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Many-body non-Hermitian skin effect at finite temperatures
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In this study, we investigate the many-body non-Hermitian skin effect at finite temperatures in the thermody-
namic limit. Our findings indicate an interesting correspondence between the non-Hermitian skin effect and a
linear electric potential effect in this case. This correspondence leads to a unique distribution in non-Hermitian
systems; particles in these many-body non-Hermitian systems do not inhabit the energy eigenstates of their
single-body counterparts. As a result, the many-body non-Hermitian skin effect is significantly different from
the single-body non-Hermitian skin effect. Specifically, for fermionic systems the non-Hermitian skin effect
disrupts the original phase, leading to a real-space Fermi surface. For bosonic systems, it can direct bosons
to condense in corners at a decay rate that surpasses exponential, even at high temperatures. It also triggers a
remarkable phase transition, resulting in spontaneous U(1) symmetry breaking. Uniquely, this does not generate
a Goldstone mode, presenting a deviation from traditional expectations as per the Goldstone theorem.
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I. INTRODUCTION

Non-Hermitian quantum systems, as a special type of open
system, have been the focus of extensive attention over re-
cent years [1–4]. A certain class of translationally invariant
non-Hermitian tight-binding models with nonreciprocal hop-
ping has drawn considerable interest due to the discovery
of the non-Hermitian skin effect. This effect underscores a
system’s dramatic divergence in physical properties between
open and periodic boundary conditions, with the primary fea-
ture being that the single-body eigenstates exhibit exponential
localization at the boundary under open boundary conditions
[5–24]. One distinct aspect of the non-Hermitian skin effect
is its manifestation in many-body systems, which exhibit a
set of properties that significantly diverge from their single-
body counterparts [25–34]. This is in stark contrast with the
Hermitian scenario, where the attributes of noninteracting
many-body systems are typically mirrored by their corre-
sponding single-body systems, driven by the simplification of
the many-body system problem to a problem of single-body
state filling. The non-Hermitian scenario, however, compli-
cates this relation due to potential influences between different
single-body eigenstates brought about by their nonorthogo-
nality during the construction of many-body eigenstate. As
a result, the typical correspondence between many-body and
single-body systems is disrupted. This disruption is exem-
plified by the phenomenon of exponential localization of
particles near boundaries, which is prominent in single-body
non-Hermitian conditions, but is reported to be absent in
fermionic many-body systems [25–27,31].

Existing research primarily approaches the many-body
non-Hermitian skin effect through direct computation of
many-body eigenstates. These studies focus inherently on
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the zero-temperature properties of non-Hermitian systems
at a small scale. However, it is crucial to recognize that
realistic systems inevitably interact with their environment,
leading to the unavoidable presence of finite temperatures.
Moreover, many-body non-Hermitian systems at finite tem-
peratures may manifest considerably different properties than
their zero-temperature counterparts, contrasting with Hermi-
tian situations. In Hermitian systems, under the provision
of orthogonality, a minor excitation of a limited number of
particles has no influence on the single-body states of the
residual unexcited particles. Therefore, variations mostly arise
within the slightly excited particles contrasting the ground
state, leading to substantial similarities between the ground
and excited states. Furthermore, the Boltzmann distribution
emphasizes the similarities between finite-temperature and
zero-temperature properties by ensuring that the ground state
carries a higher weight than the excited state. However,
the situation deviates considerably in non-Hermitian sys-
tems. In these systems, even minor excitations can influence
the unexcited states, thereby magnifying the differences be-
tween the ground and excited states’ properties. Moreover,
in non-Hermitian systems, states may not necessarily align
with the Boltzmann statistics, meaning the state with max-
imum weight may not always represent the ground state
[35]. As such, a separate analysis becomes indispensable for
finite-temperature problems. Another noteworthy point is that
condensed-matter physics primarily investigates physics in
the thermodynamic limit. However, existing research has yet
to identify suitable methods for analyzing behaviors under
such conditions, creating a gap in understanding within this
field.

In this paper, we conduct an investigative study into the
many-body non-Hermitian skin effect at finite temperatures
using the Hatano-Nelson model as a prototype, and focusing
on the thermodynamic limit. To comprehend the behav-
ior of the non-Hermitian system at finite temperatures, we
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propose a model that simulates the thermalization process of
this system. Through our analysis, we find that the density
matrix of the system at finite temperature could be associated
with an effective Hermitian Hamiltonian, which describes a
tight-binding model under the influence of a linear electric
potential. Our results using the effective Hamiltonian paint a
clear picture of the impact of the non-Hermitian skin effect
on many-body systems. For many-body fermionic systems, it
disrupts the original phase formation and prompts the emer-
gence of a real-space Fermi surface. For many-body bosonic
systems, the non-Hermitian skin effect prompts bosons to
condense at corners at a rate surpassing exponential decay,
even in situations with high temperatures. Additionally, we
discern a significant phase transition between the condensed
and the normal states within this system, a phenomenon that
calls into question the validity of the Goldstone theorem in
non-Hermitian systems. This observed transition triggers the
spontaneous breaking of U(1) symmetry but without the ex-
pected fallout of Goldstone modes.

This paper is organized in the following way. In Sec. II,
we delve into the statistical theory for many-body systems
with the skin effect. Section III investigates the characteristics
of effective models. Sections IV and V separately address
the implications of the skin effect in many-body fermionic
and bosonic systems at finite temperatures. We conclude the
investigation and our findings in Sec. VI.

II. QUANTUM STATISTIC THEORY FOR MANY-BODY
SYSTEM WITH SKIN EFFECT

In the study of many-body physics at finite temperatures,
the particle distribution of the system, namely the Bose-
Einstein/Fermi-Dirac distribution, plays a pivotal role as it
bridges the system’s single-body and many-body properties.
In this section, we use the celebrated Hatano-Nelson model
under open boundary conditions as an example to investigate
how the non-Hermitian skin effect impacts the particle distri-
bution of the system.

A. Model

The Hatano-Nelson model is described by the
Hamiltonian [36]

ĤHN = J
L−1∑
i=1

(e− g
2L a†

i+1ai + e
g

2L a†
i ai+1), (1)

where L denotes the total number of lattice sites, J signi-
fies the hopping parameter, and g introduces nonreciprocity
within the hopping terms, signifying the strength of the non-
Hermitian skin effect. Here, a†

i (ai) encapsulates the creation
(annihilation) operator for particles. For the bosonic Hatano-
Nelson model, it follows the commutation relation [ai, a†

j ] =
δi j , while for a fermionic variant, it abides by the anti-
commutation relation {ai, a†

j} = δi j . Condensed-matter theory
customarily emphasizes the thermodynamic limit, represented
by L → ∞, and our investigation is explicitly geared towards
this limit. Concretely, we explore cases wherein L approaches
infinity, all the while holding g as a finite constant. Such
a many-body Hatano-Nelson model can be achieved as a
controlled open quantum system S coupling with a Markov

environment E [37,38]. The Hamiltonian of the subsystem S
is

ĤS = J cosh

(
g

2L

) L−1∑
i=1

(a†
i+1ai + a†

i ai+1). (2)

The Lindblad operator,

LSE
i =

√
2J sinh

(
g

2L

)
(ai + √−1ai+1) (3)

(i = 1, 2, . . . , L − 1), describes the coupling between sub-
system S and an environment E. Under full-counting mea-
surement and controlling the number of particles on the
subsystems S, the quantum jumping processes cause by LSE

i
are projected out, and we get an effective many-body Hatano-
Nelson model ĤHN.

We now focus on the many-body 1D Hatano-Nelson model
at finite temperatures. To achieve the many-body Hatano-
Nelson model at finite temperatures, we couple the system
with a thermal bath B at temperature T = 1

β
. The Hamilto-

nian of the entire system, denoted by Ĥtot, comprises three
components:

Ĥtot = ĤHN ⊗ ÎB + ÎS ⊗ ĤB + ĤBS, (4)

where ĤHN represents the Hamiltonian of the Hatano-Nelson
model, ĤB corresponds to the Hamiltonian of the thermal
bath, and ĤBS denotes the coupling between the system and
the thermal bath. ÎS and ÎB are the identity operators in the
subspaces of the system and the thermal bath, respectively.
We set the coupling term as ĤBS = ∑

i λia
†
i ai ⊗ B̂i. Here,

λi is a small real coupling constant and B̂i is an operator
in thermal bath B. We define that the non-Hermitian system
has the same temperature as the thermal bath B at the steady
state. Conversely, when the system evolves to its steady state,
its temperature approaches T . The above system implemen-
tation can be experimentally achieved using ultracold atoms
in optical lattices combined with the methodically engineered
dissipation proposed in Ref. [39], supplemented by an aux-
iliary thermal cavity. Engineering the LSE

i operator makes it
feasible to derive the effective non-Hermitian Hamiltonian
under postselection, actualized via a nonlocal Rabi coupling
to auxiliary degrees of freedom paired with swift local loss.
Following the adiabatic elimination of the rapidly decaying
modes, we are left with effective dynamics associated solely
with the target degrees of freedom. The addition of a thermal
cavity results in a controllable temperature setting. The valid-
ity of our predictions can be assessed by measuring specific
physical quantities of the system, such as the spatial distribu-
tion of atoms in the lattice.

B. Steady states and their effective Hamiltonian
for the Hatano-Nelson model

Under our assumption, by solving the quantum master
equation, the many-body Hatano-Nelson model with particle
number N , whose steady-state density matrix ρT at tempera-
ture T , is given by (the details are provided in Appendix A)

ρT = e−βĤHNTc, (5)
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where Tc = e−g
∑

i (
i
L ·a†

i ai ). Here, all operators are defined on
the subspace with particle number N . This density matrix
corresponds to a non-Boltzmann distribution [40]

ρT =
∑

n

Wne−βEn |�n〉〈�n|, (6)

where

Wn = (〈�n|eg
∑

i (
i
L a†

i ai )|�n〉)−1

is the revision of the statistical distribution of the system based
on the Boltzmann factor. |�n〉 is the self-normalized many-
body (right) eigenstate of ĤHN.

At zero absolute temperature, the system is in the many-
body state with the lowest energy, i.e.,

ρT = |�0〉〈�0|. (7)

This brings us back to the research of many-body physics at
zero temperature [25–34].

Beyond the zero-temperature, the task of computation
within the finite-temperature domain grows more involved.
In such models, especially in the thermodynamic limit, the
system’s density matrix even at very low temperatures is
typically a blend of numerous states, each bearing nontrivial
weight. Consequently, the calculation of the steady-state den-
sity matrix using Eq. (6) evolves into a substantial challenge,
yielding results that might not be intuitively comprehensible.
To navigate this complexity, we propose the adoption of an
effective thermal Hamiltonian, defined as follows:

e−βĤT = ρT. (8)

Therefore, the steady state of the many-body Hatano-Nelson
model is characterized by this thermal Hamiltonian ĤT.

We analytically derive the thermal Hamiltonian given by
(the detailed derivation is provided in Appendix B)

ĤT = Jeff

L−1∑
i=1

(a†
i+1ai + H.c.) + VHN

L∑
i=1

i

L
a†

i ai, (9)

with Jeff = J g
2L sinh(g/2L) and VHN = gT . This equation con-

tains two terms. The first term represents the Bloch Hamil-
tonian of a standard tight-binding model. The second term
stands for a linear electric potential derived from the non-
Hermitian skin effect (assuming that the particles carry a unit
charge), as visualized in Fig. 1.

During the calculations involving the effective model, we
invoke the generalized Brillouin zone (GBZ) theory [5,12,13],
proven to be strictly applicable for bound-yet-immense sys-
tems. The theory’s implementation to finite-size systems has
a potential energy error Ve ∝ g/T L near the boundary at the
lowest order. This implies that the order of considering the
thermodynamic limit and the zero-temperature limit are not
interchangeable. The GBZ-induced error vanishes when tak-
ing the thermodynamic limit first, but diverges when taking
the zero-temperature limit first. This observation secures our
preceding conjecture and underlines the distinctive nature
of finite-temperature physics from ground-state physics—the
former signifies taking the thermodynamic limit first, while
the latter denotes taking the zero-temperature limit first. In

FIG. 1. The illustration of the correspondence between many-
body non-Hermitian skin effects and linear electric potential effects
at finite temperatures.

our ensuing discussion, we consistently adhere to taking the
thermodynamic limit first, resulting in Jeff = J .

The thermal Hamiltonian proposed provides an intuitive
method for characterizing and understanding the many-body
non-Hermitian skin effect at finite temperatures. By employ-
ing this tool, we are able to probe into the underlying unique
behaviors of such non-Hermitian systems, shedding light on
the complexities of skin phenomena in such systems in a way
that is easily graspable and insightful.

C. Particle distribution

The quantum statistical physics of the noninteracting
many-body Hermitian model, denoted by many-body Hamil-
tonian ĤT, can be mapped to the problem of state-filling in a
single-body Hermitian model given by

ĥT = J
L−1∑
i=1

(|i〉〈i + 1| + H.c.) + VHN

L∑
i=1

(
i

L
|i〉〈i|

)
. (10)

Therefore, an effective Bose-Einstein (Fermi-Dirac) distri-
bution is formed in this non-Hermitian system, i.e., when
we consider the single-body operator Ô, we have tr Ôρ̄T =
tr Oρeff , where ρ̄T is the normalized steady-state density ma-
trix, O is the first quantization operator corresponding to Ô,
and

ρeff =
∑

n

n
(
eT

n

)∣∣eT
n

〉〈
eT

n

∣∣, (11)

where

n
(
eT

n

) = 1

eβ(eT
n −μ) ± 1

.

The eigenstate of ĥT with eigenvalue eT
n , denoted as |eT

n 〉, is
referred to as the thermal eigenstate. Correspondingly, eT

n is
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FIG. 2. (a) The envelopes of single-body wave functions and corresponding energy levels of the Hatano-Nelson model. (b) The envelopes
of thermal wave functions and corresponding thermal energy levels of the Hatano-Nelson model. The red, purple, green, and yellow bands are
the envelopes of wave functions corresponding to the 500th, 1500th, 3000th, and 4500th energy levels/thermal energy levels from low to high,
respectively. We set g = 5, J = T = 1, and L = 5000.

referred to as the thermal energy level. For the chemical po-
tential μ, it adheres to the equation

∑
n 1/(eβ(eT

n −μ) ± 1) = N .
In this context, the negative sign refers to bosons, and the pos-
itive sign is designated for fermions. This distribution implies
the presence of particles within the single-body thermal eigen-
state, with the particle count in each state determined by its
thermal energy level. In an effort to underscore the distinction
between this distribution and the conventional Bose-Einstein
(Fermi-Dirac) distribution, we express this density matrix us-
ing the single-body eigenstates of ĤHN and determine

ρeff =
∑
mn

AB
mn

∣∣ψR
m

〉〈
ψR

n

∣∣, (12)

where

AB
mn =

∑
k

1

eβ(eT
k −μ) ± 1

〈
ψL

m|eT
k

〉〈
eT

k |ψL
n

〉
.

Here, |ψR
n 〉(|ψL

n 〉) is the bi-orthonormal single-body right
(left) eigenstate of ĤHN.

The “diagonal term” AB
nn essentially informs us about the

average particle number in the non-Hermitian Hamiltonian
eigenstate, while the “off-diagonal” term AB

mn (for m 	= n)
delineates the coherence between different eigenstates. Un-
doubtedly, this suggests that the particles no longer confine
themselves to the eigenstate of the single-body non-Hermitian
system. Moreover, there is a significant divergence between
the thermal eigenstates and the non-Hermitian eigenstates,
implying that for the many-body non-Hermitian system, the
behavior deviates considerably from its single-body coun-
terpart, as depicted in Fig. 2. Mathematically, the mismatch
between single-body and many-body systems comes from the
nonorthogonality of the eigenstates due to non-Hermiticity,
and from symmetrization and antisymmetrization when con-
structing many-body wave functions from single-body ones.
This notion can be mathematically substantiated by comput-
ing off-diagonal elements of the density matrix, following
the representation of many-body wave functions in terms of

single-body wave functions. Physically, this nonorthogonality
introduces an additional exchange force to the particles, in-
ducing an effective interaction, causing the particles to deviate
from their original single-body states. This result implies that
the properties of many-body noninteracting non-Hermitian
systems warrant separate exploration, as they cannot be di-
rectly derived from their single-body counterparts, unlike the
Hermitian case.

III. NON-HERMITIAN SKIN EFFECT
AT FINITE TEMPERATURES

In this section, we investigate the eigenvalues and eigen-
states of the single-body thermal Hamiltonian Eq. (10) and
examine how the non-Hermitian skin effect and the finite-
temperature effect influence the properties of systems.

A. Eigenvalues and eigenstates of single-body
thermal Hamiltonian ĥT

The time-independent Schrödinger equation

ĥT

∣∣eT
n

〉 = eT
n

∣∣eT
n

〉
(13)

provides the eigenvalues and eigenstates of the single-
body thermal Hamiltonian ĥT (the details are provided in
Appendix C).

The Schrödinger equation’s solution concludes that the
eigenvalue eT

n for ĥT is the nth zero of the Lommel function

RL,1−δn (γ ), where δn = LeT
n

gT , γ = 2JL
gT . The eigenstate |eT

n 〉
benefits from the Wannier states |i〉 for its expansion. The
expansion coefficient, 〈i|eT

n 〉, is given by

〈
i|eT

n

〉 = 1√
N

[Ji−δn (γ ) + kYi−δn (γ )]. (14)

In this equation, Jv (x) signifies the Bessel function, whereas
Yv (x) is the Neumann function. The term k is computed as
J−δn (γ )/Y−δn (γ ). N marks the normalization factor. This
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FIG. 3. (a) The spatial distribution of fermions for different g. We set L = 1000, J = 1, and T = 0.2. (b) A schematic representation of the
impact of g on the original phase at low temperatures. The label i denotes lattice points. Region II represents the original phase with a particle
fill rate of 1/2. Regions I and III indicate areas where the original phase has been disrupted, with one area exhibiting a particle fill rate less
than 1/2, and the other with a rate exceeding 1/2.

analytical formula offers valuable insights into analyzing the
non-Hermitian skin effect at finite temperatures.

B. Global phase diagram

In varied regions, different forms of the thermal wave
functions give rise to distinct system phases. We introduce a
dimensionless parameter ϒ = J

VHN
= J

gT to encapsulate these
phases [41–44]. Crossover phenomena observed at ϒ ∼ 1
differentiate the global phase diagram into two specific areas,
referred to as the strong quantum fluctuation region (ϒ > 1)
and the weak quantum fluctuation region (ϒ < 1). Within
these regions, the eigenvalues and eigenstates associated with
the single-body thermal Hamiltonian ĥT exhibit unique char-
acteristics.

In the strong quantum fluctuation region (ϒ > 1), the
quantum fluctuation leads to the extension of most thermal
wave functions. The dominant factor here is the kinetic term,
unless the thermal energy levels are near the band edge. As
a result, thermal energy levels are approximated by 2J cos k,
with thermal wave functions labeled by quasimomentum k.
Only particles at the band edges are significantly affected by
the effective electric potential.

As we transition to the weak quantum fluctuation region
(ϒ < 1), all thermal wave functions become localized due
to the finite effective electric potential, leading to a non-
Hermitian skin-effect-inspired Wannier-Stark ladder [45,46].
The corresponding thermal wave function approximates to
〈i|eT

n 〉 ∼ Ji−n(γ ), and the ratio of the local scale of the wave
function to the overall system size is approximately ϒ . These
results are clearly manifesting quantum fluctuations subdued
by the non-Hermitian skin effect and the finite-temperature
effect. From the thermal energy perspective, except when near
the band edge, thermal energy levels are close to eT

n = n
LVHN.

This detailed examination of distinct regions presents a
lucid and comprehensive perspective on the non-Hermitian
skin effect at finite temperatures. It cultivates a productive
point of departure for exploring ramifications and potential

manipulations of these non-Hermitian effects across various
contexts.

IV. MANY-BODY SKIN EFFECT IN
FINITE-TEMPERATURE FERMIONIC SYSTEMS

In this section, we focus on studying the many-body skin
effect in finite-temperature fermionic systems. We examine
the 1D fermionic Hatano-Nelson model at half-filling (NF =
L/2). Utilizing the thermal Hamiltonian ĤT, we determine the
spatial density of fermions as nF (i) = tr(a†

i aiρ̄T). The result
ensues as

nF (i) =
∑

n

(∣∣〈i|eT
n

〉∣∣2 1

eβ(eT
n −μ) + 1

)
, (15)

as shown in Fig. 3(a), where |eT
n 〉 is the eigenstate of

ĥT with eigenvalue eT
n . The chemical potential μ satisfies∑

n 1/(eβ(eT
n −μ) + 1) = NF .

In the strong quantum fluctuation region (ϒ > 1), the sys-
tem resembles a fermionic tight-binding model under a mild
linear potential. Within the low-temperature regime, the emer-
gence of the skin effect is distinctly feeble, largely attenuated
by quantum fluctuations. In the domain of the weak quan-
tum fluctuation region (ϒ < 1), the thermal energy level is
approximately expressed as eT

n = n
L VHN, and the coefficient

〈i|eT
n 〉 is approximately expressed as δni. Here, we observe the

emergence of an effective real-space Fermi-Dirac distribution:

nF (x) ∼ 1

egx−μ′ + 1
, (16)

where x = i/L. This leads to the formation of a real-space
Fermi surface at large g. Specifically, at high temperatures,
the system’s density matrix switches to being represented by
the pseudothermal Hamiltonian Ĥ ′

T = ∑L
i=1( i

L a†
i ai ) at pseu-

dotemperature T ′ = L
g , resulting in the emergence of an exact

real-space Fermi-Dirac distribution.
We briefly scrutinize the scenario involving a gap, widely

accounted for in the domain of condensed-matter systems.
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In the gapped scenario, the non-Hermitian skin effect can
instigate a discontinuous phase transition. Starting with the
Hermitian case, the potential introduced by the non-Hermitian
skin effect gradually eviscerates the original formed phase,
generating a unilateral particle accumulation. A paradigmatic
1D half-filling translationally invariant model serves as a
viable representative for these characteristics. We concen-
trate predominantly on instances where the temperature T is
smaller than the gap U . Otherwise, it would make the original
phase susceptible to dissolution at elevated temperatures, and
lead the system to exhibit similarities with the Hatano-Nelson
model.

The strength of the non-Hermitian skin effect inherent
to the system is designated by g. For a system limited to
nearest-neighbor hopping, and if the potential terms (assume
the potential term is Hermitian) can be represented as a sum
of either local operators or tensor products thereof, the non-
Hermitian skin effect behaves like a linear electric potential
effect exhibiting potential energy V = gT (see Appendix A
for details). To estimate the survival capacity of the original
phase amidst the electric potential, we investigate a segment
of the original phase of length l . The destruction of a nom-
inal δl length of the original phase at the margins by the
electric potential effectuates a thermal energy modification
as δET ∼ (lV/L − U )δl . The length of the surviving original
phase can be ascribed through δET = 0, suggesting that with
an added finite potential, only an original phase of length
l ∼ LU/V ∼ LU (gT )−1 persists, as illustrated in Fig. 3(b).
Significantly, such phenomena exert a profound influence on
topological systems, insinuating that the topology of a system
affected by the skin effect is essentially fragile, subject to
obliteration by extremely low temperature T ∼ (g)−1U .

V. MANY-BODY SKIN EFFECT IN FINITE-TEMPERATURE
BOSONIC SYSTEMS

In this section, by taking the bosonic Hatano-Nelson model
as an example, we investigate the many-body skin effect in
finite-temperature bosonic systems. We assume that the total
particle number N is equal to the number of lattice sites, i.e.,
NB = L.

A. Spatial distribution

Using the thermal Hamiltonian ĤT, we calculate the spatial
density of bosons as nB(i). The result is obtained as

nB(i) =
∑

n

(∣∣〈i|eT
n

〉∣∣2 1

eβ(eT
n −μ) − 1

)
, (17)

as shown in Fig. 4, where |eT
n 〉 is the eigenstate of ĥT

with eigenvalue eT
n . The chemical potential μ satisfies∑

n 1/(eβ(eT
n −μ) − 1) = NB.

In particular, the spatial density of bosons at low temper-
atures is not approximately described by the spatial density
of the ground state n0(x) ∼ e−gx, where x = i

L . Instead, it is
approximately described by the spatial density of the thermal
“ground state”

nB
0 (i) = 1

N [Ji−δ1 (γ ) + kYi−δ1 (γ )]2, (18)

FIG. 4. The spatial distribution of bosons nB for different g. We
set L = 1000, J = 1, and T = 0.2. The dotted line n0 denotes the
spatial distribution when all particles condense on the single-body
ground state of the Hatano-Nelson model.

i.e., the ground state of ĥT. When g > 0, the asymptotic be-
havior of this function at y → ∞ is

nB
0 (x) ∝ e− 4

3 y3/2

y1/2
, (19)

where y = x
r , with r =

√
J

gT L . It should be observed that we

have advanced under the anticipation of the thermodynamic
limit, L → ∞, implying r → 0. This suggests that the parti-
cles are localized at the boundary and exhibit a particle spatial
density distribution decay rate that surpasses exponential de-
cay.

B. Phase transition driven by the skin effect

The many-body skin effect can also bring a special phase
transition. The study of condensed matter focuses more on
the continuous phase transition. In the theory of a continuous
phase transition, spontaneous continuous symmetry breaking
plays an important role. The traditional continuous sponta-
neous symmetry breaking is accompanied by the existence
of the Goldstone mode (the Goldstone theorem). However,
for the system with a skin effect, the spontaneous symmetry
breaking and the existence of the Goldstone mode become
separate. We take the bosonic Hatano-Nelson model at finite
temperatures as an example. This model has a U(1) symme-
try, i.e., its Hamiltonian is invariant under the global gauge
transformation a†

i → e−√−1θa†
i , ai → e

√−1θai, where θ is a
real number. To characterize the phase transition, we define
an order parameter φ0 = |tr a0ρ̄T|2 = N0/NB, where a0 is the
annihilation operator for the thermal “ground state,” and N0 is
the number of particles on the thermal “ground state.” When
a macroscopic number of particles condenses on the thermal
“ground state,” i.e., N0 = O(NB), we have φ0 	= 0, at which
point the phase transition occurs. On the other hand, the order
parameter is zero if the state has U(1) symmetry due to the fact
that under the U(1) gauge transformation, tr a0ρ̄T transforms
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FIG. 5. (a) The phase diagram for the 1D many-body bosonic Hatano-Nelson model. Region I is the normal phase, while region II has a
spontaneous breaking of U(1) symmetry but does not exhibit Goldstone modes. (b) The order parameter φ0 for the 1D many-body bosonic
Hatano-Nelson model. In the region with U(1) symmetry undergoing spontaneous breaking, the order parameter φ0 is finite.

as tr a0ρ̄T → e
√−1θ tr a0ρ̄T. Therefore, the system exhibits

spontaneous U(1) symmetry breaking when this phase tran-
sition occurs.

The phase transition can be well defined in the thermody-
namic limit [47]. We estimate the values of critical points for
the phase transition. Now, the thermal energy levels become
continuous, and the phase transition occurs at

NB =
∫ ∞

eT
0

deT 1

eβ(eT−eT
0 ) − 1

ρ(eT), (20)

where eT
0 is the thermal energy level with the lowest energy,

and ρ(eT) is the density of states (DOS) derived from ĥT. The
values of critical point can be obtained via straightforward
calculations. Specifically, in the low-temperature limit, we
have

gc ∼ T

J
(21)

or Tc ∼ Jg. In the high-temperature limit, we have

gc ∼ ln
T

J
(22)

or Tc ∼ Jeg (the details are provided in Appendix D). The
U(1) spontaneous symmetry breaking occurs in the region of
the strong non-Hermitian skin effect strength g > gc or low
temperature T < Tc, as seen in Fig. 5. This phase transition
is regarded as a unique type of Bose-Einstein condensate
(BEC) wherein particles condense onto the ground state of
the thermal Hamiltonian. Contrary to expectations, our re-
sults show that this BEC appears in the typically forbidden
area. It persists even at arbitrarily high temperatures and also
breaks the Mermin-Wagner theorem [48,49]. The emergence
of this atypical BEC is predominantly a result of the non-
Hermitian skin effect, which uniquely suppresses long-range
quantum fluctuations. This suppression significantly diverges
this system’s behavior from standard 1D Hermitian bosonic
many-body systems that possess translational symmetry. The

defining characteristic in these traditional systems is the com-
plete obliteration of BEC due to the quantum fluctuations. It
is noted that this phase transition can occur by adjusting g
without changing the energy levels. Therefore, the system can
spontaneously break the U(1) symmetry without generating a
Goldstone mode.

VI. CONCLUSIONS AND DISCUSSION

In this study, we investigate the many-body non-Hermitian
skin effect at finite temperatures. By using the representative
Hatano-Nelson model as an example, we demonstrate that
the non-Hermitian skin effect is very similar to an electric
potential effect, showcasing a potential whose gradient is pro-
portional to the temperature and strength of the skin effect.
Remarkably, this equivalence leads to a new distribution in
such non-Hermitian systems, deviating from the conventional
Bose-Einstein (Fermi-Dirac) distribution. As a result, the par-
ticles of many-body non-Hermitian systems no longer inhabit
the energy eigenstates of single-body non-Hermitian Hamil-
tonians. This unveils a characteristic whereby many-body
systems articulate different properties from their single-body
counterparts. More specifically, for fermionic systems, the
non-Hermitian skin effect gradually disrupts the original
phase, eventually giving birth to a real-space Fermi surface.
For bosonic systems, the non-Hermitian skin effect suppresses
quantum fluctuations within the system, directing bosons to
condense in corners with a decay rate that surpasses the ex-
ponential. Additionally, a unique phase transition takes place
between the coherent and the incoherent phases, inducing
spontaneous U(1) symmetry breaking, which surprisingly
does not generate a Goldstone mode.

Our work provides a framework that can be applied to a
wider range of systems. For 1D many-body non-Hermitian
systems with open boundaries in which all other non-
Hermitian effects aside from the non-Hermitian skin effect
are excluded, when long-range hopping is disregarded, and
the potential terms can be expressed as a sum of either local
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operators or tensor products thereof, the correlation between
the non-Hermitian skin effect and the electric potential ef-
fect is applicable. This can cover the majority of scenarios
of interest, even those involving interactions. Under periodic
boundary conditions, systems displaying the non-Hermitian
skin effect exhibit properties markedly different from those
under open boundary conditions. Viewing the non-Hermitian
skin effect as a potential effect still provides a way to under-
stand this phenomenon. Specifically, the “electric fields” form
a loop that destabilizes the model, triggering a transition from
a steady state to a non-steady state. It offers an intuitive phys-
ical explanation for understanding the sensitivity of systems
with the non-Hermitian skin effect to boundary conditions.
Our conclusions are also extendable to higher-dimensional
systems. For these scenarios, as long as the curl of the “electric
fields” is maintained at zero, an electric potential effect can be
associated with the non-Hermitian skin effect; otherwise, the
system becomes unstable. Notably, the equivalence between
the non-Hermitian skin effect and the electric potential effect
is strictly valid in systems with finite temperatures in the ther-
modynamic limit. In past research conducted on small scale
zero-temperature systems, the use of this equivalence can
offer a novel understanding of certain physics qualitatively,
but it no longer holds quantitatively. This strongly suggests
intriguing interactions among finite-temperature effects, size
effects, and non-Hermitian skin effects. Furthermore, situ-
ations involving the interaction of multiple non-Hermitian
effects with the many-body skin effect at finite temperatures
are worth exploring. We anticipate further exploration in these
domains in future studies.
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APPENDIX A: DENSITY MATRIX OF NONRECIPROCAL
MODELS AT FINITE TEMPERATURES

To ascertain the steady state of the non-Hermitian system
with Hamiltonian ĤNH, we begin by formulating the time
evolution equation of the system’s density matrix. Custom-
arily, the temporal evolution of an open quantum system S is
depicted by the quantum master equation [50–52]. Generally
speaking, the derivation of a quantum Markovian master equa-
tion is performed in the interaction picture. Thus, we write the
time evolution equation of the density matrix of the system
and the thermal bath in the interaction picture

d

dt
ρI

S+B(t ) = −i
[
V̂I (t )ρI

S+B(t ) − ρI
S+B(t )V̂ †

I (t )
]
. (A1)

In the above,

ρI
S+B(t ) = eiĤeff,0tρS+B(t )e−iĤ†

eff,0t (A2)

and

V̂I (t ) = eiĤeff,0t ĤBSe−iĤeff,0t . (A3)

V̂I (t ) is the interaction Hamiltonian in the interaction picture.
The coupling Hamiltonian is given by ĤBS = ∑

a λaĈa ⊗ B̂a,

where λa is a real number quantifying the strength of coupling
between the system and the thermal bath, and Ĉa and B̂a are
the operators in the subspaces of the system and the thermal
bath, respectively. Ĥeff,0 = ĤNH ⊗ ÎB + ÎS ⊗ ĤB. Following a
derivation similar to that in the Hermitian case, we obtain
[35,52]

d

dt
ρI

S(t ) =
∑
a,b

∑
ω

ab(ω)
[
Âb(ω)ρI

S(t )Â†
a(ω)

− Âa(−ω)Âb(ω)ρI
S(t )

] + H.c. (A4)

Here

Âa(ω) =
∑

m

|m〉R〈m|LλaĈa|m + ω〉R〈m + ω|L, (A5)

where

ab(ω) =
∫ ∞

0
dteiωt trB

(
B̂†

a(t )B̂b(0)ρI
B

)
(A6)

is the reservoir correlation function. In the above, |m〉R

and |m〉L represent the bi-orthonormal right and left eigen-
states of ĤNH, respectively, both associated with eigenvalue
Em. Further, |m + ω〉R/L denotes the biorthonormal right/left
eigenstate characterized by eigenvalue Em + ω. For the sake
of simplicity, we have assumed that the energy spectrum of
the system is real. ρI

S and ρI
B are the density matrices of the

system and the thermal bath in the interaction picture.
Next, we solve the time evolution equation of the non-

Hermitian system to get the steady-state solution. For
simplicity, we assume that the system only has nearest-
neighbor hopping, i.e., its Hamiltonian can be written as

ĤNH = J
L−1∑
i=1

(tRia
†
i+1ai + tLia

†
i ai+1) + Û , (A7)

where tRi, tLi is the positive real hopping, and Û is the potential
term. We assume it is Hermitian and can be expressed as
the sum of the direct product of local operators (common
potential terms, such as real on-site potential, and Coulomb
interaction, all meet this condition). The number of particles
in the system is assumed to be N . The models in the main
text are special cases of Eq. (A7). The coupling term is ĤBS =∑

i λia
†
i ai ⊗ B̂i. Here, λi is a small real coupling constant and

B̂i is an operator in the bath B. Noticed that |m〉R/|m〉L in
Eq. (A5) can be expressed as

|m〉R = Ŝ|m〉0, (A8)

|m〉L = (Ŝ−1)†|m〉0, (A9)

where

Ŝ = e− 1
2

∑
j (

∑i= j−1
i=1 ln tLi

tRi
)a†

j a j (A10)

and |m〉0 is the eigenstate of

Ĥ0 = Ŝ−1ĤNHŜ =
L−1∑
i=1

√
tRitLi(a

†
i+1ai + a†

i ai+1) + Û .

(A11)
We define

∑0
i=1(· · · ) = 0. According to N̂ |m〉R/L = N |m〉R/L

and L〈m|m〉R = 1, |m〉0 satisfy N̂ |m〉0 = N |m〉0 and
0〈m|m〉0 = 1.
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Substitute Eqs. (A8) and (A9) into Eq. (A5), and using
Eq. (A4), we get

d

dt
ρI

S(t )

=
∑
a,b

∑
ω

ab(ω)
[
ŜÂ0,b(ω)Ŝ−1ρI

S(t )(Ŝ−1)†Â†
0,a(ω)Ŝ†

− ŜÂ0,a(−ω)Â0,b(ω)Ŝ−1ρI
S(t )

] + H.c., (A12)

where

Â0,a(ω) =
∑

m

|m〉0〈m|0λan̂a|m + ω〉0〈m + ω|0. (A13)

Here a, b = 1, 2, . . . , L and n̂a = a†
aaa. Multiplying both

sides of the equal sign of Eq. (A12) by Ŝ−1 to the left and
(Ŝ−1)† to the right, we get

d

dt
Ŝ−1ρI

S(t )(Ŝ−1)†

=
∑
a,b

∑
ω

ab(ω)[Â0,b(ω)Ŝ−1ρI
S(t )(Ŝ−1)†Â†

0,a(ω)

− Â0,a(−ω)Â0,b(ω)Ŝ−1ρI
S(t )(Ŝ−1)†] + H.c. (A14)

Now, Ŝ−1ρI
S(t )(Ŝ−1)† obeys the master equation of the Her-

mitian system with Hamiltonian Ĥ0. In the steady state, the
density matrix under the energy representation has only diag-
onal terms. Using Eq. (A14), the diagonal terms of the density
matrix defined as P(n, t ) = 〈n|0Ŝ−1ρI

S(t )(Ŝ−1)†|n〉0 satisfy

d

dt
P(n, t ) =

∑
m

[W (n|m)P(m, t ) − W (m|n)P(n, t )], (A15)

where

W (n|m) =
∑
a,b

γab(Em − En)〈m|0λan̂a|n〉0〈n|0λbn̂b|m〉0,

(A16)
with

γab(ω) =
∫ ∞

−∞
dteiωt trB

(
B̂†

a(t )B̂b(0)ρI
B

)

≡
∫ ∞

−∞
dteiωt

〈
B̂†

a(t )B̂b(0)
〉

(A17)

the real part of 2ab.
Using the Kubo-Martin-Schwinger condition

〈B̂†
a(t )B̂b(0)〉 = 〈B̂b(0)B̂†

a(t + i 1
T )〉, we derive the

temperature-dependent behavior of γab, i.e.,

γab(−ω) = e−ω/T γba(ω). (A18)

When d
dt P(n, t ) = 0, Eq. (A15) and the relations Eq. (A18)

give W (n|m)e−βEm = W (m|n)e−βEn , which lead to

P(n) = const × e−βEn (A19)

at the steady state. Then we have

Ŝ−1ρI
T(Ŝ−1)† =

∑
m

|m〉0e−βEm〈m|0 (A20)

or

ρI
T =

∑
m

Ŝ|m〉0e−βEm〈m|0Ŝ†, (A21)

where ρI
T is the steady state in the interaction picture, which

is also the steady state

ρT =
∑

m

Ŝ|m〉0e−βEm〈m|0Ŝ† (A22)

in the Schrödinger picture. Therefore, we have

ρT = Ŝe−βĤ0 Ŝ† = e−βĤNHTc, (A23)

where

Tc = e− ∑
j (

∑i= j−1
i=1 ln tLi

tRi
)a†

j a j . (A24)

For translationally invariant models, by defining g =
L ln tLi

tRi
, we can achieve Tc = e−g

∑
i (

i−1
L a†

i ai ), which is equiva-

lent to Tc = e−g
∑

i (
i
L a†

i ai ). Based on the definition e−βĤT = ρT,
and utilizing the Baker-Campbell-Hausdorff (BCH) formula,
we can derive the thermal Hamiltonian ĤT as

ĤT = Ĥ0 + V
L∑

i=1

i

L
a†

i ai + · · · , (A25)

with V = gT . In the thermodynamic limit, contributions from
higher-order terms tend to zero. Hence, in such a limit and at
finite temperatures, it follows that the many-body skin effect
becomes equivalent to a linear electric potential effect.

APPENDIX B: THERMAL HAMILTONIAN FOR THE
HATANO-NELSON MODEL

To calculate the thermal Hamiltonian for the Hatano-
Nelson model, we first rewrite the density matrix as

ρT = e−βĤHNTc = eÂeB̂+B̂†
eÂ, (B1)

where

Â = − g

2L

L∑
i=1

(ia†
i ai ), B̂ = −βJ

L−1∑
i=1

(a†
i+1ai ). (B2)

We have

[Â, B̂] = g

2L
B̂, [Â, B̂†] = − g

2L
B̂†. (B3)

In the following parts, we set g
2L = a. To get a simple analytic

result, we use the GBZ theory. Now, we have

B̂ = −βJe
√−1kn̂k, B̂† = −βJe−√−1kn̂k, (B4)

where k is quasimomentum and n̂k is the number operator
for the state with quasimomentum k. In particular, we have
[B̂, B̂†] = 0. As a result, the density matrix ρT is transformed
into

ρT = eÂeB̂+B̂†
eÂ = eÂeB̂eB̂†

eÂ. (B5)

Next, using the formula eĈ+D̂ = eĈe f (c)D̂, where f (c) =
c/(1 − e−c) with Ĉ, D̂ satisfies [Ĉ, D̂] = cD̂, we can get

eĈeD̂ = eĈ+g(c)D̂, (B6)

where g(c) = f (c)−1. Here, we have used [Ĉ, (ξ D̂)] = c(ξ D̂),
where ξ is an arbitrary constant. As a result, we have

eÂeB̂ = eÂ+g(a)B̂ (B7)
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and

eB̂†
eÂ = [eÂeB̂]† = eÂ+g(a)B̂†

. (B8)

Therefore, we transform the density matrix

ρT = eÂeB̂eB̂†
eÂ (B9)

to

ρT = eÂ+g(a)B̂eÂ+g(a)B̂†
. (B10)

Noticing that if we start with another expression of ρT:

ρT = eÂeB̂+B̂†
eÂ = eÂeB̂†

eB̂eÂ, (B11)

we have

ρT = eÂ+g(−a)B̂†
eÂ+g(−a)B̂. (B12)

Finally, by using the BCH formula in Eqs. (B10) and
(B12), and comparing the two results, we find that

ρT = e2Â+g(−a)(B̂+B̂† )+g(−a) 1−g(−a)/g(a)
1+g(−a)/g(a) (B̂+B̂† )

= e2Â+ 2g(a)g(−a)
g(a)+g(−a) (B̂+B̂† )

, (B13)

i.e., the density matrix becomes

ρT = exp

[
−β

∑
i

Jeff (a†
i+1ai + H.c.) − g

∑
i

(
i

L
a†

i ai )

]
,

(B14)

where

Jeff = J
2g(a)g(−a)

g(a) + g(−a)
= g

2L sinh(g/2L)
. (B15)

Therefore, the analytical formula of a thermal Hamiltonian in
the thermodynamic limit is obtained as

ĤT = − 1

β
ln ρT

= Jeff

∑
i

(a†
i+1ai + H.c.) + VHN

∑
i

(
i

L
a†

i ai

)
, (B16)

with Jeff = J g
2L sinh(g/2L) and VHN = gT .

APPENDIX C: SOLVING FOR EIGENVALUES AND
EIGENSTATES OF A SINGLE-BODY THERMAL

HAMILTONIAN ĥT

Expanding the single-body thermal Hamiltonian and the
eigenstate with bases |i〉, we can get a differential equation

J[ψn(i − 1) + ψn(i + 1)] = (
eT

n − iεHN
)
ψn(i), i ∈ Z (C1)

with the open boundary condition

ψn(0) = ψn(L + 1) = 0. (C2)

Here, ψn(i) ≡ 〈i|eT
n 〉 is the expansion coefficient of |eT

n 〉,
εHN = VHN/L. The solution of the Bessel equation satisfies
the recurrence relation

Zν+1(x) + Zν−1(x) = 2ν/x Zν (x). (C3)

As a result, we have

ψn(i) = A Ji−eT
n /εHN

(
2J

εHN

)
+ B Yi−eT

n /εHN

(
2J

εHN

)
, (C4)

where Jv (x) is the Bessel function, Yv (x) is the Neumann
function, and A, B are some constant that is determined by
boundary conditions and normalization.

Next, we calculate A and B from boundary conditions.
Using boundary conditions, we have

A J−eT
n /εHN

(
2J

εHN

)
+ B Y−eT

n /εHN

(
2J

εHN

)
= 0 (C5)

and

A JL+1−eT
n /εHN

(
2J

εHN

)
+ B YL+1−eT

n /εHN

(
2J

εHN

)
= 0. (C6)

Regarding the above equations as homogeneous linear equa-
tions about A and B, the condition for the existence of nonzero
solutions for energy levels is∣∣∣∣∣∣

J−eT
n /εHN

(
2J
εHN

)
Y−eT

n /εHN

(
2J
εHN

)
JL+1−eT

n /εHN

(
2J
εHN

)
YL+1−eT

n /εHN

(
2 J

εHN

)
∣∣∣∣∣∣ = 0, (C7)

i.e.,

J−eT
n /εHN

(
2J

εHN

)
YL+1−eT

n /εHN

(
2J

εHN

)

− Y−eT
n /εHN

(
2J

εHN

)
JL+1−eT

n /εHN

(
2J

εHN

)
= 0. (C8)

Using the Lommel polynomial,

RN,ν (x) = 1
2πx[YN+ν (x)Jν−1(x) − JN+ν (x)Yν−1(x)], (C9)

the energy levels eT
n are obtained by solving the following

equation:

RL,1−eT
n /εHN

(
2J

εHN

)
= 0 (C10)

or

RL,1−δn (γ ) = 0, (C11)

where δn = eT
n

εHN
= LeT

n
gT , γ = 2J

εHN
= 2JL

gT . Substituting the

solved energy level eT
n into Eq. (C5), we have

B/A = J−δn (γ )/Y−δn (γ ). (C12)

Then the corresponding wave function ψn(i) is obtained as

ψn(i) = 1√
N

[Ji−δn (γ ) + kYi−δn (γ )], (C13)

where

k = B/A = J−δn (γ )/Y−δn (γ ), (C14)

and N is the normalization factor determined by

N =
L∑

i=1

|Ji−δn (γ ) + k Yi−δn (γ )|2. (C15)

APPENDIX D: ESTIMATION OF CRITICAL POINTS FOR
THE BOSONIC HATANO-NELSON MODEL

1. Density of states

We summarize the approximate expression of the energy
spectrum of a single-body thermal Hamiltonian ĥT in some
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limited cases in this subsection [41–44]. We have set the
thermal ground-state energy to zero. In the strong quan-
tum fluctuation limit ϒ � 1, the thermal energy levels are
obtained as

eT
n =

⎧⎪⎨
⎪⎩

2J
(

1 − cos 2πn
L

)
, n ∈ N+, eT � VHN,

J (JL/VHN)−
2
3

[
3π (n+ 3

4 ))
2

] 2
3
, n ∈ N+, eT � VHN.

(D1)
In the weak quantum fluctuation limit ϒ � 1, the thermal
energy levels are obtained as

eT
n =

⎧⎨
⎩

VHN
n
L , n ∈ N+, eT � J,

J (JL/VHN)−
2
3

[
3π (n+ 3

4 ))
2

] 2
3
, n ∈ N+, eT � J.

(D2)
The DOS is defined as

ρ(eT) = dn

deT
. (D3)

In the thermodynamic limit, the DOS of the thermal Hamilto-
nian ĥT is obtained:

In the strong quantum fluctuation limit, we have

ρ(eT) =
{

L 1
π

√
JVHN

√
eT, eT � VHN,

L 1
2π

√
J

(eT)−
1
2 , eT � VHN.

(D4)

In the weak quantum fluctuation limit, we have

ρ(eT) =

⎧⎪⎨
⎪⎩

L 1
π

1√
JVHN

√
eT, eT � J,

L 1
VHN

, VHN > eT � J,

0, eT � VHN.

(D5)

2. Results in the low-temperature limit

Let us estimate the critical point of the phase tran-
sitions between the BEC and the normal state in the
low-temperature limit. The phase transition occurs at NB =∫ ∞

eT
0

deT 1

eβ(eT−eT
0 )−1

ρ(eT), where NB is the number of particles,

and we set NB = L. eT
0 is the minimum eigenvalue of thermal

Hamiltonian ĥT, and the DOS ρ(eT) is approximate to (it turns
out that the critical point in the low-temperature limit occurs
in the strong quantum fluctuation limit. If we use the DOS of
the weak quantum fluctuation limit to calculate, we will get
inconsistent results)

ρ(eT) =
{

L 1
π

√
JVHN

√
eT, �1

l > eT � 0,

L 1
2π

√
J

(eT)−
1
2 , eT � �1

l ,
(D6)

where �1
l is a cutoff, and it can be written as α1

l gT ; α1
l is a

real constant of the order of magnitude around 1.
From

NB/L = 1

π

[
1√

JVHN

∫ �1
l

0
deT

√
eT

eβeT − 1

+ 1√
2J

∫ ∞

�1
l

deT (eT)−
1
2

eβeT − 1

]
, (D7)

we have

NB/L = 2

π

(√
α1

l +
√

1

α1
l

)√
T

Jg
. (D8)

As a result, the critical point of the phase transition is

Tc ∼ Jg. (D9)

3. Results in the high-temperature limit

It turns out that the critical point in the high-temperature
limit occurs in the weak quantum fluctuation limit. By using
the approximate of the DOS,

ρ(eT) =

⎧⎪⎪⎨
⎪⎪⎩

L 1
π

√
JVHN

√
eT, eT < �1

h,

L 1
VHN

, VHN > eT � �1
h,

0, eT � VHN

(D10)

(�ht is a cutoff and can be written as α1
hJ , while α1

h is a real
constant of the order of magnitude around 1), we have

NB/L = 1

π

1√
JVHN

∫ �1
h

0
deT

√
eT

eβeT − 1

+
∫ VHN

�1
h

deT 1

eβeT − 1

1

VHN
. (D11)

We expect that in the high-temperature limit, g may be large,
and the first term can be ignored. With an integral of the
second term, we get

NB/L = 1

g
ln

1 − e−g

1 − e−α1
h J/Tc

= 1 (D12)

which gives

g = ln

(
1

2(1 − e−α1
h J/Tc )

[
1 +

√
1 − 4(1 − e−α1

h J/Tc )
])

∼ ln
Tc

J
+ O(1) (D13)

or

Tc ∼ Jeg. (D14)
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