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It has been more than fifty years already since the first ever density functional theory (DFT) simulation of a
jellium surface demonstrated that uniform electric fields and external point charges induce equivalent electrostat-
ics in the limit of linear response. During the years that followed, improved jellium models and computational
resources allowed including strong electric fields to explore the problem beyond linear response. Nowadays,
most DFT simulations of metallic surfaces are routinely conducted using finite slabs with periodic boundary
conditions (PBCs) and the pseudopotential method to account explicitly for the ionic lattice. Surprisingly, there
is apparently no record of dedicated studies that jointly discuss how the electrostatic response of metallic slabs
in strong electric fields is affected by the PBCs, the net charge, the number of atomic layers, the surface
orientation, and the adopted exchange-correlation potential. To investigate these points, we carry out detailed
DFT simulations for the low-index facets of Li, Al, and Ag of neutral and charged slabs for varying ranges
of external fields. Using key response parameters, we quantify and compare the electrostatics of slabs within
and beyond the linear response regime and find that neutral and charged slabs exhibit equivalent responses
for equivalent external perturbations. This analysis also offers a numerical demonstration that the electrostatic
equivalence for the original jellium model also applies to slabs of finite size in PBCs. Our findings do not only
invite the revision of some standard approximations to characterize the electrostatic response of metallic slabs
but also aim to support the development of semiclassical, DFT-based methods for metallic interfaces using PBCs.

DOI: 10.1103/PhysRevB.108.165423

I. INTRODUCTION

Over five decades ago, N. D. Lang and W. Kohn applied the
Kohn-Sham (KS) formulation [1] of density functional theory
(DFT) [2] for the very first time to compute the quantum
problem of metallic surfaces using the jellium approximation
[3–5]. This seminal contribution revolutionized the field of
surface science and made of computational simulations an
invaluable tool to support experiments since then [6].

One of the most important contributions of N. D. Lang
and W. Kohn (LK) was the demonstration that weak uniform
electric fields and external point charges induce equivalent
electrostatic responses of the jellium surface [5]. This equiv-
alence (LK equivalence hereinafter) was demonstrated to be
valid only in the linear response regime for jellium surfaces
of infinite area. Nowadays, most of the available DFT codes
allow computing systems of finite size in periodic boundary
conditions (PBCs) adopting the pseudopotential (PP) method
to account for the ionic lattice [7,8]. Surfaces are routinely
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modelled using slabs composed of few atomic layers with
the surface orientation of interest, while a vacuum region
is included to minimize the spurious electrostatic interaction
from the infinite replicas.

To our knowledge, the LK equivalence has not been yet
demonstrated for metallic slabs in PBCs. Surprisingly, we
neither found reported studies that exclusively analyze how
the electrostatic response of vacuum-exposed metallic slabs
in PBCs is affected by the net charge state, the number
of atomic layers, the surface orientation, and the adopted
exchange-correlation (XC) potential. We believe that over
the years researchers must have accounted for some of these
variables via convergence tests applied to specific problems
[9–12]. Nevertheless, there is no evidence of a dedicated study
addressing all these points jointly. As discussed later in the
text, such an overlooked gap constrains the development of
semiclassical, DFT based methods for charge transfer only
to metallic surface models of sufficiently large areas, which
is the linear response limit of the LK equivalence. As most
of the available DFT codes for computational surface science
use PBCs, it is then relevant to investigate the electrostatics of
finite slabs beyond the linear response.

In this work, we have carried out detailed DFT simulations
for the low-index facets of Li, Al, and Ag using neutral and
charged slabs under strong external fields. The choice of Li,
Al, and Ag is made to account for examples of alkali, p-block,
and noble metals, respectively. Based on previous work, we
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have computed key parameters that allows quantifying the
electrostatics beyond linear response. From interpolation of
such computed parameters, we can also access the limit of
linear response and explore the validity of the LK equivalence
for finite slabs.

It is worth to briefly summarize the long but thrilling
history of DFT applied to metallic surfaces, particularly when
exposed to external fields.1 Following the work of LK [3–5],
the improvement of computational resources in the eighties
led to the first self-consistent DFT simulations of jellium
beyond linear response, which provided unprecedented infor-
mation of the differential capacity at interfaces as well as
details of optical properties [16–21]. The first DFT simula-
tions including PPs explicitly were conducted by solving the
one-dimensional problem in a surface-averaged effective po-
tentials [22–24], which made it possible to estimate the image
plane position and its dependence on the crystallographic ori-
entation. With the incorporation of PPs over the full 3D-space,
the use of finite slabs in PBCs enabled the first DFT simula-
tions of surfaces with unprecedented detail of the electronic
structure. Simulations have considered the interaction with
either external point charges [9,10], charged sheets [11,12]
and uniform electric fields [25–27]. Since the late nineties, a
large amount of DFT studies have followed to address diverse
problems such as field evaporation [28], second-harmonic
generation [29], surface reconstruction [30,31], stress to ex-
cess charge [32], and metal/solvent interfaces [33]. The list
of reported DFT studies is endless.

The main reason motivating the present work is that, de-
spite its success, practical DFT still has severe limitations to
reproduce many relevant surface effects (see below). This is
mainly due to the incapability of local XC functionals to prop-
erly describe the interactions at the surface region, where the
electron density exhibits a near-discontinuity and the highly
nonlocal electronic correlations cannot be captured by local
approximations [34,35]. Part of these limitations has been
overcome by the development of vdW-corrected XC function-
als, which significantly improved the description of physical
phenomena at interfaces [36,37]. Even so, standard semilo-
cal DFT fails to reproduce the correct asymptotic behavior
of the potential into the vacuum region, thus precluding the
correct description of electron tunneling [38] and image states
[39,40]. Recent developments in meta-GGA XC approxima-
tions [41] have however shown great promise in improving
the asymptotic behavior. Although constrained-DFT solutions
[42–44] allows tackling the problem of fractional charging,
there is no yet a well-established methodology that can effi-
ciently compute hybridization at metallic interfaces, for which
charge transfer applications have been restricted to the weak
coupling regime where atoms or molecules are not bound to
the surface [43].

In principle, most DFT limitations can be remedied
through many-body perturbation theory [40,45], but the

1In parallel to DFT studies, the response of metallic surfaces
under strong external fields has also been investigated using surface-
embedded Green function formalism, developed by J. E. Inglesfield
and collaborators [13–15].

implementations of such solutions to the problem of metal-
lic slabs including electrostatic perturbations are not yet
available. Within this framework, we believe that further de-
velopment of semiclassical, DFT-based methods can offer a
good strategy to circumvent some of the inherent limitations
of DFT for metallic surfaces. One of these semiclassical
method is DFT-PC, developed by one of us to compute molec-
ular adsorbates on insulating films supported by metallic
substrates [46–49]. In this scheme, the whole metal substrate
is replaced by a perfect conductor (PC), and the DFT problem
of adsorbate and film is computed self-consistently in the
potential generated by the induced charge at the PC.

As for any semiclassical method, the use of classical charge
distributions like the PC to approximate the electrostatic re-
sponse of the metallic surface requires a deep understanding
of how the explicit metallic slab responds to external per-
turbations. In fact, for a metallic slab of finite area A in
PBCs, the transfer of charge Qs to a separated species will
induce a non-zero-average surface charge density −Qs/A at
the slab surface. The generated electrostatic response at the
slab will differ from the response generated if the charge
density was Qs/A. Comparing such responses is relevant to
the present work, which can potentially contribute to, for
example, the computation of image-charge effects in single-
molecule junctions [50,51] as well as analytical models for
metal/graphene interfaces [52]. Thus we consider that revis-
ing the DFT computation of metallic slabs in external fields is
timely and relevant to current and future DFT-based research
at interfaces.

The paper is organized as follows. Section II discusses
the theoretical aspects of this work. Computational details are
given in Sec. III. The electrostatic response for neutral slabs
in external fields (Sec. IV) and net charged slabs interacting
with a PC plane (Sec. V) are compared in Sec. VI. The role of
the XC is investigated in Sec. VII. Finally, we discuss the con-
clusions in Sec. VIII. We also provide a extensive supporting
information [53] not only with results that complement our
research but also with a brief self-contained DFT formulation
applied to this study for the interested reader.

II. THEORETICAL FRAMEWORK

In this work, we shall only focus on the electrostatic
response of metallic surfaces under static electric fields.
The type of electric fields considered are those generated
by an uniform surface charge distribution, σext, located in
the vacuum region sufficiently far from outermost atomic
layers of the metallic slab. Frequency dependent response
and the well-know limitation of standard local exchange-
correlation functionals are not considered in the present study.
This restriction excludes cases such as the computation of
images states [34,39,40,54–61] and the long-standing prob-
lem of a single electron interacting with a metallic surface
[5,9,10,62–65].

Here we shall use the supercell approximation with PBCs
and consider slab models with surface area A parallel to the
xy plane and perpendicular to the z direction with z ∈ [0, Lz],
where the z = 0 and Lz are equivalent via the PBCs. The
supercell also includes a sufficiently large vacuum region to
minimize the interactions the periodically repeated slabs. The
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DFT formulation for slabs with PBCs is well known. Even so,
for the sake of completeness and for those interested readers
who are not familiar with the mathematical foundations, we
provide the basics of the DFT formulation for metallic slabs
in Sec. I of Ref. [53].

To investigate the electrostatic response of metallic sur-
faces, we will use (i) neutral slabs under electric fields
(Sec. II A) and (ii) the DFT-PC formalism [46], where the
simulated slab can exchange charge with a perfect conduc-
tor (PC) located in the vacuum region (Sec. II B). Based on
previous work, we shall use key parameters derived from
the induced surface charges to characterize the electrostatic
response (Sec. II C). Although not considered in the present
work, and mainly for reference purposes, we also describe two
other possible DFT methods to compute metallic slabs beyond
linear response.

A. Neutral slab in uniform electric field

Let us assume a neutral slab with a sufficiently large vac-
uum region. An uniform external electric field, E = Ezk̂, is
applied across the supercell, with k̂ the unit vector in the
z direction. The mathematical foundations for the DFT prob-
lem of neutral slabs in uniform electric fields with PBCs were
laid down over two decades ago [25,66]. The interested reader
is referred to Sec. II of Ref. [53] for a brief description of the
theory. It is important to reiterate that the DFT computation
of neutral metallic slabs under (strong) fields using the PP
approximation is not new [67]. Here, we use this methodology
to compute the electrostatic response and compare results
against the problem of charged slabs interacting with an ex-
ternal PC (see Sec. II B).

Since the electric field is screened inside the (neutral)
metallic slab, the overall response is the accumulation of
opposite charge at both sides of the slab. An example of such
distribution will be discussed in Sec. IV. This charge distri-
bution generates a net dipole moment in the system, which
requires of a dipole potential to correct the electrostatics in
PBCs. An efficient DFT solution to this problem was first
proposed by J. Neugebauer and M. Scheffler [25] and later
corrected by L. Bengtsson [66]. The accumulation of opposite
charge at both surfaces indicates that the electrostatic response
at each side of the slab can be seen as two complementary
surface models within the same slab. Here, we refer to zσ as
the z-coordinate inside the slab that separates the positive and
negative sides of the slab. In the region 0 � z < zσ the vector
normal to the surface n̂ is −k̂ and the normal component of the
external field Enz = Ez(n̂ · k̂) = −Ez. Consequently, we have
n̂ = k̂ in the region zσ < z < Lz, and the normal component
of the external field Enz = Ez(n̂ · k̂) = Ez.

Following the DFT simulation of the slab in an external
field Ezk̂, the computed electrostatic potential, Vel(r; Ez ), and
the corresponding self-consistent charge density, ρ(r; Ez ), are
represented in a grid within a supercell. The induced potential
ρind(r, Ez ) for each side of the slab is defined as follows:

Vind(r; −Ez ) = Vel(r; Ez ) − V 0
el (r) 0 � z < zσ ,

Vind(r; Ez ) = Vel(r; Ez ) − V 0
el (r) zσ � z < Lz. (1)

where V 0
el (r) = Vel(r; Ez = 0) is the potential in absence of an

external electrical field. It is important to remark that both

induced potentials Vind(r; Ez ) and Vind(r; −Ez ) are derived
from the same common Vel(r; Ez ) but interpreted to be the
result of exposing either side of the slab to external fields
of different signs. Analogously, we define the induced charge
density ρind(r, Ez ) with the following expression:

ρind(r; −Ez ) = ρel(r; Ez ) − ρ0
el(r) 0 � z < zσ ,

ρind(r; Ez ) = ρel(r; Ez ) − ρ0
el(r) zσ � z < Lz, (2)

with ρ0(r) = ρ(r; Ez = 0) being the charge density in ab-
sence of an external field (unperturbed slab).

For the purpose of analysis and visualization, it is common
practice to define the xy-averaged induced potential

φind(z; ±Ez ) = 1

A

∫
A

Vind(R, z; ±Ez )dR (3)

and the xy-averaged induced surface density

σind(z; ±Ez ) = 1

A

∫
A
ρind(R, z; ±Ez )dR (4)

at each side of the slab. The external electric field E = Ezk̂ can
be rationalized as the field in between two uniformly charged
sheets located at the boundaries of the supercell. From ele-
mentary electrostatics we find Ez = −4πσext, where σext is the
surface charge density at one of the capacitors (−σext at the
other capacitor) [68]. Let us place one of these external sheets
with charge density σext at z = 0, and the other external sheet
with charge density −σext at z = Lz.2 The slab in the region
0 � z < zσ is exposed to a field −2πσext = Ez/2 generated
by σext at z = 0. Thus the total induced surface charge σ ∗

ind is
defined as

σ ∗
ind(−Ez ) =

∫ zσ

0
σind(z; −Ez ) dz = −σext

∣∣∣∣
z=0

(5)

and will generate an electric field Ez between the sheet at z =
0 and the first atomic layer (sufficiently far from this layer).
Similarly, the slab in the region zσ � z < Lz is exposed to a
field 2πσext generated by −σext at z = Lz, and this induces a
total charge density per unit area σ ∗

ind. Thus

σ ∗
ind(Ez ) =

∫ Lz

zσ

σind(z; Ez ) dz = σext

∣∣∣∣
z=L

. (6)

Since the slab is neutral we have∫ zσ

0
σind(z; −Ez ) dz = −

∫ Lz

zσ

σind(z; Ez ) dz. (7)

Either Eq. (5) or (6) can be used to obtain zσ within the slab.
In the linear response limit, zσ will be at the center of the slab,
but this is not necessarily true beyond the linear response. We
will return to this point in Sec. IV.

B. The DFT-PC method

The DFT-PC method is a DFT-based approach that allows
computing a charged system (here a charged slab) interacting

2Numerically, the location of the charged sheets are set at �z and
Lz − �z, as few grid points are needed to correct for PBCs along the
z direction.
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with an external perfect conductor PC located at zpc in the
vacuum region [46]. In Sec. III A of Ref. [53] we provide
a mathematical description of the DFT-PC method for the
interested reader. The method allows setting a net amount
of charge for the slab to Qs, which automatically fixes a
total charge of −Qs at the PC plane, thus maintaining the
neutrality of the supercell. Here, the charge density at the
PC is set to be uniformly distributed in the xy plane, i.e.,
σpc(r) = −Qs/Aδ(z − zpc). The choice of this functional form
for σpc(r) does not correspond to the charge distribution of a
point charge Qs required to test the KL equivalence. However,
due to PBCs in the xy plane, σpc(r) is a good approximation
to the point charge distribution for sufficiently large separation
from the slab (see Sec. III B of Ref. [53]).

The surface charge density σpc(r) generates an electrostatic
potential that is included self-consistently in the DFT compu-
tation of the charged slab. This leads to the accumulation of
opposite charge only at the side of the slab closest to the PC
plane. Due to the PBCs, the z position of the plane for dipole
corrections must be set in the vacuum region between the PC
plane an the opposite side of the slab [46].

Following the DFT-PC computation of the slab with net
charge Qs, we obtain the electrostatic potential Vel(r; σ ∗

pc)
and the charge density, ρ(r; σ ∗

pc), where σ ∗
pc = ∫

V σpc(r)dr =
−Qs/A is the total charge per unit area at the PC plane.
Similarly to Eqs. (1) and (2), we define the induced potential,
Vind(r; σ ∗

pc), as follows:

Vind(r; σ ∗
pc) = Vel(r; σ ∗

pc) − V 0
el (r), (8)

where V 0
el (r) = Vel(r; σ ∗

pc = 0) is the potential for the
neutral system. Note that Vel(r; σ ∗

pc = 0) = Vel(r; Ez = 0).
The induced charge density, ρind(r; σ ∗

pc), is the charge re-
sponse from the interaction with the PC and

ρind(r; σ ∗
pc) = ρ(r; σ ∗

pc) − ρ0(r) (9)

with ρ0(r) = ρ(r, σ ∗
pc = 0). Note that ρ(r; σ ∗

pc = 0) =
ρ(r; Ez = 0) is the computed charge density of the
unperturbed slab. Similarly to Eqs. (3) and (4), we define the
xy-averaged induced potential φind(z; σ ∗

pc) as

φind(z; σ ∗
pc) = 1

A

∫
A

Vind(R, z; σ ∗
pc)dR, (10)

and the xy-averaged induced surface charge, σind(z; σ ∗
pc), with

the following expression:

σind(z; σ ∗
pc) = 1

A

∫
A
ρind(R, z; σ ∗

pc)dR. (11)

C. Parametrizing the electrostatic response

Since the work of LK [3–5], computed profiles for σind

have been used to characterize and parametrize the electro-
static response of metallic surfaces. One of these parameters is
the centroid of the induced charge distribution, zc. Following
the formulas of Sec. II A for a neutral slab in an external field
E = Ezk̂, we have

zc(Enz = −Ez ) =
∫ zσ

0 zσind(z; −Ez ) dz∫ zσ

0 σind(z; −Ez ) dz
(12)

and

zc(Enz = Ez ) =
∫ Lz

zσ
zσind(z; Ez ) dz∫ Lz

zσ
σind(z; Ez ) dz

(13)

at each side of the slab, where Ezn is the component of the
external field E normal to the surface. For a charged slab
interacting with an external PC, the integration is over the
whole z domain and we have

zc(σ ∗
pc) =

∫ Lz

0 zσind(z; σ ∗
pc) dz∫ Lz

0 σind(z; σ ∗
pc) dz

. (14)

Another relevant parameter is obtained from the evidence
that σind reaches a maximum (or minimum) value outside the
slab [see Figs. 1(c) and 2(d) below]. The full half width, λ,
is defined as the extent for which σind reaches half of this
maximum (or minimum) value. λ is essentially a screening
length and has been identified to play an important role for
the optical response of the surface [17,69,70].

The computation of zc and λ for Enz → 0 or σ ∗
ind → 0 is

challenging due to numerical instabilities [3,67]. Here, we
shall refer to these values as zc0 and λ0, which is the limit
of linear response. For neutral slabs, large numerical noise
is often introduced as the magnitude of the external field
is reduced. Similarly, for charged slabs we observe that the
numerical noise increases as one reduces the amount of charge
transferred to the PC. Due to these technical difficulties, zc0

and λ0 are obtained via interpolation at σ ∗
ind = 0 of the com-

puted zc and λ beyond linear response.

D. Alternative DFT strategies

In this section, we briefly describe two possible alterna-
tives to compute the electrostatics of metallic slabs within
the framework of the present work. Although these methods
will not be applied to the present study, we will use results
computed with these alternatives for comparison purposes.

The first strategy has been developed by S.C. Lam and
R.J. Needs [12] and consists to adding a thin charged sheet
at the center of the vacuum region, halfway in between the
two surfaces of the periodically repeated slab models. Charge
neutrality within the supercell is achieved via tuning the po-
sition of the Fermi level in the metal. This external charged
sheet induces an external field, and the excess of charge (of
opposite sign) added to the slab accumulates at both sides
of the slab. This method is somehow similar to DFT-PC and
has been successfully applied to investigate the screening of
electric fields at aluminum surfaces [12], the rate-constant
for an electron to tunnel from an inert gas atom into a metal
surface [11], and the response of the surface stress to excess
charge [32]. This method has also been extended using the
grand-canonical DFT formalism [30] to simulate surface re-
construction of charged slabs at constant chemical potential
[31] and investigate field evaporation phenomena [28]. De-
spite its success, the applicability of this method is restricted
to slabs that are symmetric in the z direction for which the
total dipole moment within the supercell is zero. In fact, by
the time this method was first introduced, dipole corrections
were not yet available in DFT codes.
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FIG. 1. Neutral slab model of Li(100) composed of 25 layers in a external electric field E = −0.40 V/Å k̂. The z position of the outermost
atomic layers of the slab are indicated by the grey vertical lines. The outermost layer at the left is set to z = 0Å. Dipole correction are set at
z = −12Å. (a) Computed electrostatic potentials φel for Ez = −0.40 (black) and 0 V/Å (red). The induced potential at the left (right) side of
the slab is shown in blue (magenta). Values for Ezn in the captions indicate the projection of E along the normal vector n̂ at each surface of the
slab, n̂ = −k̂ at the left and n̂ = k̂ at the right. (b) Augmented display of φind. (c) the computed induced surface charge σind demonstrates that
the metal slab screens the external field by electron and hole accumulation at the left and right sides of the slab, respectively.

The second option is constrained-DFT [42–44], in which
the total energy functional is minimized by constraining the
electronic charge to be localized in a pre-defined region of
the space, offering a promising strategy to tackle the self-
interaction error [35,71]. A. Souza et al. [43] have applied this
method to compute the interface between a single benzene
molecule and a slab of Li(100) with and without PBCs. By
transferring charge between both fragments, they computed
the electrostatic response of the Li(100) surface and extracted
the energy level alignment. This method offers a robust DFT
framework to explore the weak coupling regime. However, for
rather small surface areas and/or large separation distances in
PBCs, the method could predict unphysical states for electron
transfer, as the charge would rather leak from the fragments
driven by the electrostatic force if the constrains were re-
moved. To address physically valid conditions in PBCs [72],
it is needed to simulate slabs with large surface areas, which
significantly increase the cost of the simulations.

III. COMPUTATIONAL DETAILS

All the calculations were carried out using the projector-
augmented wave method [73] together with PBCs, as
implemented in the VASP code [74–76]. Details for the com-
putational implementation of the DFT-PC method within VASP

are described in Ref. [46]. We have computed the low-index
(100), (110), and (111) facets of Li, Al, and Ag slabs. For most
of the simulations, the electronic exchange-correlation was
treated according to the GGA-PW91 approximation [77]. For
the Ag(111), we have also considered the LDA [78], PBE [79]
and the nonlocal optB86B [36] exchange-correlation (XC)
functionals.

We have used pseudopotentials (PPs) with one (2s2), three
(s2 p1), and eleven (4d10 5s1) valence electrons for the Li, Al
and Ag atoms, respectively. To converge the metallic states
we have used the second order method of Methfessel-Paxton
[80] with a smearing of 0.2 eV. In addition, we set tight energy
convergence thresholds, always lower than 10−7 eV. This last
requirement is crucial to properly converge the charge density,
which significantly affects the computation of zc.

We first computed the three elements in bulk. Details for
these calculations and computed lattice parameters can be

found in Table I of Ref. [53]. For Li and Al, we find it suffi-
cient to set an energy cutoff of 400 eV and a k-point sampling
of 11 × 11 × 11 in the Monkhorst-Pack scheme. For Ag, we
also computed the problem using a cutoff of 600 eV and a
k-point sampling of 21 × 21 × 21. For the LDA and PBE
functionals, we find that results are practically independent of
the k-point sampling and the energy cutoffs within the range
of computed values. Computed lattice parameters are within
2.03% with respect to the experimental values.

Using the converged bulk structures, we built vacuum-
exposed slab models for the (100), (110) and (111) facets.
Adopted DFT settings and geometrical details are provided
in the Table II of Ref. [53]. Li, Al, and Ag slabs are compared
using the GGA-PW91 approximation with an energy cutoff of
400 eV. To compare the results of different XC functionals for
the Ag(111) surface, we have increased the cutoff to 600 eV.

We find that increasing the cutoff for the GGA-PW91 has
a negligible effect in the computed values of zc and λ. This
is because such response parameters are computed from elec-
tronic charge differences. We have explored several k-point
samplings and verified convergence in the computed values.
Thus we are confident that the parameters listed in the Table
II of Ref. [53] are sufficient to the purpose of the present study.

To analyze the role of the slab thickness, we have only
considered the three facets of Li, and computed models with
different number of atomic layers, ranging from 4 to 25 layers
(one atom per layer) for the (100) and (111) facets and from
4 to 18 layers (two atoms per layer) for the (110) facet.

As in previous work [12,31], we have not considered the
ionic relaxation of the slabs. This is because we will re-
port the computed values of zc with respect to the jellium
edge (see Sec. VI C), so that we can compare our results
directly with previous data. If surface relaxation is allowed,
the interlayer separation distances are not the same across
the slab, and the position of the jellium edge is not well
defined. The role of surface relaxation, and the ensuing need
for averaging or smoothing approaches [81] to unambigu-
ously define jellium edges in the presence of atomic surface
roughness, particularly for strong external perturbations of
positively charged slabs, is beyond the primary aim of the
paper, namely, numerically confirming the KL equivalence for
pseudopotential-based, periodic metallic slabs.
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FIG. 2. Slab model for Li(100) surface (25 atomic layers) inter-
acting with an external PC located z = −8Å (vertical green dashed
line). The dipole correction is at z = −10Å. The z position of the
outermost atomic layers of the slab are indicated by the grey verti-
cal lines. (a) Computed electrostatic φel (black) and induced (blue)
potentials for σ ∗

pc = 2.21 × 10−3 e/Å2. (b) Computed electrostatic
φel (black) and induced (magenta) potentials for σ ∗

pc = −2.21 ×
10−3 e/Å2. The electrostatic potential for the unperturbed slabs (red)
is shown in (a) and (b). (c) Augmented display of the computed
induced potentials. (d) Induced surface charge densities.

To compare the response of neutral and charged slabs us-
ing the two methods explained above, it is necessary to set
equivalent external perturbations. To induce the same amount
of surface charge density σ ∗

ind at the relevant side of the slab
(i) an external field of value Ez = 4πσ ∗

ind must be applied to
the neutral slab and (ii) a total surface charge of σ ∗

pc = −σ ∗
ind

must be set at the PC plane, which will generate an exter-
nal field Ez outside the slab. In Sec. VI C, the electrostatic
responses are compared against the induced charge density
σ ∗

ind.
A crucial point is to set a sufficiently large vacuum re-

gion, which inevitably increases the computational cost for
computations using plane waves. Nevertheless, large elec-
tric fields can lead to electron leakage from the slab to the
vacuum region. This is a well-know phenomenon related to
the process of electron field emission [72,82,83], extensively
studied for many decades and beyond the scope of the present
work [84,85]. To the purpose of the present study, we have
based on the work of P. J. Fiebelman [72] and brought the
position of the dipole layer (and the PC plane for the DFT-PC
method) closer to the slab surface as the value of σ ∗

ind become
more negative. Likewise, we have also made sure to exclude
those results where electron leakage was manifested. This is a
tedious task but to date the only way forward to compute this
type of problems using plane waves.

Finally, induced potentials are plotted such that the Fermi
energy is set to zero inside the slab.

IV. NEUTRAL SLAB IN UNIFORM ELECTRIC FIELD

Figure 1 shows the computed induced potential and charge
across the simulation cell for a slab model of Li(100)
composed of 25 atomic layers in an electric field of E =
−0.40 V/Å k̂. As mentioned above, the problem is computed
with the z coordinate defined between 0 and Lz (Sec. II A).
However, to the purpose of visualization and analysis, we re-
port the results by shifting the z values such that the outermost
atomic layer at the left/bottom side of the slab is set to z = 0.

Such induced response is well known in the field [67]. We
reiterate that the main purpose here is to briefly describe the
computed quantities and compare results with those obtained
using the DFT-PC method. In Fig. 1(a), we observe that the
induced potential φel (solid black) exhibits a linear behavior
at both sides of the slab, sufficiently far from the outermost
atomic layers (grey vertical lines), and the dipole correction
restores the periodicity at the edge of the slab. In absence
of the electric field, the unperturbed slab is dipole-free and,
consequently, the computed potential is flat in the vacuum
region (solid red). The induced potential φind at the left (right)
side of the slab is shown in blue (magenta) and constitutes the
net electrostatic response to the external field. Both profiles
are augmented in Fig. 1(b), and show that the external field
will tend to pull out (push in) electronic charge at the left
(right) side of the slab, for which the normal component of the
electric field, Ezn = E · n̂, is positive (negative). This leads to
net electron and hole accumulations at the opposite sides of
the slab, as shown in Fig. 1(c). Despite the finite size of the
system, we observe an oscillatory pattern for σind inside the
slab, which is consistent with the Friedel oscillations observed
for semi-infinite jellium surfaces [3–5,86]. The magnitude
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of the oscillations for both φind and σind reduce towards the
central part of the slab.

In semi-infinite models for metallic surfaces, the surface is
an open system that can exchange electrons with a reservoir
at constant chemical potential [25,46]. Here, nevertheless, the
slab is a closed neutral system, and the electrostatic response
is equivalent to transferring charge from one surface to the
other. In other words, the whole electrostatic response can
be seen as two complementary surface models that couple at
zσ inside the metal slab, where the condition of Eq. (7) is
satisfied. If electron and hole distributions were equivalent,
zσ would be located at the middle of the slab. Nevertheless,
from the calculation of zσ for the three facets of Li using slab
with different number of layers (Sec. VI B), we find that zσ is
always larger than 0.45 Å and smaller than 0.80 Å displaced
from the geometrical center of the slab towards the positively
charged side.

Finally, we have verified the importance of breaking the
symmetry along the z direction, as explained in Sec. V of
Ref. [53]. In fact, if the symmetry along the z direction is not
broken, the computed charge density results to be symmetric
with respect the center of the slab, leading to an incorrect
potential that varies linearly even inside the metallic slab.

V. CHARGED SLAB INTERACTING WITH A PERFECT
CONDUCTOR

Figure 2 shows the electrostatic response for the same slab
model of the previous section, but in this case interacting
with an external PC separated 8 Å from the outermost layer
at the left, as indicated by the dashed green line. As for the
results of previous section, we shifted the z values such that
the outermost atomic layer at the left/bottom side of the slab
is set to z = 0.

In contrast to the neutral slab subject to an external field
where electron and hole accumulation are complementary
responses, in this case, we need to compute the responses for
electron and hole accumulation separately. Since we aim to
compare the electrostatics of this system with the results of
previous section, we must transfer charge from the slab to
the PC such as the electric field between the PC and the slab
is Ez = 0.40 and −0.40 V/Å (in two separate calculations).
This is accomplished by setting a total surface charge σ ∗

pc

equal to 2.21 and −2.21 × 10−3 e/Å2, which induces a total
surface charge σ ∗

ind of −2.21 and 2.21 ×10−3 e/Å2 at the slab,
respectively.

In Fig. 2(a), we plot the computed electrostatic potential
φel for σ ∗

pc = 2.21 × 10−3 e/Å2 (black). We notice that the
potential is constant at the left of the PC, which demonstrates
that the electrostatic potential is screened. In this particular
case, the PC region is set to extend for 2 Å until zdip = −10Å
where dipole corrections are applied. For this separation of
8.0 Å, we observe evidence of electron leakage for σ ∗

pc >

2.76 × 10−3 e/Å2. Thus a density of σ ∗
pc = 2.21 × 10−3 e/Å2

corresponds to a rather limiting scenario for the Li(100)
model. Although the 2 Å separation between the PC and
zdip the could appear to be relatively small with respect to
the extension of the slab, we have verified this does not af-
fect the computed total energy. From the computation of the

unperturbed slab (red), we obtain the induced electrostatic
potential (in blue).

In Fig. 2(b), we show results for σ ∗
pc = −2.21 ×

10−3 e/Å2. Since the slab is positively charged we do not
have problem of electron leakage. Thus the PC region could
in principle be extended to any value, but we have also kept
it to 2 Å for the sake of comparison with the previous case.
The induced electrostatic potential is shown in magenta. In
Fig. 2(c), we augment the scale and compare the induced
potentials in the same graph, where we observe an oscillatory
patter that decreases towards the inner region of the metal slab.
Computed induced charges σind are displayed in Fig. 2(d),
where we also observe a behavior consistent with the Friedel
oscillations.

VI. ELECTROSTATIC RESPONSE OF NEUTRAL
AND CHARGED SLABS

The two previous sections show how induced potentials
and charges are computed using neutral slabs in external fields
(method Ez) and charge slabs interacting with a PC (method
PC). In this section, we compare the electrostatic response
using both methods.

A. Induced potentials and charges

Figure 3 shows the induced potentials φind [(a)–(c)] and
induced surface charges σind [(d)–(f)] for the (100) facet of
Li, Al, and Ag. Results were computed using the GGA-PW91
XC potential. Details for the slab models are provided Table
II of Ref. [53]. Empty squares refer to the method Ez (E =
−0.40 V/Å k̂) and filled circles to the method PC (σ ∗

pc =
±2.21 × 10−3 e/Å2). The same grid has been used for the
computation of both methods. Results for hole accumulation
at the right side of slabs computed with the method Ez [see
Fig. 1 for the case of Li(100) facet] are projected to left side
of the slab to allow comparison with the PC method. This
explains the apparently different location for the z position of
dots and squares.

From the plot, we find that both methods generate equiv-
alent electrostatic responses. The same level of agreement
between both methods is observed for the (110) and the (111)
facets, as reported in Sec. IV of Ref. [53]. When compar-
ing the profiles between the elements, we observe that the
magnitude of the oscillations for φind are larger for Li, fol-
lowed by Ag and Al. For Al and Li, φind exhibits oscillations
that monotonically decay inside the slab, independently of
the facet. For Ag, in contrast, smooth oscillations are only
observed for the (110) facet, while for the other two facets the
magnitude decay in a rather convoluted way. Consequently,
computed σind exhibit Friedel type oscillations for Li, Al, and
Ag(110), while for Ag(100) and Ag(111) the excess charge
is practically screened within 3 Å from the outermost atomic
layer. Our results for Ag(111) are in qualitatively good agree-
ment with the profile computed in Ref. [67].

Despite the observed agreement between both methods,
comparing profiles for induced potentials and charges is use-
ful only from a qualitative perspective. We could also plot
differences but this also would be of little use. In addition,
the agreement of Fig. 3 must be corroborated for a varying
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(c)(a) (b)

(f)(d) (e)

FIG. 3. Comparison of the induced potentials φind [(a)–(c), blue and magenta] and surface charge densities σind [(d)–(f), black and red]
for Li, Al, and Ag in the (100) facet. Empty squares refer to the method Ez (E = −0.40 V/Å k̂), and filled circles for the method PC
(σ ∗

pc = ±2.21 × 10−3 e/Å2). Magenta and red describe hole accumulation, whereas blue and black electron accumulation. Solid lines are used
as a guide to the eye.

range of external perturbations, which would further compli-
cate the analysis. To facilitate identification of similarities and
differences between the two methods, rather than comparing
induced potentials and charges, we will focus on comparing
zc and λ, as defined in Sec. II C, to quantify the electrostatic
response of slabs.

B. Dependence of the slab thickness

In this section, we evaluate the equivalence between the
Ez and PC methods for Li slabs with different number of
atomic layers. We shall keep the same external field E =
−0.40V/Å k̂ for neutral slabs (method Ez), and the same
values total surface charge σ ∗

pc = ±2.21 × 10−3e/Å2 for the
PC interacting with charged slabs (method PC).

Results for zc are shown in Fig. 4 for induced electrons (a)
and holes (b). Results for λ can be found in Fig. 3 of Ref. [53].
Despite small numerical uncertainties, we find a very good
agreement between the computed values for neutral (empty
squares, method Ez) and charged (filled circles, method PC)
slabs. Thus, when using zc as the parameter to quantify the
electrostatic response of metallic surfaces, we can confidently
claim within ± 0.1 Å (due to numerical errors) that the equiv-
alence discussed in Sec. VI holds for slabs with a number of
atomic layers larger � 6 for facets (100) and (111), and � 4
for the (110) surface. However, if instead of using condition of
Eq. (7), we arbitrarily set zσ at the half of the slab, we find that
computed values for zc do not converged with the number of
atomic layers [see Fig. 4 of Ref. [53] for the Li(100) facet]. We
find the dispersion for zc is larger for electron accumulation,
specially for the (111) facet, as the perturbation approach the
limit of electron leakage. We also observe that zc is different
for electron and hole accumulation, which demonstrates that
the accumulation of electrons and holes screen the external

perturbations differently, in agreement with previous research
[16,17,67].

Finally, the trend for the zc values remains practically
constant with increasing the number of atomic layers of the
modelled slabs, despite numerical uncertainties. The results
demonstrate that each surface facet screens the external field
differently. It is worth to emphasize that the present case of
slabs in external fields differs from the standard problem of
explicit adsorbates, deposited in metallic surfaces. For the
latter, the adsorbate and the metallic surface form a bonded
system, i.e., there is no external field, and the number of
atomic layers needed to model the surface is routinely defined
from the convergence of the adsorption energy.

C. Dependence on the perturbation strength

After having compared induced potentials and charges
(Sec. VI) and analyzed the dependence of the response pa-
rameters with the number of layers for the modelled slabs
(Sec. VI B), in this section, we evaluate the equivalence
between the methods Ez and PC for different magnitudes
of the external perturbation. To compare both methods, the
settings must be such that they induce the same total induced
charge per unit area, σ ∗

ind, at the relevant side of the slab (see
Sec. III). To facilitate the comparison of the computed zc with
previous work, we shall report the values with respect to zJ ,
which has been historically defined as the jellium edge, lo-
cated at half the interlayer distance from the outermost atomic
layer into the vacuum region.

Figures 5(a)–5(c) show zc − zJ for the low-index facets of
Li, Al, and Ag as a function of σ ∗

ind computed with the method
PC. Values are always positive (outside the jellium edge),
and increase as σ ∗

ind decreases. However, the trend changes
qualitative depending on the sign of σ ∗

ind, particularly for Al
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FIG. 4. Computed zc for electron (a) and hole (b) accumulation
as a function of the number of atomic layers for slab models of
Li(100), Li(110) and Li(111), shown in black, red and blue, respec-
tively. Empty squares correspond to values for neutral slabs in an
external field of Ezn = 0.40 (a) and −0.40 V/Å (b). Filled circles
correspond to charged slabs interacting with a PC with σ ∗

pc = 2.21 ×
10−3 e/Å2 (a) and −2.21 × 10−3 e/Å2 (b). Values are referred with
respect to the outermost atomic layer.

and Ag: whereas values in the region σ ∗
ind > 0 could be well

adjusted with a linear fit, the behavior is qualitatively different
for σ ∗

ind < 0, where we notice a departure from linearity as
σ ∗

ind becomes less and less negative before electron leakage
takes place. This trend is in agreement with previous findings
for jellium [16,17]. It is important to reiterate that we have
carefully checked there was not electron leakage in our results.
The reduced domain for σ ∗

ind when computing Li indicates
that it is easier to induce electron leakage for this element
in comparison to Al and Ag, which can be attributed to the
lower work function (≈ 3.0 eV for Li in contrast to > 4.00 eV
for Al and Ag). The solid lines are the result of fourth-order
polynomial fitting to estimate the values of zc − zJ in the
limiting case of σ ∗

ind = 0 (see Table I below).
The computed differences �zc between the method PC

and the method Ez are shown in Figs. 5(d)–5(f) for Li,
Al and Ag. Nonzero values are observed for selected
facets around σ ∗

ind = 0. This is a consequence of unavoid-
able numerical errors when computing the integrals for
small amounts of induced charge. Thus �zc for |σ ∗

ind| <

TABLE I. Response parameters zc0 − zJ and λ0 in the limit of
σ ∗

ind = 0 computed with the method PC. Values are obtained from
the interpolation of the computed data of Figs. 5 and 6. Values of
columns |�zc0| and |�λ0| are the differences between method Ez and
PC. Values are given in Å units.

Element Facet zc0 − zJ |�zc0| λ0 |�λ0|
Li (100) 1.166 0.002 1.999 0.004

(110) 0.980 0.002 1.921 <0.001
(111) 1.298 0.006 2.016 0.003

Al (100) 0.648 0.001 1.478 0.005
(110) 0.899 0.010 1.489 0.012
(111) 0.566 0.010 1.476 0.003

Ag (100) 0.504 0.005 1.319 0.017
(110) 0.673 0.018 1.300 0.003
(111) 0.409 <0.001 1.328 0.001

0.5 × 10−3e/Å2 should not be considered as a reference to
compare the methods. Even so, |�zc| is always lower than
0.04 Å for σ ∗

ind > 0. In the region σ ∗
ind < 0, in contrast, |�zc|

becomes larger than 0.04 Å and keeps increasing towards the
limit of electron leakage.

Figures 6(a)–6(c) show the computed full-half-width, λ,
for Li, Al, and Ag as a function of σ ∗

ind, again computed
with the PC method. Values increase as σ ∗

ind decreases, in
qualitative agreement again with previous results results for
jellium [17]. We find �λ values are always lower then 0.01,
0.013, and 0.02 Å for Li, Al, and Ag, respectively, for the
whole range of σ ∗

ind, even in the vicinity to electron leakage.
We observe only one point for the Ag(110) which gives a
difference of 0.03 Å for σ ∗

ind = −6.63 × 10−3 e/Å2, which is
probably due to a numerical error. Even so, these differences
are smaller than those found for the zc − zJ values. We then
conclude that the main reason for the discrepancies between
method Ez and method PC come from the computation of
the zc − zJ for large negative values of σ ∗

ind. Nevertheless,
for the rest of the σ ∗

ind domain, we conclude that the electro-
static response for methods Ez and PC is equivalent. To our
knowledge, this is the first numerical demonstration for this
equivalence beyond linear response.

To validate these results, we have compared with previous
DFT work using explicit slabs and jellium. It appears that
not all the slab models computed in this work have been
previously addressed with DFT. To our surprise, the pro-
files for Li(110), Li(111), Al(100), Ag(100), and Ag(110) of
Figs. 6(a)–6(c) might be the first ever reported results beyond
linear response using DFT for finite slabs and PPs. For all the
other surfaces considered in previous work, we find a good
level of agreement in general and the reader is referred to
sec. VIII of Ref. [53] for a more detailed discussion.

Previous DFT work for Al(110) and Al(110) slabs only
focused on positive values of σ ∗

ind, and computed external
fields as large as 5.0 V/Å [12]. Positive fields induce positive
values for σ ∗

ind. Such magnitudes for the external field could
be well computed with the method PC, as the problem of
electron leakage is not manifested. However, the main scope
of the present work is to compare the electrostatic response
between methods Ez and PC. In fact, if we applied fields
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(c)(a) (b)

(f)(d)

(e)

FIG. 5. [(a)–(c)] Values of zc − zJ as a function of the induced charge at the slab σ ∗
ind computed the method PC. [(d)–(f)] Differences in zc

(�zc) between method Ez and method PC. Values are compared for the three facets for Li, Al, and Ag. Trend lines correspond to fourth-order
polynomial fits to estimate values of zc − zJ for σ ∗

ind = 0.

larger than 1.6 V/Å to neutral Al slabs, for example, the
complementary response at the opposite side of the slab will
be the accumulation of negative charge which will eventually
lead to electron leakage.

The computation of vacuum-exposed surfaces under strong
electric fields has historically aimed to evaluate the response
of electrode surfaces in electrolytic cells, for example. We
argue that for vacuum-exposed surfaces, a field that accumu-
lates positive charge will only manifest in reality if there is a
counter metallic surface negatively charged. However, beyond
a certain value for the external field, electrons at the negative
surface will start leaking toward the positive surface driven
by the electrostatic force, and the assumption of a isolated
surface would be not longer valid. Thus the largest realistic
field will be subject to the lowest value of σ ∗

ind at counter
electrode before electron leakage starts to manifest.

Table I shows the computed response parameters zc0 − zJ

and λ0, in the limit of σ ∗
ind = 0 for all the slab models. These

values are computed from interpolation of the computed data
of Figs. 5 and 6, obtained using the method PC. Results
are in good agreement with previous work and we refer the
interesting reader to Sec. VIII B of Ref. [53] for further details.

In Table I, we also report the absolute difference |�zc0|
and |�λ0| with respect to zc0 − zJ and λ0 computed with
the method Ez, again via interpolation. The largest difference
|�zc0| between both methods is computed for the Ag(110)
surface (2.6%). For |�λ0|, the largest difference is obtained
for the Ag(100) surface (1.3%). Such deviations are within the
expected numerical accuracy, and we can confidently claim

that methods Ez and PC are equivalent in the linear response
regime. As far as we are concerned, the results of Table I
provide the first numerical demonstration of the LK equiva-
lence for finite slabs in PBCs using the PPs approximation.
In contrast to the semi-infinite jellium model, the theoretical
demonstration of such equivalence for finite jellium slabs is
not trivial in principle but it deserves consideration of future
research.

Localized basis sets can be used to control electron leakage
in DFT simulations. However, for large negative values of
σ ∗

ind, this approach constrains the polarization of the surface
electrons, which could potential lead to an unphysical de-
scription of the problem. For plane waves, such a constrain
is subject to the distance between the dipole plane and the
surface layer.

Prompted the work of Nguyen et al. [87] and I. Sarria et al.
[88], a follow up direction of the present study could be the
study of the dependence of zc0 on the crystallographic orien-
tation (as considered here) and the thickness of the modelled
slabs. The oscillations observed in the surface energy and
work function for Al films as a function of film thickness [87]
are attributed to the energies of confined electrons relative to
the Fermi level and can be well fitted by a damped sinusoidal
function, with the periodicity determined by the combination
of either one or three Fermi wave vectors, depending on the
facet under consideration. Corroborating such findings for zc0

would therefore be of fundamental relevance to investigate the
interplay between the electrostatic response and quantum size
effects.

(c)(a) (b)

(f)

(d) (e)

FIG. 6. [(a)–(c)] Values of λ as a function of the induced charge at the slab σ ∗
ind computed the method PC. [(d)–(f)] Differences in

λ (�λ) between method Ez and method PC. Values are compared for the three facets for Li, Al, and Ag. Trend lines correspond to fourth-order
polynomial fits to estimate values of λ for σ ∗

ind = 0.
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(a)

(b)

FIG. 7. Computed values for zc − zJ (a) and λ (b) as function of
the total induced charge, σ ∗

ind, for the Ag(111) slab using different
XC functionals. Results were computed with the method PC.

VII. DEPENDENCE ON THE XC

In this section we investigate how the response parameters
depend on the XC functional. To this purpose, we have con-
sidered the Ag(111) slab model. Based on the demonstrated
equivalence of the previous sections, we have only computed
the DFT problem with the PC method.

Results for zc − zJ in Fig. 7(a) show that PBE and
PW91 (GGA-PW91) perform practically the same over
the whole range of σ ∗

ind as expected, being both XC
functionals of GGA-type. Small differences only mani-
fest for σ ∗

ind values in the vicinity of electron leakage.
LDA values agrees well with both PBE and PW91 for
σ ∗

ind < 0, but the slope slightly depart for σ ∗
ind > 0. On

the other hand, vdw-optB86b results in noticeable differ-
ences. First, differences in zc − zJ are as large as 0.1 Å
with respect to the other functionals over the whole range
of σ ∗

ind. Second, and probably more relevant to the present
study, we observe electron leakage for values below −3.31 ×
10−3 e/Å2, which are larger than for the other XC approxi-
mations. This demonstrates that the electrostatic response of
negatively charged slabs can be significantly affected when
including nonlocal corrections. This finding should be taken
into account to revise the extend of physically valid σ ∗

ind for
vacuum-exposed metallic slabs. Finally, results of 7b for λ

confirm that PBE and PW91 functionals are equivalent to
describe the electrostatic response. Surprisingly, LDA and
optB86b give practically the same values over the whole range
of common σ ∗

ind.
To evaluate the performance of the XC functionals, it

would be required to perform a high-level benchmark sim-
ulation beyond DFT, such as RPA or GW . For the jellium
model, several high-level calculations were performed over
the years [89]. For a bare metallic slab using PBCs and the
PP method, in contrast, we are only aware of the work of I.
D. White et al. [45], who applied the GW space-time method
to a Al(111) slab, and calculated the effective local potential
experienced by electrons in the near-surface region. From the
fitting of the potential in the vacuum region, I. D. White et al.

determined that the position of the image plane, zim, is much
closer to the outermost atomic layer than zc0, which is the
value of zc extrapolated to the linear response regime. Note
that the values of zc are computed from purely electrostatic
perturbations, whereas zim is the result of a GW simulation of
an unperturbed, neutral slab.

To our understanding, however, the prospect to applying a
high-level method beyond DFT to compute (i) a neutral slab
in an external field or (ii) a charged slab interacting with a
perfect conductor, so that one could obtain zc as a function
of σ ∗

ind [as in Fig. 7(a)], is beyond the reach of methods and
related software implementations currently available. Apart
from the well-known technical difficulties to converge any
high-level method beyond DFT, particularly for metallic sys-
tems [90], we are not aware of any available RPA or GW -like
method that can efficiently compute the quantum problem of
an explicit slab (i.e., not jellium) under external perturbations.
Future efforts along this line of research will indeed be benefi-
cial to extend the scientific reach of the DFT and beyond-DFT
communities.

VIII. CONCLUSIONS

In this work, we carried out detailed DFT simulations of
vacuum-exposed metallic slabs under external fields. Using
plane waves and PPs we computed the electrostatics for the
(100), (110), and (111) facets of Li, Al, and Ag in PBCs.
We compared the electrostatics response of neutral slabs in
uniform electric fields with the response of charged slabs
interacting with a PC located in the vacuum region. To this
purpose, we analyzed profiles for induced potentials and
charges and evaluated the role of slab thickness. To quantify
how the electrostatic response depends on the strength of
the external perturbation, we used two response parameters:
the centroid of the induced surface charge, zc, and its full-
half-width, λ. Results demonstrate the numerical equivalence
between the response of neutral and charged slabs for hole
accumulation. The equivalence for electron accumulation also
holds as long as the system response remains “far” from
the condition of electron leakage. Surprisingly, there is no
evidence of previous work for Li(110), Li(111), Al(100),
Ag(100), and Ag(110), and our results appear to be the first
ever reported DFT results for these surfaces beyond linear
response using finite slabs in PBCs.

Analysis of this equivalence for Li slabs of different thick-
nesses show that only few layers are enough to capture most
of the surface effects of metallic systems, but the number de-
pends on the facet under consideration. The computed values
of zc and λ demonstrate a qualitative different behavior for
electron and hole accumulation, in agreement with previous
work. Interpolation of computed values allows accessing the
limit of linear response and validate the KL equivalence. To
the best of our knowledge, our work provides the first numer-
ical demonstration of the LK equivalence using finite slabs in
PBCs. The theoretical demonstration of such equivalence for
finite jellium slabs is still a pending task in the field, for which
it deserves the consideration of future work.

We also evaluated the dependence of the XC and found
that the vdW-corrected optB86b functional leads to electron
leakage for less negative surface densities in comparison with
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standard LDA and GGA functionals. It is of further interest to
carry out a similar analysis for other materials and corroborate
the findings of this work.

The use of localized basis sets, instead of plane waves,
offers a robust solution to control electron leakage from metal-
lic surfaces when using external fields applied to neutral
slabs. Nevertheless, depending on the value of the induced
σ ∗

ind = −e/A and the location of the dipole plane, unphysical
solutions can be computed, as the charge would rather leak
from the metallic surface driven by the electrostatic force. For
this reason, we believe that future DFT studies with localized
basis sets should consider carefully the case of electron accu-
mulation.

In semiclassical models, the aim is to remove the explicit
metallic slabs and approximate its electrostatic response using
a PC located at the image plane position zim = zc0. This setting
implicitly assumes the linear response regime. The situation is
different for systems of finite area in PBCs. In fact, electron
transfer to unbound atoms/molecules will induce a nonzero

value of σ ∗
ind = −e/A at the metallic slabs and a charge dis-

tribution with a centroid zc �= zc0. Consequently, if one aims
to approximate the response of a metallic surface in PBCs,
setting the position of the PC plane at zc0 is incorrect.

Besides validating and extending previous work in the fun-
damentals of DFT simulations of metals, the present findings
consolidate the basis for future extension of semiclassical
DFT-based methods, for example towards TD-DFT and as-
sociated frequency-dependent electrostatic responses.
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