
PHYSICAL REVIEW B 108, 165425 (2023)

Photoassisted current in the fractional quantum Hall effect as a probe
of the quasiparticle operator scaling dimension
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We study photoassisted transport for the edge states of a two-dimensional electron gas in the fractional
quantum Hall regime, pinched by a single quantum point contact. We provide a general expression of the
photoassisted current using a Keldysh-Floquet approach, when the AC drive is applied either directly to the
edge states, or when it modulates the tunneling amplitude at the quantum point contact. Strikingly, for a simple
cosine modulation of the tunneling amplitude, the phase shift of the second harmonic of the photoassisted current
is directly related to the scaling dimension of the quasiparticle operators describing the fractional excitations. As
the scaling dimension is intimately related to the statistics, our proposal of a gate modulation of the backscattered
current provides a diagnosis of the statistics of Laughlin quasiparticles using a simple quantum point contact
geometry.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) is a strongly
correlated state of a two-dimensional electron gas (2DEG)
under strong magnetic field in the presence of Coulomb inter-
action. It has generated considerable interest on the theoretical
and the experimental side since its discovery [1,2]. A key
feature resides in the fact that excitations in the FQHE are
quasiparticles, which carry a fractional charge and which
bear fractional statistics that is intermediate between that of
fermions and of bosons; thus the terminology “anyons”. In
the pioneering study of Ref. [2] this new state of matter was
shown to appear for filling factors ν equal to the inverse of
an odd number. The fractional charge is then specified by
e∗ = νe and the statistical angle equals πν.

It is therefore challenging to identify an experiment, which
measures the statistical angle of anyons independently of their
charge. The charge of anyons has been successfully identi-
fied via the measurement of the Fano factor [3–6], or via
the identification of the Josephson frequency ωJ = e∗V/h̄,
which is accessed either through a photoassisted transport
noise measurement at zero frequency [7,8], or through a direct
finite-frequency noise measurement [9]. All the above experi-
ments were performed in the weak backscattering regime of
a single quantum point contact (QPC), where the accepted
paradigm is that quasiparticle exchange between two opposite
edge states constitute the dominant tunneling process.

The detection of fractional statistics has proved to rep-
resent an even greater challenge. On the theoretical side,
several proposals considered setups with several QPCs in a
Hanbury Brown and Twiss geometry [10] where noise-crossed
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correlations were computed [11–14]. Alternatively, more re-
cently, proposals using either Fabry Perot interferometry
or Hong-Ou-Mandel collisions of quasiparticles were put
forward [15–17]. These proposals generated considerable at-
tention from the experimental community as illustrated by
two recent pioneering experiments with a strong claim that
the measurement of the statistical angle has been achieved
[18,19]. Nevertheless, the detection of the statistical angle of
anyons continues to generate a lot of excitement as illustrated
by recent theoretical works involving anyon braiding [20–25].

One obvious drawback of both theoretical proposals and
experimental detection schemes for the statistical angle of
quasiparticles resides in the fact that the setups typically in-
volve several QPCs, which constitute both a theoretical and
an experimental challenge, and typically a (rather involved)
noise measurement. Here we address the issue whether some
signatures of the statistics would already be present in a
measurement of some specific features of the time-dependent
current.

Like in any edge theory, the quantum numbers charac-
terizing the local quasiparticle excitations are an essential
ingredient. The focus is typically drawn on two of these: the
effective charge and the scaling dimension (i.e. the exponent
which characterizes the time decay of the quasiparticle op-
erator correlation function). In practice, the statistical angle
of anyons is intimately tied to the scaling dimension of the
quasiparticle operator. Indeed, in the hydrodynamical picture
of the FQHE of Ref. [26], which characterizes the edge ex-
citations of a FQHE fluid by a chiral Luttinger liquid model,
the scaling dimension turns out to provide an upper bound
for the statistical angle, the two being equal when all the
modes of a given edge have the same chirality, up to a factor
π . The present work relies on the general framework of the
chiral Luttinger liquid (CLL) model [26], which provides us
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with a low-energy effective theory describing the physics of
the edge states and their excitations. While unable to offer a
perfectly realistic detailed description, as one would expect
from a low-energy theory, it works exceptionally well in most
cases, capturing universal features that can be observed in
actual experiments.

Historically, the CLL model was initially used in Refs.
[3,4] to predict that the transport properties of a biased QPC
in the FQHE could be used to detect the fractional charge
of quasiparticle excitations. This prompted the seminal ex-
perimental works of Refs. [5] and [6] to actually measure
the Fano factor in such a system and confirm theoretical pre-
dictions, thus providing us with the first experimental proof
of the anyonic fractional charge. These measurements of the
fractional charge were later confirmed by the the detection
of the Josephson frequency in photoassisted shot noise [8]
and the measurement of high-frequency noise generated by
the tunneling of quasiparticles [9], both in line with the cor-
responding predictions from the CLL theory [4,7,27]. Since
these first successes from the mid-nineties, the CLL has be-
come the default theoretical description of edge state physics
and every experimental result on quantum transport in the
FQHE has been confronted with the CLL model prediction,
most of the time with success. This is also true of the latest,
most impactful experimental studies carried out in the field,
which claim to probe the anyonic statistics of quasiparticle
excitations [18,19,28] and whose findings are all reproduced
by theoretical approaches based on the CLL model.

Naively speaking, one could argue that the scaling di-
mension of anyons should be accessible via a DC transport
measurement in the weak backscattering regime of a single
QPC, provided that one measures carefully the backscattering
DC current-voltage characteristics. This should indeed mani-
fest as a power law (up to potential finite-temperature effects
[29], which may complicate the picture), whose exponent is
directly related to the scaling dimension. Unfortunately, after
various experiments have attempted to study the tunneling
between DC biased edge states, the results are inconclusive: A
power law is often observed at low temperature but the expo-
nent can vary substantially. It is now generally accepted that
the dependence of the tunneling current on the applied bias
voltage in electrostatically confined QPCs can significantly
deviate from the theoretically predicted behavior of the CLL
model (see e.g., [30–36] and references therein). The simplest
explanation usually put forward to explain this discrepancy
has to do with electrostatic effects: Changing the bias voltage
between edge states modifies the electrostatics of the QPC,
affecting its shape and the corresponding tunneling amplitude.
This ultimately results in an alteration of the tunneling current
as a function of the applied bias voltage, in an unknown
nonuniversal way.

This, however, should not cast doubts on the reliability
of the CLL model to describe actual experimental platforms,
as there are ways to limit these nonuniversal effects. One
possibility to circumvent these issues is to analyze simulta-
neously the tunneling current and its noise, as the ratio of
the two should be rid of most of the nonuniversal effects
(those resulting in an unknown dependence of the tunneling
amplitude with the bias voltage). This is precisely the method
used in Refs. [5,6] to achieve a reliable determination of the

quasiparticle effective charge a few decades ago. This re-
alization also lead to various proposals for extracting the
scaling dimension via a crossed analysis involving the tun-
neling current along with the zero-frequency noise [37],
finite-frequency noise [38], or thermal tunneling noise [39],
for more complicated states (featuring counterpropagating
modes or non-Abelian statistics).

Another direction is proposed here, which relies on a mea-
surement of the sole current, rather than in conjunction with
the noise, which is by itself more challenging to measure.
In this paper, we argue that the scaling dimension of the
quasiparticle operator could in principle be detected via the
careful measurement of a phase shift of the photoassisted
current. Photoassisted transport (PAT), i.e., electric current in
the presence of an additional time-dependent drive, typically
achieved by shining microwaves on an otherwise DC voltage
biased device, was pioneered in Ref. [40]. It has provided
condensed-matter physicists with new tools to probe fun-
damental properties of physical systems. Early proposals in
mesoscopic devices considered normal metal systems [41,42],
hybrid superconducting systems [43–45], and the FQHE [7,9].
More recently photoassisted transport has gained importance
in the field of electron quantum optics, where a minimal
excitation states, dubbed “Levitons” [8,46–49] and containing
integer electron charge, can be designed to generate a pure
electron excitation above the Fermi sea, devoid of unwanted
electron hole pairs.

In the present context of a single, DC voltage biased QPC
in the weak backscattering regime of the FQHE, PAT can
be envisioned in two different ways. Either one varies the
gate voltage applied to the QPC, thus modulating the tunnel
amplitude for quasiparticles between the two edge states, or an
AC signal is added to the voltage drive applied to the two edge
states. Interestingly, in the FQHE, to our knowledge, attention
has mostly focused on the latter scenario. Only a few papers
have considered the effect of an AC gate drive in the context
of quantum Hall [50], quantum spin Hall [51], or in generic
interacting mesoscopic devices [52].

The first important result of the present paper is to show
that both types of drives (gate drive or voltage drive), despite
their fundamental differences, can be described analytically
with the same unified formalism. Unfortunately, for both types
of drives, the measurement of the PAT current averaged over a
period of the drive, does not provide any striking dependence
on the scaling dimension of quasiparticles. Nevertheless, we
point out that a complete description of the PAT current re-
quires the knowledge of all of its harmonics at the AC drive
frequency. In practice, this is precisely where the two types of
drive lead to significantly different results.

Quite importantly, it turns out that the gate drive is the most
suited of the two to detect the scaling dimension of FQHE
quasiparticles. The central result of this paper is indeed to
show that for a simple sinusoidal modulation of the gate this
scaling dimension is directly accessible via the measurement
of the second harmonic of the PAT current (conversely, for
an AC voltage drive, we find that a similar analysis seems
difficult to achieve). We thus find an appreciable range of
parameters where the scaling dimension—which is tied to the
statistical angle—can be easily extracted from a phase shift of
the second harmonic of the current.
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The paper is organized as follows. In Sec. II we introduce
the model for the FQHE and recall its main properties. The
current operator through the QPC is derived and we show
that the computation of the current under a periodic voltage
drive and a periodic gate drive can be carried out with the
same formalism. In Sec. III we find a general analytic formula
of the backscattered current as a function of time that holds
for arbitrary values of ν > 0. Section IV is devoted to finding
the formula of the backscattered current in the weak backscat-
tering regime. The harmonics structure of this current in the
weak backscattering regime is studied in Sec. V depending on
the type of drive. In particular, we show the specificity of the
harmonic gate drive, which allows to isolate the filling factor
in the second harmonic of the current. In Sec. VI, we show a
computation of the backscattered current in the Fermi liquid
limit through two different routes, which allows to check the
consistency of our treatment. Then, we compute the current in
the strong backscattering regime in Sec. VII, showing analyt-
ically its particular behavior. Finally we conclude in Sec. VIII
and propose further research tracks.

II. LUTTINGER LIQUID BASICS

A. Model

We provide a brief summary of the hydrodynamical ap-
proach to the description of the FQHE put forward by Wen
in Ref. [26]. In this approach, edge excitations are iden-
tified as surface waves of an incompressible irrotational
two-dimensional quantum liquid with a perpendicular mag-
netic field B. We restrict ourselves to Laughlin states of
FQHE, see Ref. [2], which amounts to assuming that there
is only one fractional edge state.

Defining the filling factor ν as the fraction of the lowest
Landau level, which is filled, the Hamiltonian for the FQHE
describing the edge excitations reads

H = v

4π

∫ L

0
dx [∂xφ(x)]2, (1)

where v is the drift/Fermi velocity along the edges and φ(x)
is a bosonic field, which is related to the one-dimensional
electron density ρ(x) = √

ν∂xφ(x)/2π . Using the fermion an-
ticommutation relation we establish a relation between the
electron creation operator �† and the latter’s density ρ(x),

[ρ(x), �†(x′)] = δ(x − x′)�†(x). (2)

This means that the electron creation operator can be
written as

�†(x) = 1√
2πa

e
i√
ν
φ(x)

, (3)

where a is a short distance cutoff. Using the Kac-Moody
commutation relation

[φ(x), φ(x′)] = −iπsgn(x − x′) (4)

and the Baker-Campbell-Hausdorf identity, it can be
shown that

�(x)�(x′) = e−i π
ν

sgn(x−x′ )�(x′)�(x), (5)

so electron operators obey anticommutation relations only
if ν = 1, 1/3, 1/5, 1/7, . . ., i.e., for Laughlin filling factors.

Note that other rational values of ν are physically attainable
and exhibit the FQHE, but the above derivation needs to
be generalized in order to include the presence of several
bosonic fields [26]. In what follows, we choose to focus on the
simpler situation of the Laughlin series for clarity sake. The
main results can be readily obtained for the case of a general
Abelian FQH edge involving multiple bosonic modes, but do
not fundamentally differ from the Laughlin filling factors. In
Appendix B, we provide some elements of the model and
main derivations for this more general case.

The quasiparticle operator is a local vertex operator and
it is required to commute with the electron operator, which
justifies the choice,

ψ (x) = 1√
2πa

ei
√

νφ(x). (6)

where a is a short distance cutoff. At zero temperature, the
resulting correlation function, taken at position x = 0, follows
a power-law decay in time as

〈ψ (0, τ )ψ†(0, 0)〉 = eνG(τ ) ∼ τ−ν, (7)

where, as explained in Appendix A, G(τ ) is the chiral bosonic
field Green’s function (A1). This allows us to define the scal-
ing dimension νD of the quasiparticle operator [53], which, in
the case of Laughlin filling factors, reduces to νD = ν.

From Eq. (6), it is also possible to define the statistical
angle �. Indeed, focusing on a given time τ = 0, one readily
obtains a nontrivial phase factor when exchanging two quasi-
particles in real space, namely,

ψ (x)ψ (x′) = eiπνsgn(x−x′ )ψ (x′)ψ (x), (8)

which is a clear illustration of anyonic statistics, with a statis-
tical angle specified by � = πνD = πν.

Note that so far, the fractional charge e∗ = νe has not
been discussed, at it typically appears in discussions where
electromagnetic fields/voltage biases are involved.

B. QPC current operator

The simplest quantum transport setup in the FQHE consists
of a quantum Hall bar, along which edge excitations propa-
gate, denoted left and right movers, further equipped with a
QPC (see Fig. 1). Voltage sources can be connected to either
edges in order to impose a potential bias difference between
edge states, and the QPC can be tuned at will, with a special
emphasis on two specific regimes. First, in the weak backscat-
tering regime, the QPC is weakly pinched, the quantum Hall
fluid spreads over the whole bar, and the dominant charge
transfer process between the top and bottom edge is provided
by quasiparticle excitations. In this situation, it is typically the
backscattering current IT, which is computed/measured. This
regime is depicted in both panels of Fig. 1. Second, in the
opposite limit, called the strong backscattering regime, the
QPC is strongly pinched and the quantum Hall fluid is split
in two (not shown). Only electrons can then tunnel between
the left and right moving edges as they have to cross a vacuum
region. The measured current corresponds then to that flowing
between the left and right sides of the split Hall fluid.

Here, to obtain the scaling dimension of quasiparticles via
a photoassisted current measurement, we focus mainly on

165425-3



BRUNO BERTIN-JOHANNET et al. PHYSICAL REVIEW B 108, 165425 (2023)

FIG. 1. Sketch of the setup, a fractional quantum Hall bar
pinched off by a quantum point contact. (Top) AC gate drive setup
where a DC voltage is applied between edge states and the tunnel
coupling is time dependent. (Bottom) AC voltage drive setup where
a periodic voltage is applied on top of the DC voltage and the tunnel
coupling is constant.

a weak backscattering situation, but results in the opposite
regime of strong backscattering will also be presented for
completeness.

Assuming that a DC voltage VDC is imposed on the
right-moving edge (see Fig. 1), the tunnel, or backscattering
Hamiltonian reads (see Ref. [54])

HT =
∑
ε=±

[λ(t )eiω∗
0tψ

†
R(0)ψL(0)]ε, (9)

where ε = + leaves the expression unchanged, while ε = −
specifies the Hermitian conjugate. λ(t ) is the (time dependent,
see below) tunnel coupling amplitude and ω∗

0 = e∗VDC in the
weak backscattering regime. Below we consider two distinct
setups for photoassisted transport (upper and lower panels of
Fig. 1), which can both be described by a general form λ(t )
of the tunnel coupling. In full generality, it is assumed to be a
(complex valued) periodic function of time.

With these conventions, the backscattered current reads

IT(t ) = ie∗ ∑
ε=±

ε[λ(t )eiω∗
0tψ

†
R(0, t )ψL(0, t )]ε . (10)

We thus see that in the weak backscattering regime, the
fractional charge e∗ = νe appears both as a prefactor of
the current, and through the definition of the DC bias
frequency ω∗

0.
The strong backscattering equivalent of the tunnel

Hamiltonian and current operator are achieved with the du-
ality transformation e∗ → e, ω∗

0 → eVDC, ψ → �.
There are in fact two ways to achieve photoassisted trans-

port, both involving a constant gate voltage and a constant

voltage bias VDC: (1) One can apply an AC modulation on
the QPC gate. This setup was discussed in Ref. [55] in a very
different context. (2) One can directly superpose to the DC
voltage drive an AC component. We call the former the gate
drive and the latter the voltage drive, even though they both
contain a DC voltage component. This was studied theoreti-
cally and experimentally for superconducting hybrid junctions
in Refs. [42,45,49], and both theoretically and experimentally
in Refs. [7–9,54] for a QPC in the FQHE regime. We note
that the results of Refs. [41,43,44] for both normal metal
junctions and normal metal/superconducting hybrid junctions
fall in this category, although they do not directly consider a
voltage drive.

Interestingly, the gate voltage modulation scenario has re-
ceived little attention so far in the FQHE. In the core of this
paper we wish to stress that it is especially relevant in the
search for manifestations of the scaling dimension of quasi-
particles. Both setups are depicted in Fig. 1.

Note that both types of AC modulations can effectively be
included in the tunnel amplitude. For the gate modulation,
one adds an oscillating contribution λ1(t ) to the bare tunnel
amplitude λ0, while for the voltage drive modulation, one
incorporates the AC voltage drive via the Peierls substitution,
i.e., as an additional phase, yielding

λ(t ) =
{
λ0(1 + λ1(t )) gate drive,
λ0 exp

(
ie∗ ∫ t

−∞ dt ′Vac(t ′)
)

voltage drive,
(11)

where λ = 0 corresponds to an infinite barrier. Concerning
the gate drive, without loss of generality one can choose it
to be real valued. It then only makes physical sense to choose
|λ1(t )| < 1.

Assuming that both drives are periodic, and in order to
stick to previous conventions [49], we specify the Fourier
decomposition of the tunnel coupling as

λ(t ) = λ0

∑
l

ple
il�t . (12)

where the drive frequency is �, and x is the complex con-
jugate of x. Then, provided that no assumptions are made
on the pl , the computation can be carried out simultaneously
for the voltage drive or the gate drive. However, it is worth
mentioning that the Fourier coefficients pl do not bear the
same physical meaning when describing the two different
drives. For the gate drive, there is typically a finite number
of Fourier coefficients, which satisfy pl = p−l to represent
a real-valued modulation of the tunnel amplitude. However,
for a voltage drive, the pl ’s are the Fourier coefficients of a
complex number of modulus one. As a consequence, there
is an infinite set of coefficients pl in this case, which obey
specific sum rules [48,49].

III. CURRENT FOR ARBITRARY ν

The aim of this section is to provide a general derivation of
the backscattering current while making minimal assumptions
on the Fourier coefficients pl of either drive. Also, specifically
for this section, we keep in mind that at any moment, the
duality transformation to the strong backscattering regime
can be operated. Furthermore, we explicitly write the scaling
dimension as νD, although in the Laughlin case, it reduces to
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νD = ν. It allows to track down the effects, which are specific
to the scaling dimension. This choice is further reinforced by
the general case detailed in Appendix B, where the degeneracy
between scaling dimension and filling factor is lifted.

The photoassisted backscattering current can be computed
to second order in the tunnel coupling λ(t ), using the Keldysh
formalism [56]. From Eq. (6) and Ref. [29], it reads

〈IT(t )〉 = e∗

2

(
1

2πa

)2 ∑
ε=±

ε

∫
dt ′eiεω∗

0 (t−t ′ )

× [λ(t )]ε[λ(t ′)]−ε
∑
η,η′

η′e2νDGηη′
(t−t ′ ), (13)

where η, η′ are Keldysh contour indices and Gηη′
is the

corresponding bosonic Keldysh Green’s function defined in
Appendix A. At this stage, it is important to stress out that
this expression of the tunneling current readily generalizes
to any Abelian edge theory comprising multiple bosonic
modes, where it then depends on the effective charge and
scaling dimension of the quasiparticle ψg∗ involved in the
leading tunneling process at the QPC, as we show in detail in

Appendix B,

〈IT (t )〉 = 1

2
Qg∗

∑
ε

ε

∫
dt ′eiεQg∗VDC(t−t ′ )[�g∗ (t )]ε[�g∗ (t ′)]−ε

×
∑
ηη′

η′e2δg∗Gηη′
(t−t ′ ), (14)

where Qg∗ and δg∗ are respectively the effective charge
and scaling dimension of the leading tunneling quasiparticle
ψg∗ , while �g∗ is the corresponding tunneling amplitude. In
particular, this expression underlines the importance of the
distinction we put forward between scaling dimension and
filling factor (as the two only turn out to be equal in the
Laughlin case), and further emphasizes the major role played
by the scaling dimension in our derivation.

The general calculation of the backscattering current at
finite temperature and for arbitrary periodic drives is quite
cumbersome, and details of the derivation are provided in
Appendix C. First, the summation over the Keldysh indices
is performed explicitly using the symmetry properties of the
chiral bosonic Green’s function components. Next, the time
integral is performed and written in terms of Gauss’ hyperge-
ometric function 2F1. The result reads

〈IT(t )〉 = e∗(2vτ0)−2π−3βλ2
0

∑
l,m

pl pmei(l−m)�t
∑
η=±

η

[−iη sin
(

π
β
τ0

)
exp

(
iηπ

β
τ0

)
νD − i m+q

2πθ

× 2F1

(
1, 1 − νD − i

m + q

2πθ
; 1 + νD − i

m + q

2πθ
; exp

(
2iη

π

β
τ0

))
− (m, q) → (−l,−q)

]
, (15)

where τ0 = a/v is the short time cutoff, β is the inverse
temperature, θ = (β�)−1 is the reduced temperature, and q =
ω∗

0/�. 2F1 is the Gauss hypergeometric function and the short-
hand notation f (a, b) − f (c, d ) ≡ f (a, b) − (a, b) → (c, d )
has been used. An important advantage of this expression is
that it remains valid for arbitrary values of the scaling dimen-
sion νD > 0, allowing us to also obtain the current in various
limiting cases, including in the strong backscattering limit
using the duality transformation. However, the convergence
properties of the resulting hypergeometric function signifi-
cantly depend on the value of the scaling dimension. For
this reason, all physically relevant cases corresponding to the
Laughlin fractions for weak backscattering, the Fermi liquid
case, or the Laughlin fractions for strong backscattering have
to be discussed separately. Note that this subtlety does not oc-
cur in the standard computation of the current in the presence

of a DC voltage, it is specific to photoassisted transport at
finite temperature.

IV. WEAK BACKSCATTERING REGIME

Here, we focus on filling factors 0 < ν < 1 in Eq. (15),
corresponding solely to the weak backscattering regime domi-
nated by quasiparticle transfer through the quantum Hall fluid.
One can perform an expansion of the hypergeometric function
2F1, which is specific to these filling factors, to leading order
in τ0/β (we recall that τ0 is the short time cutoff of the chiral
Luttinger liquid theory). This is achieved in Appendix D.
Furthermore, without loss of generality (due a the choice of
time origin), we can safely assume that the Fourier coefficients
pl are real. This leads to the general expression for the current
in terms of cosine and sine harmonics at the drive frequency,

〈IT(t )〉 = I0 + I
∑
l>0

[
cos(l�t )

∑
m

∣∣∣∣�
(

νD + i
m + q

2θπ

)∣∣∣∣
2

(pm−l pm + pm pl+m) sinh

(
m + q

2θ

)

+ sin(l�t ) tan(πνD)
∑

m

∣∣∣∣�
(

νD + i
m + q

2θπ

)∣∣∣∣
2

(pm pl+m − pm−l pm) cosh

(
m + q

2θ

)]
, (16)
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with the prefactor

I = e∗�
π

(
λ0

v

)2(2πθ

�

)2νD−2
θ

�(2νD)
, (17)

where � = (�τ0)−1 is the reduced high-energy cutoff, and the
zeroth harmonic is

I0 = I
∑

m

∣∣∣∣�
(

νD + i
m + q

2θπ

)∣∣∣∣
2

p2
m sinh

(
m + q

2θ

)
. (18)

A few comments are in order at this stage. First, we stress
that this formula for the fully time-dependent current is valid
for both a voltage drive and a gate drive. Second, the zeroth
harmonic contribution introduced in Eq. (18) corresponds nat-
urally to the current averaged over one period of the drive and,
in the voltage drive case, satisfies a Tien-Gordon-like formula
[40] as it corresponds to a weighted sum of DC contributions
with a shifted voltage e∗VDC → e∗VDC + m� and probability
p2

m. Finally, while all harmonics of the current depend on the
scaling dimension in a nontrivial way, it turns out that the sine
harmonics, in sin(l�t ), all carry a prefactor tan(πνD), which
constitutes a striking dependence on the scaling dimension
worth exploring further. Note that a similar-looking dephasing
in the time-dependent current has been obtained previously in
some related cases [7,55] but remained unexploited. Indeed,
it does not seem obvious to easily isolate this factor from the
backscattering current, as the latter involves many contribu-
tions of the same order of magnitude.

To this end, the current can be rewritten as

〈IT(t )〉 =
∞∑

n=0

In(t ), (19)

where

In �=0(t ) = ICn cos(n�t + ϕn), (20)

and the formulas for ϕn and Cn are given in Appendix D, see
Eq. (D7).

We mention in passing that the analytical continuation of
Eq. (16) for νD = 1 holds, allowing us to retrieve the Fermi
liquid behavior discussed below (see Sec. VI), although the
computation steps are not quite valid in this regime.

V. HARMONICS OF THE CURRENT

This section is devoted to the analysis of the current and
its different harmonics in the weak backscattering regime, as
defined in Eq. (19). We start by analyzing a cosine voltage
drive, showing that there is no simple way to extract the
scaling dimension of the quasiparticles from the current or its
harmonics in this setting. On the other hand, for a cosine gate
drive, we establish, in a second subsection, a proportionality
relation between the phase shift of the second harmonic of
the current and the scaling dimension of the quasiparticle
operator.

A. Voltage drive

When a voltage drive is applied, the tunnel coupling is
modified according to Eq. (11). The drive is defined as

V (t ) = VDC + VAC cos �t, (21)

where the normalized modulation amplitude is α = e∗VAC/�.
The Fourier coefficients of the tunnel coupling, see Eq. (12),
read [54]

pl = Jl (−α), (22)

where Jl are Bessel functions of the first kind. One can
readily check that these coefficients are real so that the ex-
pression for the time-dependent current, Eq. (16), can be used
as is.

It follows from Eq. (22) that the Fourier coefficients pl are
nonzero for any l . The harmonics In of the current are there-
fore written as infinite sums, involving all Fourier coefficients.
This significantly complicates the resulting expressions. As
a result, in this voltage drive regime, we have been unable
to extract a simple signature of the scaling dimension of the
quasiparticle operator from the harmonics of the current. This
situation is not specific of the present choice of a cosine
drive, but instead arises from the time dependence of the
tunnel coupling, which appears as an exponential of a periodic
function.

An illustration of the fully time-dependent current is pro-
posed in Fig. 2. We show the AC part of the current and its
first two harmonics as a function of time over a full period for
various values of the reduced DC voltage q < 1. We remark
that the current displays a rich behavior, in particular, both
the amplitude and the phase of the two first harmonics of the
current depend on q in a nontrivial way. Indeed, each har-
monic involves a large number of Fourier components of the
tunnel coupling, making it impractical to extract any valuable
information.

B. Gate drive

The tunnel coupling under a gate drive, as defined in
Eq. (11), reads, for a cosine drive,

λ(t ) = λ0[1 + λ1 cos(�t )]. (23)

Therefore, its Fourier coefficients are given by

p0 = 1, p±1 = λ1

2
, p|n|>1 = 0. (24)

These coefficients are real, allowing us to use the expression
for the fully time-dependent current of Eq. (16). More im-
portantly, there is only a finite subset of coefficients that are
nonzero (two in the present case). This is a major difference
between the gate drive and the voltage drive. While in the
latter case, the proliferation of nonzero coefficients did not
allow us to obtain a simple self-contained expression of the
current, in the present case of a gate drive, the internal sum-
mations over l and m in Eq. (16) can be readily performed.
The resulting expression for the fully time-dependent current
is still quite cumbersome. However, working out explicitly the
expression for the amplitudes Cn and phases ϕn [see Eq. (20)],
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FIG. 2. Voltage drive case. Average current through the QPC in the weak backscattering regime under the voltage drive V (t ) = VDC +
VAC cos �t and for various values of the average transmitted charge q = e∗VDC/�. The filling factor is ν = 1/3, the AC normalized amplitude
is α = 1, and the temperature is θ = 0.1. The top panel shows the AC part of the current as a function of time, over one period. The lower left
panel displays the first harmonic and the lower right the second one.

one can show that

tan ϕ2 = tan πνD

∣∣�(
νD + i q+1

2θπ

)∣∣2
cosh

( q+1
2θ

) − ∣∣�(
νD + i q−1

2θπ

)∣∣2
cosh

( q−1
2θ

)
∣∣�(

νD + i q+1
2θπ

)∣∣2
sinh

( q+1
2θ

) + ∣∣�(
νD + i q−1

2θπ

)∣∣2
sinh

( q−1
2θ

) , (25)

which, in the low-temperature regime (θ � 1), further re-
duces to

ϕ2 = πνD (26)

provided that the reduced DC voltage satisfies q < 1. Quite
astonishingly, the phase shift of the second harmonic of the
current induced by a cosine gate drive in the low-temperature
limit is exactly equal to the scaling dimension of the quasipar-
ticle operator.

The same representation of the current as that adopted for
the voltage drive (see Fig. 2) is proposed in Fig. 3, for a finite
reduced temperature θ = 0.1. In the lower right panel we
remark that the phase shift of the second harmonic is indeed
equal to πνD for a large range of q (the slight discrepancy for
the highest q = 0.8 disappears at lower temperature). Indeed,
from Eq. (20), one readily sees that this phase shift can be
recast as a shift in time by an amount t/T = −ϕ2/(4π ) =
−νD/4 (taking into account that C2 > 0).

The robustness of this result for finite temperature is ex-
plored in Fig. 4. It displays the evolution of ϕ2 as a function
of q for different values of νD and at two experimentally

realistic reduced temperatures, θ = 0.1 and θ = 0.2. Note
that in actual experimental realizations, a reduced temperature
θ = 0.1 would correspond to an actual temperature of 50 mK
for a drive frequency of 10 GHz. For this value of the reduced
temperature, the results of Fig. 4 show a good agreement
between the phase shift ϕ2 and the scaling dimension, over
a large range of DC voltage. Increasing the temperature leads
to a small departure between the two, which further grows as
one increases the reduced voltage q (as already observed for
q = 0.8 in Fig. 3).

We stress that the identification of the phase shift, which
gives direct access to the quasiparticle operator scaling
dimension requires the experimental measurement of the time-
dependent current, rather than the measurement of its average
value over the period of the drive. Experimentally, it would
therefore be necessary to measure the harmonics of the cur-
rent, for instance by multiplying the current signal by a
chosen, specific, periodic signal, and subsequently performing
the average over the period of the drive.

The present prediction for the phase shift as a signature of
the scaling dimension of the quasiparticle operator for a gate
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FIG. 3. Gate drive case. Average current through the QPC in the weak backscattering regime under the gate drive Eq. (23) and for various
values of q. The figure was obtained with the following parameters: the filling factor is ν = 1/3, the tunneling amplitude modulation is λ1 = 1
and the reduced temperature is θ = 0.1. The top panel shows the AC part of the current as a function of time, over one period. The lower left
panel displays the first harmonic of the current and the lower right panel the second harmonic of the current, where all curves depict the same
phase shift set by the scaling dimension νD.

voltage modulation constitutes the central result of this paper.
Based on the generalized derivation presented in Appendix B,
and the assumptions underlying the above computations, it
should hold for a broad range of filling factors, the only
requirement being that the scaling dimension of the quasi-
particle involved in the leading tunneling process satisfies
0 < νD < 1 with νD �= 1/2.

FIG. 4. Phase of the second harmonic [as defined in Eqs. (D7)
and (25)] of the current through the QPC under the gate drive
Eq. (23), in the weak backscattering regime, as a function of q,
for various filling factors ν. Full lines are for reduced temperature
θ = 0.1 and dashed lines for θ = 0.2.

VI. FERMI LIQUID COMPUTATION

In this section we propose a computation of the Fermi liq-
uid limit, first, using standard Fermi liquid theory and second,
taking the limit ν = 1 of the chiral Luttinger liquid theory
presented above. This fulfills two purposes, it extends to peri-
odic drives the usual Fermi liquid computation of the current
through a QPC and it allows to perform consistency checks of
the Fermi liquid limit of our Luttinger liquid computation.

A. Fermi liquid formalism

In the Fermi liquid picture, the Hamiltonian is written in
analogy with Eq. (9), in terms of electron creation and anni-
hilation operators �L,R at position x = 0 in the left or right
leads. It reads

HT = λ(t )�†
L�R + H.c. (27)

Thus the current operator is

IT = ieλ(t )�†
L�R + H.c. (28)

We define Keldysh Green’s functions for electron operators as

Gηη′
ss’ = −i〈TK�s(tη )�†

s’(t
′
η′ )〉, (29)

where TK is the time ordering operator along the Keldysh
contour, s and s’ can be either L or R and the Keldysh contour
indices η and η′ can be + or −. The average current can be
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written with Keldysh Green’s function for electron operators,

〈IT(t )〉 = −e[λ(t )G+−
RL (t, t ) − λ∗(t )G+−

LR (t, t )]. (30)

Working in the wide-band limit, the expression for the current
can be obtained using standard tools (see Appendix E for
details) and can therefore be simplified into

〈IT(t )〉 = λ2
0e

4πv2
F

∑
l,m

pl pmei(l−m)�t

×
∫

dω[ f (ω − μR) − f (ω + l� − μL)

− f (ω − μL) + f (ω + m� − μR)]. (31)

where f (x) is the usual Fermi distribution and μR/L is the
chemical potential of edge R/L. Performing the integration
yields

〈IT(t )〉 = e�λ2
0

4πv2
F

∑
l,m

pl pmei(l−m)�t (2q + l + m). (32)

Using Eq. (12) to write the derivative ∂tλ(t ) = i�
∑

l l pleil�t ,
the current can be rewritten as

〈IT(t )〉 = e�

4πv2
F

[
2q|λ(t )|2 + 1

i�
∂t |λ(t )|2

]
. (33)

Finally, substituting the expression for the time-dependent
tunnel coupling λ(t ) for the two types of drive, one has

〈IT(t )〉 = e2

2πv2
F

{
λ(t )2VDC for a gate drive
λ2

0V (t ) for a voltage drive,
(34)

which is the straightforward time-dependent generalization of
the Landauer formula for PAT. The absence of a temperature
dependence is a consequence of the wide band approximation.

B. Luttinger liquid approach at ν = 1

Finding the current in the Fermi liquid limit of the
Luttinger theory can be done by setting νD = ν = 1 in the
general formula for the current, Eq. (15). In this case, the
expansion of Eq. (15) performed in Sec. IV does not hold.
However, as shown in Appendix F, a logarithmic expansion
can be carried out to lowest order in τ0/β. This expansion
yields two sums, which we call Fermi/DC [Eq. (F3)] and
correlated AC [Eq. (F4)], for reasons that will become clear
below. In the particular case of νD = 1, the leading term is the
first term of the Fermi/DC sum, see Eq. (F5), and the current
is identical to that obtained from the Fermi liquid approach,
Eq. (32). We have thus checked the consistency of our chiral
Luttinger liquid approach in the Fermi liquid regime.

VII. STRONG BACKSCATTERING REGIME

In this section we describe the behavior of the current in the
strong backscattering regime, which is obtained from a duality
transformation. The latter only holds for filling factors in the
Laughlin series, so that, for clarity, we revert to a description
in terms of the filling factor ν. This regime is obtained by
setting ν → ν−1, e∗ → e and ω∗

0 → eVDC/� in the expression
for the current, Eq. (13). As ν−1 ∈ N for Laughlin fractions,
one has to exploit the expansion of Eq. (15) to leading order

in the cutoff, which is valid for all integers ν−1 > 0, i.e., the
logarithmic expansion, Eq. (F2).

As already pointed out in Sec. VI, this expansion consists
of two sums. In the case ν = 1, the leading term in τ0/β

belongs to the Fermi/DC sum. However, here, the expansion
in orders of τ0/β favors another term, which belongs to the
second sum, which we call correlated-AC sum, see Eq. (F4).
More precisely, the leading term is of first order in τ0/β and
yields a current,

〈IT(t )〉 ≈ −e

(1 − 2ν−1)3

(
λ0

πv

)2
�

�

× �
⎡
⎣∑

l,m

pl pmei(l−m)�t (m + q)2

⎤
⎦, (35)

where (x)n is the Pochhammer symbol, defined in
Appendix F. This expression can take a simpler form,
since following the steps used to obtain Eq. (33), one can
write

〈IT(t )〉 = e

(2ν−1 − 1)(2ν−1 − 2)(2ν−1 − 3)

1

π2v2��

× �[
λ2

0e2V 2
DC + 2ieVDCλ(t )∂tλ(t ) − λ(t )∂2

t λ(t )
]
.

(36)

Finally, computing explicitly the imaginary part, one can ex-
press the end result in a unified way for both types of drives
defined in Eq. (11) as

〈IT(t )〉 = e(
2
ν

− 1
)(

2
ν

− 2
)(

2
ν

− 3
) 1

π2v2��
∂t (λ

2V ). (37)

This result is quite intriguing as it involves the time derivative
of the AC Landauer formula, Eq. (34). As in the Fermi liquid
computation, there is no temperature dependence to this order,
this reflects the wide-band limit of the Luttinger model.

In the case of a voltage drive, the junction in the strong
backscattering regime behaves as a standard capacitor, i.e.,

〈IT(t )〉 = C
dV (t )

dt
, (38)

with a capacitance C = e2

( 2
ν
−1)( 2

ν
−2)( 2

ν
−3)

λ2
0

π2v2��
, which, after

restoring the proper powers of h̄, can be further recast as
C = c 2πa

( 2
ν
−1)( 2

ν
−2)( 2

ν
−3)

( λ0
h̄v

)2, where c = e2/(hv) is the quantum

capacitance by unit length.
In the case of a gate drive the situation is different, defining

the transmission of the junction as τ (t ) = 4λ2(t ), the current
reads

〈IT(t )〉 = e2VDC(
2
ν

− 1
)(

2
ν

− 2
)(

2
ν

− 3
)
π2v2��

dτ (t )

dt
. (39)

To summarize, the general expansion of the hypergeometric
function in τ0/β for positive integer ν−1

D yields a current
consisting of two sums, see Eq. (F2). We have to consider
three different situations. When the junction is driven by a DC
drive only, when the junction is driven by an AC drive and it
is in the Fermi regime, ν = 1, or when the junction is driven
by an AC drive and correlations are present, i.e., ν−1 > 1.
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When the junction is in the Fermi liquid regime (ν = 1)
or solely driven by a DC drive, the leading terms of the
expansion belong to the same sum, which we therefore call
the Fermi/DC sum, see Eq. (F3). In the DC case, this term
yields the duality transformation of the already known weak
backscattering DC result, see [54]. In the Fermi liquid case
we find a straightforward extension of the Landauer formula,
which we call the AC Landauer formula.

When the junction is driven by both a DC and an AC
drive (applied to either the edge or the gate) and correlations
are present, i.e., ν−1 > 1, the leading contribution to the cur-
rent comes from another term, which we therefore call the
correlated-AC sum, Eq. (F4). This term yields a current pro-
portional to the time derivative of the AC Landauer formula,
Eq. (37).

VIII. CONCLUSIONS

In the Introduction of this paper, we have stressed the
considerable theoretical investment for the search of signa-
tures of the statistics of anyons of the FQHE in the context
of electronic quantum transport setups. Most of these se-
tups indeed require quite complicated geometries or types
of measurements. Noting that the statistical angle of anyonic
quasiparticles is intimately tied to the scaling dimension of
the quasiparticle operator, we have asked a naive question:
Can this scaling dimension be detected via a careful measure-
ment of the time-dependent backscattering current in the weak
backscattering regime?

For this purpose, we have reexamined the theory of pho-
toassisted transport in the FQHE. We have noted that such
PAT can be achieved in two distinct ways. Either one modu-
lates the gate voltage applied to the QPC (to our knowledge
this type of drive has not received much attention in the con-
text of PAT), or one adds an AC modulation on top of the DC
voltage drive (as was proposed theoretically in Refs. [7,54]).

Our first task was to show that both drives can be described
with a unified approach: The only difference between the two
drives resides in the details of the Fourier decomposition of
the tunnel amplitude describing them. The time-dependent
current can then be computed analytically in terms of sums
over these Fourier coefficients, further involving a Gauss hy-
pergeometric function, a result, which is quite abstract in
nature. In order to make progress, expansions to leading order
in the cutoff need to be subsequently performed. Interestingly,
these expansions depend crucially on the value of the scaling
dimension νD and whether the QPC is in the weak or strong
backscattering regime.

For the weak backscattering regime, we obtained expres-
sions, which allow to characterize the time-dependent current
as a constant term accompanied by its harmonics at multiples
of the drive frequency. It is precisely in these harmonics
that we believe that it is possible to isolate the scaling di-
mension of the quasiparticle tunneling operator. Indeed, by
choosing a simple cosine modulation for a gate drive, we
were able to show that the phase shift of the second harmonic
of the time-dependent current is directly proportional to the
scaling dimension at low temperature, which constitutes the
central message of this paper. We stressed that this connec-
tion is robust at finite temperature, rendering it accessible to

experimental observation. A typical experiment would require
to multiply the time-dependent current signal by a proper
harmonic drive at twice the drive frequency to detect this
phase shift.

For completeness, we further explored the expansion prop-
erties of hypergeometric functions, which appear in the
general expression of the time-dependent current, in order
to derive results for both the Fermi liquid limit ν = 1 and
for the strong backscattering limit. In the former case, we
performed an independent Fermi liquid calculation using the
Dyson equation for fermionic Keldysh Green’s function and
derived a time-dependent generalization of the Landauer for-
mula. We further showed that this AC Landauer formula is in
agreement with the ν = 1 limit of the chiral Luttinger model.
In the case of strong backscattering, we derived an expression
of the current in terms of time derivative of the drives.

Our main result about the phase shift suggest that a care-
ful measurement of the time-dependent current for a device
containing a single quantum point contact could provide an
insight on the detection (albeit indirect) of fractional statistics
in the fractional quantum Hall effect.
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APPENDIX A: KELDYSH GREEN’S
FUNCTIONS RELATIONS

In this Appendix we introduce the bosonic Keldysh
Green’s functions used in the main text, see Eq. (13). They
are defined as

Gηη′
(t − t ′) = 〈TKφ(tη, x = 0)φ(t ′

η′ , x = 0)〉, (A1)

where TK denotes ordering along the Keldysh contour (see
Ref. [56]). The four different Keldysh Green’s functions
can be summarized by a single one (which has no Keldysh
indices),

G++(t − t ′) = G(|t − t ′|),
G−−(t − t ′) = G(−|t − t ′|),
G+−(t − t ′) = G(t ′ − t ),

G−+(t − t ′) = G(t − t ′), (A2)

where the “modified” Green’s function is defined as

G(t − t ′) = 〈φR(L)(t )φR(L)(t
′)〉

− 〈φR(L)(t )2〉/2 − 〈φR(L)(t
′)2〉/2, (A3)
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and reads [29]

G(τ ) = − log

[
sinh

(
π
β

(iτ0 − τ )
)

sinh
(
i π
β
τ0

)
]
, (A4)

where β is the inverse temperature and τ0 ≡ a/v is the short
time cutoff of the chiral Luttinger model.

APPENDIX B: GENERAL MODEL FOR ABELIAN
FRACTIONAL QUANTUM HALL EDGE STATES

In this Appendix, we consider a general model for Abelian
fractional quantum Hall edge states and show that it leads to
a tunneling current of the same form as the one obtained in
Eq. (13).

Our starting point is the action of the general Abelian
FQH edge

S = 1

4π

∫
dxdt

N∑
l=1

[−χl∂xφl∂tφl − vl (∂xφl )
2], (B1)

where φl are a set of bosonic modes (with l = 1, . . . , N),
with chirality χl = ±1 and velocity vl . In the case of a single
mode (N = 1) this reduces to the standard description of the
Laughlin series.

These fields satisfy the commutation relation

[φl (x, t ), φl ′ (x
′, t ′)] = iπχlδll ′sgn(x − x′ − χlvl t + χl ′vl ′t

′),

(B2)

and help defining the density operator as

ρ = 1

2π

∑
l

ql∂xφl , (B3)

where the set of coefficients ql encode the contribution of the
lth mode to charge transport. These coefficients are related
to the filling factor in a nontrivial way as they satisfy the
sum rule ∑

l

χl q
2
l = ν. (B4)

In analogy with the Laughlin case, the edge supports quasipar-
ticles, whose creation/annihilation operators involve a linear
combination of all bosonic modes, namely,

ψg(x, t ) ∝ exp

[
i

N∑
l=1

glφl (x, t )

]
. (B5)

For a given vector g = {g1, . . . , gN }, the corresponding quasi-
particle ψg is characterized by three important physical
quantities,

Qg = e
∑

l

χl qlgl its effective charge, (B6)

δg =
∑

l

g2
l its scaling dimension, (B7)

�g = π
∑

l

χl g
2
l its statistical angle. (B8)

Note that in all generality, the statistical angle is bounded
by the scaling dimension, |�g| � πδg, and even reduces to

|�g| = πδg in the special situation where all modes have the
same chirality, χl = χ , ∀l .

The QPC is set in the weak backscattering regime and is
thus modeled by a Hamiltonian describing the tunneling of
quasiparticles between the two edges as

HT =
∑

g

�gψ
(u)
g

†
(0)ψ (d )

g (0) + H.c. (B9)

where (u)/(d ) label the upper and lower edges (the standard
R/L designation being ill defined in the presence of nonchiral
modes). In all generality, one would need to account for all
possible tunneling events, i.e., ones involving all possible
quasiparticles. In practice, however, it makes sense to favor
the one with the lowest scaling dimension, as it is the most
relevant perturbations in the RG sense. In what follows, we
label this leading quasiparticle with the vector g∗.

From the expression of the tunneling Hamiltonian, one
readily obtains the tunneling current operator at the location
of the QPC, as

IT (t ) = iQg∗
[
�g∗ (t )eiQg∗VDCtψ

(u)
g∗

†
(0, t )ψ (d )

g∗ (0, t ) − H.c.
]
,

(B10)

where we introduce the effect of an applied DC voltage be-
tween edges and introduced a time-dependent tunnel coupling
along the same lines as we did in the text, leading to Eq. (11).

Using the decomposition of the quasiparticle operators in
terms of the bosonic fields φl , one can express the thermal av-
erage of the tunneling current in terms of the bosonic Green’s
function Gηη′

l (t − t ′) yielding

〈IT (t )〉 = 1

2
Qg∗

∑
ηη′

η′
∫

dt ′[�g∗ (t )�g∗ (t ′)eiQg∗VDC(t−t ′ )

−�g∗ (t )�g∗ (t ′)eiQg∗VDC(t−t ′ )] ∏
l

e2g∗
l

2Gηη′
l (t−t ′ ).

(B11)

At this stage, it is important to keep in mind that Gηη′
l (t − t ′) is

a trivial generalization of the one presented in Appendix A. In
particular, its Keldysh components follow the same relations
as the ones introduced in Eq. (A2), with the corresponding
Green’s function Gl (τ ) given by

Gl (τ ) = − log

[
sinh

(
π
β

(iτl − τ )
)

sinh
(
i π
β
τl

)
]
, (B12)

with τl = a/vl . It follows from this that the term involving
the bosonic Green’s function in Eq. (B11) can be further
rewritten as

∏
l

e2g∗
l

2Gl (τ ) =
∏

l

e
2g∗

l
2 log

[
sinh (i π

β
τl )

sinh ( π
β (iτl −τ ))

]

=
∏

l

e
2g∗

l
2 log

[
sinh (i π

β
τ0 )

sinh ( π
β (iτ0−τ ))

]
+2g∗

l
2 log

(
τl
τ0

)

= e2
∑

l g∗
l

2G(τ )
∏

l

(
τl

τ0

)2g∗
l

2

(B13)
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where we used that the short time cutoff τl in the denominator
only serves as a regularization and can be replaced by any
infinitesimal. This allows to drop the l dependence in the
bosonic Green’s function and to perform the product over l ,
letting the scaling dimension appear naturally.

The tunneling current can now be rewritten as

〈IT (t )〉 = 1

2
Qg∗

∑
ε

ε

∫
dt ′eiεQg∗VDC(t−t ′ )[�g∗ (t )]ε[�g∗ (t ′)]−ε

×
∑
ηη′

η′e2δg∗Gηη′
(t−t ′ ), (B14)

where, for convenience and without loss of generality, we
reabsorbed the prefactor in τl/τ0 into the definition of
the tunneling amplitude. This expression perfectly mirrors
the one obtained for the Laughlin case in Eq. (13), where the
effective charge e∗ and scaling dimension νD of the Laugh-
lin quasiparticle is replaced with the corresponding effective
charge Qg∗ and scaling dimension δg∗ of the leading tunneling
quasiparticle.

APPENDIX C: COMPUTATION STEPS
FOR THE CURRENT

In this section we derive a general formula for the average
current Eq. (13) without any assumptions on the value of νD

other than it being positive. In particular, we obtain Eq. (15).

We start by performing the sum over η in Eq. (13), using∑
η,η′=±

η′e2νDGηη′
(t−t ′ ) = 2[e2νDG(τ ) − e2νDG(−τ )]�(τ ), (C1)

where τ = t − t ′. Then the sum over ε can be performed as∑
ε=±

εeiεω∗
0 (t−t ′ )[λ(t )]ε[λ(t ′)]−ε

= λ2
0

∑
lm

pl pmei(l−m)�t (ei(m+q)�τ − e−i(l+q)�τ ), (C2)

where q = ω∗
0

�
. Inserting Eq. (C1) and (C2) in Eq. (13) gives

〈IT(t )〉 = e∗
(

1

2πa

)2

λ2
0

∑
l,m

pl pmei(l−m)�t

×
∫ +∞

0
dτ (ei(m+q)�τ − e−i(l+q)�τ )

× [e2νDG(τ ) − e2νDG(−τ )]. (C3)

The next step is to simplify the expression of the Green’s
function G(τ ), see Eq. (A4), denoting η = ±,

e2νDG(ητ ) = (−iη)2νD tanh

(
π

β
τ0

)2νD

×
cosh

(
π
β
τ
)−2νD

[
tanh

(
π
β
τ
) − iη tan

(
π
β
τ0

)]2νD
. (C4)

Thus, the current reads

〈IT(t )〉 = e∗(2vτ0)−2π−3βλ2
0

∑
l,m

pl pmei(l−m)�t
∑
η=±

η(−iη)2νD tanh

(
π

β
τ0

)2νD

×
∫ +∞

0
dx

[
exp

(
i
m + q

πθ
x

)
− exp

(
−i

l + q

πθ
x

)]
cosh (x)−2νD[

tanh (x) − iη tan
(

π
β
τ0

)]2νD
, (C5)

where θ = (β�)−1 is the reduced temperature. Changing variables to y = tanh(x), one is left with

〈IT(t )〉 = e∗(2vτ0)−2π−3βλ2
0

∑
l,m

pl pmei(l−m)�t
∑
η=±

η

∫ 1

0
dy

[
(1 − y)νD−1−i m+q

2πθ (1 + y)νD−1+i m+q
2πθ

×
(

1 + iη tan

(
π

β
τ0

)−1

y

)−2νD

− (m, q) → (−l,−q)

]
. (C6)

Where the notation f (a, b) − f (c, d ) = f (a, b) − (a, b) → (c, d ) has been used. This integral can be expressed in terms of the
first Appell hypergeometric series F1, see Eq. (3.312) of Ref. [57], as long as νD is positive. The current therefore reads

〈IT(t )〉 = e∗(2vτ0)−2π−3βλ2
0

∑
l,m

pl pmei(l−m)�t
∑
η=±

η

[
B

(
νD − i

m + q

2πθ
, 1

)

× F1

(
1, 1 − νD − i

m + q

2πθ
, 2νD, 1 + νD − i

m + q

2πθ
; −1; −iη tan

(
π

β
τ0

)−1
)

− (m, q) → (−l,−q)

]
, (C7)
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where B(x, y) is Euler’s beta function. Using the properties of Appell’s hypergeometric series F1, see Eq. (9.182.1) of Ref. [57],
and the properties of Euler’s beta function, see Eq. (8.384.1) of [57], we find

〈IT(t )〉 = e∗(2vτ0)−2π−3βλ2
0

∑
l,m

pl pmei(l−m)�t
∑
η=±

η

[−iη sin
(

π
β
τ0

)
exp

(
iηπ

β
τ0

)
νD − i m+q

2πθ

× 2F1

(
1, 1 − νD − i

m + q

2πθ
; 1 + νD − i

m + q

2πθ
; exp

(
2iη

π

β
τ0

))
− (m, q) → (−l,−q)

]
, (C8)

where 2F1 is Gauss’ hypergeometric function. We stress that this formula is valid to all orders in τ0 and for any νD > 0.

APPENDIX D: WEAK BACKSCATTERING REGIME

In this Appendix, we find a formula for the current as a function of time in the regime where 0 < νD < 1, with νD �= 1/2.
The weak backscattering regime for Laughlin fractions is a particular case of this regime of parameters. Therefore, performing
an expansion in τ0/β we derive Eq. (19).

In this regime, as neither −νD, nor 2νD − 1 are integer, and as |1 − exp(2iηπ
β
τ0)| < π , Eq. (2.10.1) of Ref. [58] holds. Thus,

to lowest order in τ0/β,

〈IT(t )〉 = �(2νD)I
2

∑
l,m

pl pmei(l−m)�t
∑
η=±

(iη)2νD

[
�(1 − 2νD)�

(
1 + νD − i l+q

2πθ

)
(
νD − i m+q

2πθ

)
�

(
1 − νD − i m+q

2πθ

) − (m, q) → (−l,−q)

]
, (D1)

where �(z) is the gamma function, � = (�τ0)−1 and

I = e∗�
π

(
λ0

v

)2(2πθ

�

)2νD−2
θ

�(2νD)
. (D2)

Note that for 1/2 < νD < 1, the expansion of the hypergeometric function leads to a leading contribution of order O(τ0),
which dominates over the one considered above, which is of order O(τ 2νD

0 ). However, this leading contribution simplifies when
accounting for the second hypergeometric function obtained upon exchanging (m, q) → (−l,−q).

Using the fact that iη = exp(iηπ
2 ), Euler’s reflection formula for the gamma function [see [57], Eq. (8.384.1)] and the fact

that �(z∗) = �(z)∗ [which can be deduced from [57], Eq. (8.334.3)], the current is reduced to

〈IT(t )〉 = −i
I

2 cos(πνD)

∑
l,m

pl pmei(l−m)�t

[∣∣∣∣�
(

νD − i
m + q

2πθ

)∣∣∣∣
2

sin

(
πνD + i

m + q

2θ

)
− (m, q) → (−l,−q)

]
. (D3)

Finally, after a change of indices, one is left with

〈IT(t )〉 = I
∑
l,m

∣∣∣∣�
(

νD + i
m + q

2πθ

)∣∣∣∣
2

�
{

pm pm−l e
il�t

[
tan (πνD) cosh

(
m + q

2θ

)
+ i sinh

(
m + q

2θ

)]}
, (D4)

where �(x) denotes the imaginary part of x. Assuming that pl ∈ R, this reduces to

〈IT(t )〉 = I
∑
l>0

[
cos(l�t )

∑
m

∣∣∣∣�
(

νD + i
m + q

2θπ

)∣∣∣∣
2

(pm−l pm + pm pl+m) sinh

(
m + q

2θ

)

+ sin(l�t ) tan(πνD)
∑

m

∣∣∣∣�
(

νD + i
m + q

2θπ

)∣∣∣∣
2

(pm pl+m − pm−l pm) cosh

(
m + q

2θ

)]

+ I
∑

m

∣∣∣∣�
(

νD + i
m + q

2θπ

)∣∣∣∣
2

p2
m sinh

(
m + q

2θ

)
. (D5)

The current can finally be rewritten as

〈IT(t )〉 = I0 +
∑
n>0

ICn cos(n�t + ϕn), (D6)
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where

ϕn = arctan

(
Bn

An

)
, Al =

∑
m

∣∣∣∣�
(

νD + i
m + q

2θπ

)∣∣∣∣
2

(pm−l pm + pl+m pm) sinh

(
m + q

2θ

)
,

Bl = tan(πνD)
∑

m

∣∣∣∣�
(

νD + i
m + q

2θπ

)∣∣∣∣
2

(pm−l pm − pl+m pm) cosh

(
m + q

2θ

)
, Cn = An

cos(ϕn)
,

I0 = I
∑

m

∣∣∣∣�
(

νD + i
m + q

2θπ

)∣∣∣∣
2

p2
m sinh

(
m + q

2θ

)
. (D7)

APPENDIX E: FERMI LIQUID CALCULATION

In this Appendix, we provide some details of the derivation of the current in the Fermi liquid picture. Or starting point is the
expression for the average current in terms of the Keldysh Green’s function for electron operators, namely,

〈IT(t )〉 = −e[λ(t )G+−
RL (t, t ) − λ∗(t )G+−

LR (t, t )]. (E1)

To leading order in the tunnel coupling λ, using Dyson equation, the dressed Green’s function reads

G+−
ss′ (t, t ) =

∫
dt[g+−

ss (t − t ′)λ∗(t ′)ga
s’s’(t − t ′) + gr

ss(t − t ′)λ∗(t ′)g+−
s’s’ (t − t ′)]. (E2)

where gηη′
ss′ (t ) are the bare Keldysh Green’s functions (in the absence of tunneling), and gr/a

ss′ (t ) = g++
ss′ (t ) − g±∓

ss′ (t ).
Going to Fourier space, i.e., performing double Fourier transform and keeping in mind that we compute the Green’s function

at simultaneous time, we can write

G+−
RL (t, t ) = λ0

∑
l

ple
il�t

∫
dω

2π
[g+−

RR (ω)ga
LL(ω + l�) + gr

RR(ω)g+−
LL (ω + l�)] (E3)

G+−
LR (t, t ) = λ0

∑
l

pl e
−il�t

∫
dω

2π
[g+−

LL (ω)ga
RR(ω + l�) + gr

LL(ω)g+−
RR (ω + l�)]. (E4)

The current can then be readily written as

〈IT(t )〉 = −eλ2
0

∑
l,m

pl pmei(l−m)�t
∫

dω

2π

[
g+−

RR (ω)ga
LL(ω + l�) + gr

RR(ω)g+−
LL (ω + l�) − g+−

LL (ω)ga
RR(ω + m�)

− gr
LL(ω)g+−

RR (ω + m�)
]
. (E5)

In order to (later on) make a correspondence with the νD = 1 limit of the chiral Luttinger liquid calculation, we need to make
consistent assumptions between the two models. In the present case, this means that we have to work in the wide band limit.
This limit is implemented by setting

gr/a
ss (ω) = ∓i(2vF)−1, g+−

ss (ω) = 2i�[
ga

ss(ω)
]

f (ω − μs), (E6)

with μs the chemical potential on side s and f (x) the Fermi distribution. The current can therefore be simplified into

〈IT(t )〉 = λ2
0e

4πv2
F

∑
l,m

pl pmei(l−m)�t
∫

dω[ f (ω − μR) − f (ω + l� − μL) − f (ω − μL) + f (ω + m� − μR)]. (E7)

Performing the integration yields

〈IT(t )〉 = e�λ2
0

4πv2
F

∑
l,m

pl pmei(l−m)�t (2q + l + m). (E8)
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APPENDIX F: STRONG BACKSCATTERING REGIME

In this Appendix, we derive a formula for the current in the strong backscattering regime. Applying the duality transformation
to Eq. (C8) taken for the Laughlin series, one has for the current in this regime

〈IT(t )〉 = e(2vτ0)−2π−3βλ2
0

∑
l,m

pl pmei(l−m)�t
∑
η=±

η

[−iη sin
(

π
β
τ0

)
exp

(
iηπ

β
τ0

)
ν−1 − i m+q

2πθ

× 2F1

(
1, 1 − ν−1 − i

m + q

2πθ
; 1 + ν−1 − i

m + q

2πθ
; exp

(
2iη

π

β
τ0

))
− (m, q) → (−l,−q)

]
, (F1)

where q = ω0/�.
We now want to perform an expansion in low τ0/β for the Laughlin series (where ν−1 is an odd integer). The technique used

in the case 0 < νD < 1 (see Appendix D) cannot be used here as 1 − 2ν−1 is an integer, thus, Eq. (2.10.1) of Ref. [58] does not
hold. However, another route is possible and, as we will show, the leading contribution is of first order or less in τ0.

Following Prudnikov et al. [see Eq. (7.3.1.31) of Ref. [59]] we perform a logarithmic expansion of the hypergeometric
function and remove terms of order higher than three. The current can then be written as the sum of two terms,

〈IT(t )〉 = 〈IFermi/DC(t )〉 + 〈Icor-AC(t )〉, (F2)

where the term containing the DC behavior as well as the Fermi limit is

〈IFermi/DC(t )〉 ≈ ie(2vτ0)−2π−3βλ2
0

∑
l,m

pl pmei(l−m)�t
∑
η=±

sin

(
π

β
τ0

)
�

(
ν−1 − i m+q

2πθ

)
�

(
1 − ν−1 − i m+q

2πθ

)

×
∞∑

k,r=0

2ν−1−1+k∑
s=0

{
(−1)k2k+2ν−1−1(iη)2k−s−2

(k + 2ν−1 − 1)k (2ν−1)k
(
ν−1 − i m+q

2πθ

)
k

(
π
β
τ0

)2k−s+4ν−1−2

r!s!(k + 2ν−1 − 1 − s)!

×
[

log

(
2
π

β
τ0

)
+ iη

π

2
− ψ (k + 1) + ψ

(
ν−1 + k − i

m + q

2πθ

)]
− (m, q) → (−l,−q)

}
, (F3)

while the term corresponding to the AC current when correlations are present reads

〈Icor-AC(t )〉 ≈ − ie(2vτ0)−2π−3βλ2
0

∑
l,m

pl pmei(l−m)�t
∑
η=±

sin

(
π

β
τ0

)
1

2ν−1 − 1

×
∞∑

r=0

2ν−1−2∑
k=0

k∑
s=0

[
(−1)k (iη)r+2k−s2k

(1)k
(
1 − ν−1 − i m+q

2πθ

)
k

(
π
β
τ0

)r+2k−s

r!s!(k − s)!(2 − 2ν−1)k
− (m, q) → (−l,−q)

]
, (F4)

with (x)n = ∏n−1
k=0(x + k) is the Pochhammer symbol.

One sees indeed that for ν = 1 Eq. (F4) vanishes and for ν−1 > 1 all terms in Eq. (F3) are subleading. Therefore, we present
the computation in two different sections.

1. Fermi liquid limit, ν = 1

The Fermi liquid limit is obtained by setting ν−1 = ν = 1. The first sum over k in Eq. (F4) vanishes and only the terms of
Eq. (F3) contribute. Performing the sum over η removes all terms containing odd powers of η, i.e., to lowest order in τ0/β (s = 1,
k = r = 0) the current reads

〈IT(t )〉 = eλ2
0�

4πv2
F

∑
l,m

pl pmei(l−m)�t (2q + l + m). (F5)

2. Filling factors, ν−1 > 1

The general case of integer ν−1 greater than one is obtained by remarking that the leading term in Eq. (F3) is a polynomial
of order five or more in τ0/β. Therefore, we can extract the main contribution to the current from Eq. (F4) only. It can be shown
that the term of order minus one in τ0/β does not depend on q nor l or m, thus it does not contribute in the current. The sum
over η removes the zeroth order term in τ0/β so we are left with the first order contributions. They arise when the indices respect

165425-15



BRUNO BERTIN-JOHANNET et al. PHYSICAL REVIEW B 108, 165425 (2023)

r + 2k − s = 2, i.e., there are four possibilities:
i. r = 0, k = s = 2;
ii. r = 0, k = 1, s = 0;
iii. r = k = s = 1;
iv. r = 2, k = s = 0.
We remark that the last possibility gives rise to a term independent of q, l , m, which thus vanishes. Selecting the three first

possibilities only and removing the Fermi/DC term in Eq. (F2), the current ultimately reads

〈IT(t )〉 ≈ −e

π2(1 − 2ν−1)3

(
λ0

v

)2
�

�
�
⎡
⎣∑

l,m

pl pmei(l−m)�t (m + q)2

⎤
⎦. (F6)
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