
It should be noted that the upper and lower red rectangles are
also composites with moduli that should be calculated first
using the Voigt equation before the first connection. Here, this
connection sequence is called the SP connection, which uses
connection first in series and then in parallel.

2. Alternatively, let the inner blue rectangle first connect in
parallel with the red rectangles on both sides, using the Voigt
equation to calculate the modulus Ecenter, and then connect
in series with the upper and lower red rectangles, and using
the Reuss equation to calculate the modulus E ′, as shown in
Fig. 2(c). Accordingly, this connection sequence is called PS,
which uses connection first in parallel and then in series.

As discussed in our previous work [30], these SP and PS
connections should be the respective lower and upper bounds
of the mixed modulus for the rectangle composite, and, con-
sequently, the actual value for the modulus of the composite
must be located between the two bounds. If it can be proved
that, for the infinitesimal increments db and dc, the difference
between the two bounds dESP and dEPS also become infinites-
imal so that the modulus E acquired by the two connection
sequences converges into an identical value, this must be the
real modulus for the rectangle composite. Therefore, in the
following, we will prove the convergence of the two bounds
for the modulus E and calculate its value analytically.

First, the case of SP connection under vertical loading is
considered, as shown in Fig. 2(b). The moduli of the upper
and lower rectangle composites (Eup and Elow, respectively)
can be calculated using the Voigt equation:

Eup = E1 f1 + E2(1 − f1), Elow = E2 f1 + E1(1 − f1), (2)

where f1 = c/(a + 2c).
And then these two rectangles are connected in series with

a composite modulus of Eup/low, which is calculated by using
the Reuss equation:

Eup/low = 2EupElow/(Eup + Elow). (3)

Then, the modulus of the center region (called Ecenter)
containing the upper rectangle, lower rectangle, and the blue
rectangle can be calculated by using the Reuss equation:

Ecenter = Eup/lowE/[Eup/low f2 + E (1 − f2)], (4)

where f2 = b/(b + db).
The right and left rectangles are connected in parallel with

a composite modulus of Eleft/right, which is calculated by using
the Voigt equation:

Eleft/right = (E1 + E2)/2. (5)

Finally, the modulus of the red region can be calculated by
using the Voigt equation:

E ′ = Eleft/right f3 + Ecenter (1 − f3), (6)

where f3 = dc/(a + 2c + dc).
With combinations of Eqs. (2) through (6) and dc =

(a + 2c)db/b, E ′ can be calculated, and then dESP can be
expressed as

dESP = E ′ − E = F1db + F2(db)2

F3 + F4db + F5(db)2 , (7)

where F1, F2, F3, F4, and F5 are the functions of a, b, c, E, E1,
and E2. Ignoring the infinitesimal terms of high order, Eq. (7)
can be written as

dESP = (E1 + E2)
[
a2(E1E2 − E2) + c(a + c)

(
(E1 + E2)2 − 4E2

)]
2b[aE1 + c(E1 + E2)][aE2 + c(E1 + E2)]

db. (8)

Next, the case of the PS connection under vertical loading
is considered, as shown in Fig. 2(c). The moduli of the upper
and lower rectangle composites (called Ēup and Ēlow) can be
calculated by using the Voigt equation:

Ēup = E1 f4 + E2(1 − f4), Ēlow = E2 f4 + E1(1 − f4), (9)

where f4 = (dc/2 + c)/(a + 2c + dc).
And then the two rectangles are connected in series with

a composite modulus of Ēup/low, which is calculated by using
the Reuss equation:

Ēup/low = 2ĒupĒlow/(Ēup + Ēlow). (10)

The right and left rectangles are connected in parallel with
a composite modulus of Ēleft/right, which is calculated by using
the Voigt equation:

Ēleft/right = (E1 + E2)/2. (11)

The modulus of the center region (called Ēcenter) containing
the left rectangle, right rectangle, and the blue rectangle can
be calculated by using the Voigt equation:

Ēcenter = Ēleft/right f5 + E (1 − f5), (12)

where f5 = dc/(a + 2c + dc).
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Finally, the modulus of the red region can be calculated by using the Reuss equation:

E ′ = Ēup/lowĒcenter/[Ēcenter f6 + Ēup/low(1 − f6)], (13)

where f6 = db/(b + db).
With combinations of Eqs. (9) through (13) and dc = (a + 2c)db/b, E ′ can be calculated, and then dEPS can be obtained after

ignoring the infinitesimal terms of high order:

dEPS = (E1 + E2)[a2(E1E2 − E2) + c(a + c)((E1 + E2)2 − 4E2)]

2b[aE1 + c(E1 + E2)][aE2 + c(E1 + E2)]
db = dESP. (14)

Here, we prove the modulus increments for SP and PS
connections are the identical values after ignoring the in-
finitesimal terms of high order, which means this method
is valid for the two-phase inclined connection problem. In
Ref. [30], we obtained the elastic modulus of discrete com-
posite structures by solving a differential equation regarding
the elastic modulus. However, in this two-phase inclined con-
nection problem, note that the red dashed rectangle is similar
to the blue solid rectangle, as shown in Fig. 2(a), and thus it
should satisfy dE = 0. Based on this condition, the modulus
E can be derived from Eq. (14):

Evertical =
√

(E1 + E2)2(r + r2) + E1E2

1 + 2r
, (15)

where r = C
A
.

In the same way, the modulus under horizontal loading can
be obtained (see the Appendix), and it is expressed as

Ehorizontal = E1E2(1 + 2r)√
(E1 + E2)2(r + r2) + E1E2

, (16)

where r = C
A
.

For the case of the general connection in Fig. 1, the com-
posite modulus can be expressed as the function of θ . At
0 < θ < 45◦, the modulus can be obtained by substituting
r = [cot(θ ) − 1]/2 into Eq. (16). At 45◦ < θ < 90◦, the mod-
ulus can be obtained by substituting r = [tan(θ ) − 1]/2 into
Eq. (15). Thus, the modulus can be written as

E (θ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2E1E2

tan(θ )
√

(E1+E2 )2csc2(θ )−2(E2
1 +E2

2 )
, 0 < θ < 45◦;

√
E1E2, θ = 45◦;√

(E1+E2 )2sec2(θ )−2(E2
1 +E2

2 )
2 tan(θ ) , 45◦ < θ < 90◦.

(17)

According to the analysis in Sec. II A, we assume that the
45◦ inclined connection is an averaging approximation for
the uniform structure containing a large number of random
inclined connections. Thus, the elastic modulus of a polycrys-
talline material containing only two crystal orientations can
be approximately calculated by

E = √
E1E2. (18)

As shown in Eq. (18), in fact, the composite modulus
of the two-body connection is the geometric mean of their
moduli. For the many-body connection problem, we assume
that the composite modulus can also be approximately cal-
culated by the geometric mean, and thus the elastic modulus
of a polycrystalline material with multiple orientations can be

reasonably derived:

Epoly =
(

n∏
i=1

Ei

) 1
n

. (19)

Interestingly, the formula for calculating the elastic mod-
ulus of a polycrystalline material is obtained by the current
method, which is the same as the existing work in Ref. [25].

III. VERIFICATION

In this section, the theoretical solutions presented in
Sec. II B will be verified step by step. First, the two-
dimensional solution of the inclined-connection composite
modulus, i.e., Eq. (17), is compared with the results obtained
by the finite element method (FEM). Second, the formula for
calculating the elastic modulus of polycrystalline materials,
i.e., Eq. (19), is verified by the FEM, and then the formula is
further verified by the existing experimental results [26].

At first, two-dimensional finite element models are es-
tablished by ABAQUS [32] to examine the correctness of
Eq. (17), and the compared results are shown in Fig. 3.
The elastic moduli of the two components are 50 GPa and
150 GPa, respectively. A uniform tensile displacement load
is applied to measure the composite modulus. The results
show that the composite modulus calculated by our proposed
method is consistent with the value by the FEM, which veri-
fies the solution in Eq. (17).

To verify this method further, three-dimensional polycrys-
talline finite element models are established, as shown in

FIG. 3. Comparison of the composite modulus for inclined con-
nections between the present method and FEM.
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FIG. 4. Comparison between the theoretical prediction [Eq. (19)]
and the FEM. (a) The finite element model of polycrystals. (b) The
crystal orientation pole figure for the cubic structures (fcc and bcc).
(c) The crystal orientation pole figure for the hcp structure. (d) Com-
parison of the elastic modulus between the theoretical calculations
and the finite element simulations.

Fig. 4(a). To validate the generality of our proposed method,
we selected six kinds of metals corresponding to three kinds
of typical crystal structures—namely, fcc, bcc, and hcp crystal
structures. The finite element model has a size of 40 µm ×
40 µm × 40 µm and consists of 410 grains with random orien-
tations, as shown in Figs. 4(b) and 4(c). Figure 4(b) displays
the crystal orientation pole figure for fcc and bcc polycrystals,
while Fig. 4(c) shows the pole figures for hcp polycrystals.
The elastic constants are taken as shown in Table I. The
comparison between the theoretical prediction and the FEM
is shown in Fig. 4(d), and it is demonstrated that the two sets
of results agree well with each other, indicating the feasibility
of the theoretical method proposed in this work.

Next, the geometric mean formula [Eq. (19)] is compared
with the reported experimental results [26]. The testing ma-
terial was a high-strength low-alloy steel (H480LA), and
its anisotropic microstructures and moduli were generated
by linear flow splitting, which is a severe plastic deforma-
tion technique. To describe the anisotropy conveniently, a

TABLE I. The elastic constants of metals (unit: GPa).

Materials C11 C12 C44 C13 C33

Ni [11] 246.5 147.3 124.7
Al [11] 108.2 61.3 28.5
Fe [11] 228 132 116.5
Mo [11] 460 176 110
Mg [33] 59.4 25.6 16.4 21.4 61.6
Ti [34] 162.2 91.8 46.7 68.8 180.5

FIG. 5. Comparison of the elastic modulus between the geomet-
ric (Geo.) mean formula (blue line) and experimental measurements
(red line) [26].

coordinate system was defined. The three coordinate axes
were the rolling direction (RD), the transverse direction (TD),
and the normal direction (ND). The comparison between the
analytical formula [Eq. (19)] and the reported experimental
results is shown in Fig. 5. It shows that there is the highest
deviation between the experimental data and the predicted
results at about 45◦ between RD and TD as well as ND
and RD. This is due to our approximation of grain connec-
tivity using the 45◦ inclined connection. The experimental
materials were obtained using a severe plastic deformation
technique, resulting in the elongated grain structures [26].
For elongated grains, when calculating the elastic modulus
in the direction of grain elongation, the grain connections
tend to be in parallel. Conversely, when calculating the elastic
modulus in the direction perpendicular to the grain elongation,
the grain connections tend to be in series. Hence, this would
produce a larger error. Overall, there is only a little difference
between the predicted results by the geometric mean formula
and experimental measurements, indicating that the analytical
expressions derived in this work are valid.

IV. APPLICATION

To obtain the elastic modulus of polycrystalline materials
more easily, EBSD-based software has been developed called
orientation-based elasticity calculation, or OBEC. The elastic
modulus of single crystals is anisotropic, and it is described
by combining the basal elastic stiffness matrix and crystal
orientations [11,27]. The elastic stiffness matrix of single-
crystal materials is easily obtained by the related handbook.
The elasic modulus of single crystals along an arbitrary ori-
entation is usually calculated by rotating the stiffness matrix.
With our software, the orientations of polycrystals are given
by EBSD, and then each data point is regarded as a single
crystal. Thus, the elasic modulus of each single crystal can
be calculated by the basal elastic stiffness matrix and rota-
tion matrix. Finally, the elastic modulus of the polycrystalline
material is calculated using Eq. (19). The outcome interfaces
of the developed software are shown in Fig. 6(a). As long as
an EBSD file of a polycrystal is loaded, the elastic modulus
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FIG. 6. (a) Outcome interfaces of the developed software. (b) EBSD images of three kinds of typical crystalline metals with three typical
directions. (c) Comparison between the predicted results by our software and the experimental measurements (unit: GPa).

of the polycrystalline material can be given by the developed
software.

In order to examine the feasibility of the software, three
kinds of metals with common annealed crystalline structures
(fcc, bcc, and hcp) are selected, and their elastic moduli cal-
culated by the software based on the EBSD data [Fig. 6(b)]
are compared with the corresponding experimental results
using the free resonant vibration method according to Chinese
standard GB/T2105-91, using samples 3 mm in diameter and
60 mm in length. The comparison results are shown in
Fig. 6(c). It is apparent that the values obtained by the soft-
ware are well consistent with the corresponding experimental
data, which verifies the practicability of the software. Note
that the software is still valid to predict the elastic moduli
of fcc, bcc, and hcp metals with multiphases. For multiphase
materials, the different phases possess distinct elastic mod-
uli, akin to the variation in elastic moduli among different
grains in polycrystalline materials. If the dimensions of the
reinforcing phases are on the micron scale, the volume frac-
tion occupied by the phase boundaries is exceedingly small.
Therefore, neglecting the influence of this factor has minimal
impact on the prediction for the elastic modulus of multiphase
materials.

In Sec. II A, we assume that the 45◦ inclined connec-
tion unit is an averaging approximation for polycrystalline
materials containing a large number of randomly inclined con-
nections between adjacent grains. Based on this assumption,
we derive the elastic modulus of polycrystals. However, this
assumption is limited by the shape of grains. The 45◦ inclined
connection unit is not a parallel or series connection, but
rather an intermediate connection mode. For polycrystalline
materials consisting of elongated grains, the connection mode

is closer to the parallel connection when the tensile direction
is along the elongated direction of grains, and is closer to the
series connection when the tensile direction is perpendicular
to the elongated direction of grains. In this case, using the
45º inclined connection unit as an averaging approximation is
invalid. However, for materials consisting of equiaxed grains,
the assumption is reasonable. Additionally, the effect of the
grain-boundary phase on the elastic modulus of polycrystals
is neglected in our calculation. In fact, the volume fraction
of grain boundaries increases sharply with decreasing grain
size, and it cannot be neglected in nanocrystalline materials
[19,20]. For example, the volume fraction of grain bound-
aries is less than 5% when grain size is 100 nm, while it
reaches about 15% when grain size is 20 nm [19,20]. Based
on these analyses, the formulae and developed software in this
work should be valid for predicting the elastic modulus of
coarse-grained, fine-grained, and ultrafine-grained materials
consisting of equiaxed grains, but not for elongated grains or
nanocrystalline materials.

V. CONCLUSION

The elastic modulus of a polycrystalline material is a com-
prehensive effect of the elastic deformation responses of all
individual grains. To tackle this complex problem, we sim-
plified it into two subproblems. First, based on the proposed
LLI method, we addressed the complex intergranular con-
nections by averaging the connections between grains into
the 45◦ inclined connection unit. Second, we dealt with the
multibody connection problem by deriving a geometric mean
formula to calculate the elastic modulus of multibody connec-
tions. Furthermore, we established two-dimensional bicrystal
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models and three-dimensional polycrystal models to validate
our theoretical derivation using the FEM. By comparing the
theoretical results with the existing experimental data, we
further confirmed the correctness of our theoretical derivation.
Based on the derived formulae, we developed software for
predicting the elastic modulus of polycrystalline materials
based on EBSD data. This software can quickly and accu-
rately predict the elastic modulus of polycrystalline materials
by uploading an EBSD file. In summary, this work theo-
retically derived the elastic modulus of complex multibody
connections, and realized the prediction of the elastic modulus
of polycrystalline materials using a simple method/software.

The raw/processed data required to reproduce these find-
ings will be made available on request.

ACKNOWLEDGMENTS

This work is financially supported by the Youth Innovation
Promotion Association Chinese Academy of Sciences (CAS)
(Grant No. 2021192), the National Natural Science Foun-
dation of China (Grants No. 52322105, No. 52130002, No.
52271121, No. 52321001, No. 52001153, No. 52261135634,
and No. U2241245), the IMR Innovation Fund (Grant No.
2023-ZD01), the K. C. Wong Education Foundation (Grant
No. GJTD-2020-09), the Shi Changxu Innovation Center for
Advanced Materials, and the Joint Research Project between
the CAS (Grant No. 172GJHZ2022030MI).

APPENDIX: THE DERIVATION OF THE ELASTIC
MODULUS OF A GENERAL INCLINED CONNECTION

UNIT UNDER HORIZONTAL LOADING

Here, the solution of the elastic modulus of a general
inclined connection unit under horizontal loading is pre-
sented. First, the case in Fig. 2(b) under horizontal loading

is considered. The moduli of the upper and lower rectangle
composites—Eup−A and Elow−A, respectively, can be calcu-
lated using the Reuss equation:

Eup−A = E1E2

E1(1 − f1) + E2 f1
, Elow−A = E1E2

E2(1 − f1) + E1 f1
,

(A1)

where f1 = c/(a + 2c).
And then the two rectangles are connected in parallel with a

composite modulus of Eup−A/low−A, which is calculated using
the Voigt equation:

Eup−A/low−A = (Eup−A + Elow−A)/2. (A2)

Then, the modulus of the center region Ecenter−A containing
the upper rectangle, lower rectangle, and the blue rectangle
can be calculated using the Voigt equation:

Ecenter−A = Eup−A/low−A(1 − f2) + E f2, (A3)

where f2 = b/(b + db).
The right and left rectangles are connected in series with

a composite modulus of Eleft−A/right−A, which is calculated
using the Reuss equation:

Eleft−A/right−A = 2E1E2/(E1 + E2). (A4)

Finally, the modulus of the red region can be calculated
using the Reuss equation:

E ′ = Eleft−A/right−AEcenter−A

Eleft−A/right−A(1 − f3) + Ecenter−A f3
, (A5)

where f3 = dc/(a + 2c + dc)
Combinations of Eqs. (A1) through (A5) and dc =

(a + 2c)db/b, E ′ can be calculated, and then dEPS−A can be
expressed as

dEPS−A = E ′ − E = F1−Adb + F2−A(db)2 + F3−A(db)3

F4−A + F5−Adb + F6−A(db)2 + F7−A(db)3 , (A6)

where F1−A, F2−A, F3−A, F4−A, F5−A, F6−A, and F7−A are the functions of a, b, c, E, E1, and E2. Ignoring the infinitesimal terms
of high order and letting dEPS−A = 0, the modulus can be obtained:

Ehorizontal = (a + 2c)E1E2√
[aE1 + c(E1 + E2)][aE2 + c(E1 + E2)]

. (A7)

Similarly, the case in Fig. 2(c) under horizontal loading can be calculated with the SP connection mode, and the elastic
modulus in this case is same as Eq. (A7)

.
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