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Ferroelectric phase transition in a 1T monolayer of MoTe2: A first-principles study
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A ferroelectric distorted (d) 1T (d1T)-phase characterized by out-of-plane (OOP) polarization was previously
predicted in monolayer transition-metal dichalcogenides, such as MoS2. A phenomenological model was
proposed to explain the centrosymmetric 1T (c1T)-to-d1T transition; however, this model fails to account for
polarization reversal. In this work, we reassess the underlying physical origin of spontaneous OOP polarization in
the 1T-phase of monolayer MoTe2. Through first-principles calculations and the incorporation of a phenomeno-
logical model approach utilizing an alternative set of basis states, we confirm that OOP polarization emerges due
to its interaction with twofold degenerate, nonpolar primary order parameters. Additionally, we investigate the
unique coupling between the polar mode and the primary mode. Notably, employing our newly defined basis sets,
we clarify the hybrid improper ferroelectric mechanism, the coupling behavior of lattice modes, phase transitions,
and polarization switching within a proposed subspace. Furthermore, our findings highlight that the ferroelectric
phase transition can occur even in the absence of unstable phonon modes within the highly symmetric c1T-phase,
attributed to the higher order coupling between lattice modes.
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I. INTRODUCTION

Two-dimensional (2D) monolayer ferroelectric (FE) mate-
rials have garnered significant interest from both experimental
and theoretical fields, especially the ones exhibiting out-of-
plane (OOP) polarization. These materials hold great promise
for miniaturized functional devices [1–4]. In comparison to
their three-dimensional (3D) counterparts, 2D ferroelectric
materials possess natural layered structures, opening up addi-
tional possibilities for ultrathin nanoferroelectric devices [5].
Remarkable advancements have been made through theoreti-
cal and experimental investigations, such as the observation of
OOP polarization in ultrathin film of CuInP2S6 [6], in-plane
(IP) ferroelectricity in SnTe thin films with atomic thickness
[7], the dipole locking between IP and OOP polarization in
monolayer In2Se3 [8–11], and OOP polarization due to a glide
FE mechanism in layered WTe2 [12–14]. These findings have
not only propelled the research progress in the field of 2D fer-
roelectric materials but have also expanded our understanding
of ferroelectric behaviors in diverse materials.

Stable OOP polarization of ultrathin film samples are
uncommon in conventional ferroelectric materials. The
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accumulation of surface charge introduces finite depolariza-
tion fields, which usually suppress the spontaneous polariza-
tion perpendicular to the surface. According to the modern
theory of ferroelectricity, conventional proper ferroelectricity
arises from the condensed polar optical phonon mode in the
high-symmetry nonpolar reference phase [15]. However, the
reduction in total free energy resulting from the condensation
of OOP polarization is usually insufficient to withstand the de-
polarization field [16,17]. Therefore, it is crucial to investigate
additional mechanisms beyond the second-order coupling of
lattice modes to understand stable OOP polarization in 2D
ferroelectric materials. For instance, the interlattice mode cou-
pling beyond the P2 term plays a vital role in 2D ferroelectric
In2Se3 [18]. As a representative 2D FE material, monolayer
In2Se3 exhibits conventional, proper IP ferroelectricity. The
higher order coupling between IP and OOP polarization locks
these two polarization components and gives rise to sponta-
neous and reversible OOP polarization.

Similarly, the improper FE [19–22] mechanism with fi-
nite OOP polarization in 2D transition-metal dichalcogenides
(TMDs) was theoretically proposed in the 1T-phase of mono-
layer MoS2 [23,24] from theoretical studies, and was also
confirmed experimentally in monolayer MoTe2 [25]. In this
group of compounds, the OOP polar phonon mode is intrin-
sically stable while the unstable nonpolar IP motion of the
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molybdenum sublattice, referred to as the K3 mode, serves as
the primary-order parameter driving the FE phase transition.
As proposed by first-principles and the phenomenological
model [23], OOP polarization in 1T MoS2 is proportional to
the square of the K3 mode, which provides the driving force of
the spontaneous polarization. However, several questions still
remain unclear due to the complex lattice coupling behavior in
these 1T-phase TMD monolayers. Specifically, the presence
of threefold rotation symmetry results in six energetically
equivalent ground states, three of which exhibit opposite di-
rections of OOP polarization compared to the other three. One
of the most important issues is how OOP polarization reverses
its direction along with the primary-order parameters. As we
notice, simply reversing the direction of atomic displacement
in the K3 mode is insufficient to reverse the polarization or
to switch to another energetically equivalent state. It implies
the presence of complex coupling behaviors in 1T-phase TMD
monolayers and the necessity for an alternative and compre-
hensive theoretical description.

In this work, we conducted a series of theoretical investi-
gations focusing on the 1T-phase of TMD monolayer MoTe2,
where the distorted (d) 1T-phase has been experimentally
confirmed. Utilizing first-principles calculations, we explored
the anharmonic coupling between OOP polarization and non-
polar primary-order parameters. By employing an alternative
basis set, we rederived a phenomenological model for the
1T-to-d1T FE phase transition, considering three equivalent
subspaces. These selected subspaces effectively reproduced
the first-principles data and provided explicit descriptions of
the switching behavior of OOP polarization. Our findings
emphasize the significant role of strong higher order cou-
pling effects and a hybrid improper ferroelectric mechanism
in governing the structural phase transition in the 1T-phase
of monolayer MoTe2. Furthermore, we highlight that in a
system with an asymmetric potential energy surface (PES),
the conventional approach based on soft phonon modes may
be insufficient to predict lattice instability accurately. These
insights contribute to a deeper understanding of the intricate
mechanisms underlying the FE phase transition in monolayer
MoTe2.

II. METHOD

The first-principles calculations were carried out using
the Vienna Ab-initio Simulation Package [26,27] within the
framework of density functional theory (DFT) [28,29]. The
electronic exchange-correlation functionals are constructed by
the Perdew-Berke-Ernzerhof type of methods in generalized
gradient approximation [30–32]. The interaction between ions
and electrons is described by the projector-augmented wave
method. The orbitals of 4p64d55s1 and 5s24p4 electrons were
explicitly treated as valence states for molybdenum and tel-
lurium, respectively. All atomic positions are fully relaxed
until the Hellmann-Feynman force on each atom is less than
10–2 eV/Å. The energy cutoff for plane-wave expansion is
550 eV. The 2D Monkhorst-Pack 5 × 5 × 1 k-point grid was
adopted for the Brillouin zone (BZ) of the unit cell, while
the same density of BZ mesh was used for the supercell.
Ab initio density functional perturbation theory was adopted
to study the phonon dispersion curve. The phonon spectrum is

FIG. 1. Schematic diagram of atomic structures and studied
phonon modes shown in a p(

√
3 × √

3) supercell. (a) The c1T-phase
of MoTe2, where the p(1 × 1) formula unit cell is indicated by a
dashed line. The green atoms represent the molybdenum atoms, the
orange atoms represent the tellurium atoms on the upper layer, and
the pink atoms represent the tellurium atoms on the lower layer.
(b) The d1T-phase of MoTe2. (c) The top view and side view of the
atomic structure of the 1T ′-phase. (d) The energetic barrier of the
transition between the 1T ′- and d1T-phase. (e) Vibrational modes
of the c1T-phase, where eigenvectors are shown by arrows for the
modes Q�+

1
, Q�−

2
, Qα , Qβ , and QK3 .

calculated using the supercell force-constant approach, while
the results of which are analyzed with Phonopy code [33–35].
Setting an ∼15-Å vacuum layer along the z direction of the
lattice suppresses the interaction between image layers. The
group theory analysis of the order parameters is performed
using the ISOTROPY [36] package. The electric polarization
was calculated using the Berry phase method [37,38].

III. RESULTS AND DISCUSSIONS

A. Coupling between phonon modes

The atomic structure of 1T-MoTe2 belongs to the
transition-metal chalcogenide hexagonal crystal system. The
highly symmetric 1T structure of MoTe2 [referred to as cen-
trosymmetric 1T (c1T)] is shown in Fig. 1(a), and it belongs
to the P3̄ m1 space group (No. 164), which has three atomic
layers following ABC stacking along OOP direction (referred
to as the z direction), where the molybdenum layer is in
the middle and the two tellurium layers are at the top and
bottom. Each tellurium atom forms a Mo-Te tetrahedron with
its three nearest neighbor molybdenum atoms. According
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FIG. 2. (a) Phonon dispersion curves of the nonpolar c1T-phase of monolayer MoTe2, where the frequencies of unstable modes are shown
in negative values. The selected high-symmetry points in the Brillouin zone are � (0, 0, 0), M (0.5, 0, 0), and K ( 2

3 , 1
3 , 0). (b) The evolution of

the PECs with respect to studied vibrational modes. The red curve corresponds to the Qα mode, the blue curve corresponds to the Qβ mode,
the orange curve refers to the QK3 distortion combining the Qα and Qβ modes, and the purple curve refers to the Q�−

2
mode. (c) The contour

diagram of the PES calculated from first-principles calculations projected in the {α, β} subspace. The depth of color in the figure represents
the total free energy of the lattice. (d) The PEC in terms of the Q�−

2
mode with different amplitudes of QK3 distortions.

to our calculations, the lattice constant of the three-atom
p(1 × 1) formula unit cell of the c1T-phase is 3.52 Å.

The calculated phonon spectrum, as shown in Fig. 2(a), in-
dicates the lattice instability in the c1T-phase of MoTe2. There
are mainly two types of unstable phonon modes observed at
the BZ boundary. One mode, located at point M (0.5, 0, 0),
primarily corresponds to the transition from the c1T- to the
1T ′-phase. The other important unstable modes that appear at
point K (1/3, 1/3, 0) are twofold degenerate, which mainly
involve two types of in-plane motion of molybdenum atoms
with limited tellurium atomic motions. In our work, these
two modes are labeled as the Qα and Qβ modes, and their

corresponding eigenvectors are shown in Fig. 1(e). From the
projected value in Table I, we can see that the condensation
of the Qα and Qβ modes dominate the distortions of the
transition from the c1T- to the d1T-phase. Although there is
no lattice instability associated with the phonon mode at point
�, the modes Q�−

2
and Q�+

1
, belonging to the �−

2 and �+
1

irreducible representations, respectively, are included in the
d1T-phase as well. In the subsequent part of our work, we
focus on the ferroelectric phase transition from the c1T- to the
d1T-phase and the related lattice dynamical behaviors. The
optimized lattice constant of the d1T-phase is 3.56 Å, which
is in good agreement with the experimental value [25]. In the

TABLE I. The relative energy values of different structures and the projected amplitudes of each phonon vibration mode in the distortion
of each phases referring to c1T phase. The ‘Fixed lattice’ corresponds to the case that the constant of studied phases are fixed at the value of
c1T phase. Here the total amplitude of the atomic displacement from c1T to d1T phase is renormalized as the value of 100%.

Free-energy gain (eV/f.u.) 1T ′ d1T

Structure Fixed lattice Relaxed lattice Mode Amplitude Mode Amplitude

c1T 0.00 0.00 X −
1 92.75% α 32.93%

d1T –0.26 –0.29 �+
1 7.25% β 61.16%

1T ′ –0.39 –0.48 �+
1 0.97%

K3 –0.20 –0.21 �−
2 4.93%
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following work, we first suppress the strain effect by fixing
the lattice constant at the value of the c1T-phase. As reported
in Table I, when the lattice constant is fixed at the value of
the c1T-phase, the total energy of the 1T ′-phase, the atomic
structure of which is shown in Fig. 1(c), is 0.13 eV/f.u. lower
than the d1T-phase, indicating the better thermal stability of
the 1T ′-phase. However, further studies show that there is an
∼0.26 eV/f.u. energy barrier when the structure transforms
from d1T to 1T ′, as shown in Fig. 1(d), which may explain the
experimental observation of the d1T-phase on the hexagonal
substrates [25].

The atomic distortions from c1T to d1T can be divided
into two groups. As shown in Fig. 1(e), the first group in-
cludes two types of motion contributed by the Q�−

2
and Q�+

1

modes, corresponding to the phonon modes at the BZ center
without any supercell modulation. Among these two modes,
OOP polarization directly comes from the condensation of
the Q�−

2
mode, which brings the polar type of OOP atomic

motion.
The Q�+

1
mode relates to the nonpolar motion along the

z direction, the condensation of which does not alter the
symmetry of the lattice. We therefore ignore the Q�+

1
mode in

the following work. The second group of distortions induces
the structural modulation of the supercell and relates to the
K3 irreducible representation, as illustrated in Fig. 1(e). This
QK3 distortion contains the IP trimerization of molybdenum
atoms, accompanied by the IP motion of tellurium atoms in
the bottom layer, as well as the OOP motion of tellurium
atoms in the top layer. Such QK3 distortion arises from the
combined atomic motion of the Qα mode and Qβ mode, which
are depicted in Fig. 1(e).

By tracing the evolution of the total energy with respect
to the amplitude of each individual phonon mode, we ob-
serve the typical double-well energy curve for the Qα and Qβ

modes, and a single-well curve for the Q�−
2

mode. As shown
in Fig. 2(b), the potential energy curves (PECs) confirm the
instabilities of the Qα and Qβ modes, as well as the stable
Q�−

2
mode. Both curves for Qα and Qβ exhibit similar neg-

ative curvature around the origin point (reference structure),
which are in agreement with their degenerate vibrational fre-
quencies. Furthermore, the combination of Qα and Qβ can
yield the QK3 mode, which further reduces the total energy,
resulting in an asymmetric double-well curve. The details of
how the combination of the Qα and Qβ modes produces QK3

distortions are illustrated in Supplemental Material Fig. S1
[39]. Consequently, the condensation of the individual Qα

and Qβ modes reduces the total energy by 0.06 eV/f.u. and
0.05 eV/f.u. per supercell, respectively, while it will reduce
more than 0.16 eV/f.u. when the Qα and Qβ modes condense
together. The minimum of the QK3 curve, located on the
right side of the orange line in Fig. 2(b), where the inversion
symmetry is broken, belongs to the P31m (No. 157) space
group.

We plot the free-energy surface with respect to the Qα and
Qβ modes, as depicted in Fig. 2(c). The energy evolution paths
swept by the red, blue, and orange dashed lines correspond
to the potential energy curves of the same color in Fig. 2(b).
It is clearly evident that there are two energetically twofold
minimum points, referred as the K+

3 (Qα = 1, Qβ = 1) and

K−
3 (Qα = −1, Qβ = 1) states, both of which belong to the

same space group. By reversing the sign of Qα while keeping
Qβ = 1, the lattice can be switched between these two mini-
mum points.

Upon further relaxation of the atomic positions from the
K+

3 and K−
3 states while constraining the symmetry, the con-

densation of the Q�−
2

mode is automatically induced, resulting
in the ground-state FE d1T-phase. This d1T-phase presents
0.44 µC/cm2 OOP polarization and has a total energy that is
0.26 eV/f.u. lower than the reference c1T-phase. It is notewor-
thy that the K+

3 and K−
3 structures have opposite directions of

OOP polarization.
There is no lattice instability for the Q�−

2
mode, while the

coexistence of the Qα and Qβ modes determines the sym-
metry of the ground-state d1T-phase. The absence of lattice
instability in the Q�−

2
mode confirms its role as a secondary-

order parameter, coupled to the QK3 distortion. The results
in Fig. 2(d) provide further confirmation that the condensa-
tion of the Q�−

2
mode strongly relies on the amplitude of

the QK3 distortion while maintaining its single-well curve.
Thus, a combination of the Qα and Qβ modes acts as the
primary-order parameter, causing the minimum point of the
single-energy well for the Q�−

2
mode to move from the origin

point to a point with a finite OOP value, thereby generating
OOP polarization.

The energetically preferred switching path in PESs be-
tween the K+

3 and K−
3 states [indicated by the white

double-headed arrow in Fig. 2(c)] does not pass through the
reference c1T-phase. Instead, it keeps the Qβ mode with a
finite value. It is further confirmed by nudged elastic band
(NEB) calculations, as shown in Fig. 3(a), where the tran-
sition state has an energy of ∼0.19 eV/f.u. higher than
the d1T-phase with a finite amplitude of the condensed Qβ

mode.
It is worth noting that the {α, β} subspace is threefold

due to the hexagonal symmetry of the lattice. Thus, the com-
plete description of the PES is given by {αi, βi}i (i = 1, 2,
3), representing threefold αi modes and threefold βi modes
connected by threefold rotation along the z-axis, respectively
(see Supplemental Material Fig. S2 [39]). In each subspace,
there are two energy minima with opposite directions of OOP
polarization. Therefore, the system possesses six energetically
equivalent ground states, three of which have positive OOP
polarization while the other three have negative OOP polar-
ization [see Fig. 3(c)].

During the transition from the high-symmetry c1T-phase
[point O in Fig. 3(c)], the lattice has an equal probability
of entering each subspace. As shown in Fig. 3(a), when the
direction of OOP polarization is switched between the B and
C states within individual subspace II, the β2 mode, belonging
to the same subspace, is presented in the transition state T (β2)
[see Fig. 3(a) and the solid blue line in Fig. 3(c)]. Conversely,
when OOP polarization is switched between two subspaces—
for instance, between points A and B belonging to subspaces
III and II, respectively, the transition state will only condense
the Qβ1 mode belonging to subspace I [see Fig. 3(b) and the
dashed blue line in Fig. 3(c)]. Since the transition state T with
a finite Qβ mode is threefold energetically, it is implied that
the lattice may have the same possibilities to go into each
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FIG. 3. The energy evolution of the OOP polarization switching path, calculated using the NEB method, between (a) point B (Qα2 = –1,
Qβ2 = 1) and point C (Qα2 = 1, Qβ2 = 1) in subspace II, and (b) the path between point A (Qα3 = 1, Qβ3 = 1) and point B (Qα2 = –1, Qβ2 = 1)
between subspaces II and III. The transition states of these two paths and the energy barriers are highlighted. The red and blue backgrounds
refer to the positive and negative directions of OOP polarization, respectively; white refers to nonpolar states. (c) The schematic plots of
subspaces I, II, and III correspond the basis αi and βi, where the value of i can be 1, 2, and 3, respectively. The βi-axis is threefold. The regions
that present positive and negative directions of OOP polarization are in red and blue, respectively. White corresponds to nonpolar states. The six
energetically equivalent ground states, corresponding to Qαi = 1 and Qβi = 1 are marked by fuzzy red and blue circles. Two phase transition
paths, the ones from A to B, are highlighted by dashed and solid blue lines, respectively. The threefold transition states with a suppressed Qαi

mode are marked as point T on the βi-axis.

individual subspace when switching the direction of OOP
polarization.

B. Phenomenological model of free-energy expansion

To understand the coupling between relevant lattice modes
more completely, we here employ a phenomenological ap-
proach by expanding the free energy in terms of the
corresponding order parameters. We first consider the modes’
contribution in a single {α, β} subspace. As described in
Eq. (1), the free energy consists of two main contributions:
the contribution of the individual Qα and Qβ modes, and the
coupling between them:

f {α, β} = κ11Q2
α + κ12Q4

α + κ21Q2
β + κ22Q3

β + κ23Q4
β

+ λ1Q2
αQβ + λ2Q2

αQ2
β. (1)

The first five terms of Eq. (1) represents the double-well
PEC of the individual Qα and Qβ modes. These two degen-
erate orthogonal modes share the same imaginary frequency,
leading to the same coefficient for the Q2

α and Q2
β terms.

Additionally, considering the slight asymmetry of the PEC for
the Qβ mode, we include a Q3

β term in the model. However,
the amplitude of the coefficient associated with Q3

β is small
compared to the other terms.

The last two terms in Eq. (1) capture the coupling effect
between the Qα and Qβ modes. By examining the values
reported in Table II, we observe a significant asymmetric
coupling effect, as indicated by the Q2

αQβ term. In contrast, the

repulsive effect between the Qα and Qβ modes, represented
by the Q2

αQ2
β term, is relatively weak. Despite the truncation

of the expansion at the fourth order as an approximation,
Eq. (1) successfully reproduces the corresponding PES data
obtained from first-principles calculations, as demonstrated in
Supplemental Material Fig. S3(a) [39]. It is confirmed that
the coupling between the Qα and Qβ modes leads to the
emergence of the K+

3 and K−
3 states as the minima in the

{α, β} subspace.
In Figs. 4(a) and 4(b), we show the PECs for the individual

Qα and Qβ modes. These PECs are in excellent agreement
with the data obtained from first-principles calculations. It
is observed that the Qα mode shows symmetric double-well
PECs for different amplitudes of the Qβ mode. On the other
hand, the asymmetric behavior for the PEC of the Qβ mode

TABLE II. The value of each coefficient parameter in the Landau
model of Eqs. (1) and (2) in the absence of strain.

Coefficient Value Coefficient Value

κ11 –0.411 χ1 0.277
κ12 0.264 χ2 –0.007
κ21 –0.400 χ3 0.137
κ22 –0.066 χ4 0.037
κ23 0.317 χ5 –0.006
λ1 –0.176 χ6 0.000
λ2 0.088
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FIG. 4. The investigated PECs in terms of different modes in an individual 2D {α, β} subspace. (a) The evolution of the PEC in terms of
the Qβ mode under a fixed amplitude of the Qα mode. (b) The evolution of the PEC in terms of the Qα mode under a fixed amplitude of the
Qβ mode. The investigated PECs in terms of different modes in an individual 3D {α, β, �−

2 } subspace. (c) The evolution of the PECs for the
absolute value of the Qα and Q�−

2
modes in terms of the amplitude of the Qβ mode. (d) The evolution of the PECs for the Qβ and Q�−

2
modes

in terms of the amplitude of the Qα mode.

becomes significant under a finite value of the Qα mode.
Overall, the condensation of the QK3 distortion, equivalent to
the combination of the Qα and Qβ modes, can be considered
as an energetical preference of the lattice, rather than being
solely dictated by symmetry confinement.

When the energy expansion is considered in three dimen-
sional {α, β, �−

2 } subspace, the contribution of the Q�−
2

mode
to the energy can be expressed as shown in Eq. (2):

F {α, β, �−
2 } = f {α, β} + Q�−

2

(
χ1QαQ2

β + χ2Q3
α

)

+ Q2
�−

2

(
χ3 + χ4Q2

α + χ5Q2
β

) + χ6Q4
�−

2
. (2)

This expression incorporates terms involving the Q�−
2

mode itself, as well as coupling terms between the three
relevant modes. By examining the values of each coefficient
parameter (provided in Table II), we observe that the energy
dependence follows a harmonic behavior concerning the Q�−

2

mode, rendering the fourth-order terms negligible. Moreover,
due to this observation, both the coupling term between the
third order of the Qα mode (Q3

α) and the linear Q�−
2

mode,

as well as the biquadratic term Q−2
�−

2
Q2

β , can be considered

energetically insignificant.
In the Taylor expansion within the F {α, β, �−

2 } framework,
we observe additional biquadratic terms that correspond to the
repulsive effect between the Q�−

2
and Qα modes. Furthermore,

there exists a linear coupling between the polar Q�−
2

mode and
the combination of the Qα and Qβ modes (QαQ2

βQ�−
2

). This

coupling plays a pivotal role in generating OOP polarization.
It can be further revealed by minimization of the free energy
according to ∂F

∂P = 0, by which the dependence relation be-
tween the secondary Q�−

2
mode and primary modes can be

described as

Q�−
2

= −1

2

χ1QαQ2
β

χ3 + χ4Q2
α

. (3)

This coupling mechanism is also clearly illustrated in
Figs. 4(c) and 4(d).

Notably, the presence of a finite Q�−
2

mode relies on the
condensation of the primary Qα and Qβ modes. These in-
teractions and couplings between the modes form the central
mechanism driving the emergence of OOP polarization. Thus,
if either of these two modes is suppressed, Q�−

2
is eliminated.

The curves shown in Figs. 4(c) and 4(d) indicate that the
amplitude of Q�−

2
can be estimated to be linearly dependent

on the Qα mode and proportional to the second-order term of
the Qβ mode, being in agreement with Eq. (3).

So far, we can see the secondary Q�−
2

is essentially depen-
dent on the Qα and Qβ modes. It is interesting to investigate
how OOP polarization depends on the amplitude of the QK3

mode. Here, the amplitude of Q�−
2

is approximately estimated

as Q�−
2

∝ − 1
2

χ1|Q3
K3|

χ3+χ4Q2
K3

, assuming that Qα and Qβ condense
with the same amplitude. As we show in Supplemental
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FIG. 5. The evolution of related physical quantities under the effect of epitaxial strain. (a) The PECs of the c1T-phase, d1T-phase, and
QK3 state with respect to the epitaxial strain are reported in the top panel. In the bottom panel, the twofold energetic frequencies of the Qα

and Qβ modes, and the amplitude of Q�−
2

in the d1T-phase in terms of epitaxial strain are shown. Here, the maximum value of frequency
(ω = 2.0 THz) is normalized to 1.0, while the values of the rest of the points are reported accordingly. The evolution of the PECs referring to
the c1T-phase of MoTe2 in terms of the QK3 distortion (b), the Qα mode (c), and the Qβ mode (d) with respect to epitaxial strain.

Material Fig. S3(b) [39], this approximation provides a qual-
itatively good fit to the data obtained from first-principles
calculations when the parameters are appropriately adjusted,
particularly for large values of QK3 , where the amplitude of
the Q�−

2
mode exhibits a linear dependence on QK3 . However,

it is important to note that simply reversing the sign of QK3

will not reverse the polarization.
It is worthwhile to discuss the relation between the {α, β}

representation and the proposed primary QK3 mode approach
[23]. Our work confirmed that coexistence of the Qα and Qβ

modes is not constrained by symmetry. Both of them can
condense in the c1T-phase individually. The appearance of the
QK3 distortion is the energetical preference of the lattice that
combines the Qα and Qβ modes, rather than symmetry. This
argument is supported by the fact that the preferred pathway in
the PES for reversing the direction of OOP polarization does
not go through the reference c1T state but with finite value of
Qβ . OOP polarization relating the Q�−

2
mode is strictly locked

to the combination of the Qα and Qβ modes. In other words,
the precondition of a finite Q�−

2
mode is the coexistence of the

Qα and Qβ modes. Therefore, since OOP polarization arises
from two modes with different symmetries, the phase transi-
tion from c1T to d1T should be considered hybrid improper
ferroelectricity [40,41].

C. Transition in the absence of unstable phonon modes

As we discussed earlier, the high-order coupling between
the Qα and Qβ modes dominates the phase transition. Such
a central mechanism does not necessarily rely on the soft
phonon modes, which can be further highlighted and can in-
troduce remarkable phenomena under biaxial in-plane strain.
When compressive strain is applied, the phonon instabilities
at point K of the c1T-phase becomes weak. The positive
value corresponds to tensile strain while the negative ones
correspond to compressive strain. In Fig. 5(a), the imaginary
frequency disappears when the amplitude of the compressive
strain reaches more than ∼3%. However, even in the range of
–8% to –6% strain, the free energy of the d1T-phase remains
lower than that of the c1T-phase, coinciding with the finite
OOP values [see Fig. 5(a)]. The corresponding electronic
band structures of d1T-phase and c1T-phase are reported in
Supplemental Material Figs. S4–S5 [39]. These indicate that
the FE phase transition is not solely dependent on the exis-
tence of the imaginary phonon frequency of the primary-order
parameters. This observation is further confirmed when de-
tailed studies are performed on the evolution of the PES with
respect to in-plane strain. As shown in Figs. 5(c) and 5(d),
the negative curvature of the PEC in terms of the Qα and
Qβ modes is enhanced under tensile strain, and continuously
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changes to a positive curvature when compressive strain is
applied. The critical point is between –3% and –4%, at which
the curvature coincides with the disappearance of unstable
phonon frequencies. It is important to note that the harmonic
approximation is valid only in the narrow region close to the
origin point, particularly for the Qβ mode, which exhibits
an asymmetric PEC when its amplitude is large. When the
negative curvature disappears, the PEC for the individual Qα

and Qβ modes becomes a single-well type. The minimum
point for the Qα mode is at the origin, while the one for the
Qβ mode is slightly away from the origin point.

Such asymmetric behavior in the PEC with respect to QK3

distortion is significantly enhanced. This PEC leads to the
spontaneous transition of the lattice from c1T to d1T, even in
the absence of the unstable phonon mode. This phenomenon
confirms that the FE transition in MoTe2 is dominated by the
high-order coupling of lattice modes, resulting in a robust
OOP polarization under a depolarization field. Furthermore,
these findings also suggest that the estimation of lattice sta-
bility via harmonic approximation may not be reliable, as
the system exhibits a strong, asymmetric PES. This behavior
can be further confirmed by the phenomenological model. In
Eq. (1), when we gradually change the coefficient parameters
of the harmonic Q2

α and Q2
β terms from negative values to

zero or even positive values, the d1T-phase remains lower in
energy than the reference c1T-phase, indicating a maintained
FE phase transition (see Supplemental Material Fig. S6 [39]).

IV. CONCLUSION

We have conducted a comprehensive investigation of the
FE phase transition of the monolayer MoTe2 from the c1T-
phase to the d1T-phase. Through first-principles calculations,

we obtained the PES, which reveals the intricate coupling
of the lattice modes during the transition. Our analysis of
the DFT data demonstrated that the previously proposed
QK3 mode, involving an in-plane displacement, can be alter-
natively projected in the {α, β} subspace. Furthermore, we
clarified that OOP polarization in the d1T-phase arises from
hybrid improper ferroelectricity. To understand more com-
pletely the contribution of these phonon modes to ferroelectric
phase transition, we developed a phenomenological model.
This model provides insights into the high-order coupling
between the Qα and Qβ modes, and its impact on ferroelectric
properties. It allows us to demonstrate clearly the underlying
mechanisms governing the phase transition. This mechanism
is further highlighted when biaxial strain is applied to the sys-
tem. We observed the disappearance of the imaginary phonon
frequency under compressive strain, while the potential well
associated with the ferroelectric phase remained. Overall, our
study provides a comprehensive understanding of the ferro-
electric phase transition in the 1T-phase of monolayer MoTe2,
shedding light on the complex lattice dynamics and on the
role of high-order mode couplings. These findings contribute
to the broader knowledge of ferroelectric materials and their
potential applications in electronic devices.
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