
PHYSICAL REVIEW B 108, 174101 (2023)

Ferroelectric domain wall clusters in perfectly screened barium titanate type systems
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We study ferroelectric domain walls in barium titanate-type systems with perfect electric screening. We
search for structurally nontrivial so-called non-Ising domain walls, where the polarization is nontrivial for all
components. Our approach enables us to find solutions for domain walls in any orientation, and the existence and
energy of these walls depend on their particular orientation. We find that, across all phases of the material, there
are orientations where the non-Ising walls have lower energy than Ising walls. The most interesting property of
these domain walls is their nonmonotonic interaction forces, allowing them to form stable domain-wall clusters
rather than following standard behavior where domain walls annihilate or repel each other. We find the required
external electric field to create the non-Ising configurations. Besides theoretical interest, this unconventional
property of domain walls makes them a good candidate for memory applications.
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I. INTRODUCTION

Domain walls (DWs) are ubiquitous in ferroelectric ma-
terials. In an Ising wall, the most common type, the electric
polarization has a single component, proportional to the
boundary polarization. It was once thought that all DWs in
barium titanate were Ising, but more recent theory has pre-
dicted the existence of exotic walls in different phases of
the material. Often, the polarization vector rotates orthogonal
to or along with the domain walls, making them analogous
to Bloch and Néel walls in magnetic systems. There are
high-energy Bloch walls in the tetragonal phase [1] and low-
energy non-Ising walls in the rhombohedral phase [2], novel
“non-Ising” DWs have been theoretically predicted [3,4], and
reported experimentally [5,6]. Complicated structures such as
achiral [7] and bichiral [8] walls have also been predicted;
the second due to flexoelectric coupling. The energy of all
walls mentioned here depends on their orientation, showing
the importance of geometric considerations.

The diversity, robustness, mobility, and sharpness of their
domain walls make ferroelectrics candidates for promising
new technological applications. One significant application is
in memory, where the presence or absence of the DW can
represent the binary state. The creation and nondestructive
readability of DW states has been demonstrated in various
systems [9–12]. Hence ferroelectrics represent not only an
academically interesting platform to search for new kinds
of topological defects, but also have great potential for new
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applications. However, DW-racetrack memory has a major
drawback compared to other technologies: pairs of domain
walls are generically unstable to annihilation. Usually, it is
assumed that the DWs are pinned to a defect or kept apart to
avoid this instability.

In this paper, we report the existence of stable wall-
wall pairs and clusters in our model of “perfectly-screened”
barium-titanate-type systems. For brevity, we refer to our
model below barium titanate. The screening assumption
means that we ignore electrostatic effects. One can model
the electrostatics by following Ishibashi and Salje [13], or by
considering depolarization fields [7], but we ignore it so that
we can consider walls in arbitrary orientations. The clusters
studied here are localized on domain walls. Hence in a three-
dimensional material, they are localized on two-dimensional
planes.

In soliton language, the clusters are constructed from
soliton-antisoliton pairs. Stable configurations of this type
with net zero topological charge are incredibly rare in con-
densed matter. Some examples are skyrmionium and skyrme
bags, made from a placing skyrmions inside an antiskyrmion,
which have been predicted and observed in magnetic sys-
tems [14–18] and stable vortex-antivortex excitations which
have been generated numerically in a spin imbalanced super-
fluid [19] and noncentrosymmetric superconductors [20,21].
Some higher-dimension dimensional solitons can be inter-
preted as composite lower-dimensional solion-antisolitons,
such as skyrmions in the form of co-centric domain and
anti-domain-wall rings decorated by vortices in certain su-
perconductors [22]. In that example the decoration of domain
walls by vortices enforces the stability. We are not aware of a
condensed matter example of systems allowing energetically
stable domain-antidomain-wall structures. In ferroelectrics
there are examples of stable wall-wall pairs in periodic sys-
tems [2,23,24], but these boundary conditions stabilize pairs
which repel each other. Ours attract at long range and are thus
true local minima. The stability of the domain wall clusters
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that we find crucially relies on the wall’s non-Ising character
and the geometry of the system.

To study these configurations, we first generalize the
Ginzburg-Landau-Devonshire formalism of Ref. [25] to con-
sider walls with arbitrary orientations. We demonstrate that
there are wall orientations which support non-Ising DWs in
every phase. We also demonstrate how the stable configura-
tions can be created using an external electric field. During
our analysis, we adapt several tools from soliton theory to the
field of ferroelectrics. These include arrested Newton flow, the
string method and a small-fluctuation gradient flow. We aim to
explain these methods in a clear and general manner, so that
they can be readily applied to problems in higher dimensions.

II. THEORETICAL FRAMEWORK

The Ginzburg-Landau-Devonshrie model of ferroelectrics
features the polarization vector P = (P1, P2, P3) and the sym-
metric 3 × 3 strain tensor ui j as order parameters. Throughout
derivatives are denoted by ∂

∂xa
= ∂a and we sum over repeated

indices. We study a free energy which is compatible with the
symmetries of the underlying crystal. In our case, the goal is
to minimize the free energy given by

F = 1
2 Go

abcd∂aPb∂cPd + V o(P)

+ 1
2Co

abcd uabucd − qo
abcd uabPcPd

V o = Ao
abPaPb + Ao

abcd PaPbPcPd + Ao
abcde f PaPbPcPd PePf

subject to the elastic compatibility condition

Du = εacdεbe f ∂c∂eudf = 0. (1)

We use the superscript “o” to mean “original coordinates.”
We will sometimes use Voigt notation for the strain tensor.

Here, we reshape the symmetric matrix u into a 6-vector

(ε1, ε2, ε3, ε4, ε5, ε6) = (u11, u22, u33, 2u23, 2u13, 2u12). (2)

Latin and Greek letters are used when summing over the
old and new subscripts, so that a = 1, 2, 3 but α = 1, . . . , 6.
Provided the tensors are symmetrized, the Voigt coefficients
are uniquely defined by

Co
αβεαεβ = Co

abcd uabucd , (3)

qo
αcdεα = qo

abcd uab. (4)

Using this notation, we can immediately complete the square
on the part of F that depends on strain, which becomes

1
2Co

αβ

(
εα − Qo

αe f PePf
)(

εβ − Qo
βghPgPh

)
− 1

2Co
αβQo

αe f Qo
βghPePf PgPh. (5)

The tensor Q is given by

Qo
αbc = (Co)−1

αβ qo
βbc. (6)

Experimental works determine Q directly, rather than q. We
can absorb the leftover part of (5) into V o, giving the effective
potential

Ṽ o(P) = V o(P) − 1
2Co

αβQo
αe f Qo

βghPePf PgPh. (7)

Note that the effective potential Ṽ o only differs from V o in its
quartic dependence on P.

First, consider the global minima of the free energy
(PV , εV ). In what follows we will refer to these homogeneous
states as vacua. The system has multiple vacua, which satisfy

∂Ṽ o

∂Pa

∣∣∣∣
P=PV

= 0, εV
α = Qo

αbcPV
b PV

c . (8)

In this paper, we focus on domain walls: configurations which
connect two vacua in physical space and only vary in one
direction. To take advantage of this, we will now change co-
ordinates to (s, t, r), with s in the direction of the wall normal.
The rotation matrix is given by

R = (s, t, r)T (9)

We take the important coordinate s, the wall normal, as the
first basis vector in our new coordinates. Since we are using
tensor notation, the material constants transform in a simple
way. For example,

Ao
abcd → Aabcd = RaeRb f RcgRdhAo

e f gh. (10)

This transformation also applies to Cabcd but not Cαβ . As such,
we apply the rotation in the “abcd” coordinates and then
transform to Voigt notation using (2). We denote the material
constants in these new coordinates without any superscript.
Note that the material constants depend on the orientation of
the wall.

Since the fields only vary in the s direction the compatibil-
ity condition (1) simplifies significantly: ε2, ε3, and ε4 must
be constant along the wall (ε1 is special, as the wall-normal s
is in the “1” direction in our new coordinate).

We will consider infinite domain walls, which should have
finite energy. Hence the vacuum conditions (8) must be satis-
fied at both ends of the wall.

Suppose the domain wall connects two vacua PV−∞ and
PV∞ . The strain is fixed at −∞ as

εV−∞
α = QαbcPV−∞

b PV−∞
c . (11)

Now the tensors have no “o” superscript as we have rotated
into the new basis. Similarly, the strain at +∞ is given by

εV∞
α = QαbcPV∞

b PV∞
c . (12)

However, the elastic compatibility condition means that the
strains perpendicular to the wall are constant, so that ε2/3/4 =
εV

2/3/4. In particular, these strains at either end of the wall must
be equal:

QαbcPV−∞
b PV−∞

c = QαbcPV∞
b PV∞

c , α = 2, 3, 4. (13)

Note that Q is a function of wall orientation. We’ll think
of this equation as follows: given ingoing and outgoing
vacua, which wall orientations satisfy (13) and hence give
a permissible wall? We will see an example in the next
section.

Now, given the in and out polarizations and a permissi-
ble wall, we would like to minimize the free energy. This
would be simple if we could set ε(s)α = QαbcPb(s)Pc(s).
Then the potential energy would be Ṽ . However, the elas-
tic compatibility condition means that some of the ε must
be constant, so cannot depend on P in this way. Instead,
we first minimize for the constant strains ε2/3/4. To help,
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we split C and q into parts parallel and perpendicular to
the wall

qαbc = q‖
αbc + q⊥

αbc, (14)

Cαβ = C‖
αβ + C⊥

αβ + Cm
αβ, (15)

where q⊥
αbc is only nonzero when α = 2, 3, 4, q‖

αbc is nonzero
when α = 1, 5, 6, C⊥

αβ is nonzero when α and β both belong
to {2, 3, 4}; C|| is only nonzero when both belong to {1, 5, 6};
and Cm is nonzero otherwise. As seen earlier, the perpendicu-
lar strains satisfy

εα = εV
α = QαbcPV∞

b PV∞
c , α = 2, 3, 4. (16)

The parallel strains are free to minimize the part of the energy
which depends on them,

1
2C‖

αβεαεβ + Cm
αβεαεV

β − q‖
αbcεαPbPc, (17)

which is minimal when

εα = (C||)−1
αβ (q||

βbcPbPc − Cm
βγ εV

γ ). (18)

Here the inverse of C|| is defined as the inverse of the 3 × 3
nonzero part, projected back into its 6 × 6 form. This is the
unique matrix which satisfies

(C||(C||)−1)αβ =
{
δαβ α = 1, 5, 6
0 otherwise . (19)

We can make more sense of Eq. (18) using the fact that q|| =
C||Q|| + CmQ⊥. Then

εα = Q||
αbcPbPc + (C‖)−1

αβCm
βγ

(
Q⊥

γ bcPbPc − εV
γ

)
(20)

for α = 1, 5, 6. As s → ±∞, the second term vanishes and
these strains also approach their vacuum values (8), as we
would expect.

Overall, the minimal energy strains are given by

εα = HαbcPbPc + Kα, (21)

where

Hαbc =
{

Q||
αbc + (C‖)−1

αβCm
βγ Q⊥

γ bc α = 1, 5, 6

0 α = 2, 3, 4
; (22)

Kα =
{

−(C‖)−1
αβCm

βγ εV
γ α = 1, 5, 6

εV
α α = 2, 3, 4

. (23)

Finally, we substitute these expressions into the free energy to
find an effective free energy for P, which depends on a single
coordinate s. It is

F = 1
2 Gsasb∂sPa∂sPb + V (P) (24)

V = Ã0 + ÃabPaPb + Ãabcd PaPb + Aabcde f PaPbPcPd PePf

(25)

with

Ã0 = 1
2 KαKβCαβ,

Ãab = Aab + 1
2 (CαβHβab + CβαHβab − 2qαab)Kα,

Ãabcd = Aabcd + 1
2 (HβabCβα − 2qαab)Hαcd .

This result is the general form of the free energy for any
wall orientation. After some algebra, we can compare our
results to the set of special cases considered in Ref. [25], and
they match. The key advantage of our formalism is that there
is a reasonably simple chain from the material coefficients
A, C, and Q to the effective model for a given vacuum and
wall orientation (24). The final analytic expressions for Ã are
incredibly complicated, especially when we allow for arbi-
trary walls. Hence, when writing code to solve the problem,
we do not deal with them directly. Instead, we start with A, C,
and Q and implement the results of this section.

Having dealt with the geometry of the system, one could
now include electrostatic effects. In Ref. [13], it was consid-
ered that a perfectly insulated ferroelectric has an electrostatic
penalty proportional to (Ps − PV

s )2. A consequence of this fact
is that low-energy walls are always orthogonal to the Néel
component of the vacuum polarization (note that the Néel
component is the component in the wall-normal direction s).
Walls which satisfy this constraint are called “neutral” walls.
We will neglect this effect and consider our model system
of walls in arbitrary orientations. Provided they are neutral,
similar walls may exist in real systems but with a reduced
Néel component due to the quadratic term discussed in this
paragraph. Hence we will often focus on neutral walls in our
results.

Let us now consider symmetry. The initial potential V o is
symmetric under all elements of the symmetry group of the
lattice. In our example, this is the cubic group. But the final
potential and the tensors Ã are not totally symmetric, since
we have chosen a special direction (the wall-normal s) and
the polarization vacuum value at both ends of the wall, PV∞

and PV−∞ . The vectors s, PV±∞ define lines, and we can mark
points on a cube where these lines intersect it. The symmetry
of the problem is equal to the symmetry of the marked cube.
For example, consider the wall along s = (0, 0, 1) joining
PV ∝ (1, 1, 1) to −PV . The corresponding potential will be
invariant under π rotations about (1,−1, 0), a rotation by
π about (0,0,1) combined with a reflection about the z = 0
plane, and combinations of these. Overall, a C2 × C2 subgroup
of Oh.

Although somewhat obscured by the notation, the poten-
tial V is a polynomial of order 6 and so domain walls in
ferroelectrics are described by a multicomponent φ6 theory.
This theory, originally proposed in Ref. [26], has been widely
studied owing to its highly nontrivial “fractal” dynamics be-
tween domain walls [27,28]. Multicomponent theories have
been shown to exhibit even more complex dynamics [29].
Unfortunately, the dynamics governing DWs in ferroelectrics
are first order, so these studies are not directly applicable to
ferroelectric dynamics.

III. STATIC WALLS

For the rest of the paper, we will consider a specific ferro-
electric, barium titanate with perfect screening. The material
constants are given in Appendix. The system has cubic sym-
metry and there are four phases with different global minima.
These are

(i) T < 201 K, the rhombohedral phase, with PV =
(pr, pr, pr ) plus permutations;
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TABLE I. The allowed walls in a defect-free ferroelectric. We
take the temperature to be 150, 250, and 300 K for the rhombohedral,
orthorhombic, and tetragonal phases, respectively. The energy is in
dimensionless units; it can be converted to Joules through the factor√

G3
11(PV )4/A11.

Name PV−∞ PV∞ Wall (s) Energy

R71◦ (p, p, p) (−p, p, p) (1,0,0) 0.509
(0,1,1) 0.117

R107◦ (p, p, p) (−p, −p, p) (1,1,0) 0.536
(0,0,1) 0.240

R180◦ (p, p, p) (−p,−p, −p) All allowed
O60◦ (p, p, 0) (p, 0, p) (0, −1, 1) 0.193
O90◦ (p, p, 0) (p,−p, 0) (1,0,0) 0.232

(0,1,0) 0.992
O120◦ (p, p, 0) (0,−p, p) (1,0,1) 0.435
O180◦ (p, p, 0) (−p,−p, 0) All allowed
T90◦ (p, 0, 0) (0, p, 0) (1,1,0) 0.405

(1, −1, 0) 0.405
T180◦ (p, 0, 0) (−p, 0, 0) All allowed

(ii) 201 K < T < 282 K, the orthorhombic phase, with
PV = (po, po, 0) plus permutations;

(iii) 282 K < T < 400 K, the tetragonal phase, with PV =
(pt , 0, 0) plus permutations;

(iv) 400 K < T , the spherical phase, with PV = (0, 0, 0).
The permutations are any symmetry elements of the cubic

group. So there are 8, 12, and 6 vacua for the rhombohedral,
orthorhombic, and tetragonal phases. Throughout this work
we choose T = 150, 250, and 300 K as representative tem-
peratures of each nontrivial phase. The vacuum values pi can
be calculated analytically using (8), but the expressions are
unpleasant.

The allowed walls satisfy (13), which we consider to be an
equation in terms of the wall-normal s through

Qabcd = R(s)aeR(s)b f R(s)cgR(s)dhQo
e f gh. (26)

The allowed combinations of PV−∞ , PV∞ , and s are displayed
in Table I. The wall names are given by the angle between the
connected vacua. We see that (13) is quite restrictive and only
some walls are allowed.

We now find minimal energy domain walls for a given pair
of vacua and wall orientation. We first consider those vacua
with a discrete set of allowed walls: the R71◦, R107◦, O60◦,
O90◦, O120◦, and T90◦ walls. The first task is to find appro-
priate initial data. We expect the wall, which connects two
minima, to pass through (or near) a saddle point or maxima of
the potential. We can classify all such points and label them as
PVA . Then we create initial data which looks like a wall linking
PV−∞ and PV∞ through PVA , such as

1
2 (1 − tanh(s))PV−∞ + 1

2 (1 + tanh(s))PV∞ + sech(s)PVA .

(27)
We then flow these initial data using the arrested Newton
flow method, with fixed boundary data. The idea, originally
proposed in Ref. [30], is to replace the first-order gradient flow
with second-order time dynamics

P̈a = − δF

δPa
, P(−∞) = PV−∞ , P(∞) = PV∞ . (28)

FIG. 1. Two possible 2D structures. We can think of the vortex
(left) as made from low-energy head-to-tail walls (e.g., along the
wall-normal highlighted in blue) connecting the regions separated
by black lines. The antivortex (right) is made from high energy head-
to-head and tail-to-tail walls. Our analysis of domain wall energies
suggest that the vortex will have lower energy.

The initial configuration will accelerate towards an energy
minimum but, without interference, will not stop there. We
interfere by checking the energy of the configuration at each
time step and only proceed if the energy falls. If the energy
increases, we set the field velocity to zero and restart the time
evolution. Again the field will move towards a minima. Once
the variation is below some critical values, we are close to a
solution to the equations of motion: either a minimizer or a
saddle point. We then add random noise to the simulation,
which destabilizes the configuration if it is a saddle point.
Once a configuration is stable to random fluctuations, we are
confident that it is a local minimizer. Arrested Newton flow is
much faster than standard gradient flow, as the second-order
dynamics allow for much larger time steps.

We repeat this process for many initial configurations,
including ones which pass through each possible PVA and
save the result with lowest energy. The energies of these
configurations are written in Table I. We have switched to
dimensionless units by dividing P by |PV |, the As by A11 and
the Gs by G11. The length and energy units are then given by√

G11/A11 and
√

G3
11(PV )4/A11 . Note that these units depend

on temperature.
Certain wall directions, connecting the same vacua, are

energetically preferred. For instance, O90◦ walls between
(po, po, 0) and (po,−po, 0) in the (1,0,0) direction are pre-
ferred over those in the (0,1,0) direction. This confirms the
result of Ref. [31], that head-to-tail walls are preferred over
head-to-head and tail-to-tail walls. The reason is that the
“derivative” energy, Gsasb∂sPa∂bPb/2, of the head-to-tail wall
is proportional to G44, which is much smaller than of the
head-to-head wall, which is proportional to G11.

That certain wall directions have lower energy has impli-
cations for higher-dimensional objects. Consider the two 2D
configurations in Fig. 1. The first, a vortex, should be energet-
ically preferred to the second, an antivortex, because it is con-
structed from walls with lower energy. This explains why the
Ising lines from Ref. [32] have a preferred (positive) chirality.

IV. STATIC 180◦ WALLS

Unlike the walls in the previous section, the 180◦ walls are
allowed to be in any orientation. For a given wall orientation,
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FIG. 2. The three prototypical domain walls.

the most important question is: is the wall Ising, Bloch or
Néel? An Ising wall has only one polarization component,
which must be proportional to the ground state PV . A Néel
wall additionally has nonzero polarization in the direction of
the wall-normal, while a Bloch walls can vary perpendicularly
to the wall-normal. The three types are shown in Fig. 2.
Pure Bloch (with zero Néel component) and pure Néel (with
zero Bloch component) walls are only allowed when the wall
normal s is orthogonal with the ground state polarization PV ,
which is often the case [3]. However, even when this is not the
case, we can define the Ising, Néel and Bloch components of
the polarization vector as

P(s) = PI (s)P̂
V + PN (s)s̃ + PB(s)P̂

V × s̃, (29)

where s̃ is the linear combination of PV and s which is or-
thogonal to PV . For neutral walls, PV and s are automatically
orthogonal. In this case, s̃ is simply equal to s and our def-
initions of Ising, Bloch, and Néel components are the same
as those used in Ref. [3]. But even for a generic wall the
components PI , PB, and PN tell us which type of basic wall
it is closest to. The deconstruction (29) is only allowed if PV

and s are not equal.
The rarest wall type is Bloch. Hence, we will search for

a Bloch wall when varying the wall orientation. We can gain
some insight by looking at the potential energy (24) at the
center of the wall, when PI = 0. That is, we look at the energy

V (PN , PB) = V (P = PN s̃ + PBP̂
V × s̃). (30)

This is a sextic polynomial in two variables whose coefficients
depend nontrivially on the wall orientation (as explained in
Sec. II). Hence we can classify its stationary points semi-
analytically. A minimum at (PN , PB) = (0, pb) suggests that
the system could support a Bloch wall while a minimum
at (PN , PB) = (pn, 0) suggests there could be a Néel wall.
Of course, the derivative energy is also important, but this
potential provides a theoretical starting point.

We now search for wall orientations which support in-
teresting walls and study them. To do so, let us change
to coordinates which reflect the choice of wall orientation
through the angles θ and φ:

s = (cos(θ ), sin(θ ) sin(φ), sin(θ ) cos(φ)), (31)

r = (sin(θ ),− cos(θ ) sin(φ),− cos(θ ) cos(φ)). (32)

FIG. 3. A visualization of the projection map used in Fig. 4. We
take a sphere whose normal vector are the wall-normals s (white
arrows, left) and project these from (0,0,2) to a disk on the plane
z = 0 (right).

To begin, we find the overall energy minimizer for the given
wall orientation following the procedure described in the pre-
vious section for non-180◦ walls. We also find the minimal
energy Ising wall by demanding that

P(s) · s̃ = P(s) · (PV × s̃) = 0. (33)

This condition is easy to implement numerically through a
projection, and means that the polarization vector has only
one component: proportional to the ground state. We do this
calculation to check when non-Ising walls are favoured over
Ising walls. These results are shown in Fig. 4. We plot the
energy of the energy-minimizing wall in row A and the energy

FIG. 4. Plot of the wall-energy as a function of wall-normal s.
Each point on each disk corresponds to a different unit wall-normal,
with the mapping show in Fig. 3. Red and blue represents large
and small energies, respectively. The minimal energy wall (row A),
minimal energy wall subject to the Ising condition P(0) = 0 (row
B) and difference between the energies (row C) are shown. The red
regions contains wall-directions where the non-Ising wall has at least
10% less energy. The tetragonal, orthorhombic and rhombohedral
walls are between the vectors (pt , 0, 0) to (−pt , 0, 0), (po, po, 0) to
(−po, −po, 0) and (pr, pr, pr ) to (−pr, −pr, −pr ), shown as a green
dot in row A, at temperatures 300, 250, and 150 K, respectively.
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FIG. 5. The Ising wall (left), minimal energy Néel wall (middle)
and a contour plot of the potential energy (30) for T = 300 K,
PV = (pt , 0, 0), and s = (1/

√
2, 1/2, 1/2). The center point of each

wall is marked with a star. The Ising, Bloch, and Néel components
of the wall, defined in 30 are plotted in blue, orange, and green,
respectively. Neutral wall orientations are highlighted by a pink line.

of the energy-minimizing Ising wall in row B. In row C the
blue region represents where the non-Ising wall has 10%
lower energy than the Ising wall. Here, the wall orientation
is parameterized using a Riemann half-sphere projected onto
a disk in the plane. The projection is displayed graphically
in Fig. 3. The final disk is rescaled to have unit radius. We
highlight the neutral wall orientation, where PV · s = 0, as a
pink line in Fig. 4. In total, we found the energy minimizing
domain wall for 30 000 different combinations of wall orien-
tations and initial conditions.

For a given (θ, φ) pair, we can find the minima of the
potential (30). If this analysis suggests there could be a Bloch
or Néel wall, we study the example in more detail. This is how
we have found the examples discussed in the remainder of this
section.

In the tetragonal phase (left column of Fig. 4), the wall
connects vacua pointing towards cube faces: we take (pt , 0, 0)
and (−pt , 0, 0). For Ising walls, the energy only depends
on the angle between the wall and vacua, and the energy
is minimized when the wall is perpendicular to the vacuum
states. Non-Ising DWs are preferred in several orientations.
An interesting example is for the charged wall with s =
(1/

√
2, 1/2, 1/2). The potential energy at the center of the

wall (30) for this orientation is plotted in Fig. 5 (middle) and
suggests there could be a Bloch or Néel wall, since there
are minima along these axes. It costs less potential energy
to pass through a minima of the potential at the wall-center
but it costs gradient energy to move the polarization away
from (PN , PB) = (0, 0). In this case, the Néel wall has lowest
energy: the cost of gradient energy to pass through the Néel
point is lower than the potential energy saved. However, there
does exist a higher energy, locally minimal, Ising wall. This
example highlights the utility of the potential energy plots as
they can predict which walls may have low energy and the
importance of fitting the gradient coefficients G correctly. If
G was larger, it would cost more energy to create the Néel
wall and thus it could be disfavoured compared to the Ising
wall.

In the orthorhombic phase, our DWs connect the vacua
(po, po, 0) and (−po,−po, 0). By examining Fig. 2, we see
that the lowest energy orientations are on the points of a
diamond with, e.g., s = (0, 1, 1)/

√
2. Non-Ising walls are pre-

ferred almost everywhere, though near s = (0, 0, 1) the Ising

FIG. 6. The minimal energy 90◦ − 90◦ neutral wall for T =
250 K, PV = (po, po, 0), and s = (0, 0, 1) (left) and a contour plot
of the potential energy (right).

walls have similar energies. Usually the non-Ising walls look
like pairs of smaller degree walls. For example, consider the
neutral wall with s = (0, 0, 1) the potential energy suggests
that there is a possible Bloch wall. When constructed, the wall
looks like two overlapping 90◦ walls, one joining (1,1,0) to
(1,−1, 0) and another from (1,−1, 0) to (−1,−1, 0). The
potential and solution can be seen in Fig. 6.

Finally in the rhombohedral phase, the domain walls con-
nect (pr, pr, pr ) and (−pr,−pr,−pr ). The energy of the
minizing walls is a complicated pattern depending heavily on
the wall orientation. Part of this has been seen before for neu-
tral walls in Ref. [7]. The energy minimizing walls have one
zero component of s, such as s = (1, 1, 0)

√
2. Non-Ising walls

are preferred in all orientations, and some of these have been
discovered previously [2]. In this phase, we do find Bloch wall
solutions, although they are not energy-minimizing and are
charged. One example is shown in Fig. 7. The potential energy
has minima in six places: two Bloch points and four mixed
points which together form an approximate hexagon. The
mixed points have lower energy than the Bloch points. We plot
a nonminimizing solution which passes near the Bloch point
(middle). Note that these are not pure Bloch walls, but the
Bloch component is large compared to the Néel component.
We also plot the solution which passes near the mixed point
(left) and this has lower energy. It passes near vacua which lie
on the corners of the cube. In real barium titanate, only neutral
walls can be stable. Hence we plot the minimal energy neutral
wall in Fig. 8. This looks like three consecutive overlapping

FIG. 7. The minimal energy mixed wall (left) and higher en-
ergy Bloch wall (middle) in the rhombohedral phase at T = 150 K
and s = (1/

√
2, −1/2 − 1/2). The potential energy for the wall-

center (middle); the mixed wall passes close to the point (PN , PB ) ≈
(0.8, −0.4) while the Bloch wall passes close to the point (PN , PB ) ≈
(0, −0.9).
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FIG. 8. The minimal energy neutral wall in the rhombohedral
phase at T = 150 K, with s = (1/

√
2, −1/

√
2, 0). It takes the form

of three consecutive short walls which overlap.

71◦ walls, similar to the orthorhombic walls which looks like
two short 90◦ walls.

Overall, we have found a variety of domain wall solutions.
The minima of the potential energy (30) can suggest where
certain types of walls can form, but their existence and energy
depend on various factors including the depth of the minima
and the size of the derivative energy. There are non-Ising walls
preferred in every phase of the system.

V. ASYMPTOTICS AND INTERACTIONS

We will now calculate the asymptotic form of a domain
wall, and use this to understand their interaction. This will
allow us study wall-wall pairs and show that, in general, Ising-
Ising walls are unstable to collapse but other pairs may not be.

Consider the tail of a wall, where

P = PV + p (34)

and pa is small. The Euler-Lagrange equations for the tail are

−Gsasb∂
2
s pb + ∂2V

∂Pa∂Pb

∣∣∣∣
PV

pb = 0, (35)

which has solution

p =
∑

i

μie
−λis, (36)

where λ2
i and μi are the eigenvalues and eigenvectors of

G−1
sasc

∂2V

∂Pc∂Pb

∣∣∣∣
PV

. (37)

The leading behavior is described by the eigenvector with the
smallest eigenvalue.

Now consider two walls, one going from PV−∞ to PV0 and
another from PV0 to PV∞ . Suppose the walls have positions
∓X with |X | � 1 and denote them P∓X . Near the central
vacuum, the walls take the form P∓X (s) = PV0 + p∓X (s). We
can approximate the combined wall as

P(s) = P−X (s) + PX (s) − PV0 (38)

≈
{

P−X (s) + pX (s) − PV0 for s < 0
p−X (s) + PX (s) − PV0 for s > 0

. (39)

Using this approximation, we can evaluate the energy of the
configuration as a series in p. The calculation is done in detail
in Ref. [33], and the result only depends on the tails:

E (p)int = Gsasb
(
pX

b ∂s p−X
a − p−X

b ∂s pX
a

)
. (40)

This simple expressions tells us if the walls attract or repel
based solely on their tails. In fact, there is a simple graphically

interpretation. If the tails come together to form a saddle point,
they repel. If they form a maximum or minimum, they attract.

First, consider two “short” walls which combine to make
long wall, like the two 90◦ walls seen in Fig. 6 (center). Here,
the wall tails in the Bloch component PB come together to
form a maximum, while the walls in the Ising component PI

form a saddle point. Hence the Bloch components create an
attract force, while the Ising components create a repulsive
force. Which is dominant depends on the slope of the walls
and the eigenvalues of (37). In this case, at T = 250 K, the
attractive force wins.

For a simpler example which we can do in more detail,
consider two 180◦ Ising walls: the first connecting a vacuum
PV to its negative −PV and the second −PV back to PV . For
simplicity, we will consider an explicit example. Choose coor-
dinates (s, r, t ) so that the wall-normal is s and the connected
vacua are in the r direction so that PV∞ = (0, PV , 0). The wall
tails at s = 0 are given by

p−X = br̂ exp(−λ(s + X )), pX = br̂ exp(λ(s − X )), (41)

where

λ2 = G−1
srsr

∂2V

∂Pr∂Pr

∣∣∣∣
−PV

. (42)

Note that, since −PV is a vacuum, the Hessian is positive.
Using (40), we find

E int = −2b2λGsrsr exp (−2λX ). (43)

The eigenvalue and Gsrsr are positive and so the energy is neg-
ative. The walls can decrease the energy by decreasing X and
so the walls attract and will, eventually, annihilate. This result
is well known in kink models: kinks and antikinks always at-
tract in one-component theories. The Ising wall ansatz reduces
our multicomponent theory to a single component one.

Domain wall clusters

As we have seen, there can be walls which attract in one
component and repel in another. We can use this fact to try and
construct stable wall clusters, and use the asymptotic analysis
to search for wall orientations which support long-range at-
traction. We then evolved the system to see if there are stable
solutions.

One example with stable domain wall clusters is the config-
uration joining PV = po(1, 1, 0) to −PV and back again along
the wall with s = (1, 1, 1)/

√
3. This has dominant eigenvector

(0,0,1) and the wall tails in this channel create an attractive
force at long range. The second most dominant eigenmode
creates a repulsion. The balance between the attraction and
repulsion in different eigenchannels generates the conditions
for stable configurations. (The stable configuration for this
wall is shown in Fig. 9.) Note that the final configuration
traces a loop around the equator in target space. For the walls
to collapse, this loop must contract. But this costs significant
energy because both the point P = 0 and the lines Pz �= 0 have
high energy. This energy barrier stops the loop from becoming
a point, and hence the system is stable. Unfortunately, since
the wall is charged, it is unlikely to be stable in barium
titanate. A cluster along s = (0, 0, 1), constructed from walls
of the type seen in Fig. 6 would be neutral and could be stable.
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FIG. 9. A configuration with long-range attraction but short-
range repulsion, allowing for a stable local minimum. We plot the
field in xyz components and in the asymptotic eigenbasis. There is
attraction in the first and third eigencomponents and repulsion in the
second.

Both unstable and stable wall-wall pairs can be constructed
for the same wall orientation and phase. We construct initial
data based on two Ising wall and two non-Ising walls in the top
of Fig. 10. We create the Ising walls by demanding that the
field vanishes at two points. We then remove this constraint
and flow the field. The time evolution is read from top to
bottom. As predicted by the asymptotic analysis, the Ising
walls annihilate while the non-Ising walls stabilize.

Generally, it is rare to find wall orientations which support
long-range attraction for the wall pairs. However, there are
many examples, especially in the rhombohedral phase, where

FIG. 10. Gradient flow applied to initial data representing Ising-
Ising and non-Ising pairs in the orthorhombic phase at T = 200 K,
for the wall-normal s = (1, 1, 1)/

√
3 and boundary polarization

P∞ = (po, po, 0). We plot the xyz components of the polarization
vector, coloured in the same way as in Fig. 9. Time is read from top
to bottom. The Ising-Ising pair attract and annihilate into the vacuum
while the non-Ising walls fall into a stable minima.

FIG. 11. A stable wall-wall pair in the rhombohedral phase at
T = 150 K. Here, s = (1, −1, 0)/

√
2. The order of the components

is vital for ensuring the stability of this configuration.

the different eigenmodes give separately attractive and repul-
sive interactions. In these situations it is possible that there
are stable minima, such as the configuration in Fig. 11, due to
nonlinear effects. This wall is neutral, so is possibly stable in
real barium titanate. To check this, one should include elec-
trostatic effects as for example was discussed in Ref. [7,13].
The long-range attraction is required to prove analytically that
these are truly minima. For the other walls we can numerically
show that they are stable by calculating the Hessian around
the configuration. We have done this for the field shown in
Fig. 11.

We can also look for longer clusters of domain walls but
adjusting the initial conditions for the gradient flow. For ex-
ample, a stable 6-cluster is displayed in Fig. 12.

An important application of Bloch walls are their potential
use in high-density memory storage. An appealing aspect is
that Bloch walls can have two, or more, energetically equiva-
lent ground states. Hence one can have a memory cell with
more than one bit of information in it, and these can be
switched using an electric field. Such a bistable Bloch wall
was studied in Ref. [34]. A domain wall cluster contains as
many states as a bistable Bloch wall. This is because the
stability of the cluster depends on the intertwining of the
polarization components, as seen in Fig. 11 where the Py and
Px components take turns crossing the axis. There is another
cluster, where the Px and Py components are swapped, but no
others. Hence there are two energetically equivalent clusters,
the same number as there are energetically equivalent Bloch
walls in Ref. [34].

VI. LINEAR AND NONLINEAR STABILITY

Given a solution to the static equations of motion P0(s), we
can study its linear stability through its normal modes, ea(s).

FIG. 12. A neutral stable cluster formed of six domain walls.
Here, T = 150 K and s = (1, −1, 0)/

√
2.
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These satisfy

Ĥ [P0(s)]abeb = ω2ea, (44)

where Ĥ is given by

Ĥab = −Gsasb∂s∂s + ∂2V

∂Pa∂Pb

∣∣∣∣
P0(s)

. (45)

This is a Schrödinger type equation and methods to find its
solutions are well known. We do so using a gradient flow
method developed in Ref. [35] and applied to higher dimen-
sional system in Ref. [36]. Briefly, we take a random initial
perturbation e and evolve it using

∂τ e = −Ĥe. (46)

This has solution

e(s) =
∑

n

exp(−ωnt )en(s), (47)

where en and ωn are eigenfunctions and eigenvalues. After
a long time, the lowest energy mode will dominate the flow
while all other modes are exponentially suppressed. We save
the lowest mode and repeat the process while projecting out
our saved mode. The second lowest frequency mode then
dominates the solution at large times and we save this. And
so on.

Let us consider an example: the stable wall-wall pair found
in the previous section, seen in Fig. 9. Denote the solution
PW (s). It has a Z2 reflection symmetry(

PW
x (s), PW

y (s), PW
z (s)

) = (
PW

y (−s), PW
x (−s), PW

z (−s)
)

and so we can label the modes depend on whether they trans-
form trivially under this transformation, or pick up a sign. We
find the four lowest frequency normal modes with frequencies
and signs ωP = 0.0−, 0.2+, 1.34+, and 1.35−. All modes are
positive, confirming that the wall-pair is a local minimum.
Physically, the first mode corresponds to translations and
hence costs no energy to excite. In the second, the walls
oscillate around their positions: moving towards and away
from each other. The final two modes are breathing modes: the
walls increase and decrease in size, either in- or out-of-phase.

We know that there is a configuration with lower energy
than the wall-pair: the vacuum P(s) = PV . Hence, although
the configuration is linearly stable, it cannot be stable under
large perturbations. We can use the simplified string method to
understand the nonlinear stability. This method was originally
proposed for chemical reactions [37], but has also been used
study stability of topological defects in condensed matter [38].
We construct a “string” of n configurations which interpolate
between the wall pair and the vacuum, parameterized by hi =
i−1
n−1 ∈ [0, 1]:

P(hi, s) = (1 − hi )P
W (s) + hiPV . (48)

We then minimize the energy of the band

n∑
i=1

F [P(hi )], (49)

FIG. 13. The energy F (P(h)) of our minimized band of con-
figurations as a function of the distance along the string h, joining
the minimum PW (s) to the vacuum PV for T = 200 K. Several
configurations along the band are plotted, using the same colouring
and axes are used in Fig. 9. The band passes through a local minimum
(h ≈ 0.25), saddle point (h ≈ 0.6).

using a gradient flow, with the end points fixed as

P(0, s) = PW (s) P(1, s) = PV . (50)

In the simplified string method we demand that, during the
flow, the points are evenly spaced on the string. In detail, we
define a measure of distance

d (P(hi ), P(h j ))
2 =

∫
(P(hi ) − P(h j ))

2 ds. (51)

Then the kth configuration is a distance

Lk =
k−1∑
i=1

d (P(hi ), P(hi+1)). (52)

along the string, and the total length is given by Ln. After we
have flowed for some time, we recalculate the total length of
the string and linearly resample the configurations by demand-
ing that the configurations are evenly spaced, at positions
Lnew

n = Lnhi. If Lk−1 < Lnew
n < Lk , then the resampled config-

uration at that point is given by

Lk − L̃

Lk − Lk−1
P(hk−1, s) + L̃ − Lk−1

Lk − Lk−1
P(hk, s). (53)

The process generates a low-energy path in configuration
space joining two minima which, by Morse theory, is guar-
anteed to pass through a saddle point. The energy of the
saddle point gives the energy barrier to collapse. We apply
the simplified string method with end configurations PW (s)
and two widely separated walls. The energy E (hi ) and some
configurations P(hi, s) from these simulations are plotted in
Fig. 13.

In the path from PW to the vacuum, the configuration must
either pass through P = 0 or contain a nonzero Pz. Both cost
significant energy and, in this case, the lower energy option
is to increase Pz. On target space, the initial state is a circle
while the end state is a point. So, during the process the circle
has contracted to a point: the topology of the configuration
has changed. The energy barrier exists because changing this
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topology costs energy (due to the high energy cost away from
the P2

x + P2
y = |PV |2). Although it is difficult to see on the

graph, there is a long-range attraction and the energy has a
minima at h ≈ 0.25.

VII. CREATION OF WALLS USING EXTERNAL FIELDS

We have seen that non-Ising walls can exist and that there
are stable non-Ising wall-wall pairs. We will now try to gener-
ate these interesting configurations by starting from a simpler
initial field and applying an external electric field. To model
this, the term

−E(x, t ) · P, (54)

is added to the free energy (24). The electric field encourages
the polarization vector to point in its direction and so we can
use it to construct any desired configuration. We will turn on
a specific electric field for a short burst, then turn it off and
continue to flow the fields. The process is considered a success
if final state is our desired one.

We begin by taking an Ising wall and applying an elec-
tric field to try and change it into a non-Ising wall. We will
consider a case previously discussed: the tetragonal wall with
orientation s = (1/

√
2, 1/2, 1/2) and T = 300 K first seen in

Fig. 5. In the Cartesian basis, the wall connects the vacua
(pt , 0, 0) and (−pt , 0, 0). There is a stable Néel wall, with
center-value approximately equal to 1/

√
2(0, pt , pt ). Hence

our initial state is an Ising wall, and we apply the external
field

Eext (s, t ) =
{

(0, E , E ) −s0 < s < s0, t < t0
0 otherwise

. (55)

We take t0 = 5 and s0 = 2.6nm. The wall changes from an
Ising to a Néel wall provided that E > 0.32 MV/m. One
could apply this mechanism to a poled sample material. The
poled material likely has Ising walls, or non-Ising walls with
equal non-Ising component. One could apply an external elec-
tric field (55) across the walls (with positive and negative E ),
creating an intertwined structure, like that seen in Fig. 10
(bottom right). Our analysis suggests that this new structure
should be more stable than the originally poled sample.

Next we consider the stable wall-wall pair PW seen in
Fig. 9. This exists in the orthorhombic phase at T = 250 K
and wall s = (1, 1, 1)/

√
3. We’ll take the initial state to be the

constant vacuum. The final state passes near four vacua, from
(1,1,0) to (1,−1, 0) to (−1,−1, 0) to (−1, 1, 0) (in units of
pt ) and back to the start. We need a more complicated external
field to generate the more complicated configuration. We take

Eext (s, t ) =
⎧⎨
⎩

(−E , 0, 0) −s0 < s < 0, t < t0
(E , 0, 0) 0 < s < s0, t < t0
0 otherwise

(56)

with s0 = 6nm. The stable PW configuration is generated and
stabilizes provided E > 14MV/m. This is an order of mag-
nitude larger than the field required to change the nature of a
wall since we are creating walls from the vacuum. We have

shown that non-Ising and wall-wall pairs can be generated
using an external electric field stencil.

VIII. SUMMARY

In summary, we have calculated the energy-minimizing
domain walls for all possible wall orientations in perfectly-
screened barium titanate. In every phase, we found orien-
tations which support non-Ising walls. Many of these were
superpositions of shorter walls. By studying the asymptotic
form of the walls, we investigated the stability of multi-wall
configurations. Most interestingly, we found the effect of
domain wall clustering. Their stability can be explained by
the existence of an effective topology. We developed tools
to calculate their linear and nonlinear stability: allowing the
study of their collapse. Finally, we found the required external
electric field to create the non-Ising configurations.

The methods developed here can be applied to topological
defects in higher dimensions with minimal adjustment.

The stability of domain walls clusters, as well as the fact
that they can be created on demand by the protocol that we
outline, suggests that the walls are not only the objects of aca-
demic interest but also can be used in memory applications.
The most promising candidates are the neutral clusters, which
we found in the rhombohedral phase. These are most likely to
be stable in real barium-titanate.

Our formalism for domain walls in arbitrary orientations
applies to all perfectly screened ferroelectric Ginzburg-
Landau-Devonshire models, simply with different material
constants. Hence it is simple to repeat the analysis for other
materials such as PZT, lithium niobate, and lithium tantalate.
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APPENDIX: MATERIAL CONSTANTS

In this Appendix, we write down the material constants
used in the text, and how their commonly used form relates
to our tensors.

We take the potential material constants α derived in
Ref. [39], except for α123 which comes from Ref. [40]. The
elastic constants C, Q (and hence q) are the same as those used
in Ref. [31]. There are slightly improved constants available
in Ref. [41] but we felt it was more important to have our
work directly comparable to similar theoretical studies. There
is more uncertainly in the value of the derivative energy tensor
G. We use the parameters proposed in Ref. [31] (note that our
α11 and α12 is equal to their α

(e)
11 and α

(e)
12 ). All the parameters

can be found in Table II.
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TABLE II. The material constants used in this paper.

Const. Value Units

α1 3.34(T − 381) 105 J m C−2

α11 4.69(T − 393) − 202 106 J m5 C−4

α12 3.23 108 J m5 C−4

α111 −55.2(T − 393) + 2760 106 Jm9C−6

α123 4.91 109 J m9 C−6

α112 4.47 109 J m9 C−6

C11 2.75 1011 J m−3

C12 1.79 1011 J m−3

C44 5.43 1010 J m−3

q11 1.42 1010 J m C−2

q12 −7.4 108 J m C−2

q44 1.57 109 J m C−2

G11 51 10−11 J m3 C−2

G12 −2 10−11 J m3 C−2

G44 2 10−11 J m3 C−2

We bundle the parameters into tensors as follows:

Ai j = δi jα1,

Ai jkl = (
α11 − 1

2α12
)
δi jkl + α12

6 (δi jδkl + δikδ jl + δilδ jk ),

Ai jklmn = (
α111 − α112 + 1

3α123
)
δi jklmn

+ 1
6 a123δi jδklδmn

+ (
1

15 a112 − 1
30 a123

)
(δi jδklmn + 14 perms).

The tensors C and G have the same decomposition. We give it
for C,

Ci jkl = (C11 − C12 − 2C44)δi jkl + C12δi jδkl

+ C44(δikδ jl + δilδ jk ),

while q and Q are similar but slightly modified,

qi jkl = (q11 − q12 − q44)δi jkl + q12δi jδkl

+ 1
2 q44(δikδ jl + δilδ jk ).
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