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We investigate the role of quantum coherence and higher harmonics resulting from multiple-path interference
in nonlinear thermoelectricity in a two-terminal triangular triple-dot Aharonov-Bohm (AB) interferometer. We
quantify the trade-off between efficiency and power in the nonlinear regime of our simple setup comprising
three noninteracting quantum dots (two connected to two biased metallic reservoirs) placed at the vertex of
an equilateral triangle, and a magnetic flux � pierces it perpendicularly. For a spatially symmetric setup, we
achieve optimal efficiency and power output when the interdot tunneling strength is comparable to the dot-lead
coupling, AB phase φ = π/2. Our analysis reveals that the presence of higher harmonics is necessary but not
sufficient to achieve optimal power output. The maximal constructive interference represented by three close-
packed resonance peaks of the unit transmission can enhance the power output (Pmax ∼ 2.35 fW) almost 3.5 times
as compared to the case where only a single channel participates in the transport, and the corresponding efficiency
is about 0.80ηc, where ηc is the Carnot efficiency. Geometric asymmetries and their effects on efficiency and
power output are also investigated. An asymmetric setup characterized by the ratio of the coupling to the source
and the drain terminals (x) can further enhance the maximum power output Pmax ∼ 3.85 fW for x = 1.5 with the
same efficiency as that of the symmetric case. Our investigation reveals that the output power and efficiency are
optimal in the wide-band limit. The power output is significantly reduced for the narrow-band case. On the other
hand, disorder effects radically reduce the performance of the heat engine.
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I. INTRODUCTION

Optimal conversion of heat to work is desirable for ef-
ficient energy-harvesting technologies. The role of quantum
coherence in energy harvesting in an efficient way is an on-
going research area. Recent advancements in nanotechnology
have enabled us to study quantum-dot (QD) thermoelec-
tric heat machines where quantum interference effects can
play an important role. A major difference between these
thermoelectric-based machines and other machines is that
they do not have any macroscopic moving parts (i.e., no
turbines, pistons, etc.). Rather, the working principles of such
nanoscale thermoelectric devices are based on the steady-state
currents of microscopic particles (electrons, phonons, etc.).
The steady-state conversion of heat to work at the nanoscale
has been reviewed in various works [1–6].

In this perspective, nanoscale or low-dimensional materials
are among the most encouraging candidates [7]. Typically,
one considers a nanostructure made of a few QDs or a single-
molecule junction between two thermal reservoirs maintained
at different temperatures and electrochemical potentials. In
such nanoscale devices, the striking role of symmetries, phase
coherence, the effect of an external magnetic field, and quan-
tum interference effects are investigated [8–19]. Numerous
examples of heat engines using the quantum system as a work-
ing fluid have been proposed and even experimentally realized
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[2,20,21]. One may mention the celebrated Aharonov-Bohm
(AB) interferometer as a demonstrative example of a phase-
tunable quantum device. The AB rings offer a tunable system
to study the role of quantum effects in heat and charge trans-
port [22–26]. For three-terminal QD heat engines using an
AB interferometer, it has been shown that the introduction of
magnetic flux can enhance heat-to-work conversion [27,28].
Quantum dot thermoelectric heat engines based on a two-
terminal AB interferometer exhibiting sizable thermopower
and the figure of merit exceeding one in the linear and non-
linear regimes have been studied [19,29–31]. The energy
filtering mechanism introduced by quantum mechanics can
lead to maximum efficiency where the system allows only
particles from a specific energy window to pass [3,4].

In this paper, we study the triple QD AB interferometer as a
thermoelectric heat engine. We consider a triangular geometry
with magnetic flux threading the loop and two reservoirs con-
nected at the terminals, termed as the source and drain. The
source and drain are maintained at temperatures TS and TD and
chemical potentials μS and μD, respectively. To operate this
setup as a thermoelectric heat engine, we maintain TS > TD

and μS < μD. In addition, the operation of the heat engine in
the nonlinear regime is controlled by considering �T = TS −
TD � (TS + TD)/2 and �μ = μD − μS � (μD + μS )/2. The
steady-state behavior of the model has been studied at zero-
temperature limits [32]. Most of the previous studies on
AB interferometer heat engines are limited in the linear re-
sponse regime [2,20]. In the present paper, we investigate the

2469-9950/2023/108(16)/165419(14) 165419-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8254-8584
https://orcid.org/0000-0003-1455-8825
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.165419&domain=pdf&date_stamp=2023-10-23
https://doi.org/10.1103/PhysRevB.108.165419


JAYASMITA BEHERA et al. PHYSICAL REVIEW B 108, 165419 (2023)

behavior of an AB interferometer operated in the fully non-
linear regime as a quantum heat engine. We demonstrate the
good tunability of the device (either by changing magnetic
flux or by controlling the ratio t

γ
with tunneling strength t

and coupling strength γ or by changing the gate voltage),
the sizable thermodynamic conversion efficiency, and large
thermopower that this phase controllable thermoelectric quan-
tum machine can attain. Although the controllability of the
ratio t

γ
has been reported in previous investigations [33–37],

this corroborates the AB interferometer as an archetypal tool
to develop efficient thermoelectric machines operating in the
fully nonlinear quantum regime. Further, we compare the per-
formance of our setup between wide-band and narrow-band
limits. We find that the narrow band case reduces the power
output [25,26,32]. Additionally, the analysis of the disorder
effects due to fluctuation in the tunneling strengths as well as
the on-site energies reveals a reduction in the performance of
the heat engine by a significant amount.

Our investigation reveals that the quantum interference
between the background continuum of states in the reser-
voirs and the discrete energy levels in the QD leads to a
formation of Fano resonance that is reflected as transmission
asymmetries and sharp symmetric transmission resonances
[38–40]. The role of Fano resonance in efficient heat-to-work
conversion has been studied both theoretically and experimen-
tally [41–46]. Apart from the Fano resonance, the triangular
geometric arrangement of QDs gives rise to electron trajec-
tories winding around the loop multiple times that generate
higher harmonics [47–53]. The effects of such higher-order
interference patterns on the performance of thermoelectric
heat engines are relatively less explored. The present paper
explores the role of higher-order harmonics (higher-order
quantum interferences) in efficient heat-to-work conversion.
At the outset, we can summarize our main findings as follows:
(i) The quantum interference effect can enhance the output
power and efficiency of our AB thermoelectric heat engine.
The optimal performance of our AB device can be achieved
for the maximal constructive interference pattern, which can
be identified by the maximally compact transmission spectra
(area under the transmission curve is required to be maximum
such that all states contribute to the transport equally) of the
system. (ii) This maximal constructive interference pattern
can be achieved (as a result, the power and efficiency of
our phase-tunable AB device can be optimized) by tuning
external magnetic flux and the ratio t

γ
. We observe that the

optimal power efficiency can be achieved for magnetic flux
φ = π

2 , and t
γ

= 1. (iii) We further find that the presence
of antiresonances that gives rise to destructive interference
channels reduces both the power output and efficiency. (iv)
Tuning the asymmetric ratio of the system (the ratio of the
coupling to the source and the drain terminals) can further
enhance the performance of the engine. (v) The functioning
of the AB heat engine is much superior in the wide-band
limit (WBL) compared to narrow-band limit. (vi) The disorder
effects fanatically lower the power output of the engine.

With this background, the rest of the paper is organized
as follows: We first describe our model and the formalism in
Sec. II. We analyze the density of states (DOS) and transmis-
sion function properties of our model set up in the fully non-

linear regime in Sec. III. Section IV is devoted to the thermo-
electric power and thermodynamic conversion efficiency of
our setup and their tunability with magnetic flux, gate voltage,
temperature bias, and dot-lead coupling strength. The connec-
tion between power-efficiency behavior and the harmonics of
particle current and heat current for three different regimes
demarcated by the parameter t/γ (t is the interdot tunneling
strength and γ is the hybridization strength) : (a) t/γ < 1,
(b) t/γ ∼ 1, and (c) t/γ > 1. Our analysis shows that regime
(b) with φ = π/2 is the most optimal region for the operation
of our thermoelectric engine. Section V deals with the dis-
cussion of the thermoelectric response of our model by going
beyond the WBL approximation and the effects of disorders
are discussed in Sec. VI. In Sec. VII, we discuss the role of the
geometry of the triple-dot setup for enhanced thermoelectric
response. We conclude our paper in Sec. VIII. We quantify the
performance of the thermoelectric heat engine by investigat-
ing the Seebeck coefficient in Appendix C.

II. MODEL HAMILTONIAN AND FORMALISM

We consider a model setup of a triple-QD AB interfer-
ometer [32,54–57], as shown in Fig. 1(a). Here, each QD
is located at the vertex of an equilateral triangle and inter-
connected to each other by quantum tunneling. A magnetic
flux � pierces the triangular AB ring perpendicularly. Dots 1
and 3 are connected to two metallic leads (bath or reservoir)
maintained at different temperatures and chemical potentials.
Here we do not consider the electron-electron interactions and
the spin degrees of freedom to construct a simple solvable
setup. Hence we can describe QDs by a spinless electronic
level and ignore the Zeeman effect. The total Hamiltonian Ĥ
of the whole system is given by

Ĥ = ĤTQD + ĤB + ĤTQD,B, (1)

where ĤTQD is the Hamiltonian for the three quantum dots
(subsystem), ĤB is the Hamiltonian for the metallic leads
(bath), and ĤTQD,B is the interaction Hamiltonian between the
subsystem and the baths. The subsystem Hamiltonian consist-
ing of three interconnected dots is given as

ĤTQD =
∑

i=1,2,3

εid̂
†
i d̂i +

⎡
⎣∑

i �= j

ti j d̂
†
i d̂ je

iφi j + H.c.

⎤
⎦. (2)

Here, εi denotes the energy of the ith dot. d̂†
i and d̂i are the

creation and annihilation operators of the electrons in the
respective dots and ti j is the interdot tunneling strength and φi j

is the AB phase factor. The Hamiltonian for the two metallic
leads, source (S) and drain (D), consisting of noninteracting
electrons is

ĤB =
∑

k,ν∈S,D

εν,k ĉ†
ν,k ĉν,k, (3)

where ĉ†
ν,k and ĉν,k represents the creation and annihilation

operators of the electrons in the kth momentum state and εν,k

is the energy of the kth state in the corresponding baths, ν ∈
S, D. Since dot 1 is connected to the source (S) and dot 3 is
connected to the drain (D) [see Fig. 1(a)], we can write the
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FIG. 1. (a) A triple quantum dot Aharonov-Bohm interferometer
with dots 1 and 3 connected to source and drain, respectively. A
magnetic flux � pierces the triangular AB ring perpendicularly. (b)–
(d) show transmission patterns with respect to energy for the regimes
t < γ , t = γ , and t > γ , respectively. (b) A single symmetric peak
around resonance is more efficient but generates less power (t < γ ).
(c) We need three peaks equally spaced around the resonance to
achieve optimal power and efficiency as shown in the figure with the
brightest bulb (t = γ ). (d) When the separation between the peaks
increases, antiresonance is more pronounced, causing a decrease in
power and efficiency (t > γ ). The bottom set of figures shows har-
monic patterns of charge current obtained by Fourier decomposition
with respect to φ (n = 1, 2, 3, ...), and the different trajectories of the
circulation of electrons around the AB ring are represented by blue
and red orbits. The presence of higher harmonic modes is necessary
but not sufficient to achieve optimal power and efficiency. (e) repre-
sents only two modes of dominance in the t < γ regime responsible
for the least output power but highest efficiency; (f) gives optimal
power efficiency for the regime t = γ with a few higher harmonics.
(g) The dominance of higher harmonic modes is responsible for
reducing power output as well as the efficiency in the t > γ regime.

subsystem-bath interaction term as follows:

ĤTQD,B = V S
1,kd̂†

1 ĉS,k + V D
3,kd̂†

3 ĉD,k + H.c. (4)

Here V ν
i,k denotes the dot-bath coupling strength. The AB

phases φi j satisfy the following relation [32]:

φ12 + φ23 + φ31 = φ = 2π
�

�0
, (5)

where � is the total magnetic flux enclosed by the triangular
AB ring and �0 = h/e is the flux quantum. In the steady state,
physical observables are gauge invariant. Since the dots are
present at the vertices of an equilateral triangular loop, we
may choose the gauge as φ12 = φ23 = φ31 = φ/3. For our
system, we maintained a symmetric voltage bias condition

i.e., μS = −μD. Although, by applying a gate voltage to each
dot we can place the levels of the dots away from the symmet-
ric point at which μS − εi = εi − μD. For simplicity, we use
the natural unit convention h̄ = c = e = kB = 1. We translate
our results to physical units in Appendix B.

A. Nonequilibrium Green’s functions for the AB
interferometer setup

To solve this model and compute the observables of in-
terest, we use the nonequilibrium Green’s function (NEGF)
approach [58–60]. We follow the equation of motion method
for the calculations (for details, see Appendix A) and ob-
tain the retarded [G+(ω)] and advanced [G−(ω)] Green’s
functions for our system by using the quantum Langevin
equation [61]. The Green’s functions are given as

G±(ω) = [ωI − HTQD − �±
S (ω) − �±

D (ω)]−1, (6)

where I is a (3 × 3) identity matrix. Here �±
S (ω) and �±

D (ω)
are the self-energies defined in Eq. (A8) of Appendix A. HTQD

is the single particle matrix corresponding to the Hamiltonian
ĤTQD in Eq. (2) and given by

HTQD =
⎛
⎝ εd teiφ/3 te−iφ/3

te−iφ/3 εd teiφ/3

teiφ/3 te−iφ/3 εd

⎞
⎠. (7)

Note that we impose energy degeneracy for the dots ε1 = ε2 =
ε3 = εd and further consider identical symmetric interdot tun-
neling strength as t12 = t23 = t13 = t . In the WBL, when the
DOS of the metallic lead is energy independent, the real part
of the self-energy term vanishes. Then we can define the
hybridization matrix from the relation �+ = −i�/2:

�ν
i,i′ = 2π

∑
k,ν

V ν∗
i′,kV

ν
i,k δ(ω − ωk ). (8)

We may take V ν
i,k as real constants with ν = S, D, independent

of the level index and reservoir state, resulting in �S
1,1 = γS

and �D
3,3 = γD, where γν describes the coupling between the

dots and metallic leads and it is taken as a constant (energy
independent). We then receive the retarded Green’s function
as

G+(ω) =

⎛
⎜⎝

ω − εd + i γS

2 −teiφ/3 −te−iφ/3

−te−iφ/3 ω − εd −teiφ/3

−teiφ/3 −te−iφ/3 ω − εd + i γD

2

⎞
⎟⎠

−1

,

(9)
and the hybridization matrices are given by

�S =
⎛
⎝γS 0 0

0 0 0
0 0 0

⎞
⎠, �D =

⎛
⎝0 0 0

0 0 0
0 0 γD

⎞
⎠. (10)

We can define the advanced Green’s function as conjugate
transpose matrix G−(ω) = [G+(ω)]†. The details are dis-
cussed in Appendix A.

B. Observables: Currents, output power and efficiency

It is of interest to investigate the subsystem properties and
obtain the transmission coefficient, particle currents, and heat
currents through the system. The transmission of electrons
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from reservoir ν to ξ is given by the transmission coefficient
[62]:

Tνξ (ω, φ) = Tr[�νG+(ω, φ)�ξ G−(ω, φ)]. (11)

Using the transmission coefficients Tνξ , we can express the
particle currents flowing from reservoir ν to the central system
as [63,64]

Iν =
∫ ∞

−∞
dω

∑
ξ �=ν

[Tνξ (ω, φ) fν (ω) − Tξν (ω, φ) fξ (ω)]. (12)

Although the definition of the heat current is debatable [65]
in the strong coupling regime, we consider the conventional
and usefully studied NEGF approach to define the heat current
from the reservoir ν for arbitrary coupling as [1,66–71]

Qν =
∫ ∞

−∞
dω(ω − μν )

∑
ξ �=ν

[Tνξ (ω, φ) fν (ω)

− Tξν (ω, φ) fξ (ω)], (13)

where fν(ξ )(ω) = [e(ω−μν(ξ ) )/Tν(ξ ) + 1]−1 is a Fermi distribu-
tion function of the reservoir ν(ξ ) = S, D with μν and Tν

be the corresponding chemical potential and temperature,
respectively.

To characterize the nonlinear thermoelectric performance
of a two-terminal system as a heat engine, we shall study
the output power P and the steady-state heat-to-work con-
version efficiency η. Our model uses the configuration �μ =
μD − μS > 0 and �T = TS − TD > 0. The output power P is
equal to the sum of all the heat currents exchanged between
the subsystem and the reservoir and is given by [1,72]

P =
∑

ν=S,D

Qν = (μD − μS )IS. (14)

Equation (14) follows the laws of conservation of particle∑
ν Iν = 0 and energy. We define the efficiency η as the ratio

of output power P to the heat currents absorbed from the hot
bath and it is expressed as [1,72]

η = P

QS
. (15)

The system works as a heat engine for positive output power
P > 0 with positive heat current flow from the source QS > 0.
The efficiency η is bounded from the above by Carnot effi-
ciency ηC = 1 − Tc/Th, with Tc and Th being the temperatures
of cold and hot baths, respectively [73].

III. TRANSPORT PROPERTIES: DENSITY OF STATES
AND TRANSMISSION FUNCTION

The main objective of our paper is to find the optimal
power-efficiency configuration of a triple-dot heat engine.
Intuitively, we expect the maximal constructive interference
arising from multiple paths winding around the loop to en-
hance the power efficiency. Since these interference properties
are encoded in the system’s transmission function, we inves-
tigate its behavior in three different regimes: (i) t/γ < 1, (ii)
t/γ = 1, and (iii) t/γ > 1. We further find that the behavior
of the transmission function and the DOS are identical. This
provides a prescription for choosing optimal parameters.

The DOS is given by the trace of the imaginary part of the
retarded Green’s function as [62]

D(ω, φ) = − 1

π
Tr[Im(G+)], (16)

which for our setup is given as,

D(ω, φ) = γ

π�(ω, φ)

[
(ω − εd )4 + γ 2

4
(ω − εd )2

+4t3 cos φ(ω − εd ) + t2

(
3t2 + γ 2

4

)]
, (17)

where

�(ω, φ) =
[

(ω − εd )

(
(ω− εd )2− 3t2 − γ 2

4

)
− 2t3 cos φ

]2

+ γ 2[(ω − εd )2 − t2]2. (18)

We can express the transmission function from reservoir S to
D with symmetric dot-lead coupling (γS = γD = γ ) analyti-
cally as

TSD(ω, φ) = γ 2[t4 + 2t3 cos φ(ω − εd ) + t2(ω − εd )2]

�(ω, φ)
.

(19)
For φ = π/2, the transmission peaks [TSD(ω, φ) = 1] are at
positions

ω = εd , and ω = εd ± 1
2

√
12t2 − γ 2. (20)

We have three transmission peaks at energies given by
Eq. (20) for all the three regimes i.e., (i) t < γ , (ii) t = γ ,
and (iii) t > γ . But, when t 	 γ , we get a single transmission
peak at ω = εd .

Considering our model setup where the triple-dot AB
interferometer is connected to two reservoirs or leads, the
transmission function describes the quantum interference. The
transmission function can exhibit both constructive and de-
structive interference. Further, we observe that DOS is directly
related to the transmission function. We analyze this quantity
for the three different regimes. In Fig. 2(a1), for t < γ , we
observe an asymmetric structure in DOS with energy when
the magnetic flux is zero i.e., φ = 0. As we change the flux
to φ = π/4 and π/2, the asymmetry vanishes and we get
a single peak [see Figs. 2(a2) and 2(a3)]. We can also see
this behavior in the transmission function. We observe an
asymmetric antiresonance dip in transmission at φ = 0 as
shown in Fig. 2(b1) and as we increase the magnetic flux to
φ = π/2, the asymmetry in transmission vanishes and we get
a single peak symmetric around ω = εd [see Fig. 2(b3)]. It has
also been observed that the DOS and transmission function
behavior for φ = π , φ = 3π/4 has reflection symmetry of
that of φ = 0 and φ = π/4, respectively. This is also true for
other values of φ.

In the t ∼ γ regime, we can observe that the DOS has two
peaks and the transmission has antiresonance dip for φ = 0
in Fig. 3(b1). Further, as we change the magnetic flux from
φ = 0 to φ = π/4, the DOS and the transmission function
exhibit three resonance peaks. For φ = π/2, resonance peaks
become sharper and are symmetrically situated around ω = εd

[see Fig. 3(b3)] such that the maximum transmission is one
and the minimum is half. It opens more transport channels and

165419-4



QUANTUM COHERENT CONTROL OF NONLINEAR … PHYSICAL REVIEW B 108, 165419 (2023)

-0.2 0 0.2
0

40

80

D

=0

(a1)

-0.2 0 0.2
0

0.5

1

T
S

D

(b1)

=0

-0.2 0 0.2
0

40

80

D

= /4

(a2)

-0.2 0 0.2
0

0.5

1
T

S
D

(b2)

= /4

-0.2 0 0.2
0

30

60

D

= /2

(a3)

-0.3 0 0.3
0

0.5

1

T
S

D

(b3)

= /2

FIG. 2. Density of states (a1)–(a3) and transmission functions
(b1)–(b3) as a function of energy at different values of φ for t < γ

regime. Parameters used are γ = 0.05, t = 0.2γ , εd = 8γ , TS =
12γ , TD = 2γ , μS = −4γ , μD = 4γ .
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FIG. 3. Density of states (a1)–(a3) and transmission functions
(b1)–(b3) as a function of energy at different values of φ for t = γ

regime. Parameters used are γ = 0.05, t = γ , εd = 8γ , TS = 12γ ,
TD = 2γ , μS = −4γ , μD = 4γ .
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FIG. 4. Density of states (a1)–(a3) and transmission functions
(b1)–(b3) as a function of energy at different values of φ for t > γ

regime. Parameters used are γ = 0.05, t = 0.2γ , εd = 8γ , TS =
12γ , TD = 2γ , μS = −4γ , μD = 4γ .

all three states participate equally in transport for φ = π/2,
t = γ , leading to perfectly constructive interference. For the
t > γ regime as shown in Fig. 4, we observe that the DOS
and transmission function show a double resonance peak for
φ = 0. As one increases φ, we observe the splitting of the
peaks of the DOS and transmission function. One can observe
three equally spaced resonance peaks for φ = π/2 symmetric
around εd . The separation between the resonance peaks be-
comes wider for both DOS and the transmission function and
it is accompanied by two deep antiresonance dips as compared
to the t = γ regime.

From the above analysis, we can conclude that the behav-
ior of the transmission function and the DOS are identical.
This suggests a peculiar way of engineering QD structures to
achieve the maximal constructive interference condition. We
can explain the antiresonance dip in transmission i.e., TSD = 0
for φ = 0 in all three regimes from the energy spectrum
of the isolated triple-dot AB setup. The strong (compared
to lead-dot coupling) interdot tunneling coupling leads to a
strong hybridization between triple-dot states. Owing to the
discrete molecular symmetry of the setup, the spectrum ex-
hibits degeneracies depending on the magnetic flux values.
In the case of an isolated symmetric triple dot, it can be
shown that the energy eigenstates are Bloch waves uniformly
delocalized over three sites. When a pair of degenerate lev-
els is in resonance with incoming electrons from leads, the
transmission probability vanishes which is a consequence of
destructive interference. Further, if the contact with the lead
is weak, then the energy-level structure of the isolated triple
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dot will be reflected in the plot of the transmission function,
and TSD will possess a series of peaks depending on the energy
of the incoming electron located at energies in the vicinity of
the energy spectrum. We observe this behavior from t ∼ γ

and t > γ regimes from Figs. 3 and 4, respectively. But the
separation between the resonance peaks becomes wider and
antiresonance dips become broader as we move from t ∼ γ

to t > γ . We observe a perfectly constructive interference
for φ = π/2, t ∼ γ and each state contributes equally to
the transport. This is analogous to an almost loss-free beam
splitter where the transmission through each channel is unity.
This would facilitate efficient charge and energy transport. To
achieve optimal power efficiency, the maximum transmission
should be one and the minimum should be half. The presence
of antiresonance dips reduces efficiency. In the subsequent
section, we observe that the position of these transmission
peaks and their separation are crucial for the power-efficiency
trade-off for a thermoelectric heat engine. We also study the
efficiency of the heat engine and connect it with multiple-
harmonics patterns which can be extracted from the Fourier
analysis of the steady-state charge and heat currents.

In summary, we have investigated the transmission func-
tion and DOS to investigate the relationship between the line
shape of the transmission spectra and the basic electronic
structure of our phase-tunable AB heat engine toy model.
The QI features in the transmission spectra such as Fano and
antiresonance could be realized and modulated by varying the
ratio t

γ
and external flux φ. This information will be further

utilized in the next section to optimize the thermoelectric
properties of the heat engine.

IV. POWER-EFFICIENCY TRADE-OFF AND ANALYSIS
OF HARMONICS IN CURRENTS

In this section, we analyze the power versus efficiency
trade-off in the nonlinear regime as a function of the magnetic
flux φ, the ratio of the intradot tunneling rate t , and the
hybridization strength γ i.e., t/γ . Considering a particular
temperature bias, we find the optimal flux and ratio t/γ to
maximize both output power and efficiency as defined in
Eqs. (14) and (15), respectively. We demonstrate the Lasso-
type parametric plot of efficiency versus power and verify the
trade-off between both quantities. We demonstrate that the
AB heat engine can be tuned through external magnetic flux
φ, gate voltage Vg (to vary the dot energy), temperature bias
�T , and the ratio t/γ to optimize either efficiency or power
or both.

From Fig. 5(b), it is observed that we get maximum ef-
ficiency for t < γ , but at the cost of low power output. In
this case, we can see that the transmission has less area under
the curve, and a single channel participates in the transport.
For the t = γ regime, we get maximum output power with a
larger efficiency. For this case, we find that three resonances
are closer and equally contribute. In this regime, irrespective
of φ, we find that there are three peaks (not necessarily equally
spaced) in the transmission, and we observe the higher har-
monics. The magnitude of these harmonics also increases as
we move from γ > t to γ = t . We can conclude that t ∼ γ

and φ = π/2 is the optimal regime for transport where the
transmission function has three peaks with equal separation
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FIG. 5. (a) Transmission function and (b) power-efficiency dia-
gram for different values of tunneling strength t . Parameters used are
γ = 0.05, εd = 8γ , μS = −μD, TS = 12γ , TD = 2γ , φ = π/2.

as shown in Fig. 5(a). Three peak structure of the transmis-
sion signals the higher-order interference pattern arising from
trajectories winding multiple times within the triple-dot sub-
space. There is only one transport channel for t < γ and the
transmission peaks start separating as we move from the t < γ

regime towards the t ∼ γ regime. The separation between the
three resonance peaks becomes wider, and the antiresonance
is more pronounced as we move from t ∼ γ to t > γ regime.
In the t > γ regime, interdot tunneling is very large compared
to the dot-lead hybridization strength. Thus, the electrons that
are coming from the source will prefer to circulate in the loop
and hence efficiency decreases although power output is still
much larger than the γ > t case.

The above observations can be further understood with the
help of harmonic analysis of the particle and heat currents.
One can analyze it as described below: The AB oscillations of
charge current have a periodicity equal to �0 = h/e. However,
higher harmonics with periodicity �0/n can also be observed
with n � 2. These higher harmonics can be related to the
circulation of electrons n times in the triple-dot ring [47].

We define the harmonics for the particle current as

In =
∫ 2π

0
dφ I (φ)einφ. (21)

Similarly, the harmonics for the heat current can be defined as

Qn =
∫ 2π

0
dφ Q(φ)einφ, (22)

where φ = 2π�/�0. Here I (φ) and Q(φ) are the expressions
for particle current and heat current from the source as dis-
cussed in Eqs. (12) and (13), respectively.

Here we observe that only the first two harmonic modes
(mostly the second harmonic) are dominating for the strong
coupling case (t < γ ) as shown in Figs. 6(a1) and 6(b1). In
this regime, the transmission has a single peak at ω = εd , i.e.,
only one state on a resonance that participates in the transport.
This leads to the high efficiency of the system but low power
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FIG. 6. (i) Harmonics for particle current from the source: (a1)
t/γ = 0.2, (a2) t/γ = 1, and (a3) t/γ = 2. (ii) Harmonics for heat
current from the source: (b1) t/γ = 0.2, (b2) t/γ = 1, and (b3)
t/γ = 2. Parameters used are γ = 0.05, εd = 8γ , μD = −μS = 4γ ,
TS = 12γ , TD = 2γ . Irrespective of φ, the higher harmonics are
nonzero for t/γ = 1 and t/γ � 1.

output, since the electrons coming from the source can circu-
late in the loop only once or twice and exit from the loop to
the drain. We find that the t ∼ γ regime is the optimal regime
for the operation of the thermoelectric heat engine, since some
of the higher harmonics (n > 2) are also contributing to this
regime. Here all three states contribute to the transport. The
output power is enhanced as the magnitude of the charge and
heat current harmonics increases, as shown in Figs. 6(a2) and
6(b2), respectively. There is a balance between efficiency and
output power in this region. In other words, the timescale
of internal coherence dynamics of the triple dot should be
comparable to the rate at which the triple-dot state decays
to the source and/or drain terminal to achieve higher power
output. In the weak coupling region, t > γ , all the higher
harmonics contribute considerably. Hence, the efficiency and
output power are reduced as compared to the t ∼ γ regime.
Although the output power is quite large as compared to the
t < γ regime. We can see that the magnitude of the higher
harmonics is still comparable, but the first harmonics of the
charge current are greater in magnitude than that of the heat
current. This lag between harmonics results in lower effi-
ciency for t > γ regime.

Figure 7 shows the trade-off between the output power
and efficiency for different values of magnetic flux φ in three
different regimes of t . It is observed that for all three regimes
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FIG. 7. Power-efficiency diagram for different values of φ at
(a) t/γ = 0.2, (b) t/γ = 1, (c) t/γ = 2. Other parameters are γ =
0.05, εd = 8γ , μD = −μS , TS = 12γ , TD = 2γ .

of t , we get maximum output power at φ = π/2 and the
power is comparably less at φ = 0. This can be explained
by the transmission function behavior that we observe as an
antiresonance dip as shown in Figs. 2(b1), 3(b1), and 4(b1).
Two symmetric resonance peaks around εd for φ = π/2 open
more transport channels for charge and energy transport that
give optimal power efficiency configuration.

From the above analysis, we can conclude that the presence
of three resonance peaks with optimal separation between
them is crucial for obtaining optimal output power and effi-
ciency as in the case of t ∼ γ . The presence of antiresonance
dips in the t > γ regime causes a reduction in both out-
put power and efficiency. The harmonic analysis in Fig. 6
helps us understand the role of higher harmonic modes in
enhancing thermoelectric performance. The contribution of
higher harmonics is necessary for obtaining optimal output
power but is not sufficient. When there is a more significant
contribution from higher harmonic modes and the electrons
spend more time circulating the loop rather than exiting the
loop, then there is a reduction in efficiency and output power.
We need a balance between the harmonics of both particle
current and heat current to obtain optimal power output and
efficiency. Also, we investigate the tunability of the thermo-
electric performance of our model with the magnetic flux. The
triple-dot exhibits maximum constructive interference at φ =
π/2 and we obtain maximum output power at φ = π/2 for all
three regimes of t . With this analysis, we can conclude that
t ∼ γ and φ = π/2 are the optimal configurations to reach
maximum output power and efficiency. In the following
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FIG. 8. (a) Transmission function and (b) power-efficiency plot
beyond the wide-band limit approximation. Parameters used are t =
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section, we study the power-efficiency behavior for a geo-
metrically asymmetric setup with dissimilar dot-lead coupling
strength.

V. BEYOND THE WIDE-BAND LIMIT APPROXIMATION

In the previous sections, we discussed the energy-
independent self-energies by taking the WBL. In this section,
we go beyond the WBL approximation and define the self-
energies with minimal energy dependence as follows [74]:

�±
ν (ω) = 1

2
�̄ν λ

ω ± iλ
= 1

2
�̄ν

( λω

ω2 + λ2
∓ i

λ2

ω2 + λ2

)
,

(23)

where ν = S, D and λ is a rescaling factor that allows us to
approach the WBL as λ → ∞. We define �̄α as

�̄S =
⎛
⎝γs 0 0

0 0 0
0 0 0

⎞
⎠, �̄D =

⎛
⎝0 0 0

0 0 0
0 0 γd

⎞
⎠. (24)

The NEGF is defined in Eq. (A7). Beyond the WBL approx-
imation, the hybridization matrix becomes energy dependent
and is defined as

�ν (ω) = i[�+
ν − �−

ν ] =
( λ2

ω2 + λ2

)
�̄ν . (25)

Using these above expressions, we can define the transmission
function from the source to the drain as

TSD(ω) = Tr[�SG+�DG−]. (26)

Figure 8 shows the plot for transmission function and power-
efficiency behavior as we go beyond the WBL approximation
towards the narrow band. As we move from the WBL ap-
proximation (i.e., λ → ∞) towards the narrow band limit, the
antiresonance dips in the transmission are more pronounced
and we obtain three sharp deltalike resonance peaks for λ =

0.1 as shown in Fig. 8(a). These antiresonance dips give rise
to destructive interference channels, causing the reduction in
output power as evidenced in Fig. 8(b). We obtain maximum
output power in the WBL approximation and the output power
reduces drastically for λ = 0.1 although maximum efficiency
is almost similar. These results support our claim that the three
closely spaced sharp resonance peaks are necessary to obtain
optimal power efficiency. This is only observed in the WBL.
In the narrow-band limit, these peaks are far apart and the
antiresonance dips are pronounced, leading to a reduction in
power and efficiency.

VI. DISORDER EFFECTS

The transport properties in nanoscale systems are often
influenced by the disorder due to the impurity or the fluctu-
ation of the parameters related to the nanostructures. Hence,
the effect of disorder on transport properties and also on
thermoelectric properties needs to be assessed for the thermo-
electric applications of quantum interference-based nanoscale
devices. One may observe two different kinds of disorder due
to the impurity or fluctuation: (i) disorderliness in tunneling
strength and (ii) disorderliness of on-site energies. First, we
discuss the effect of a random change in the tunneling strength
of each of the connecting legs in the central triple QD region
and calculate the transmission spectra and their thermoelectric
properties. The on-site energies are set to a constant value
εd = 8γ . We introduce disorders into our system by taking
uniformly distributed random values of tunneling strength and
then doing the disorder average to calculate the steady-state
observables, i.e., particle currents, heat currents, etc. For our
numerical simulation, we chose random values of tunneling
strength within the range t ∈ (0.02γ , 2γ ) and investigated the
disorder effects on the performance of the thermoelectric heat
engine. In a similar fashion, we can also take into account
the effect of disorderliness by introducing a random shift to
each of the on-site energies in the central region by picking
up random values of εd from a uniform distribution in the
range εd ∈ (2γ , 10γ ), considering t = γ . In both cases, we
took 1000 samples of our model system and analyzed the
output power, efficiency, and the corresponding transmission
functions. Figure 9 shows the effect of disorders on the trans-
mission function and on the power-efficiency trade-off of our
model AB heat engine. Disorder effects cause a reduction
in both the output power and efficiency of the triple-dot AB
heat engine, as expected in the previous studies [75,76]. It
is interesting to note that the central peak in transmission
remains intact even in the presence of the disorder in tunneling
strength t . The other two sharp resonance peaks are flattened
[see Fig. 9(a)], yet the minimum transmission is 1/2. There-
fore, the power and efficiency are slightly reduced. In the case
of the random disorder in on-site energies, the transmission
function is flat and hence there is a substantial reduction in
power-efficiency as shown in Fig. 9(c).

VII. POWER-EFFICIENCY TRADE-OFF FOR
ASYMMETRIC SETUPS

Real experimental systems can exhibit asymmetries arising
from imperfections in fabrications and/or disorder. Therefore,
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FIG. 9. Plot of (a) transmission function as a function of energy
and (b) power-efficiency plot with randomness in tunneling strength
within the range of t ∈ (0.02γ , 2γ ), keeping εd fixed at 8γ . On the
other hand, we plot (c) transmission function versus ω and (d) power-
efficiency plot with randomness in the on-site energies in the range of
εd ∈ (2γ , 10γ ), keeping t = γ . Other parameters used are γ = 0.05,
μS = −μD, TS = 12γ , TD = 2γ , φ = π/2.

it is instructive to investigate the effects of geometric asym-
metries on power-efficiency behavior. We can introduce
asymmetry to our system by introducing an asymmetric
dot-lead coupling strength (γS �= γD). Let us define the
asymmetric parameter as x = γS/γD. We discuss asymmetric
behavior in the following section.

A. Asymmetric dot-lead coupling strength

The power and efficiency of our heat-engine model also
depend on the asymmetric dot-lead coupling strength (see
Fig. 10). For the AB thermoelectric heat engine, it seems
that an asymmetric coupling between the source system, γS ,
and drain system, γD, is also helpful to manipulate either
the efficiency or power or both. Figure 10 shows the trans-
mission function and power-efficiency behavior for different
asymmetric ratios x. Considering fixed values of the other
parameters, we can achieve maximum efficiency up to 0.8
of Carnot efficiency by adjusting the asymmetric parameter
x. By increasing the asymmetric parameter, the maximum
output power (Pmax) increases from x = 0.5 up to x = 1.5
and then Pmax decreases by further increasing the asym-
metric parameter for x = 2 and x = 2.5 as evidenced in
Figs. 10(b) and 10(c). This can be explained by the trans-
mission functions in Fig. 10(a). For x = 0.5, 1, 1.5, there
are three resonance transmission peaks. As the antireso-
nance dips are more significant for x = 0.5, the maximum
output power is less as compared to x = 1 and the antires-
onance dips are least significant for x = 1.5 at which we
obtain maximum output power Pmax = 0.0125. For x = 2 and
x = 2.5, the three resonance transmission peaks merge to
form two peaks causing a reduction of output power with
antiresonance dips being more significant for x = 2.5 which
further reduces the maximum output power. So, by observing
Fig. 10, we can conclude that whenever there are three peaks
and the antiresonance dips are not significant (i.e., x = 1.5),

-0.2 0 0.2
0

0.5

1

T
S

D

(a)

0 7 14
P 10-3

0

0.5

1

/
C

(b)

0 0.5 1 1.5 2 2.5
0

5

10

15

P
m

ax

10-3

(c)

FIG. 10. (a) Transmission function, (b) power-efficiency dia-
gram for asymmetric dot-lead coupling, and (c) maximum output
power (Pmax) as a function of asymmetric dot-lead coupling ratio.
Parameters used: γD = 0.1, t = 0.5γD, εd = 4γD, φ = π/2, μD =
−μS , TS = 6γD, TD = γD.

we will get maximum output power. Figure 11 shows the har-
monic modes for particle current and heat current at different
asymmetric parameters, i.e., x = 0.5, x = 1.5, and x = 2.5.
This procedure does not reflect the absolute optimal values of
power and efficiency as a function of all parameters of interest
in possible experimental realizations, rather it demonstrates
the high tunability of the AB interferometer as a heat engine to
achieve a high amount of power and efficiency in the quantum
regime.

VIII. CONCLUSION AND DISCUSSION

To conclude, we demonstrated the transmission engineer-
ing of a triple-dot AB interferometer to give an optimal
power-efficiency configuration. We find that the higher-order
interference patterns from multiple paths winding around the
loop are necessary but insufficient for the optimal power-
efficiency configuration. If there is a sufficiently strong
hybridization of triple-dot states such that the timescale of
internal coherent dynamics (dictated by 1/t) is comparable
to the dot-lead hybridization strength, then we obtain three
transmission peaks with transmission probability one and the
two dips with the transmission probability one-half, then there
is a maximally constructive interference effect that boosts
the power efficiency. In the present setup, this condition is
satisfied for φ = π/2. Further, by tuning γ = t , the three
transmission peaks can be brought closer in energy. The cen-
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FIG. 11. (i) Harmonics for particle current from the source: (a1)
x = 0.5, (a2) x = 1.5, and (a3) x = 2.5. (ii) Harmonics for heat
current from the source: (b1) x = 0.5, (b2) x = 1.5, and (b3) x = 2.5
for asymmetric dot-lead coupling. Parameters used: γD = 0.1, t =
0.5γD, εd = 4γD, φ = π/2, μD = −μS = 2γD, TS = 6γD, TD = γD.

tral peak occurs at ω = εd , and the other two peaks occur
at ω = εd ± 1

2

√
12t2 − γ 2. For γ = t , ω = εd ± 1

2

√
11t , i.e.,

peaks are closed for this case, and hence the constructive
interference is achieved. By increasing t further, we observed
that the peaks move apart and the antiresonance dips start to
develop, thereby reducing the power and efficiency. We also
examined the effects of setup asymmetry and observed that
low to moderate asymmetry can enhance the power output.

Let us further proceed with our discussion by including
some of the intriguing features of our phase-tunable AB quan-
tum heat engine. The first question one may ask is how the
electron-electron interaction in the nanostructure may affect
the performance of the engine. In mesoscopic QD structures,
the electron-electron interactions are not screened and there-
fore have to be taken into account beyond the mean-field
description. This is a tedious task. But we can draw some
qualitative insights into their effect on higher harmonics. First,
in the noninteracting case, the charge and heat currents are
even functions of AB phase φ (owing to Onsager symme-
try), and so cos(φ) terms and their powers appear in the
transmission probability. Incorporating the electron-electron
interactions will break the even symmetry of charge and heat
current. This will give rise to cos(φ) and sin(φ) terms which
may suppress the harmonics beyond n = 2. This has already
been observed for a Coulomb blockade and infinite bias case
[77]. We expect that the suppression of higher harmonics
may also suppress the power efficiency. But irrespective of

many-body interactions and their form, we would like to point
out that an optimal structure of the transmission function is
necessary so maximal constructive interference can boost the
power-efficiency of the engine.

The response of the present thermoelectric heat engine
turns out to be significant. Particularly, the quantum device
based on an AB interferometer can produce a sizable ther-
mopower. It is about one order of magnitude larger compared
to that of the same kind of three-dot interferometer operating
in the linear regime [19,29]. Moreover, thermoelectric effi-
ciency at the maximum power of the heat engine is somewhat
large and we obtain values as high as 80% of the Carnot effi-
ciency in the present nonlinear regime. Another aspect of the
present paper on this AB heat engine is that it can have great
tunability either by changing magnetic flux, external gate
voltage, or temperature bias. This will enable us to provide
electrostatic-driven control of charge and heat current and
its thermoelectric response under different relevant physical
conditions achievable from the experimental point of view (as
discussed below).

It is well-known that the Onsager matrix in the linear
response gives a complete characterization of the trans-
port properties. Such characterization was investigated in
Refs. [78–80] and the enhancement in efficiency was at-
tributed to the breaking of time-reversal symmetry. Similar
effects have been observed in other systems where the
time-reversal symmetry is broken by an external drive [81].
Henceforth, one natural question may arise: How can the
power efficiency of our setup be modified in the presence of
elastic or inelastic scattering in the nonlinear regime? In the
nonlinear regime, Onsager symmetry is broken, in general
(nonlinear electrical and thermal conductance are not even
functions of magnetic field) [25,26]. In our current setup, we
performed preliminary simulations using the Buttiker voltage
probe framework beyond the linear response regime. We find
that for low to moderate coupling strengths to the probe, the
transmission peaks are broadened, thereby reducing output
power and efficiency slightly. Thus, in the presence of low
to moderate dephasing and inelastic scattering strengths, the
presented thermoelectric effects are robust. Moreover, the pa-
rameters giving optimal performance are largely unaffected
by the dephasing effect and inelastic scattering effect. Our
observations are confirmed by previous results [17,82–84].
With the help of our previous study [32], we have seen that
only the even harmonic modes are present for the charge
current in the presence of an elastic scattering process. More
investigations are underway.

Although we have a toy model to understand the effect of
quantum coherence on the optimal power efficiency of the AB
heat engine, we may point out how this may be achieved in
the laboratory. First, one may take into account that triangular
triple QDs can be fabricated in various ways [33,36] to study
different phenomena. Briefly, one can mention that the dots,
the barriers between the dots, and the coupling between the
central structure to the source or drain can be controlled by
electronic gates which modify the potential landscape of a
two-dimensional electron gas (2DEG). These gates can be
generated by electron beam lithography [35] or local anodic
oxidation [33] on top of an epitaxially grown 2DEG semi-
conductor heterostructure like GaAs/AlGaAs heterostructure.
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One may use top heaters for the effective thermal biasing of
the QDs as mentioned in Refs. [37,85] and then one may
follow the measurement process as mentioned in [37].

Our investigation establishes that one can trade off the
power efficiency of a toy model of an AB thermoelectric heat
engine by tuning the setup’s quantum coherence and harmonic
modes. The fascinating relationship between power efficiency,
external magnetic flux, gate voltage, temperature bias, and
harmonic modes make this AB loop a prototypical plat-
form for the execution of a distinctive class of phase-tunable
thermoelectric quantum machines operating at cryogenic tem-
peratures in the highly nonlinear regime. It is also observed
that the symmetric triple-dot setup provides more tunabil-
ity to control the thermoelectric response compared to its
asymmetric counterpart. Finally, in the context of quantum
technologies, our studies on the coherent structure of AB
interferometer provide a useful way to manipulate thermo-
dynamic operational modes of quantum thermoelectric heat
engines, and such kind of setup might be at the core of several
innovative thermoelectric quantum devices.
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APPENDIX A: EQUATIONS OF MOTION

The model setup of the triple-QD AB interferometer has
been discussed in Sec. II. We now solve this model and calcu-
late the observables in the nonequilibrium steady state. Since
the model is noninteracting, we can use the NEGF approach
to calculate its steady-state characteristics [58,59]. The NEGF
technique has been widely used in the past years for inves-
tigating the transport properties in mesoscopic systems and
molecular junctions [60]. We follow the equation of motion
approach for the derivations [61]. In this method, we solve the
Heisenberg equations of motion (EOM) for the bath variables
and then substitute them back in the EOM for the subsystem
(dots) variables. We obtain a quantum Langevin equation for
the subsystem as follows:

dd̂i(t )

dt
= −i

⎡
⎣εid̂i +

∑
j �=i

ti j d̂ je
iφi j

⎤
⎦ − i

∑
ν=S,D

η̂ν
i (t )

− i
∑

j,ν=S,D

∫ t

t0

�ν,+
i, j (t − t ′)d̂ j (t

′)dt ′. (A1)

Here we use the indices i = 1, 2, 3 to identify the three dots.
The terms η̂S

i and η̂D
i are referred to as the noise induced on

the subsystem by the source and drain, respectively, and they

are expressed as

η̂S
i =

∑
k

V S
i,k g+

Sk (t − t0)ĉSk (t0),

η̂D
i =

∑
k

V D
i,k g+

Dk (t − t0)ĉDk (t0). (A2)

The retarded Green’s functions of the isolated reservoirs are
given by

g+
Sk (t ) = −ie−iεSktθ (t ),

g+
Dk (t ) = −ie−iεDktθ (t ). (A3)

For the initial condition, we take factorized states for the to-
tal density matrix ρT (t0) = ρS ⊗ ρD ⊗ ρ(t0), with empty dots
and reservoirs prepared in a grand canonical state

ρ̂ν = e−(Ĥν−μν N̂ )/Tν

Tr[e−(Ĥν−μν N̂ )/Tν ]
, (A4)

where Tν and μν are the temperatures and chemical potentials
of the Fermi sea with ν = S, D. The state of the subsystem
is denoted by the reduced density matrix ρ. Using the initial
conditions, we obtained the noise correlation as follows:

〈
η̂

†S
i (t )η̂S

i′ (τ )
〉 =

∑
k

V S∗
i,k eiωk (t−τ )V S

i′,k fS (ωk ),

〈
η̂

†D
i (t )η̂D

i′ (τ )
〉 =

∑
k

V D∗
i,k eiωk (t−τ )V D

i′,k fD(ωk ),
(A5)

with the Fermi function fν = [e(ω−μν )/Tν + 1]−1 for the reser-
voir ν = S, D with μν and Tν be the corresponding chemical
potential and temperature, respectively. In the Heisenberg
picture, the expectation value of an observable A can be ob-
tained as 〈Â(t )〉 = TrT [ρT (t0)Â(t )], tracing over all degrees
of freedom. The steady-state properties are obtained by tak-
ing the limits t0 → −∞ and t → ∞. We can now take the
Fourier transform of Eq. (A1) using the convolution theorem
with the convention d̃i(ω) = ∫ ∞

−∞ dt di(t )eiωt and η̃ν
i (ω) =∫ ∞

−∞ dt ην
i (t )eiωt , and the result in matrix form is

d̃i(ω) =
∑

j

G+
i, j (ω)

[
η̃S

j (ω) + η̃D
j (ω)

]
. (A6)

Here, the retarded Green’s function is given by

G+(ω) = [ωI − ĤTQD − �+
S (ω) − �+

D (ω)]−1, (A7)

where I is a (3 × 3) identity matrix and the advanced Green’s
function is given by the transpose conjugate of the retarded
Green’s function, G−(ω) = [G+(ω)]†. The self-energies are
defined as

�±
S (ω) =

∑
k

V S
1,k g±

S (ω)V S∗
1,k,

�±
D (ω) =

∑
k

V D
3,k g±

D(ω)V D∗
1,k . (A8)

Here, g±
S (ω) and g±

D(ω) are given by the Fourier transform of
Eq. (A3). In the WBL and when the DOS of the metallic lead
is energy independent, the real part of the self-energy term
vanishes. Then we can define the hybridization matrix from
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the relation �+ = −i�/2:

�ν
i,i′ = 2π

∑
k,ν

V ν∗
i′,kV

ν
i,k δ(ω − ωk ). (A9)

We may take V ν
i,k as real constants, independent of the level

index and reservoir state, resulting in �S
1,1 = γS and �D

3,3 =
γD, where γν (energy independent) describes the coupling
between the dots and metallic leads. We consider degenerate
dot energies ε1 = ε2 = ε3 = εd and set ti j = t to obtain the
retarded Green’s function.

APPENDIX B: PHYSICAL UNITS

Our paper uses the natural unit convention h̄ = c = e = kB

for simulation. At this point, it is useful to express our re-
sults in terms of physical units. Thermoelectric heat engine
based on a QD embedded into a semiconductor nanowire has
been studied experimentally [37]. One can obtain physical
units using the relation h̄γ = kBTa, where γ is the dot-lead
coupling and Ta is the average temperature. Considering
Ta = 1 K, we obtain γ = 1.3 × 1011 Hz and, based on this
value of γ , we convert all other parameters to physical units.
In simulations, we use the dot-lead coupling strength γ =
0.05, which translates into γ = 6.5 GHz. The parameters t =
γ , εd = 8γ , TS = 12γ , TD = 2γ , μD = −μS = 4γ translate
to t = 4.3 µeV, εd = 34.4 µeV, TS = 0.6 K, TD = 0.1 K, and
μD = −μS = 17.2 µeV, respectively. The total magnetic flux
enclosed by the triangular AB ring can be calculated from
Eq. (5) as � = φ�0

2π
, where �0 = h/e is the flux quantum. The

magnetic field is defined as, B = φ�0

2πA , where A is the area of
the AB ring. For an area of an 80 nm equilateral triangle, the
AB oscillation period is of �0

A ∼ 1.5 T. So, for an AB phase
of φ = π/2 and φ = π/4, the value of the magnetic field used
is B ∼ 0.375 T and ∼0.1875 T, respectively. For details on
the values of the magnetic field to be used to observe AB
oscillation, see Ref. [86].

In physical units, the Landauer- Buttiker formula for elec-
tric current from the source (S) is defined by

IS = e

h

∫ ∞

−∞
dω[TSD(ω, φ) fS (ω) − TDS (ω, φ) fD(ω)]. (B1)

and the heat current from the source (S) is defined by

QS = 1

h

∫ ∞

−∞
dω(ω − μS )[TSD(ω, φ) fS (ω)

− TDS (ω, φ) fD(ω)], (B2)

where fν , (ν = S, D), is the Fermi distribution function, e
is the charge of the electron and h is Planck’s constant.
Now, the output power generated is given by P = (�μ/e)IS ,
where �μ = μD − μS . In physical units, ω = O(γ = 1.3 ×
1011 Hz). To express the output power in physical units, the
factor γ = 1.3 × 1011 Hz = 13.76 × 10−24 J should be multi-
plied with both �μ and IS . With this, we focus on Fig. 5 and
express the output power in physical units for three differ-
ent regimes, i.e., (a) t/γ < 1, (b) t/γ = 1, and (c) t/γ > 1.
Considering Fig. 5, for the t/γ < 1 regime, we obtain the
maximum output power, Pmax = 0.0024 corresponding to an
electric current from the source, IS = 0.0073 which translates
to Pmax ∼ 0.7 fW and IS = 0.024 nA, respectively. Similarly,

0 0.3 0.6 0.9
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0

0.4

0.8

V
th

(a)

t/ =0.2
t/ =1
t/ =2

0 0.3 0.6 0.9
T
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1

2

3

S
nl

(b)

t/ =0.2
t/ =1
t/ =2

FIG. 12. (a) Thermovoltage and (b) Seebeck coefficient as a
function of �T . Parameters used are γ = 0.05, εd = 8γ , μS = −μD,
TS = 12γ , TD = 2γ , φ = π/2.

for the t/γ = 1 regime, the maximum output power, Pmax =
0.0082 corresponding to an electric current of IS = 0.026
translates to Pmax ∼ 2.35 fW and IS = 0.086 nA, respectively.
For the t/γ > 1 regime, maximum output power Pmax =
0.0071 corresponds to electric current IS = 0.0262, which
translates to Pmax ∼ 2.04 fW and IS = 0.087 nA, respectively.

Now we consider Fig. 10(c) and obtain the maximum
output power for different asymmetric dot-lead coupling
ratios in physical units. We define the asymmetric param-
eter as x = γS/γD. For x = 0.5, we obtain a maximum
output power Pmax = 0.0098 = 2.81 fW. Similarly, for x =
1, Pmax = 0.0122 = 3.5 fW; for x = 1.5, Pmax = 0.0125 =
3.58 fW; for x = 2, Pmax = 0.0120 = 3.44 fW; for x = 2.5,
Pmax = 0.0114 = 3.27 fW.

APPENDIX C: THERMOVOLTAGE
AND SEEBECK COEFFICIENT

The Seebeck coefficient is a key parameter to measure the
thermoelectric performance of a material and it tells us about
the amount of voltage developed across a system in response
to a given temperature bias at zero charge current, i.e., IS = 0.
Since the induced voltage originates from the temperature
bias, we call it thermovoltage (Vth). In the linear response
regime, the Seebeck coefficient Sl is defined as the ratio of
the thermovoltage to the small temperature difference �T at
zero charge current:

Sl = Vth

�T

∣∣∣∣
IS=0

. (C1)

In the nonlinear regime, it is the differential Seebeck coef-
ficient Snl which is defined as the partial derivative of the
thermovoltage with respect to �T [29],

Snl = ∂Vth

∂�T

∣∣∣∣
IS=0

. (C2)
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Figure 12 shows the thermovoltage and Seebeck coefficient
developed across the system at different temperature bias �T
for three different regimes of t . The thermovoltage increases
with an increase in �T and is maximum for t < γ regime
and minimum in the t > γ regime. However, the Seebeck
coefficient is decreasing with �T and is maximum for small

�T . The Seebeck coefficient Snl is maximum in The t < γ

regime and minimum in the t > γ regime for small tem-
perature biases. However, as we increase the temperature
difference, the Seebeck coefficient decreases rapidly and satu-
rates towards high temperature biases for all the three regimes
of t .
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