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Perpendicular electronic transport and moiré-induced resonance in twisted
interfaces of three-dimensional graphite
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We calculate the perpendicular electrical conductivity in twisted three-dimensional graphite (rotationally
stacked graphite pieces) by using the effective continuum model and the recursive Green’s function method.
In the low twist angle regime (θ � 2◦), the conductivity shows a nonmonotonic dependence with a peak and
dip structure as a function of the twist angle. By analyzing the momentum-resolved conductance and the local
density of states, this behavior is attributed to the Fano resonance between continuum states of bulk graphite and
interface-localized states, which is a remnant of the flat band in the magic-angle twisted bilayer graphene. We
also apply the formulation to the high-angle regime near the commensurate angle θ ≈ 21.8◦, and reproduce the
conductance peak observed in the experiment.
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I. INTRODUCTION

In recent years, the field of twisted two-dimensional (2D)
materials has attracted attention due to their unique and tun-
able physical properties. The concept of twisting 2D materials
involves stacking two or more layers of the same or dif-
ferent materials with a specific twist angle between them.
A representative system is twisted bilayer graphene (TBG),
which consists of two graphene layers being rotated with
respect to each other. TBG hosts extremely flat bands at
the Fermi energy at the so-called magic angle θ ≈ 1◦ [1],
where various correlated phenomena have been experimen-
tally observed [2,3]. Beyond TBG, the scope of research
in the field has expanded to encompass twisted multilayers,
including twisted trilayer graphene [4–11], twisted double
bilayer graphene (twist stack of two pieces of a Bernal-stacked
bilayer) [12–20], and twisted monolayer-bilayer graphene
(monolayer and Bernal-stacked bilayer) [21–26]. In addition,
research on twisted multilayer graphenes composed of a more
general number of layers and configurations has also been
conducted [27–37]. These systems often exhibit flat bands and
associated peculiar physical properties.

This paper aims to extend the exploration to twisted
three-dimensional (3D) systems where 3D layered materials
are rotationally stacked as shown in Fig. 1. In particu-
lar, we focus on the twist-angle-dependent transport in the
out-of-plane (perpendicular) direction, to explore measurable
properties associated with the moiré pattern. The conduc-
tion across twisted interfaces has been studied for various
tunneling junctions with an insulating barrier in the mid-
dle, such as the graphene/hexagonal boron nitride/graphene
structure [38–44]. In these systems, the transport through
the junction can be captured by a conventional perturba-
tion approach including the tunneling process in the leading
order [40,41,45].

When two materials are directly contacted, however, the
multiple scattering at the twisted interface is generally rele-

vant. Here we consider a twisted 3D graphite (Fig. 1) as the
simplest example of directly contacted twisted 3D systems.
The electronic structure of the twisted 3D graphite was pre-
viously studied, where a remnant of the flat band in TBG
was found in the local density of states [29]. The interlayer
transport in twisted graphitic systems was investigated in
various theoretical approaches [46–50], and it was also exper-
imentally probed in angle-variable devices [51–57]. In large
twist angles (θ � 10◦), it was predicted that the perpendic-
ular conductance is enhanced near the commensurate angles
where the atomic structure becomes exactly periodic [46], and
it was actually observed in conductance measurements as a
sharp conductance peak against the twist angle [51,53,54].
In this regime, the tunneling probability is small and
the leading-order approximation in the transport is still
valid.

In the present paper, we focus on the low twist angle regime
where the multiple-scattering event is dominant. We find a
special resonant behavior in the electronic transport due to
the interface-localized states, which corresponds to the moiré
flat band in TBG. Specifically, we calculate the perpendicular
electrical conductivity in twisted 3D graphite by combining
the effective continuum model and the recursive Green’s func-
tion method [58–60], to properly treat higher-order terms in
the transmission. In the low twist angle regime (θ � 2◦), in
particular, we find that the perpendicular conductivity exhibits
a peak-and-dip structure as a function of the twist angle. By
analyzing the momentum-resolved conductance and the local
density of states, we attribute the sharp rise and drop of the
conductivity to a Fano resonance between bulk states and the
interface-localized states. For the graphite band model, we
adopt a simplified circularly symmetric model as well as a
more realistic version with the Slonczewski-Weiss-McClure
(SWM) parameters fully included [61,62]. We confirm that
the qualitative result does not depend on the choice of the
models. In the latter part of the paper, we apply the formu-
lation to the high-angle regime near the commensurate angle
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FIG. 1. Structure of twisted graphite with a twist angle θ . The
black arrow indicates the perpendicular (out-of-plane) electronic
transport.

θ ≈ 21.8◦, and simulate the conductance peak observed in
the experiment [51,53,54]. The formulation is applicable to
general twisted 3D systems, such as a twisted interface of
NbSe2 which exhibits the Josephson effect in the supercon-
ducting state [63].

This paper is organized as follows. In Sec. II, we introduce
an effective continuum Hamiltonian of twisted graphite. In
Sec. III, we formulate the procedure to calculate the perpen-
dicular electrical conductivity in twisted 3D systems using the
recursive Green’s function method and the effective contin-
uum model. In Sec. IV, we calculate the conductivity for 3D
graphite with various twist angles, and find the nonmonotonic
behavior of the perpendicular conductivity. In Sec. V, we
discuss the origin of the twist angle dependence of the per-
pendicular conductivity. We examine the momentum-resolved
conductance and show that its sudden drop is due to the Fano
resonance caused by the interface-localized state. In Sec. VI,
we discuss the perpendicular conductivity near the second
commensurate angle ≈21.8◦. Finally, the conclusion is given
in Sec. VII.

II. HAMILTONIAN OF TWISTED GRAPHITE

A. Band models for bulk graphite

The crystal structure of Bernal-stacking (AB-stacking)
graphite is shown in Fig. 2(a). A unit cell contains four
atomic sites A, B, A′, B′, where B and A′ are arranged
along vertical columns while A and B′ are located above
or below the center of hexagons in the neighboring lay-
ers. The lattice constants are given by a = 0.246 nm and
c = 0.670 nm for the in-plane and perpendicular direction,
respectively. We define primitive lattice vectors by a1 =
a(1, 0, 0), a2 = a(1/2,

√
3/2, 0), and a3 = c(0, 0, 1). The

Brillouin zone is a hexagonal prism spanned by the recip-
rocal lattice vectors b1 = (4π/

√
3a)(

√
3/2,−1/2, 0), b2 =

(4π/
√

3a)(0, 1, 0), and b3 = (2π/c)(0, 0, 1), as shown in

FIG. 2. (a) Crystal structure of graphite. A unit cell spans over
two layers, and contains four atomic sites A, B, A′, B′. The hopping
parameters are depicted by the dotted lines. The red lines (γ3, γ4, �

′)
are present only in the full-parameter SWM model (see the text).
(b) Brillouin zone and high-symmetry points of graphite.

Fig. 2(b). The Fermi surfaces are located around Kξ =
−(4π/3a)(ξ, 0, 0) (ξ = ±1), which are referred to as K+ and
K− points, respectively.

We describe the electronic bands of graphite using the
SWM model [61,62,64,65]. The model contains six hopping
parameters γ0, γ1, . . . , γ5 and an on-site energy �′, which are
visualized in Fig. 2(a). We use the values tabulated in Table I.
Taking the Bloch states (|A〉 , |B〉 , |A′〉 , |B′〉) as the basis, the
SWM Hamiltonian around the Kξ point is given by

HSWM(k‖, kz ) = Hξ (k‖) + [Tξ (k‖)e−ikzc + H.c.],

Hξ (k‖) =

⎛
⎜⎜⎜⎜⎝

0 −h̄vk− h̄v4k− h̄v3k+
−h̄vk+ �′ γ1 h̄v4k−
h̄v4k+ γ1 �′ −h̄vk−
h̄v3k− h̄v4k+ −h̄vk+ 0

⎞
⎟⎟⎟⎟⎠,

Tξ (k‖) =

⎛
⎜⎜⎜⎜⎝

γ2/2 0 h̄v4k− h̄v3k+
0 γ5/2 γ1 h̄v4k−
0 0 γ5/2 0

0 0 0 γ2/2

⎞
⎟⎟⎟⎟⎠, (1)

where k‖ = (kx, ky) is the in-plane wave number measured
from the Kξ point, k± = ξkx ± iky, v = √

3|γ0|a/2h̄, and

TABLE I. SWM hopping parameters used in the present paper
(in units of eV).

γ0 γ1 γ2 γ3 γ4 γ5 �′

−2.47 0.40 −0.02 0.30 0.04 0.04 0.05
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FIG. 3. (a) Band structure and (b) the Fermi surface of the simple SWM model of graphite. Panel (a) shows the in-plane band dispersion
with fixed kz’s, which are indicated in units of π/c. In (b), the right panels indicate the cross sections at fixed kz. (c) and (d) are the corresponding
figures for the full-parameter SWM model. The origin of in-plane momentum (kx, ky ) is set to the K+ point.

vi = √
3γia/2h̄ (i = 3, 4). In this paper, we consider a simple

model where we neglect γ3, γ4, and �′, and the full-parameter
model which contains all of the parameters.

The band structures and Fermi surfaces for these two mod-
els are shown in Fig. 3. Due to the γ2 parameter, the band
structure obtains the dispersion along kz, which gives rise
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FIG. 4. Side view of twisted graphite. The unit cells of bulk
graphite are indicated by the green rectangles, which are labeled by
integers n. The red dashed line laid between the n = 0 and n = 1 cell
is the twisted interface. The lower (upper) bulk graphite is twisted by
the angle −θ/2 (+θ/2) from the aligned position. The green and red
arrows are the hopping matrices between nearest-neighbor unit cells.

to the formation of the electron and hole pocket. Notably,
the isotropic Fermi surface in the simple model is warped in
a 120◦-symmetric manner in the full-parameter model. This
trigonal warping effect is due to the entry of the γ3 parameter.

B. Twisted graphite

We define a twisted graphite as a pair of half-infinite pieces
of Bernal-stacking graphite contacted with a certain twist
angle θ . A schematic illustration is given in Fig. 4, where we
label unit cells of graphite (extending over two graphene lay-
ers) by n = 0,±1,±2, . . .. Here n > 0 and n � 0 correspond
to upper and lower graphite pieces, respectively, and we label
sublattices in the nth cell as An, Bn, A′

n, B′
n.

At the interface, a long-scale moiré pattern is formed. Fig-
ure 5(a) illustrates the atomic structure of the twisted interface
between the nth and (n + 1)th cells. We define the primitive
lattice vectors of the lower (l = 1) and upper (l = 2) graphite
as a(l )

i = R(l )ai, and also the primitive reciprocal vectors as
b(l )

i = R(l )bi, where

R(1) = R(−θ/2), R(2) = R(+θ/2), (2)

and R(α) is the rotation matrix by an angle α. Accordingly,
the corner points of the Brillouin zones are given by K (l )

ξ =
R(l )Kξ .

The moiré Brillouin zone (MBZ) is defined by the recipro-
cal vectors GM

i = b(1)
i − b(2)

i , as depicted in Fig. 5(b). We also
introduce the displacement of the K+ point as q1 = K (1)

+ −
K (2)

+ , and also q2 = R(120◦)q1, q3 = R(−120◦)q1 for the other
two equivalent corners. We have relationships GM

1 = q2 − q1
and GM

2 = q3 − q2. The primitive moiré lattice vector in the
real space is determined by LM

i · GM
j = 2πδi j [see Fig. 5(a)],

giving LM
i = −ez × ai/2 sin (θ/2) for i = 1, 2 [66].

We describe the electronic structure of twisted
graphite by an effective continuum model similar to
twisted bilayer graphene [1,67]. In a basis of (. . . ; |An〉 ,

|Bn〉 , |A′
n〉 , |B′

n〉 ; |An+1〉 , |Bn+1〉 , |A′
n+1〉 , |B′

n+1〉 ; . . .), the

FIG. 5. (a) Atomic structure of twisted graphite interface with
θ = 9.43◦, consisting of the lower (yellow) and upper (green) hon-
eycomb lattice. The black rhombus is a moiré unit cell. The right
panel is a magnified plot with sublattice labels. (b) Brillouin zone
of the lower (yellow) and upper (green) honeycomb lattice in the
extended-zone scheme. The coupling wave numbers q1, q2, and q3

are shown by the red arrows (see the text). A moiré Brillouin zone is
defined by a small black hexagon near q1, which is magnified in the
right figure with labels for high-symmetry points.

Hamiltonian of twisted graphite can be written as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

T (1) H (1) T (1)†

T (1) H (1) T †
int

Tint H (2) T (2)†

T (2) H (2) T (2)†

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where H (l ) and T (l ) are 4 × 4 blocks with l = 1 and 2 indicat-
ing the lower and upper graphite sectors, respectively, which
are given by

H (l ) = Hξ [(R(l ) )−1k‖], T (l ) = Tξ [(R(l ) )−1k‖]. (4)

Here H and T are defined in Eq. (1).
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Tint is the interlayer Hamiltonian matrix for the twisted
interface, which is given by [1,67]

Tint =
(

0 T 2×2
int

0 0

)
,

T 2×2
int (r) =

(
u u′
u′ u

)
eiξq1·r +

(
u u′ω−ξ

u′ωξ u

)
eiξq2·r

+
(

u u′ωξ

u′ω−ξ u

)
eiξq3·r, (5)

where ω = e2π i/3, u = 0.0797 eV, and u′ = 0.0975 eV [67].
By starting from a lower-graphite Bloch state of the wave
number k‖, the interlayer Hamiltonian Tint hybridizes a set of
wave numbers of the same valley,

k(1)
‖ (m1, m2) = k‖ + m1GM

1 + m2GM
2 ,

k(2)
‖ (m1, m2) = ξq1 + k‖ + m1GM

1 + m2GM
2 , (6)

of the upper and lower parts, respectively (m1, m2: integers).
To write down the Hamiltonian as a finite-sized matrix,
we consider a finite set of wave numbers inside a certain
cutoff circle |k(l )

‖ | � kc. Note that k‖ is a parameter which
moves inside a moiré Brillouin zone spanned by GM

1 and
GM

2 [Fig. 5(b)]. In this representation, H (l ), T (l ), and Tint in
Eq. (3) are 4N (l )

q × 4N (l )
q matrices, where N (l )

q is the number

of different wave numbers in the set of {k(l )
‖ }, and the factor 4

is for the sublattices (A, B, A′, B′). The matrices H (l ) and T (l )

are diagonal in the label (m1, m2), while only the matrix Tint

hybridizes different (m1, m2)s.

III. ELECTRICAL CONDUCTIVITY IN GENERAL
TWISTED INTERFACE

In this section, we formulate a method to calculate the
perpendicular electrical conductivity and the local density of
states (LDOS) in general twisted 3D systems. We consider a
layered system as shown in Fig. 6, which consists of slices
labeled by indices n. A slice can be a single atomic layer or a
cluster of layers. The whole system is composed of the lower
(n � 0), middle (1 � n � N), and upper (n � N + 1) parts.
We assume that the lower and upper parts are periodic in the
z direction (perpendicular to the layer) with a single period
corresponding to a single n. The middle part can be periodic
or nonperiodic in the z direction, and they can be arranged in a
general orientation. We require that all the layers in the upper,
middle, and lower parts share a common super-periodicity
in in-plane directions (e.g., the moiré period for the twisted
graphite), so that the Hamiltonian becomes a finite matrix in
a momentum representation, under a certain k-space cutoff.
The twisted graphite corresponds to a system without a middle
part (N = 0), while we can formally assign the middle part
within the same system by taking an arbitrary number of upper
and lower layers including the twisted interface. We apply the
formulation with N = 0 to the calculation of the conductivity,
while a formalism with a finite middle part can be used to
calculate the LDOS near the interface, where the middle part
is set to contain the desired region.

In a similar manner to the twisted graphite in the previous
section, the Hamiltonian of the system is written as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

T (1) H (1) T (1)†

T (1) H (1) T †
10

T10 h1 T †
21

T21 h2
. . .

. . .
. . . T †

N,N−1

TN,N−1 hN T †
N+1,N

TN+1,N H (2) T (2)†

T (2) H (2) T (2)†

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where H (l ) represents the Hamiltonian of a single slice in
the lower (l = 1) and upper (l = 2) regions, and T (l ) is the
hopping matrix between neighboring slices. H (l ) and T (l )

are Ml × Ml matrices. Here, we ignore hopping terms across
more than two slices. This is justified by taking sufficiently
large slices. hn and Tn,n+1 are intra- and interslice matrices,
respectively, in the middle part. The dimension of hn is arbi-
trary. The total Hamiltonian is labeled by k‖ in the Brillouin
zone corresponding to the in-plane supercell of the system.

The electrical conductance in the perpendicular direction
can be calculated by applying the recursive Green’s function
method [60,68] to the Hamiltonian Eq. (14). Specifically, we
calculate eigenchannels of the upper and lower periodic parts,

and express transmission coefficients between these channels
using the Green’s function, as follows.

To obtain the eigenchannels, we solve the Schrödinger
equation for the upper and lower periodic parts

ECn = H (l )Cn + T (l )†Cn+1 + T (l )Cn−1, (8)

where E is the eigenenergy and Cn is Ml -component vector.
We first assume a solution of Bloch’s form Cn = λnC0. By
using Cn+1 = λCn, we obtain(

[T (l )†]−1(E − H (l ) ) −[T (l )†]−1T (l )

1 0

)(
Cn

Cn−1

)
=λ

(
Cn

Cn−1

)
.

(9)

165422-5
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FIG. 6. Schematic picture of a general twisted 3D system. The
structure consists of slices labeled by n, where each slice can be a
single atomic layer or a cluster of layers. The lower part (n � 0) and
upper part (n � N + 1) are periodic in z direction, while the middle
part (1 � n � N) can be arranged in a general orientation.

Equation (9) can be viewed as a 2Ml × 2Ml eigenvalue
problem with an eigenvalue λ. For a given energy E , we
obtain Ml upward-going solutions C0 = u(l )

1,+, . . . , u(l )
Ml ,+ with

eigenvalues λ
(l )
1,+, . . . , λ

(l )
Ml ,+, and Ml downward-going so-

lutions u(l )
1,−, . . . , u(l )

Ml ,− with λ
(l )
1,−, . . . , λ

(l )
Ml ,−. Here upward-

(downward-) going solutions include propagating modes in
the positive (negative) z direction and evanescent modes de-
caying in the positive (negative) z direction.

A general solution at n = 0 can be written in a linear
combination of these eigenfunctions as

C0 = C(+)
0 + C(−)

0 ,

C(±)
0 = c(±)

1 u(l )
1,± + c(±)

2 u(l )
2,± + · · · + c(±)

Ml
u(l )

Ml ,±. (10)

The wave function at general positions can be found by

C(±)
n+1 = F (l )

± C(±)
n , (11)

where

F (l )
± = U (l )

± �
(l )
± (U (l )

± )−1,

U (l )
± = (

u(l )
1,±, u(l )

2,±, . . . , u(l )
Ml ,±

)
,

�
(l )
± = diag

(
λ

(l )
1,±, λ

(l )
2,±, . . . , λ

(l )
Ml ,±

)
(12)

are Ml × Ml matrices.
An eigenvalue equation for the middle part is then written

as [60]

(E − Hreduced )

⎛
⎜⎜⎝

C0

C1
...

CN+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

T (1)
(
[F (1)

+ ]−1 − [F (1)
− ]−1

)
C(+)

0
0
...

0

⎞
⎟⎟⎟⎠, (13)

Hreduced =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H (1) + �(1) T †
10

T10 h1 T †
21

T21 h2
. . .

. . .
. . . T †

N,N−1

TN,N−1 hN T †
N+1,N

TN+1,N H (2) + �(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where �(1) (�(2)) represents the self-energy matrix for the
open leads in the lower (upper) part, which are defined by

�(1) = T (1)[F (1)
− ]−1, �(2) = T (2)†F (2)

+ . (15)

The term with C(+)
0 on the right-hand side of Eq. (13) repre-

sents a source term associated with the incident wave from the
lower channels. The Green’s function of the system is defined
by G = (E − Hreduced )−1. To obtain this, the recursive method
can be utilized. The details of the method are explained in
Appendix A.

Once we have the Green’s function G , the transmission
coefficients tμν are obtained by

tμν=
√√√√v

(2)
μ,+

v
(1)
ν,+

[[
U (2)

+
]−1

GN+1,0T (1)
(
[F (1)

+ ]−1−[F (1)
− ]−1

)
U (1)

+
]
μν

,

(16)

where v
(1)
μ,+ (v(2)

μ,+) is the group velocity of the μth upward
eigenmodes in the lower (upper) bulk. The M2 × M1 matrix
GN+1,0 is the partial block of the Green’s function:

G =

⎛
⎜⎜⎝

G00 G01 · · · G0,N+1

G10 G11 · · · G1,N+1
...

...
. . .

...

GN+1,0 GN+1,1 · · · GN+1,N+1

⎞
⎟⎟⎠. (17)

From the Landauer formula [69], the electrical conductance G
in the out-of-plane direction is obtained by

G(E , k‖) = 2e2

h

∑
μν

|tμν |2, (18)

where the factor 2 is for the spin degree of freedom. Finally,
the total conductivity across the interface per unit area is

165422-6
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obtained by

g(E ) = 1

Stot

∑
k‖∈MBZ

G(E , k‖)

= 1

(2π )2

∫
MBZ

d2k‖ G(E , k‖), (19)

where Stot is the total cross section of the system along the x-y
plane. The contact resistivity of the twisted interface is given
by 1/g(E ).

We can also calculate LDOS in the middle part from the
Green’s function. The LDOS of the nth slice is obtained as

ρ(E , k‖, n) = − 1

π
Im tr Gnn, (20)

where the trace sums up sublattice or orbital degrees freedom
and also the in-plane wave numbers to span the Hamilto-
nian matrix. In twisted graphite, a slice is composed of two
graphene monolayers. To calculate the LDOS of each layer,
we can restrict the summation over sublattices (A, B, A′, B′)
in the trace in Eq. (20) to just (A, B) or (A′, B′).

IV. ELECTRICAL CONDUCTIVITY IN TWISTED
GRAPHITE INTERFACE

We calculate the perpendicular electrical conductivity of
twisted graphite by applying Eq. (19) to the Hamiltonian
Eq. (3), with no middle part. Figure 7 shows the conduc-
tivity as a function of the twist angle θ , calculated for (a)
the simple graphite model and (b) the full parameter model
(see Sec. II A). Here we take the Fermi energy at the charge
neutral point, E = 0. The vertical axis is scaled by 4e2/h/nm2

on the left, and also by g(θ = 0) on the right. The g(θ =
0) represents the ballistic conductance of bulk 3D graphite,
and g(θ )/g(0) can be regarded as an effective transmission
coefficient.

In the simple model [Fig. 7(a)], the conductivity decreases
when the twist angle is increased, and it completely vanishes
in θ > 1.6◦. This tendency can be understood in terms of
the overlap of the Fermi surfaces. By a twist, the Brillouin
zones of the upper and lower graphite are rotated by ±θ/2
[see Fig. 5(b)], and then the in-plane projections of respective
Fermi surfaces are separated as shown by blue and red filled
circles in Fig. 7(a). Obviously, the overlapped region of the
Fermi surface projections is diminished with increase of the
angle, and the conductivity drops accordingly. For θ > 1.6◦,
the two Fermi surfaces are completely separated and the con-
ductivity goes to zero. Notably, we observe a nonmonotonic
behavior in the range of 1.2◦ < θ < 1.4◦, where the conduc-
tivity reaches nearly zero at θ ≈ 1.2◦, and it takes a peak at
θ ≈ 1.4◦. This cannot be simply explained by the Fermi sur-
face overlap, which just monotonically decreases in increasing
the twist angle.

We also see a similar behavior in the full-parameter model
as well, as shown in Fig. 7(b). With the increase of the twist
angle, the conductance drops down to θ ≈ 1◦, while it re-
covers and peaks at θ ≈ 2.1◦. It finally vanishes in θ > 2.4◦
where the Fermi surface overlap disappears.

To consider the origin of the dip-and-peak structure, we
examine the k-resolved conductance G(E = 0, k‖) defined by

FIG. 7. (a) Perpendicular electrical conductivity as a function
of the twist angle θ , in the simple model of twisted graphite. The
lower panels show the Fermi surfaces projected onto kxky plane, for
the lower (red) and upper (blue) bulk graphites with θ = 1.0◦, 1.2◦,
1.4◦, 1.6◦. (b) Similar plots for the full-parameter model. The Fermi
surfaces are shown for θ = 0.9◦, 1.5◦, 2.1◦, 2.5◦.

Eq. (18). Figure 8(a) shows the density plot of G(E = 0, k‖)
on k‖ space, calculated for the simple model. The red (blue)
circle represents the outline of the upper (lower) projected
Fermi surface. We observe that the finite amplitude is indeed
present only in the overlapping region. At θ = 1.2◦, however,
the k-resolved conductance is strongly suppressed around the
overlap center at the μ point, and actually this vanishing
amplitude is responsible for the dip of total conductivity g(θ )
at θ = 1.2◦ [Fig. 7(a)]. In the full-parameter model, a similar
decrease of the conductance G(E = 0, k‖) is found around the
overlap center, in the range of 1.2◦ < θ < 1.9◦ [Fig. 8(b) for
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FIG. 8. Density plot of the momentum-resolved conductance
G(E = 0, k‖, θ ) on k‖ space, calculated for (a) the simple model and
(b) the full-parameter model. The magenta (cyan) curve is the outline
of the projected Fermi surface of the lower (upper) graphite.

θ = 1.8◦]. Due to the trigonal warping effect on the Fermi
surface, the overlap region is located around the Q point
between γ and μ [see Fig. 5(b)].

V. FANO RESONANCE BY INTERFACE-LOCALIZED
STATE

In the following, we demonstrate that the vanishing k-
resolved conductance G(E = 0, k‖) argued in the previous
section is attributed to the Fano resonance by the interface-
localized level. We focus on the Fermi surface overlap center,
i.e., k‖ = μ for the simple model and k‖ = Q for the full-
parameter model, and plot the conductance G(E = 0, k‖)
against the twist angle θ . The results are shown in the upper
panels of Figs. 9(a) and 9(b) for simple and full parameter
models, respectively. In both cases, the conductance exhibits
a sort of resonant behavior, where G/(2e2/h) = 1 and 0 in
Fig. 9 can be viewed as resonant and antiresonant points,
respectively. Here the maximum of the conductance is G =
2e2/h, since the number of conducting channels per spin of
the nontwisted regions is 1 in the angle range of the figure.

The result implies that a resonance occurs between the
bulk state of graphite and an interface-localized state. To
identify associated interface states, we calculate the LDOS at
the interface and also in the bulk region by using Eq. (20). In
the numerical calculation, we introduce a finite middle region
(Fig. 6) containing N = 50 unit cells (100 graphene layers).
We define the interface/bulk LDOS by

ρ (int)(E , k‖) = − 1

π
Im tr(int) G , (21)

ρ (bulk)(E , k‖) = − 1

π
Im tr(bulk) G . (22)

FIG. 9. (a) Twist-angle dependencies of momentum-resolved
conductance G(E , k‖) (upper panel) and interface/bulk LDOS
ρ (int)/(bulk)(E , k‖) (lower panel) in the simple model with E = 0 and
k‖ = μ. The red dashed line in the upper panel represents the fitted
Fano funciton G0 f (θ ) (see the text). (b) Similar plots for the full-
parameter model, where k‖ is taken at Q.

Here tr(int) stands for trace over the wave bases belonging to
the top graphene layer of the lower graphite, and the bottom
layer of the upper graphite. The tr(bulk) runs over the comple-
mentary bases in the middle part, which are not included in
tr(int).

The lower panel of Fig. 9(a) shows the angle dependence
of ρ (int) and ρ (bulk) with E = 0 and k‖ = μ in the simple
model. We normalized ρ (bulk) to the value per two graphene
layers, to be directly compared with ρ (int). The ρ (int) exhibits
a broad peak centered at θ ≈ 1.3◦, which indicates the emer-
gence of an interface-localized state. For the full-parameter
model, similarly, a peak of ρ (int) appears at θ ≈ 2.0◦ as seen
in Fig. 9(b). In both models, the bulk LDOS ρ (bulk) does not
show a peak at the corresponding positions.

Generally, a system with weakly coupled continuum and
discrete spectra shows the Fano resonance [70], which is
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characterized by an asymmetric line shape in the system’s
response. In twisted graphite, the emergent interface-localized
state is considered to be a discrete state, while the bulk state
contributes to a continuum spectrum. The transmission proba-
bility should then be given by the Fano function as a function
of the twist angle,

f (θ ) = (x + q)2

1 + x2
, x = 2(θ − θ0)

�θ
, (23)

where �θ represents the broadening of the discrete state, θ0 is
approximately equal to the position of the discrete state, and
q determines the asymmetry of the peak.

Here we fit the conductance curve G(θ ) by the Fano func-
tion G0 f (θ ), and plot the obtained curves with red dashed
lines in Figs. 9(a) and 9(b). We employ the parameters θ0 =
1.357, �θ = 0.330, q = 0.877 for the simple model, and θ0 =
2.070, �θ = 0.190, q = 2.156 for the full-parameter model.
The amplitude parameter is taken as G0 = (2e2/h)/(1 + q2)
for the correct peak height. In both cases, we see a fairly
nice fitting with G(θ ) in a wide range of the twist angle.
Also the obtained θ0 nearly coincides with the peak position
of the interface LDOS curve, which corresponds to the posi-
tion of the discrete level. Regarding this good agreement, we
conclude that the dip-and-peak structure of the perpendicular
conductivity is attributed to the Fano resonance.

Finally, we demonstrate that the interface-localized state,
which induces the Fano resonance, is a manifestation of a
flat-band-like structure inherited from TBG. Here we compute
the interface LDOS ρ (int)(E , k‖) over a wide range of energy
and momentum to identify the energy band associated with
the interface-localized state. In the top panel of Fig. 10(a), we
show the density plot of ρ (int)(E , k‖) in the simple model with
θ = 0.9◦. A spectral broadening δ = 3 meV is introduced for
the sake of visibility. Most of bright lines observed in the
figure do not appear in the bulk LDOS (not shown), indi-
cating that these lines correspond to the interface bands. The
nearly horizontal branch located at the energy of E = 0 is the
remnant of the flat band. Indeed, if we ignore the hopping pa-
rameters γ2 and γ5 retaining only γ0 and γ1, the band becomes
perfectly flat at E = 0 [29].

The second top panel in Fig. 10(a) shows a magnified plot
in the low-energy region, indicated by the red rectangle in
the top panel. The third and lower panels are corresponding
plots for different twist angles. When we increase the twist
angle θ , the nearly flat band is lowered and traverses the point
(k‖, E ) = (μ, 0) (indicated by a black dot) around θ = 1.3◦.
This corresponds to the interface LDOS peak in Fig. 9(a). Fig-
ure 10(b) presents similar plots for the full-parameter model.
We observe that the flat band obtains some dispersion, yet
it still persists in the low-energy region indicated by the red
rectangle. In increasing the twist angle, the high-amplitude
part crosses the (k‖, E ) = (Q, 0) point, and this causes the
interface LDOS peak in Fig. 9(b).

VI. CONDUCTIVITY PEAK NEAR 21.8◦

While we considered the small twist angle regime θ ≈ 0◦
in the preceding sections, the coherent interlayer transport
occurs also at other commensurate angles. In this section,
we examine the perpendicular conductivity near the second

commensurate angle θ = θ2 ≈ 21.8◦, where the honeycomb
lattices become exactly periodic with the

√
7a × √

7a unit
cell as shown in Fig. 11(a) [71–73]. The interlayer transport
in twisted graphene layers was theoretically investigated in
the incoherent transport regime, and the conductivity enhance-
ment at the commensurate angles was predicted [46]. Recent
experiments reported a sharp conductance peak at θ = θ2 in
variable-angle graphite devices [51–53]. In the following, we
describe the qualitative angle-dependent behavior near θ2,
by employing the same theoretical approach adopted in the
previous section.

The interlayer coupling across the twisted interface near
θ2 can be captured by a similar model to Eq. (3) for
θ ≈ 0◦. Figure 11(b) shows the k-space diagram for θ =
24.8◦, which is near θ2, where yellow and green honeycomb
lattices represent the extended Brillouin zones for lower and
upper graphite. As in Fig. 5(b), we define q1, q2, q3 as the
smallest separations between the corner points of upper and
lower layers. Note that the qi’s vanish at θ = θ2. These three
vectors determine the moiré superperiod when θ is slightly
away from θ2, giving the smallest Fourier components in the
interlayer Hamiltonian [74,75].

When the lattice relaxation is neglected, the interlayer cou-
pling magnitude associated with the qi’s is given by t (Q),
where Q is the k-space position of the corresponding corner
point, and the function t (k) is the Fourier transform of the
interlayer hopping amplitude [46,74,75]. In the case of θ ≈ 0◦
[Fig. 5(b)], Q is the Kξ point, giving the coupling magnitude
of t (K ) with K = |Kξ | = 4π/(3a). This leads to the simplest
interlayer coupling Hamiltonian for TBG, which is Eq. (5)
with u and u′ replaced by t (K ) [1]. Note that the difference be-
tween u and u′ in Eq. (5) is introduced to effectively describe
the lattice relaxation, which is only effective in the small-θ
regime.

In θ ≈ θ2, the corner points Q are located at distance
√

7K
from the origin, resulting in an interface coupling matrix
of [75]

T 2×2
int (r) = t (

√
7K )

[(
1 ω

ω∗ 1

)
eiq1·r +

(
1 1
ω ω

)
eiq2·r

+
(

1 ω∗
1 ω∗

)
eiq3·r

]
. (24)

The coupling amplitude t (
√

7K ) is much smaller than t (K ) for
θ ≈ 0◦, as the Fourier transform t (k) is a decaying function.
While the value of this factor strongly depends on the details
of the model [1,72,75], here we employ t (

√
7K ) = 1.3 meV,

which is extracted from the tight-binding hopping model fit-
ted to the LDA calculation [47,51,76]. In Appendix B, we
evaluate t (

√
7K ) by an alternative approach using the first-

principles band calculation for the commensurate TBG of
θ = θ2, to obtain the parameter of the same order.

Another important difference from θ ≈ 0◦ is that the
twisted interface of θ ≈ θ2 hybridizes electronic states at the
opposite valleys, K (1)

ξ and K (2)
−ξ , as seen in Fig. 11(b). As a

result, pseudospin chirality of the Bloch electron is inverted
between the two layers, and H (l ) and T (l ) in Eq. (3) are
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FIG. 10. Density plots of the interface LDOS ρ (int)(E , k‖) in (a) the simple and (b) the full-parameter model. Bright traces indicate the
interface-localized bands. In each figure, the top panel shows a wide-range plot for a typical twist angle θ = 0.9◦, 1.4◦ for (a) and (b),
respectively. The lower panels are magnified plots in the low-energy region indicated by a red rectangle in the top panels, calculated for
several θ ’s.

replaced by

H (1) = Hξ [(R(1) )−1k‖], T (1) = Tξ [(R(1) )−1k‖],

H (2) = H−ξ [(R(2) )−1k‖], T (2) = T−ξ [(R(2) )−1k‖]. (25)

By using the Hamiltonian Eq. (3) with Eqs. (24) and (25),
we calculate the electrical conductivity in the same manner
as in the small-angle cases. The resulting contact conductivity
g(θ ) near θ = θ2 ≈ 21.8◦ is shown in Fig. 12. For both simple
and full-parameter models, we see that g(θ ) peaks around
the commensurate angle θ2. Since the interlayer coupling is
perturbative, the multiple interlayer-scattering processes in
the Green’s function are negligible, so that the transmission
is dominated by the first-order hopping process. Therefore,

tμν is approximately proportional to t (
√

7K ), leading to the
relationship g ∝ t (

√
7K )2. It should be noted that in this high

twist angle regime, no interface-localized states appear near
E = 0, and hence the resonant behavior does not occur in
the conductivity, unlike in the low-angle regime. The sharp
conductance peak at θ = 21.8◦ is qualitatively explained by
the Fermi surface overlap at the remote k point in Fig. 11(b).

The commensurate conductance peak at θ ≈ 21.8◦ was ex-
perimentally observed in twisted interfaces between graphite
and graphite [51], graphite and graphene [54], and graphene
and graphene [53]. Our calculation in Fig. 12 roughly repro-
duces the order of magnitude of the interface conductivity
in the graphite-graphite device [51], which is close to our
situation. It should be noted that the interface transport in
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FIG. 11. (a) Interface atomic structure in a twisted graphite at the
commensurate angle θ = θ2 ≈ 21.8◦. The yellow (green) hexagons
are the topmost (bottommost) layer of the lower (upper) graphite.
The

√
7 × √

7 unit cell is represented by the black diamond. (b) Bril-
louin zone of the lower (yellow) and upper (green) honeycomb lattice
in a slightly misaligned angle θ = θ2 + 3◦ (≈24.8◦). The coupling
wave numbers q1, q2, q3 are shown in the same manner as the low-
angle case in Fig. 5(b).

real devices has also a considerable contribution from the
phonon-mediated hopping, which gives a smooth background
mildly depending on the angle [47,51].

FIG. 12. Perpendicular conductivity around θ = θ2 ≈ 21.8◦ in
the simple model (dashed curve) and full-parameter model (solid
curve). The interlayer coupling is taken as t (

√
7K ) = 1.3 meV.

VII. CONCLUSION

We have developed a theoretical method to describe the
transport in twisted 3D systems by using the recursive Green’s
function approach. By using the formulation, we calcu-
lated the perpendicular conductivity in the twisted graphite.
The calculated conductivity exhibits a nonmonotonic dip-
and-peak structure against the twist angle, due to vanishing
transmission at the overlap center of the Fermi surfaces. By
examining the LDOS spectrum, we revealed that the drop of
the conductance is caused by the Fano resonance between
the bulk state and the interface-localized state, which is the
remainder of a flat band of TBG. We also calculated the
perpendicular conductivity at the twist angles around the sec-
ond commensurate angle θ ≈ 21.8◦, and find a sharp peak
around 21.8◦, which is consistent with experimental observa-
tion [51,53].

Although we limited our argument to the twisted junction
of two graphite pieces in this paper, the proposed formulation
is applicable to diverse twisted systems. For instance, we can
consider a system composed of two twisted interfaces with an
N-layer graphite in the middle section. There we anticipate the
emergence of localized states in the middle section depending
on its thickness N , leading to complex resonances in the
out-of-plane conductance through a similar mechanism. We
can also extend our analysis to systems incorporating numer-
ous twisted interfaces, including 3D graphite spirals [29,77]
and alternating twisted multilayer graphenes [32,78]. This
applies not only to graphitic materials; the formulation can be
effectively extended to explore twisted interfaces of diverse
metallic and superconducting materials. Applying the present
method to study the perpendicular electronic transport in these
systems would be intriguing future research.
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APPENDIX A: RECURSIVE GREEN’S
FUNCTION METHOD

In the present Appendix, we explain the recursive Green’s
function method [60,68] to calculate the Green’s function of
Eq. (14), G = (E − Hreduced )−1. Each block of the Green’s
function Gnm can be calculated from lower (upper) Green’s
functions G (1)

nm (G (2)
nm ), as shown below. Starting from the lower

bulk Green’s function g(1) = (E − H (1) − �(1) )−1, the lower
Green’s functions are computed by recursive relations

G (1)
11 = (

E − h1 − T10g(1)T01
)−1

,

G (1)
01 = g(1)T01G

(1)
11 ,

G (1)
nn = (

E − hn − Tn,n−1G
(1)

n−1,n−1Tn−1,n
)−1

,

G (1)
0n = G (1)

0,n−1Tn−1,nG
(1)

nn , (A1)

where 2 � n � N . Similarly, from the upper bulk Green’s
function g(2) = (E − H (2) − �(2) )−1, the upper Green’s
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FIG. 13. Atomic structure and the energy band of the twisted bilayer graphenes of θ = θ2 ≈ 21.8◦ with the SE-odd (left) and SE-even
(right) configurations. The energy in the band dispersion is scaled by t (

√
7K ).

functions can be gained by equations

G (2)
NN = (

E − hN − TN,N+1g(2)TN+1,N
)−1

,

G (2)
N+1,N = g(2)TN+1,NG (2)

NN ,

G (2)
nn = (

E − hn − Tn,n+1G
(2)

n+1,n+1Tn+1,n
)−1

,

G (2)
N+1,n = G (2)

N+1,n+1Tn+1,nG
(2)

nn , (A2)

where 1 � n � N − 1. Finally, we can obtain the full Green’s
function G by recursions

Gnn = (
E − hn − Tn,n−1G

(1)
n−1,n−1Tn−1,n

− Tn,n+1G
(2)

n+1,n+1Tn+1,n
)−1

,

Gn−1,n = G (1)
n−1,n−1Tn−1,nGnn,

G0n = G (1)
0,n−1Tn−1,nGnn,

GN+1,n = G (2)
N+1,n+1Tn+1,nGnn,

Gn,n+1 = GnnTn,n+1G
(2)

n+1,n+1, (A3)

where 2 � n � N − 1.

APPENDIX B: ALTERNATIVE ESTIMATION
OF INTERLAYER COUPLING t (

√
7K )

The interlayer coupling parameter t (
√

7K ), which deter-
mines the magnitude of the conductivity at the commensurate
angle θ = θ2(≈ 21.8◦), is highly dependent on the detail
of a model under consideration. In Sec. VI, we adopted
the value of t (

√
7K ) = 1.3 meV, which is extracted from

the tight-binding hopping model fitted to the LDA calcula-
tion [47,51,76]. Here, we give an alternative evaluation of the
parameter based on the band calculation of TBG at θ = θ2 in

two different methods, the effective continuum model and the
density functional theory (DFT).

In the continuum model, we can calculate the energy bands
of TBG with θ ≈ θ2 by the following 4 × 4 Hamiltonian:

HTBG =
(

−h̄v(kx, ky) · σ T 2×2†
int (r)

T 2×2
int (r) −h̄v(−kx, ky) · σ

)
. (B1)

Here the upper and lower diagonal 2 × 2 blocks are the Dirac
Hamiltonian of monolayer graphene at K+ (lower layer) and
K− (upper layer), respectively. Here, note that the interface of
θ = θ2 hybridizes opposite valleys as explained in Sec. VI.
σ = (σx, σy) is the set of the Pauli matrices.

The off-diagonal block T 2×2
int (r) is the position-dependent

interlayer potential given by Eq. (24). When the twist angle
is slightly shifted from θ2, the interlayer coupling T 2×2

int (r)
slowly modulates as a function of position r, where the corre-
sponding moiré period LM

i (i = 1, 2) is defined by LM
i · GM

j =
2πδi j with GM

1 = q2 − q1 and GM
2 = q3 − q2. Then, the local

Hamiltonian with a fixed r corresponds to a commensurate
TBG exactly at θ = θ2 with a particular interlayer transla-
tion. In Fig. 13, we show the calculated energy bands at
r = (−LM

1 + 2LM
2 )/3 and (LM

1 − 2LM
2 )/3, which correspond

to the SE (sublattice exchange)–odd and SE-even structures,
respectively [72]. Here the vertical axes is scaled by t (

√
7K ).

We can directly compare the band structure of Fig. 13 with
the corresponding DFT band calculation [79]. By comparing
the band splitting, we obtain t (

√
7K ) ≈ 2.25 meV, which

has the same order as 1.3 meV adopted in the main text. In
the case of t (

√
7K ) = 2.25 meV, the conductivity shown in

Fig. 12 is enhanced by a factor of three, approximately, noting
that the conductivity is nearly proportional to t (

√
7K )2.
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