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Higher-order topological insulators (HOTIs) are a novel class of materials that exhibit exotic boundary
states. The finite size effect induced hybridization between the boundary state HOTIs, however, remains largely
unexplored. In this work, we analytically and numerically study the hybridization in films of three-dimensional
chiral second-order topological insulators (SOTIs). We show that the gaps of two gapped surfaces (Chern
insulators) are increased upon reducing the film thickness to a finite value. Meanwhile, in the presence of
the hybridization of chiral edge states, we find that the gapless chiral hinge states (i.e., the boundary states
of the surface Chern insulators) can be gapped, destroying the SOTIs. Moreover, we show that the gapless
surfaces would in general be gapped due to the hybridization of surface states for a finite-sized system. Our work
demonstrates that HOTIs exhibit a rich variety of physics under the influence of finite-size effects.
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I. INTRODUCTION

Higher-order topological materials, exemplified by higher-
order topological insulators (HOTIs), emerge as a novel
direction in the studies of topological matter [1–30]. In con-
trast to the d-dimensional topological insulators (TIs) [31–40]
which exhibit topologically protected gapless states on the
(d − 1)-dimensional boundaries, d-dimensional HOTIs host
gapped (d − 1)-dimensional boundaries but are characterized
by gapless boundary states in dimensions even lower. For
instance, a three-dimensional (3D) second-order topological
insulator (SOTI) has gapped 2D surfaces but harbors gapless
1D hinge states. The experimental implementations of HOTIs
are reported in acoustic [41–43] and photonic [44–47] meta-
materials as well as electric circuits [48,49], while theories
have proposed CrI3/Bi2Se3/MnBi2Se4 heterostructures [50],
MnBi2nTe3n+1 [51,52], EuIn2As2 [53], EuSn2As2 [54], and
Sm-doped Bi2Se3 [55] to be chiral HOTIs.

The finite-size effect is known to have drastic impacts on
topological matter [40,56–64]. For 2D TIs like the HgTe/CdTe
quantum well [40,56], the size in the out-of-plane (i.e., stack-
ing) direction can serve as a tuning parameter for topology.
This is because the quantum well undergoes an inversion and
experiences a topological phase transition when the thick-
ness of the HgTe layer is tuned to a certain threshold. On
the other hand, reducing the size in the in-plane direction
of the HgTe/CdTe quantum well retains the bulk gap but
allows hybridization of the helical edge states [57], which
then become fully gapped. Similar finite-size effects akin to
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2D TIs are also anticipated in 3D TIs [58,59,64,65]. When
tuning a 3D TI into a thin film, the bulk gap remains intact.
However, the Dirac surface states at the top and bottom of
the film can cross the film and hybridize with each other. As
a result, the Dirac surface states become gapped, and this
Dirac gap exhibits remarkable oscillations with changes in
the film thickness [65]. Since the 3D TI thin film [65] can
be described using the Bernevig-Hughes-Zhang model [40]
originally developed for the 2D HgTe/CdTe quantum well
with thickness-dependent parameters, we can reinterpret the
variation in the surface gap of the 3D TI as a corresponding
variation in the bulk gap of the HgTe/CdTe quantum well. This
reinterpretation helps to illustrate the previously mentioned
topological phase transition that occurs when adjusting the
thickness of the HgTe layer. In addition to 2D and 3D TIs, the
finite-size effects have also been investigated in topological
semimetals [61,62]. Reducing the thickness of 3D topological
Dirac semimetals to a few layers in 2D leads to the gapping
of 2D bulk energy bands, and gives rise to a quantum spin
Hall phase [61]. Similarly, magnetic Weyl semimetals can also
exhibit the emergence of a quantum anomalous Hall phase
when undergoing a dimensional crossover [62]. However, a
systematic investigation of the finite-size effects in HOTIs
remains an uncharted territory. It remains unclear whether
decreasing the sample size will bolster the stability of HOTIs
or unveil new phases, and the fate of gapless hinge states is
also still unknown.

In this work, we present a systematic analysis of the finite-
size effect in 3D chiral SOTIs. To start with, we show that in
an infinite-sized system, the gapped surfaces of a chiral SOTI
effectively behave like Chern insulators, carrying gapless
hinge states. Next, we demonstrate that when subjected to the
finite-size effect, the Chern insulating surface states undergo a
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process of hybridization. Importantly, this hybridization does
not fundamentally alter the inherent nature of the surface
states as Chern insulators but rather results in an increase
in the surface Chern gap. This observation stands in stark
contrast to the behavior in typical TIs, where hybridization
alters the nature of the surface states, leading to the origi-
nally gapless Dirac states acquiring a gap. Furthermore, we
clarify that the hybridization of hinge states has the potential
to induce a gap in these states. Lastly, we demonstrate that
the gapless surfaces of the SOTIs in general become gapped
because of the hybridization of the surface Dirac states.

The paper is organized as follows. In Sec. II, we derive the
effective model for the gapped surfaces of the infinite-sized
chiral SOTIs and characterize the surface topology with a
quantized anomalous Hall conductance. The next sections are
about finite-size effects. In Sec. III, the surface energy gap
is derived for a film of SOTIs. In Sec. IV, we investigate
the behaviors of the hinge states. In Sec. V, we derive an
effective model for the gapless surfaces of the SOTIs and
obtain the surface energy gaps. Section VI concludes the paper
and discusses several topics related to our work.

II. EFFECTIVE SURFACE HAMILTONIAN

To study the finite-size effect in 3D chiral SOTIs, we start
from the following tight-binding model [5],

ĤL(k) =
(

ML + t
∑

i

cos kia

)
τzσ0 + �1

∑
i

sin kia τxσi

+ �2(cos kxa − cos kya)τyσ0, (1)

where a is the lattice constant, i = x, y, z, τi and σi are Pauli
matrices for orbital and spin degrees of freedom, respectively,
and ML, t , �1, and �2 are model parameters. A SOTI is found
in the regime 1 < |ML/t | < 3 and �1,�2 �= 0. The term pro-
portional to �2 arises from the orbital currents. Both the
time-reversal symmetry T̂ = τ0σyK̂ and the fourfold rotation
symmetry Ĉ4z = τ0e−i π

4 σz are broken as (see the Supplemental
Material [66], Sec. SI, for details)

T̂ ĤL(k)T̂ † = ĤL(−k) − 2�2(cos kxa − cos kya)τyσ0 (2)

and

Ĉ4zĤL(k)Ĉ†
4z = ĤL(−ky, kx, kz )

+ 2�2(cos kxa − cos kya)τyσ0. (3)

The combined symmetry Ĉ4zT̂ persists. This Ĉ4zT̂ symmetry
allows characterizing the chiral SOTIs with a Z2 index [12],
thus being analogous to the time-reversal symmetry for TIs.

An effective model can be obtained by expanding the tight-
binding model ĤL in the vicinity of the � point up to the order
of k2. Explicitly, it reads

Ĥ (k) = (
M − Bk2

x

)
γ0 + v

∑
i

kiγi − D
(
k2

x − k2
y

)
γ5, (4)

where γ0 = τzσ0, γ5 = τyσ0, γi = τxσi (i = x, y, z) are Dirac
gamma matrices, M = m − Bk2 with m = ML + 3t , k2 =
k2

y + k2
z , and B = ta2/2, and v = �1a, D = �2a2/2. For D =

0, the model Eq. (4) is reduced to a 3D TI. When D is finite,
the energy bands of both (100) and (010) surfaces are gapped

while the (001) surface is gapless. The D term, which breaks
the time-reversal symmetry, acts as an additional mass term
and results in opposite effective masses for (100) and (010)
surfaces. It thus leads to chiral hinge modes between these
surfaces.

A. Effective model for surface states

First, we consider a semi-infinite SOTI that is confined
along the x direction but periodic along the y and z directions.
Following the approach in Refs. [65,67–69], the trial wave
function associated with Eq. (4) can be written as (see Sec. SII
of the Supplemental Material [66])

ψi(x, y, z) = φie
λxeikyyeikzz. (5)

Note that ky and kz are still good quantum numbers. Starting
from the Schrödinger equation for the system, we obtain the
secular equation

det |Ĥ (−iλ, ky, kz ) − E | = 0, (6)

which gives four doubly degenerate solutions marked as βλσ

with β = ±, σ = 1, 2, and

λσ =

⎡
⎢⎣K1 + (−1)σ

√
K2

1 − K2

2(B2 + D2)

⎤
⎥⎦

1/2

, (7)

where K1 = v2 − 2BM − 2D2k2
y and K2 = −4(B2 + D2)

(M2 − E2 + v2k2 + D2k4
y ). Because of the double degen-

eracy, each of the four βλσ corresponds to two linearly
independent four-component vectors

ψβσγ =

⎡
⎢⎢⎢⎣

iv(ky + βλσ )

vkz + iD
(
k2

y + λ2
σ

)
0
ξσ

⎤
⎥⎥⎥⎦,

⎡
⎢⎢⎣

iD
(
k2

y + λ2
σ

) − vkz

−iv(ky − βλσ )
ξσ

0

⎤
⎥⎥⎦, (8)

where γ = 1, 2 and ξσ = M + Bλ2
σ − E . The general wave

functions of the surface states (x, ky, kz, E ), excluding the
plane wave solution part, are constructed by linearly super-
posing the trial wave functions as

(x, ky, kz, E ) =
∑
β=±

∑
σ,γ=1,2

Cβσγ ψβσγ eβλσ x, (9)

where Cβσγ are the superposition coefficients and determined
by the boundary condition.

For the (100) and (1̄00) surfaces, the boundary condi-
tion requires that (x = 0, ky, kz, E ) = 0 and (x → ∞,

ky, kz, E ) = 0, respectively. In general, we need these two
boundary conditions to determine the general wave functions.
However, for a semi-infinite system, the two parallel surfaces
are independent of each other; we can focus on one surface
and use one boundary condition to obtained the surface model
and energy gap at such surface. As shown in Fig. 1(a), the
surface states are localized near the surface and only penetrate
into the bulk at the level of characteristic length 1/|λσ | as the
solutions of the surface states have the form of e−λσ x with
Re(λσ ) > 0. The wave functions on two parallel surfaces thus
have negligible overlap for large thickness L = 40, and as

165427-2



TUNING THREE-DIMENSIONAL HIGHER-ORDER … PHYSICAL REVIEW B 108, 165427 (2023)

FIG. 1. Probability distributions of a chiral SOTI films of dif-
ferent thicknesses, illustrating the crossover from a 3D crystal to
a 2D thin film. (a) The 3D geometry: For sufficiently thick slabs,
probability is peaked at the boundaries while it exponentially decays
into the bulk, indicating surface states localized at x = ±L/2. (b) The
quasi-2D geometry: Reducing the thickness, the surface states begin
to overlap across the bulk but nonzero real part of λ. (c) The 2D
geometry: For very small thickness, the surface states of the 3D
crystal hybridize and eventually turn into the bulk states of the 2D
thin film marked by Re{λ} = 0.

a result, the two parallel surfaces are almost independent of
each other. However, as shown in Fig. 1(b) and Fig. 1(c),
when the thickness becomes smaller and smaller and finally
dives into a 2D system, the wave function overlap becomes
more and more important. To found the general solutions of
the wave function for this system, one needs two boundary
conditions.

For the semi-infinite system, we focus only the (100) sur-
face and the boundary condition (x = 0, ky, kz, E ) = 0 leads
to (Sec. SI of the Supplemental Material [66]){

B2v2k2 + [
BDk2

y − (M − E )D
]2}

(λ1 + λ2)2

− [vBλ1λ2 − v(M − E )]2 = 0. (10)

Combining this equation with Eq. (7) yields the spectrum of
the surface states, which is given by

E± = ±
√(

Bk2
y − M

)2
D2 + k2v2(B2 + D2)

√
B2 + D2

. (11)

Note that when D = 0, the SOTIs turn into TIs. The energy
dispersion E± transforms into ±vk, signifying the emergence
of a Dirac cone.

At the � point (ky = kz = 0), the wave functions of the
surface state take the form

ψ±(x) = C±

⎡
⎢⎢⎢⎣

−ζ∓
±ζ∓
∓1
1

⎤
⎥⎥⎥⎦(e−λ′

1x − e−λ′
2x ), (12)

where C± are the normalization factors and ζ± =
iB/(

√
B2 + D2 ± D). The solutions of the surface states on

the opposite surface can be derived by applying the symmetry
operator Î T̂ = τzσyK̂ to ψ±(x). The effective surface model
can be obtained by projecting the bulk Hamiltonian onto the
surface basis (ψ+, ψ−)T [65], which is given by

Ĥyz = v(σxky − σykz ) + D
[
m − B

(
2k2

y + k2
z

)]
√

B2 + D2
σz. (13)

For D = 0, the effective surface model becomes Ĥyz =
v(σxky − σykz ), which corresponds to the surface model of a
semi-infinite TI. When D is finite, the last term in Eq. (13)

acts as an effective mass, leading to a sizable energy gap for
the surface states.

B. Topological property of surface states

Equation (13) is akin to a modified Dirac model that is
commonly regarded as the effective model for describing
Chern insulators [70]. To ensure that it correctly describes
a Chern insulator, we will now investigate the topology of
these surface states by evaluating the Berry curvature and the
associated Hall conductivity. Equation (13) can be rewritten
as Ĥyz = d0 + d · σ, where σi are the Pauli matrices, d0 = 0,
dx = vky, dy = −vkz, dz = D[m − B(2k2

y + k2
z )]/

√
B2 + D2,

and d =
√

d2
x + d2

y + d2
z . The Berry curvature then reads

�x = ∓ (∂ky d × ∂kz d ) · d

2d3
, (14)

where the plus and minus signs are for the conduction band
and the valence band, respectively [65,71]. For the valence
band, the Berry curvature is (see Sec. SIIIB of the Supple-
mental Material [66])

�x = v2m′
+

2(v2k2 + m′2−)
3
2

, (15)

where m′
± = m′ ± B′(k2 + k2

y ) and m′ = mD/
√

B2 + D2,

B′ = BD/
√

B2 + D2. The corresponding Hall conductivity
can be worked out via

σyz = e2

h̄

∫
d2k

(2π )2
( fk,v − fk,c)�x(k). (16)

At zero temperature, when the Fermi level lies in the surface
gap, the quantized anomalous Hall conductivity reads

σyz = e2

h

sgn(D)

2
[sgn(B) + sgn(m)]. (17)

The quantized anomalous Hall conductance depends on the
sign of D. When focusing on the low-energy physics in
the vicinity of the � point, the Hall conductance of the
effective surface model [Eq. (13)] could be halved if discard-
ing the sgn(BD) term, since it is from k reaching infinity.
Equation (17) and its Ĉ4zT̂ partner, which characterizes the
opposite surface, allow us to introduce a Z2 index for the
SOTI in consideration.

III. HYBRIDIZATION-ENHANCED SURFACE
ENERGY GAP

In this section, we consider a slab of a SOTI to study the hy-
bridization of the surface states. The slab is confined along the
x direction with x ∈ [−L/2, L/2] and still remains infinitely
long along the y and z directions. The boundary conditions
now become (x = ±L/2, ky, kz, E ) = 0. We then obtain a
transcendental equation (see Sec. SIV of the Supplemental
Material [66])

v2
(
λ2

1 + λ2
2ξ

2
) − D2

(
λ2

1 − λ2
2ξ

)2

v2λ1λ2ξ
=

∑
i �= j

tanh
(

λiL
2

)
tanh

( λ j L
2

) , (18)

where i, j = 1, 2, ξi = (m − E + Bλ2
i ), and ξ = ξ1/ξ2. The

energies E = E± can be obtained by solving Eq. (18). The
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FIG. 2. The thickness L dependence of the surface energy gap
�t . (a) The surface energy gap of a TI in the parameter regime:
λ1,2 = aλ ± ibλ, v = 0.8ta, B = 2.0ta2, m = 0.2t , and D = 0. Here,
t is the hopping strength, and a is the lattice constant. (c) The surface
energy gap of the SOTI for the same parameters of TI case except for
D = 0.2ta2. (b), (d) are the same as (a), (c), respectively, except that
we set λ2 	 λ1 and B = 0.6ta2. In (c), (d), the dashed lines mark the
surface gaps of infinitely sized SOTI, γ = 2mD/

√
B2 + D2, and the

inset diagrams show the finite-sized gaps defined as � f = �t − γ .
For all diagrams, the blue dots are obtained by numerically solving
Eq. (18), and the red lines are approximate results for the same
parameters.

energy gap illustrated in Fig. 2 is defined as �t = E+ − E−,
which is measured with respect to the bulk gap in Fig. 2(a) and
Fig. 2(c). To obtain a more analytically tractable expression
for the energy gap, we will consider two cases that allow us
to derive approximate analytical results. On the one hand, for
generic (i.e., complex) λ1,2 = aλ ± ibλ, where aλ and bλ are
real quantities, the energy gap of surface states is given by

�t ≈ 2m

√
R1 + R2 + R3

(B2 + D2)(4Bm − v2)2
, (19)

where R1 = D2(4Bm − v2)2, R2 = 16B2v4(4Bm − v2) sin2

(bλL)e−2aλL, and R3 = −64B2v4 sin4(bλL)e−4aλL. They pos-
sess different exponential attenuation behaviours to the
thickness respectively. On the other hand, for real λ1,2, if L
is finite and the characteristic length satisfies λ2 	 λ1, it is
legitimate to write tanh(λ2L/2) ≈ 1. Consequently, the ap-
proximate energy gap of surface states reads

�t ≈ 2m

√
F1 + F2 + F3

(B2 + D2)(v2 − 4Bm)2
, (20)

where F1 = −4B2v4e−4λ′
1L, F2 = 4B2v2(v2 − 4Bm)e−2λ′

1L,
F3 = D2(v2 − 4Bm)2, and λ′

1,2 represent λ1,2 at the � point.
The surface energy gap �t can be divided into two

parts: (i) the surface energy gap of an infinitely sized SOTI,
γ = 2mD/

√
B2 + D2, which can be straightforwardly derived

from the effective surface model [Eq. (13)], and (ii) the
finite-sized effect induced gap � f = �t − γ arising from the

overlap of the surfaces states that are located on opposite
surfaces of the slab. Setting D = 0, the surface energy gap of
a finite TI slab is acquired. We have shown the dependence of
surface gap �t on L in Figs. 2(a) and 2(c) for λ1,2 = aλ ± ibλ

and λ2 	 λ1, respectively. It is worth noting that such a gap
is entirely induced by the finite-size effect because �t → 0
as L → ∞, which also indicates that the surface states of an
infinitely sized TI are gapless Dirac fermions. As shown in
Figs. 2(b) and 2(d), the SOTIs exhibit a gap-thickness relation
similar to that of the TIs. The only difference is that for a
sufficiently thick SOTI, the surface states exhibit a gap of size
γ . The inset diagrams in Figs. 2(b) and 2(d) show the behav-
iors of � f = �t − γ , which approaches zero for L → ∞. We
thus conclude that the finite-size effects enhance the surface
energy gap.

Reducing from the dimension of the SOTIs causes a
crossover from a 3D to a 2D system. During this process, the
hybridization of surface states results in a variable surface gap
with respect to the thickness. For a TI, this gap makes the
originally gapless Dirac surface acquire a gap, qualitatively
altering the behavior of surface states. However, for HOTIs,
which originally possess a surface gap, this increased gap does
not qualitatively change the properties of surface states.

While we have understood the behavior of the surface state
gap with respect to changes in the length, to further study the
surface states, we will calculate their effective model. Because
of the Î T̂ symmetry, the eigenvectors corresponding to E± are
doubly degenerate and take the forms (see Sec. SIV of the
Supplemental Material [66])

±
u (x) = C±

u

⎡
⎢⎢⎢⎣

u±
1 f−

u±
2 f+

−τ±
2 ξ±

1 f−
ξ±

1 f+

⎤
⎥⎥⎥⎦, ±

d (x) = C±
d

⎡
⎢⎢⎢⎣

u±
3 f+

u±
4 f−

−τ±
1 ξ±

1 f+
ξ±

1 f−

⎤
⎥⎥⎥⎦.

(21)

To simplify the main text, we placed the expressions for C±
u,d ,

u±
1,2,3,4, τ±

1,2, ξ±
1 , and f± in Sec. SV of the Supplemental

Material [66]. For a finite-sized system, u±
1,2,3,4, τ±

1,2, and f±
are dependent on L. In the basis (+

u , −
u , +

d , −
d )T , the

effective film Hamiltonian for real λ1,2 can be derived through
the projection approach outlined in Sec. II A as

ĤL
yz = (

�/2 − B1k2 + D1k2
y

)
σ0τz + v1kyσxτx

+ v1kzσ0τy + (
D2k2

y − B2k2
)
σzτx, (22)

where B1 = B 〈+
u | γ0 |+

u 〉, B2 = B 〈+
u | γ0 |−

u 〉, D1 = D
〈+

u | γ5 |+
u 〉, D2 = D 〈+

u | γ5 |−
u 〉, and v1 = v 〈+

u | γy

|−
d 〉. The thickness dependencies of these parameters are

illustrated in Figs. 3(a) to 3(e). The finite-size effects play im-
portant roles in tuning the coefficients of the quadratic terms.
In the large-L limit, D2, B2 → 0 [Figs. 3(c) and 3(d), re-
spectively], B1, D1 → ±BD/

√
B2 + D2 [Figs. 3(b) and 3(e),

respectively], and � → 2mD/
√

B2 + D2 [Fig. 3(f)]. As a
result, the finite-sized Hamiltonian Eq. (22) recovers the dis-
persion relations in Eq. (11) with double degeneracy. Such
a degeneracy can thus be understood as a combination of
Eq. (11) and its Î T̂ partner at the (1̄00) surface. Note
that Eq. (22) is still a modified Dirac model. Furthermore,
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FIG. 3. (a)–(e) The dependence of the parameters v1, B1, B2, D1,
and D2 in Eq. (22) on the film thickness L. (f) The energy bands of the
film in the large-thickness limit. The dashed black lines in (b) and (e)
are ±BD/

√
B2 + D2, respectively. For all diagrams, we set m = 0.2t ,

B = 0.6ta2, v = 1.0ta, and D = 0.2ta2.

considering that it could recover Eq. (11) in the large L, we
thus conclude that Eq. (22) still describes a Chern insulator.
The key difference is that the band parameters for such Chern
insulators are highly dependent on the system size L. For
complex λ1,2, the effective model is provided in Sec. SV
of the Supplemental Material [66], which shares the same
conclusions.

IV. HINGE MODES UNDER HYBRIDIZATION

With finite-size effects, previous studies have revealed that
the hybridization of edge states gives rise to rich phenomena
in different topological systems. The quantum spin Hall insu-
lators show mixed edge states, and as a result, the edge states
have a gap [57]. Nonetheless, the edge states of quantum Hall
insulators are independent of each other no matter how close
they are [72–74], and the chiral edge states are always gapless.
The underlying reason is that only two states with similar
energy and momentum could couple together, leading to an
energy gap when their wave functions overlap in real space
[57]. Based on this argument, we think the edge states of a
SOTI should be gapped when the size is small enough. Our
numerical solutions of the band dispersion for the edge states
confirm this conclusion.

We have numerically investigated the size effect on the
hinge modes, and the results are presented in Fig. 4. As the
system length decreases, the energy gap of the surface states
increases, while the hinge modes become gapped. Specifi-
cally, as depicted in Fig. 4, for a relatively large length (L =
20a, shown by the blue line), the hinge states remain gapless.

FIG. 4. The dashed lines represent the bulk and surface bands,
while the colored bands represent the hinge modes. The hinge modes
gap out as the length decreases. The parameters used in this picture
are v = 1.0ta, B = 0.5ta2, m = 1.0t , and D = 0.1ta2.

However, as the length decreases (illustrated by the other two
lines), the hinge modes become gapped, ultimately leading to
the disruption of the HOTI phase.

To summarize, we have investigated the behavior of the
(100) surface and its associated hinge states under finite-size
effects. We have found that the effective theory describing the
surface is consistently a modified Dirac Hamiltonian [70] with
nontrivial topological properties. Notably, all the parameters
within this Dirac Hamiltonian are significantly influenced by
the system’s size; especially, the surface gap is enhanced.
Moreover, we have shown that the gapless hinge states be-
come gapped. All these conclusions are established for the
(010) surfaces because they are the Ĉ4zT̂ partners of (100)
surfaces.

V. HYBRIDIZATION ACROSS THE END SURFACES

In this section, we turn to investigate the finite-size effect
of the (001) surface states and show that the gapless surface
states in general become gapped. We consider a slab with open
boundaries at z = ±L/2, extending infinitely along the x and
y directions. After applying a rotation to the Hamiltonian (see
Sec. SVIC of the Supplemental Material [66]), we obtain a
block-diagonal Hamiltonian near the � point with kx = ky =
0, given by

H0 =
[

h0(v) 0
0 h0(−v)

]
, (23)

where h0(v) = (m + B∂2
z )σz − iv∂zσx. The surface energy

gap is determined by the eigenvalues of H0. For its upper di-
agonal block h0(v), we utilize a trial eigenvector (p1, p2)T eλz

and find that the corresponding eigenvalue problem leads to
the following secular equation,∣∣∣∣m + Bλ2 − E −ivλ

−ivλ −(m + Bλ2 + E )

∣∣∣∣ = 0. (24)

This equation leads to four λ values labeled as βλσ with β =
± and σ = 1, 2. In terms of E and other model parameters,
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FIG. 5. (a) Dependence of the (001) surface gap on system length
L. (b)–(d) The band structures for blue, red, and black points in
(a), respectively. The parameters chosen are D = 0.2ta2, B = 2.0ta2,
v = 0.6ta, and m = 0.2t .

λσ can be expressed as

λσ =
√

v2 − 2Bm

2B2

√√√√1 + (−1)σ

√
1 + 4B2(E2 − m2)

(v2 − 2Bm)2
, (25)

which exhibits an E2 dependence. The eigenvector of h0(v)
can be constructed by the linear superposition of the trial
eigenvectors associated with different βλσ values by

(z) =
∑
β=±

∑
σ=1,2

Cβσ

[
m + Bλ2

σ + E
−ivλ

]
eβλσ z. (26)

Making the wave function conform to the boundary condi-
tions, i.e., (z = ±L/2) = 0, we find that the eigenvalues
satisfy the following two transcendental equations:

m + Bλ2
1 + E

m + Bλ2
2 + E

λ2

λ1
= tanh

(
λ1L

2

)
tanh

(
λ2L

2

) , (27)

m + Bλ2
1 + E

m + Bλ2
2 + E

λ2

λ1
= tanh

(
λ2L

2

)
tanh

(
λ1L

2

) . (28)

These equations yield the eigenvalues E±, from which the
surface gap �t = E+ − E− can be determined. We have nu-
merically solved these equations and observed the dependence
of the surface gap � on the thickness L. As shown in Figs. 5(a)
to 5(d), when the thickness along the (001) direction is de-
creased, the surface gap begins to vary, and is gapped in
general. Moreover, the (001) surface gap approaches zero
for L → ∞, confirming the conclusion that the (001) surface
states are gapless for such a SOTI.

We now calculate the effective model for the (001) sur-
faces. With the solved eigenvalues E±, the corresponding
eigenvectors of h0(v) are given by

±(z) = C̃±

[
Bη± f∓
−iv f±

]
, (29)

where C̃± are the normalization constants and

f+ = cosh(λ1z)

cosh(λ1L/2)
− cosh(λ1z)

cosh(λ1L/2)
,

f− = sinh(λ1z)

sinh(λ1L/2)
− sinh(λ1z)

sinh(λ1L/2)
,

η+ = λ2
2 − λ2

1

λ2 coth(λ2L/2) − λ1 coth(λ1L/2)
, (30)

η− = λ2
2 − λ2

1

λ2 tanh(λ2L/2) − λ1 tanh(λ1L/2)
.

For simplification, we denote ϕ±(v) = ±(z); the four eigen-
vectors of H0 [Eq. (23)] then can be rewritten as

χ1 =
[
ϕ+(v)

0

]
, χ2 =

[
0

ϕ−(−v)

]
,

χ3 =
[
ϕ−(v)

0

]
, χ4 =

[
0

ϕ+(−v)

]
.

(31)

By projecting the full rotated bulk Hamiltonian H =
H0 + �H , where �H = −Bk2

⊥τ0σz + v(kxτxσx + kyτyσx ) −
D(k2

x − k2
y )τ0σy with k2

⊥ = k2
x + k2

y , onto the surface Hilbert
space spanned by [χ1, χ2, χ3, χ4]T , we obtained an effective
Hamiltonian for the (001) surface,

ĤL
xy = −B2k2

⊥ + (�/2 − B1k2
⊥)σzτz

− D1
(
k2

x − k2
y

)
σxτz − (kxσ0τy − kyσ0τx ), (32)

where

B1 = B

2
[〈ϕ+(v)| σz |ϕ+(v)〉 − 〈ϕ−(−v)| σz |ϕ−(−v)〉],

B2 = B

2
[〈ϕ+(v)| σz |ϕ+(v)〉 + 〈ϕ−(−v)| σz |ϕ−(−v)〉], (33)

v1 = v| 〈ϕ+(v)| σx |ϕ−(−v)〉 |,
D1 = D 〈ϕ+(v)| σy |ϕ−(v)〉 .

In the absence of the term related to higher-order topology
(i.e., D = 0), Ĥeff describes the surface states of a finite-sized
3D TI. We mention that such a term does not contribute to
the surface gap because it is proportional to k2

x − k2
y and thus

vanishes at the surface � point.

VI. CONCLUSIONS AND DISCUSSION

We present a comprehensive analysis of the finite-size
effect in chiral SOTIs. For a semi-infinite SOTI, we find
that the higher-order relevant D term, which distinguishes
the SOTI from its TI counterparts, renders the (100) and
(010) surfaces Chern insulators. For a film of a SOTI, we
elucidated that the finite size effect induced hybridization
between the two parallel surfaces results in enhanced surface
energy gaps, which change with the film thickness. We show
that the finite-size effect can gap out the chiral hinge states,
which destroys the HOTI phase. Moreover, we demonstrate
that the hybridization between the (001) and (001̄) surfaces
generally results in energy gaps on both of these surfaces.
It has been proposed that CrI3/Bi2Se3/MnBi2Se4 heterostruc-
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tures [50], MnBi2nTe3n+1 [51,52], EuIn2As2 [53], EuSn2As2

[54], and Sm-doped Bi2Se3 [55] are candidate chiral HOTI
materials. We look forward to our theoretical predictions of
the finite-size effects being tested in one or more of the
above-mentioned materials. Furthermore, our results can be
extended to two other closely related types of HOTIs. One
type is HOTIs with all gapped surfaces, as introduced in [9].
We believe that finite-size effects will enhance the gap on
every surface in such a model, ultimately gapping the edge
states presented in [9]. The second type is HOTIs with helical
edge states, primarily introduced in [5]. When subjected to
finite-size effects, this type will exhibit the same behaviors as
the chiral HOTIs considered in our work.

Our projection method can in principle be closely related to
higher-order topological semimetals [75–83] to resolve their
surface states and hinge Fermi arcs. Moreover, our numerical
techniques solving the surface/hinge energy gaps allows us to
check whether finite-size effects can induce topological phase
transitions between the higher-order topological insulating
and semimetallic phases. External electric and magnetic fields
provide extra tuning knobs to the surface and hinge states
of higher-order topological insulators [84,85]. It thus would
be interesting to study the interplay between the finite-size
effect and electromagnetic fields in higher-order topological
semimetals.
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