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A Monte Carlo study of a crystalline membrane described by the Nelson-Peliti Hamiltonian is presented.
The membrane is studied for vanishing in-plane strain, as well as in the presence of tensile biaxial strain.
The equilibrium simulations are performed in the classical limit as a function of temperature and system size,
with elastic constants appropriate to the description of graphene. In the long-wavelength limit, the out-of-plane
fluctuations of the unstrained membrane are described by a nonanalytic function with a critical exponent η = 0.8,
in agreement with previous results based on the Nelson-Peliti Hamiltonian. Isotherm curves in the stress-strain
plane allow us to identify the region of thermodynamic stability of the flat membrane. The most striking result is
that the flat unstrained membrane, as described by the Nelson-Peliti Hamiltonian, is thermodynamically unstable
at any finite temperature. A critical tensile biaxial stress is needed to reach the region of thermodynamic stability
of the flat membrane. The critical strain is a monotonically increasing function of temperature. At any given
temperature, the critical strain corresponds to the state with a minimum value of the real area of the membrane.
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I. INTRODUCTION

Thermal fluctuations of crystalline membranes were stud-
ied in 1987 by Nelson and Peliti showing that they differ
noticeably from their fluid counterparts [1]. These authors
presented an effective elastic Hamiltonian that describes
the anharmonic coupling between out-of-plane and in-plane
membrane fluctuations. Their main result was that the effec-
tive bending rigidity of the out-of-plane fluctuations increases
in the long-wavelength limit. This anharmonic effect favors a
planar morphology of the crystalline membrane, as opposed
to a crumpled one [2]. The discovery of graphene and other
two-dimensional (2D) crystalline membranes has boosted the
interest in understanding the anharmonic effects that are re-
sponsible for the intrinsic thermal rippling and the stability of
the flat morphology of these sheets [3,4].

The anharmonic character of the Nelson-Peliti Hamilto-
nian prevents the derivation of its exact solution. Therefore
several approximate methods have been developed so far.
The result of these approximations can be expressed by the
relationship between the amplitude of the out-of-plane fluc-
tuations |Aq|2, and their inverse wavelength (q ∝ λ−1) in
the long-wavelength limit q → 0 (λ → ∞). The simple self-
consistent approximation presented by Nelson and Peliti [1]
predicts a power-law relation |Aq|2 ∝ qη−4 with η = 1. An
alternative presentation of this result is to consider that the
flat membrane has an effective bending modulus of rigid-
ity κ (q) ∝ q−η in the long-wavelength limit. The larger the
value of the positive exponent η, the lower the amplitude of

*ramirez@icmm.csic.es

the out-of-plane fluctuations, and the larger the rigidity and
accordingly the stability of the flat membrane. Approxima-
tions based on classical first-order perturbation theory predict
an exponent η = 2 [5]. However, Ahmadpoor et al. using vari-
ational perturbation theory obtain also a power-law behavior
but with an exponent η = 1 [6].

There seems to be a general agreement that the most accu-
rate approximations of the Nelson-Peliti model are provided
by the self-consistent screening approximation (SCSA) and
by renormalization group (RG) methods [7]. Le Doussal and
Radzihovski using the SCSA found that the fluctuations of a
tensionless membrane are determined by a critical exponent
η = 0.821 [8,9]. A nonperturbative RG method found a sim-
ilar value, η = 0.849 [10,11], while a recent RG approach
using methods of perturbative field-theoretical renormaliza-
tion reports η = 0.795 [12].

An alternative to variational, perturbative, and RG ap-
proaches is to study the Nelson-Peliti Hamiltonian by
computer simulations. A Monte Carlo (MC) simulation of a
crystalline membrane using this Hamiltonian was presented
by Tröster [13,14]. This author aims at a numerical estimate of
the critical exponent that challenges those previously derived
by other methods, claiming an unprecedented accuracy in his
algorithm. His numerical estimate of the critical exponent is
η = 0.795.

Atomistic simulations using empirical interatomic poten-
tials to describe elastic properties, as opposed to the elastic
continuum approaches, have been performed to study anhar-
monic effects in graphene. A MC simulation with ∼4×104

atoms using the LCBOPII potential reports an asymptotic
behavior of the out-of-plane fluctuations that seems to be
described by a critical exponent η = 0.85 [15]. Another MC
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simulation of graphene using a Tersoff potential and including
∼105 atoms reports an exponent η ∼ 0.85−0.88 [16]. In the
comparison of these MC results with the expectations of the
Nelson-Peliti Hamiltonian, one should realize that these sim-
ulations were performed using realistic interatomic models,
i.e., not a simpler elastic Hamiltonian, and that the relatively
small size of the simulation cells makes less reliable the ex-
trapolation to the asymptotic behavior in the thermodynamic
limit.

The application of finite tensile strain to the projected
area of a membrane has been considered previously by the
SCSA with the Nelson-Peliti Hamiltonian [17]. The main
result is that the anharmonic effects described by a critical
exponent are suppressed in the long-wavelength limit, thus
finding that |Aq|2 ∝ q−2. Similar results were derived later
using variational perturbation theory by Ahmadpoor et al.
[6]. These authors present a lucid derivation of the statistical
mechanics of the nonlinear elasticity described by the Nelson-
Peliti Hamiltonian, in the presence of external uniform biaxial
strain, which we have found useful for our present paper.

We aim to extend previous MC simulations of an un-
strained crystalline membrane using the Nelson-Peliti Hamil-
tonian [13,14] to the case that the membrane is subject to
an external uniform biaxial strain. Stress, the thermodynamic
variable conjugate to the projected area, is then explicitly
treated in the simulations. In addition to the spectrum of
out-of-plane fluctuations as a function of stress, temperature,
and system size, the isothermal stress-strain curves of the
crystalline membrane are analyzed here. Our results allow us
to identify the region of thermodynamic stability of the flat
crystalline membrane. At finite temperature, the unstrained
planar membrane, whose spectrum of out-of-plane fluctua-
tions is determined by the critical exponent η, is shown to
be thermodynamically unstable. This result is relevant to our
present understanding of the anharmonic effects that are re-
sponsible for the thermal stability of the planar morphology
of graphene and other solid membranes.

The paper is organized as follows. The Nelson-Peliti
Hamiltonian is introduced in Sec. II. The setup of our MC
simulations is explained in Sec. III. The results are presented
in Sec. IV, which is divided into several subsections. An
analysis of the elastic energy using the virial theorem is dis-
cussed in Sec. IV A. The partition of the elastic energy into
mode dependent contributions as a function of the applied
strain is presented in Sec. IV B. The amplitudes of the out-
of-plane fluctuations, as derived from the MC simulations,
are discussed in Sec. IV C. Numerical fits to these amplitudes
are studied in Sec. IV D. Finite-size effects of the unstrained

membrane are quantified in Sec. IV E. Isothermal stress-strain
curves are presented in Sec. IV F, while the region of thermo-
dynamic stability of the flat membrane is studied in Sec. IV G.
The role of the real area in the thermodynamic stability of the
crystalline membrane is discussed in Sec. IV H. The influence
of selected anharmonic effects on the stability of the flat mor-
phology of the crystalline membrane is analyzed in Sec. IV I.
The paper closes with a summary.

II. NELSON-PELITI HAMILTONIAN

The Nelson-Peliti Hamiltonian describes the elastic prop-
erties of a flat membrane with crystalline order [1]. In this
section this Hamiltonian is presented following closely Ref.
[6]. The three following subsections introduce: (i) basic vari-
ables employed in real and reciprocal space; (ii) the effective
elastic energy; and (iii) the calculation of the membrane stress.

A. Strain tensor and the spectrum of out-of-plane amplitudes

Let us consider a flat membrane with equilibrium position
in the (x, y) plane, R0 = (x, y, 0). After an elastic defor-
mation, the new position vectors are denoted by R. The
displacement vectors u are

u = R − R0 = (ux, uy, z) , (1)

where (ux, uy, z) are the Cartesian coordinates of u, and the
coordinate z(r) ≡ z(x, y) represents the out-of-plane displace-
ment. The spatial derivatives of the displacement coordinates
are

∂ jui = ∂ui

∂ j
, ∂iz = ∂z

∂i
, (i, j = x, y). (2)

These derivatives define the components of the local in-plane
strain tensor of the membrane [18]

εi j = 1

2
(∂iu j + ∂ jui ) + ∂iz∂ j z

2
+ εδi j . (3)

Here, the linear strain ε defines a preexisting uniform biaxial
strain and δi j is the Kronecker delta.

The flat crystalline membrane can be considered as made
of Na × Na square cells with cell parameter a. The in-plane
area Sp is a square of length L,

Sp = L2 = L2
0 (1 + ε)2 = (Naa)2 , (4)

where L0 is the side length of the unstrained membrane (ε =
0). The Brillouin zone (BZ) in reciprocal space is defined, for
uneven Na, by the set of discrete points

{q} =
{

2π

L
(lx, ly)

}�
, with lx, ly = −Na − 1

2
, . . . , 0, . . . ,

Na − 1

2
. (5)

The diamond � means that the origin of the BZ with lx = ly = 0 is omitted from the set of points. The q points with the lowest
modulus, q = 2π/L, are labeled as q10 and q01, respectively, where the subscript shows the values of the coordinates (lx, ly). The
spectrum of out-of-plane fluctuations is defined by the Fourier transform of z(r) as

Aq = 1

L2

∫ L

0

∫ L

0
dxdy z(r) e−iqr , (6)

where q = (qx, qy) is a vector of the discretized BZ.
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B. Elastic energy

The local elastic energy of a solid membrane is defined as

et = eb + es , (7)

where eb and es are the elastic energy density for the bending
and strain deformations, respectively [18,19],

eb = 1

2
κ0

(
∂2

xxz + ∂2
yyz

)2 = 1

2
κ0(∇2z)2 , (8)

es = μ0
(
ε2

xx + ε2
yy + 2ε2

xy

) + λ0

2
(εxx + εyy)2. (9)

∇2 is the Laplacian, κ0 is the bending modulus, and μ0 and λ0

are the in-plane Lame coefficients.
The total elastic energy is

Et =
∫ L

0

∫ L

0
dxdy et (x, y) , (10)

with similar expressions for the total bending and strain ener-
gies, Eb and Es, respectively.

By working in Fourier space, and integrating the Gaussian
degrees of freedom associated to the in-plane displacement
coordinates (ux, uy), one gets that the configurational partition
function of a solid membrane can be written as a function of
a new effective elastic energy E as [6]

ZNεT =
BZ∏
q

∫
dAq α(q) exp (−βE ) , (11)

where β = 1/kBT is proportional to the inverse temperature
T , and kB is the Boltzmann constant. α(q) is

α(q) = 2(1 − ν0)(1 + ν0)2

(
π

βY0L2q2

)2

. (12)

ν0 is the Poisson ratio, and Y0 is the Young modulus. The
square modulus of q is q2 = q2

x + q2
y . The effective elastic en-

ergy E defines the Nelson-Peliti Hamiltonian. It is composed
of the following summands:

E = Ep + Er + Eb + Ei. (13)

Ep and Er are energy terms that depend explicitly on the
uniform strain ε. Ep is the elastic energy due to the strain of
the projected area L2,

Ep = 2B0L2ε2 , (14)

where B0 = μ0 + λ0 is the 2D compressibility modulus of
the nondeformed layer. Er is the elastic energy related to
the coupling between the strain ε and the excess area of the
membrane [see Eq. (20) below],

Er = 2B0L2ε

BZ∑
q

q2|Aq|2
2

. (15)

Eb is the total bending energy, that in Fourier space becomes

Eb =
BZ∑
q

1

2
L2κ0q4|Aq|2. (16)

Ei is the effective interaction energy between the in-plane and
out-of-plane membrane modes [6]

Ei =
BZ∑
q

1

8
L2Y0|�(q)|2 , (17)

where

�(q) = 1

q2

[
q2

yCxx(q) + q2
xCyy(q) − 2qxqyCxy(q)

]
, (18)

and

Ci j (q) =
BZ∑
k

−ki(q j − k j )AkAq−k. (19)

Er and Eb are harmonic (quadratic) energy terms proportional
to |Aq|2. The interaction energy Ei is anharmonic with quartic
dependence on Aq. It is calculated via products of amplitudes
of four out-of-plane modes AkAq−kAk′Aq′−k′ . The relationship
between the interaction energy Ei, and the Gaussian curvature
of the membrane is presented in Appendix A.

The true real area Sr of the membrane is larger than the
projected one, Sp = L2, as a consequence of the finite ampli-
tude of the out-of-plane fluctuations Aq. Both areas are related
as [20,21]

Sr = Sp

⎛
⎝1 +

BZ∑
q

q2|Aq|2
2

⎞
⎠. (20)

The difference between the real and projected areas, Sr − Sp,
has been referred earlier as the excess area or hidden area of
the membrane [21,22]. The excess area of graphene has been
studied experimentally by Raman spectroscopy [23].

C. Stress

The Helmholtz free energy of the membrane is defined as

F = −kBT ln ZNεT . (21)

The stress τ is the intensive variable conjugate to the projected
area,

τ = −
(

∂F

∂Sp

)
N,T

= −
〈
∂E

∂Sp

〉
= − 1

2LL0

〈
∂E

∂ε

〉
. (22)

The angular brackets indicate an ensemble average over the
collective defined by the partition function ZNεT . In the calcu-
lation of ∂E/∂ε we have considered the explicit dependence
of E on ε, as well as the implicit dependence through L
and q, as L = L0(1 + ε), and q ∝ 2π/L. There appear four
contributions to the membrane stress

τ = τp + τr + τb + τi , (23)

where

τp = −B0(2ε + 4ε2), (24)

τr = −B0(1 + ε)
BZ∑
q

q2〈|Aq|2〉
2

, (25)

τb + τi = 〈Eb〉 + 〈Ei〉
L2

. (26)
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TABLE I. Elastic constants employed in the Nelson-Peliti
Hamiltonian. κ0 is the bending modulus, μ0 and λ0 are the Lamé
coefficients, B0 is the 2D compressional modulus (analogous to the
bulk modulus in 3D), Y0 is the uniaxial Young modulus, and ν0

is the Poisson ratio. Numerical values correspond to the empirical
LCBOPII potential model for carbon-carbon interactions in graphene
[27,36].

κ0 1.49 eV
μ0 9.29 eV/Å2

λ0 3.36 eV/Å2

B0 12.65 eV/Å2 μ0 + λ0

Y0 21.43 eV/Å2 4μ0 (μ0+λ0 )
2μ0+λ0

ν0 0.153 λ0
2μ0+λ0

The quantity 2ε in the expression of τp is to first order in ε the
strain of the projected area of the membrane Sp [see Eq. (4)].
The sum over q vectors in τr represents an additional surface
strain caused by the surface ripples [see Eq. (20)].

III. MC SIMULATIONS

The elastic constants in the Nelson-Peliti Hamiltonian
(κ0, μ0, λ0) have been chosen as those corresponding to
graphene and are summarized in Table I. The unstrained mem-
brane is defined by a square supercell with periodic boundary
conditions and area L2

0 = (Naa0)2, where the distance a0 =
2.46 Å is taken equal to the lattice parameter of graphene. This
choice implies that the largest modulus of the q vectors in the
BZ is q = π/a0 (ultraviolet cut-off). The surface density of
graphene is attained by considering that the supercell contains
N carbon atoms

N = L2
0

s0
= (Naa0)2

s0
= 4√

3
N2

a , (27)

where s0 is the specific surface area of graphene,
s0 = √

3a2
0/4 = 2.619 Å2/atom.

Periodic boundary conditions are commonly used in com-
puter simulations to mitigate the influence of membrane’s
boundaries and finite-size effects. In the presence of a tensile
strain, ε > 0, the (x, y) plane on which the periodic conditions
are applied is physically well determined. This is the plane on
which the strain of the projected area of the membrane, or its
conjugated stress, are externally controlled as thermodynamic
variables. It is worth noting that the most likely experimental
scenario would involve rigidly clamping the edges of the
membrane to pieces of the substrate, so that the out-of-plane
and the in-plane displacements are constrained to vanish at
the boundary. This scenario differs from the periodic condi-
tions used in our simulations. As the effective interaction Ei

between the collective variables of the Nelson-Peliti Hamil-
tonian is long ranged, one may worry that different choices
of boundary conditions could lead to inequivalent thermody-
namic behavior. However, we will demonstrate in Sec. IV B
that as the tensile strain ε increases, the contribution of the
(long-ranged) interaction energy 〈Ei,q〉 to the elastic energy is
significantly reduced for the long-wavelength limit of small q.

In the limit where ε = 0, the use of periodic boundary
conditions should be regarded with further caution, since the

boundary conditions are applied on a (x, y) plane that has no
physical significance. In the case of a freely floating mem-
brane, the projected area on any plane would exhibit huge
fluctuations, which are strongly (and rather artificially) con-
strained on the specific plane chosen for imposing periodic
boundary conditions. Nevertheless, our simulation results for
ε = 0 align well with the small ε > 0 limit [see Fig. 5(c) be-
low]. Thus, we can reasonably conclude that, as is commonly
assumed in most simulation studies of free standing mem-
branes, periodic boundary conditions are a suitable choice
for investigating size-independent properties that effectively
represent large experimental systems.

Averaged quantities as a function of temperature and
system size were derived from the configurational partition
function in Eq. (11) using classical MC simulations. As
the elastic energy E is formulated in q space, the complex
amplitudes Aq are sampled as random variables in the MC
simulations. Inversion symmetry in q space, A−q = A∗

q, allows
us to consider q vectors in one-half of the BZ as independent
variables, with the consequent reduction of computer time in
the simulations.

As our main interest lies in the study of long-wavelength
oscillations with small q values, an ultraviolet cut-off radius,
qc, has been considered in the BZ, so that Aq ≡ 0, whenever
q > qc. The actual number of q points, with modulus lower
than qc, included in the MC simulation will be denoted as
Nq. We have used qc = 0.3 Å−1 in our simulations. This
cut-off does not significantly affect the average amplitudes
〈Aq〉 when q < 0.08 Å−1. The main effect of using a cut-off
qc = 0.3 Å−1, instead of the value at the boundary of the
BZ, qc = π/a0 = 1.3 Å−1, is that the average stress of the
layer is shifted by a constant positive value. This shift is
due to the truncated summation of q2|Aq|2 in Eq. (25). The
sum increases monotonically as the cut-off qc increases. At
300 K the shift in the stress τ amounts to 0.02 eV/Å2 when
qc = 0.3 Å−1. This value is nearly independent of the strain of
the layer and the size of the membrane (when N > 105 atoms)
and increases linearly with the temperature. The main conclu-
sions of our study are unaffected by this shift. Therefore, all
simulation results in Sec. IV were obtained using a cut-off
value of qc = 0.3 Å−1, except for an analysis in Sec. IV I
regarding the impact of this cut-off on the stability of the flat
morphology of the membrane.

In the calculation of the correlation functions Ci j (q) in
Eq. (19), the translational symmetry in q space has been
considered. Whenever a vector q − k lies outside the first BZ,
a reciprocal translation vector Q has been selected, so that the
translated vector

t = q − k + Q (28)

lies within the first BZ. The amplitude At and the coordinates
of the translated vector t were used in the calculation of
Ci j (q).

The MC sampling of the complex amplitude Aq is per-
formed by setting an acceptance criterion of ∼50% in the
MC trials. The maximum random move for each Aq depends
strongly on the q value. Long-wavelength fluctuations with
small q display large amplitudes, and accordingly require
larger random moves than fluctuations with higher values of
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q. This fact is relevant to the efficiency of the MC sampling
[13,14].

MC simulations have been performed in a temperature
range between 1 and 2000 K. System sizes were studied be-
tween 104 to 2.2×106 atoms, which correspond to lateral sizes
between L = 298 Å and L = 2380 Å. The lowest q modulus
in the simulation is 2π/L (infrared cut-off), which takes a
value between 2.1×10−2Å−1 and 2.6×10−3 Å−1 depending
on the membrane size.

A MC step (MCS) implies an attempt to randomly modify
each of the amplitudes Aq. Typical MC runs imply 2×104

MCS for equilibration followed by 105 MCS for thermal
averages. Calculated equilibrium properties are the spectrum
of flexural mode amplitudes 〈|Aq|2〉, as well as the energy
partitioning into bending 〈Eb〉, interaction 〈Ei〉, and strain-
dependent contributions 〈Ep〉 and 〈Er〉.

Some MC simulations have been performed in the NτT en-
semble, to check their consistency with the NεT simulations.
The relevant thermodynamic potential in the NτT ensemble
is the enthalpy, H = E + τSp, and the random variables to be
sampled are the out-of-plane amplitudes Aq, and the uniform
strain ε. The acceptance rate for the sampling of ε was set at
∼90%.

IV. RESULTS

The most studied property of a crystalline membrane with
the Nelson-Peliti Hamiltonian is the long-wavelength limit of
the out-of-plane fluctuations. However, it is also of interest
to study the temperature dependence of the elastic energy, its
partition into bending and interaction contributions, as well as
its partition into q dependent contributions. The presentation
of our results starts with this energy analysis.

A. Average elastic energy

The number of degrees of freedom in our simulations is
equal to the number of q points, Nq. The classical equipar-
tition and virial theorems imply that the average kinetic and
potential energies of the membrane are not independent quan-
tities. The equipartition theorem dictates that the average
kinetic energy of each degree of freedom is kBT/2, while
the virial theorem establishes that quadratic terms (Er, Eb)
have average potential energies equal to their kinetic energy
contribution, while quartic terms (Ei ) display average poten-
tial energies that are one-half of their kinetic energy [24,25],
namely

Nq
kBT

2
= 〈Er〉 + 〈Eb〉 + 2 〈Ei〉. (29)

We consider first the case of an unstrained membrane
(ε = 0), where the energy terms Ep = Er = 0. The average
bending 〈Eb〉, and interaction energies 〈Ei〉 are displayed as
a function of temperature in Fig. 1(a). The average elastic
energy is 〈E〉 = 〈Eb〉 + 〈Ei〉. These results correspond to a
membrane with lateral dimension L = 1188Å. The cut-off
radius in the BZ was qc = 0.3 Å−1, so that Nq = 5048 vectors
were included in the MC simulation. For this system size
(N = 5.4×105 atoms), the smallest q modulus is 2π/L =
5×10−3 Å−1. The elastic energy 〈E〉 is lower than kBT/2
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FIG. 1. (a) Thermal average of the elastic, 〈E〉, bending, 〈Eb〉,
and interaction, 〈Ei〉, energy as a function of temperature for an
unstrained membrane (ε = 0) with size L0 = 1188 Å (N = 5.4×105

atoms). The elastic energy is 〈E〉 = 〈Eb〉 + 〈Ei〉. All energies are
normalized by the number of modes Nq. At any finite temperature
〈E〉/Nq is lower than kBT/2. (b) The average interaction energy 〈Ei〉
is compared to the result from the equipartition and virial theorems
in Eq. (30). Dashed lines are guides to the eye. The cut-off radius in
the simulation was qc = 0.3 Å−1.

at any finite temperature, while the harmonic bending energy
〈Eb〉 is larger than the anharmonic 〈Ei〉 contribution.

The equipartition and virial theorems predict that the aver-
age bending and interaction energies of the membrane are not
independent. After Eq. (29), if Er = 0,

〈Ei〉 = Nq
kBT

4
− 〈Eb〉

2
. (30)

The data displayed Fig. 1(b) show that the temperature depen-
dence of 〈Ei〉 derived from the simulations agrees with this
prediction.

B. Mode-dependent elastic energy

We now consider the mode-dependent elastic energy of a
membrane with finite strain (ε � 0). If ε > 0 then the elastic
energy related to the excess area is finite, Er > 0. Er , as well
as the elastic bending energy Eb are expressed as a sum over
independent q modes [see Eqs. (15) and (16)]. These q mode
contributions are

Er,q = 2B0L2ε
q2|Aq|2

2
. (31)

Eb,q = 1

2
L2κ0q4|Aq|2 , (32)

The interaction energy Ei in Eq. (17) can not be separated
into independent q contributions. Nevertheless, the virial the-
orem can be applied to define the average value of this energy
term,

〈Ei,q〉 = kBT

4
− 〈Eb,q〉 + 〈Er,q〉

2
. (33)
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FIG. 2. Partition of the elastic energy into q-dependent terms:
bending 〈Eb,q〉, interaction 〈Ei,q〉, excess area contribution 〈Er,q〉,
as well as their sum 〈Eq〉 = 〈Eb,q〉 + 〈Ei,q〉 + 〈Er,q〉. The results are
shown at 1000 K for a membrane with N = 2.2×106 atoms. For this
system size, the smallest q modulus is 2π/L = 2.6×10−3 Å−1. The
cut-off radius in the simulation was qc = 0.3 Å−1. The results are
shown for three different biaxial strains: (a) ε = 4×10−4; (b) ε =
10−5; (c) ε = 0. The dashed horizontal lines mark the energies kBT/2
and kBT/4, respectively.

The partition of the elastic energy of each mode is then

〈Eq〉 = 〈Er,q〉 + 〈Eb,q〉 + 〈Ei,q〉. (34)

The average elastic energy of the vibrational modes for a
membrane with L0 = 2378 Å (N = 2.2×106 atoms) is dis-
played in Fig. 2 at a temperature of 1000 K for three different
strains: (a) ε = 4×10−4, (b) ε = 10−5, and (c) ε = 0. The
cut-off radius in reciprocal space was qc = 0.3 Å−1, i.e., Nq =
20250 vectors were explicitly treated in the simulations.

Let us consider first the simplest case where ε = 0, and
then Er,q = 0, [see Fig. 2(c)]. The anharmonic interaction
energy 〈Ei.q〉 dominates over the bending energy 〈Eb,q〉 for
q < 0.07 Å−1. As q increases, the bending energy tends to
kBT/2, while the interaction energy tends to vanish. However,
in the long-wavelength limit of small q, the average inter-
action energy 〈Ei,q〉 approaches the limit kBT/4, while the
harmonic bending energy 〈Eb,q〉 tends to vanish.

The presence of biaxial strain modifies completely the
long-wavelength behavior. When ε = 4×10−4, Fig. 2(a)
shows that the harmonic elastic energy associated with the
excess area 〈Er,q〉 becomes the dominant energy in the limit
q → 0. This result is in line with the SCSA predictions and
the MC results of Ref. [17]. As a consequence of the harmonic
character of Er,q, this average energy tends to kBT/2 at small
q.

The results in Fig. 2(b) for ε = 10−5 show that the smaller
the strain ε the smaller the value of q where the excess area
term 〈Er,q〉 dominates over the anharmonic interaction 〈Ei.q〉.
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FIG. 3. (a) The function q3L2〈|Aq|2〉 is displayed as a function of
q for different system sizes. The data correspond to MC simulations
of an unstrained membrane (ε = 0) at T = 1500 K. The number of
atoms N in the simulations is indicated. (b) The functions q2L2〈|Aq|2〉
are shown for membranes with the same sizes and temperature as
in panel (a), but for a finite strain ε = 10−3. Results at discrete q
values are connected by straight lines. The x axis is displayed with a
logarithmic scale. The cut-off for the simulations was qc = 0.3 Å−1.

C. Amplitude of out-of-plane fluctuations

In this subsection we focus on the average of the square
amplitude of the out-of-plane fluctuations 〈|Aq|2〉. This av-
erage is expected to vary with the size of the membrane as
L−2. The reason is that the mode-dependent bending energy
depends on the factor L2〈|Aq|2〉 [see Eq. (32)], and the bend-
ing energy 〈Eb,q〉 remains nearly constant as the size of the
membrane varies.

The average amplitudes 〈|Aq|2〉 are displayed as a function
of q for a membrane with vanishing strain (ε = 0) in Fig. 3(a).
We have represented the function q3L2〈|Aq|2〉 for membranes
with different lateral dimensions in the interval L = 298 to
2378 Å, containing between 3.4×104 and 2.2×106 atoms.

We observe a conspicuous finite-size effect only for the
two q points with lowest modulus (2π/L) for each membrane
size (i.e., q10 and q01). This finite-size effect was reported by
Tröster in his MC simulations of an unstrained membrane
[13,14]. He attributed this effect to the anisotropic charac-
ter of the correlation in Eq. (19), which is required for the
calculation of the interaction energy Ei. Correlation between
out-of-plane amplitudes causes a decrease in their modulus.
Thus, if the interaction term Ei were suppressed from the
Hamiltonian, the out-of-plane amplitudes would increase sig-
nificantly. The anisotropy is related to the fact that the origin
of the BZ is excluded from the set of q points where the
correlation function is calculated. In the BZ, The points q10

and q01 have the special geometric property that they are the
only ones that do not have neighboring q points between them
and the origin. This causes the modulus of the amplitudes
corresponding to q10 and q01 to display anomalously large
values. Finite-size effects at q vectors with modulus larger
than 2π/L are inappreciable in the scale of Fig. 3(a). The size
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effect at q10 and q01 will be quantified as a function of the
temperature and membrane size in Sec. IV E.

Average amplitudes for the case of finite biaxial strain,
ε = 10−3, are displayed in Fig. 3(b) for membranes with the
same number of atoms as in panel (a). The finite tensile biax-
ial strain (ε > 0) affects drastically the q dependence of the
average amplitudes 〈|Aq|2〉, in comparison to the case ε = 0.
The amplitudes in Fig. 3(b) are displayed as q2L2〈|Aq|2〉.
This function tends to a constant value in the limit q → 0.

The finite-size effect observable at q10 and q01 when ε = 0
is absent in the case of finite strain. The q dependence of
the average amplitudes 〈|Aq|2〉 as a function of the strain ε

is analyzed in the next subsection.

D. Numerical fit of the out-of-plane amplitudes

The amplitudes of the out-of-plane fluctuations will be
analyzed with the function

fq = 1

βL2〈|Aq|2〉 . (35)

fq will be then fitted by an appropriate numerical model. In the
context of biological membranes the function fq/q2 has been
associated with a q-dependent surface tension [20], while in
the context of solid membranes fq has been considered as an
approximation to the dispersion relation of the out-of-plane
modes ρω2

q, where ρ is the surface density and ωq is the
wavenumber of the mode [17,26,27].

The MC results for 〈|Aq|2〉 in the presence of finite biaxial
strain are analyzed first. Both the SCSA and variational per-
turbation theory predict that in this case the long-wavelength
dependence of fq is

fq = σq2, (36)

where σ = 2B0ε, to first order in ε [6,17]. Our MC simu-
lations of fq have been fitted by a least-squares method to
the function σq2. The least-squares fits are performed with
weighting factors wq ∝ f −2

q . In this way, the region of small
q is given a larger weight. The fitted value of σ in the interval
[2π/L, qend] is presented in Fig. 4 as a function of qend. The
result corresponds to a simulation at a temperature of 1000 K,
lateral dimension L = 2380 Å, and strain ε = 10−3. The ex-
trapolated value of σ in the long-wavelength limit (qend → 0)
is

σ = −τp = B0(2ε + 4ε2). (37)

This result is in agreement with previous studies with the
Nelson-Peliti Hamiltonian [6,17].

When the strain vanishes, ε = 0, the expectation of the
SCSA and RG approximation is that the amplitudes of the
out-of-plane fluctuations in the long-wavelength limit are de-
termined by a critical exponent η [7–9,12], i.e.,

fq = γ q4−η . (38)

We have considered the following trial function to fit our
simulation results of fq,

fq = σq2 + γ q4−η. (39)

σ , γ , and the exponent 4 − η are the fitting parameters.
This function has the flexibility to describe the expected
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FIG. 4. Result of the least-squares fit of the simulation results of
fq = 1/βL2〈|Aq|2〉 to the function σq2 in the interval [2π/L, qend].
The value of σ is represented as a function of qend. The dashed line is
a cubic fit. The simulation was performed at 1000 K for a membrane
with lateral dimension L = 2380 Å (N = 2.2×106 atoms) and strain
ε = 10−3. In the long-wavelength limit (qend → 0), the fitted value
converges to σ = −τp = B0(2ε + 4ε2).

long-wavelength limit in the case of an unstrained membrane
(ε = 0). as well as in the presence of a finite biaxial strain
(ε > 0).

The fitted values (σ , γ , and 4 − η) obtained by the least-
squares analysis of our MC results are displayed in Fig. 5 as
a function of the strain ε. The data were obtained at 1000 K

0 5×10-4 10-3

strain ε
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4 
− 
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(e
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−η
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 ( 
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(a)

(b)

(c)

T = 1000 K
N = 2.2 × 106 

σ = − τp

FIG. 5. Results of the least-squares fitting of the simulation data
of fq to the function σq2 + γ q4−η. The fitted parameters σ , γ , and
4 − η are displayed as a function of the strain ε in the panels (a), (b),
and (c), respectively. In panel (a), the continuous line represents the
stress term −τp = B0(2ε + 4ε2). The value of the critical exponent
when the strain ε = 0 is η = 0.8 [see panel (c)]. The simulations
were performed at 1000 K for a crystalline membrane with lat-
eral size L � 2380 Å (N = 2.2×106) and a cut-off qc = 0.3 Å−1.
Dashed lines are guides to the eye.
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FIG. 6. Comparison of the functions of the square amplitudes
〈|Aq|2〉 displayed in Fig. 3 for a membrane with size N = 2.2×106

atoms, with the results derived from the least-squares fit of the
function fq in Eq. (35). Discrete points are simulation results at a
temperature of 1500 K, while the dashed line is the least-squares
fit. The employed cut-off is qc = 0.3 Å−1. The results are shown for
(a) strain ε = 0. Here the square amplitudes 〈|Aq|2〉 are presented
as the function q4−ηL2〈|Aq|2〉, with the critical exponent η = 0.8;
(b) strain ε = 10−3.

for a membrane with lateral dimension L � 2380Å (the actual
length L is a function of the strain ε). The q interval used in
the fit was [2π/L, 0.08 Å−1]. When ε = 0, the two points q10

and q01, with modulus 2π/L, were omitted from the fitting
interval, as their amplitudes 〈|Aq|2〉 display noticeable finite-
size effects.

The fitted values of the tension σ follow the relation in
Eq. (37). Thus, for finite strain, ε > 0, the long-wavelength
behavior of fq is determined by the term −τpq2. When the
strain ε = 0, σ and τp vanish, and the long-wavelength be-
havior of fq is determined by γ q4−η, where η is the critical
exponent. Six different MC simulations were performed at
temperatures between 500 and 2000 K to derive an average
value of η = 0.80 ± 0.01. This number is in good agree-
ment with the one reported by Tröster in his MC simulations
[13,14]. The parameter γ increases monotonically with the
biaxial strain at a given fixed temperature.

The simulated square amplitudes 〈|Aq|2〉 plotted in Fig. 3
for N = 2.2×106 atoms at 1500 K are compared with the
results obtained by the least-squares fit of the function fq

in Fig. 6. The fitted function reproduces reasonably well the
average amplitudes obtained in the simulations for the strains
ε = 0 and 10−3, respectively. The most visible deviation be-
tween simulation and fitted data is the finite-size effect of the
points q10 and q01 when the strain is ε = 0. The magnitude of
this effect is studied in the next subsection as a function of the
size of the membrane and the temperature.

E. Finite-size effect in the out-of-plane amplitudes
at q10 and q01

The finite-size effect in the out-of-plane amplitudes 〈|Aq|2〉
at the points q10 and q01 of the unstrained layer (ε = 0)

0 500 1000 1500 2000
temperature (K)

0

10

20

δ 
(%

)

0 1×106 2×106

number of atoms N

0

10

20

δ 
(%

)

ε = 0

ε = 0
T = 1500 K   14%

N = 8.5 × 105   13%

(a)

(b)

FIG. 7. Magnitude of the finite-size error δ defined at the recip-
rocal points q10 and q01 for an unstrained membrane (ε = 0). (a) δ as
a function of the size of the membrane at a temperature of 1500 K.
(b) δ as a function of the temperature for a membrane with 8.5×105

atoms.

is quantified by calculating first the expected value of the
amplitude A2

q,fit using the fitted model for fq,

A2
q,fit = 1

βL2γ q4−η
, (40)

and then calculating the relative deviation δq,

δq = 〈|Aq|2〉 − A2
q,fit

〈|Aq|2〉 . (41)

The finite-size effect is quantified as the average of δq for the
points q10 and q01,

δ = 100 ×
(

δ10 + δ01

2

)
. (42)

We have studied the dependence of δ with the number of
atoms and the temperature in Fig. 7. In panel (a) the magnitude
of δ at 1500 K is displayed for membrane with sizes between
1.3×105 and 2.2×106 atoms. We find that the finite-size effect
is rather independent of the size of the membrane, and the
value of δ is about 14%. This result is in reasonable agree-
ment with the value of δ ∼ 12% given in Refs. [13,14]. In
simulations with temperatures between 20 and 2000 K for a
fixed size of 8.4×105 one gets that δ ∼ 13% [see Fig. 7(b)].
The independence of the value of δ with the membrane size
and the temperature, as well as the appearance of this size
effect only when ε = 0, is in line with the consideration that
this effect is related to the anisotropy of the convolution in
Eq. (19).

F. Stress-strain curves

The isothermal stress-strain curve τ − ε of a crystalline
membrane is displayed in Fig. 8(a) at 1000 K. The data
were derived by NεT simulations with a cut-off qc = 0.3Å−1

for several sizes between 1.3×105 and 2.2×106 atoms. For
strains ε � 0 the stress at 1000 K is always tensile, i.e.,
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FIG. 8. (a) Isothermal stress-strain curve at 1000 K as derived
from MC simulations for membranes with different sizes in the NεT
ensemble. The maximum of the curve is a critical point. (b) The four
contributions to the stress, τ = τp + τr + τb + τi, are displayed as a
function of the strain ε for the simulation with N = 2.2×106 atoms.
All results were derived with a cut-off qc = 0.3 Å−1. Lines are guides
to the eye.

τ < 0. In Fig. 8(b), the various contributions to the stress τ

are displayed for the membrane with N = 2.2×106 atoms.
The most important contributions to the total stress τ are the
terms τp and τr . The first one, τp depends on the strain of the
projected area Sp [see Eq. (24)]. The second, τr depends on
the additional strain caused by the excess area [see Eq. (25)].
The other two contributions to the stress, τb + τi, are compar-
atively small, and nearly independent of the strain ε.

Finite-size effects in the isothermal stress-strain curves of
Fig. 8(a) are small. They are only noticeable when the strain
vanishes, ε = 0. In this case, the tensile stress τ becomes more
negative as the size of the membrane increases.

The slopes of the curves τp(ε) and τr (ε) in Fig. 8(b)
have opposite signs. The slope ∂τp/∂ε is a negative constant
(−2B0) to first order in ε. However, the slope ∂τr/∂ε is
always positive and decreases monotonically as ε increases.
Figure 8(b) shows that when ε = 0, the slope ∂τr/∂ε >

|∂τp/∂ε|. The larger the strain ε, the smaller the slope ∂τr/∂ε,
so that at a critical strain εc = 4×10−4 both slopes be-
come identical in absolute value but with opposite signs, i.e.,
∂τr/∂ε = −∂τp/∂ε. The critical point τc(εc) corresponds to
the maximum of the stress-strain curve in Fig. 8(a). At 1000 K
the critical strain is εc = 4×10−4.

The stability condition for the Helmholtz free energy
F (T, ε, N ) implies the convexity of the energy surface. The
local condition for convexity is(

∂2F

∂S2
p

)
N,T

= −
(

∂τ

∂Sp

)
N,T

= 1

2LL0

(
−∂τ

∂ε

)
N,T

� 0 . (43)

Thus, a negative slope ∂τ/∂ε � 0 is a necessary condition for
thermodynamic stability. The state points in the isothermal
curve of Fig. 8(a) are unstable for strains ε smaller than the
critical value, 0 � ε < εc. The most striking consequence of
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FIG. 9. Isothermal stress-strain curves as derived from NεT sim-
ulations of a membrane with 1.2×106 atoms. The continuous line is
the locus of critical points [maxima of the τ (ε) curves]. This line is
the boundary between thermodynamic stable and unstable regions of
a crystalline membrane described by the Nelson-Peliti Hamiltonian.
The filled symbols correspond to state points derived in the NτT
ensemble, as a check of the internal consistency of our simulations.
The bars at 1000 K display the equilibrium root mean-squared fluctu-
ation of the stress, στ = (〈τ 2〉 − 〈τ 〉2)1/2, as derived in the canonical
NεT ensemble. The total bar length corresponds to the value 6στ .
The dashed lines are guides to the eye. All results were derived with
a cut-off qc = 0.3 Å−1.

this is that a flat unstrained membrane with ε = 0 is thermo-
dynamically unstable at finite temperature.

The stability of the flat membrane is tied to a positive
strain ε > εc, high enough to prevent the interaction energy
Ei,q from being the dominant term in whatever range of q.
This behavior is seen in Fig. 2. The flat membrane is unstable
at 1000 K for the strains ε = 0 [see Fig. 2(c)] and ε = 10−5

[see Fig. 2(b)]. Here the average interaction energy 〈Ei,q〉 is
seen to be the dominant energy in a region at low q. However,
as the critical strain increases to the value εc = 4×10−4 [see
Fig. 2(a)], then the interaction energy 〈Ei,q〉 becomes smaller
than its competing energy terms, i.e., the bending 〈Eb,q〉 or the
excess area 〈Er,q〉 contributions, in the whole q range.

G. Stability region

Isothermal stress-strain curves of the membrane are dis-
played in Fig. 9 at several temperatures between 0 and 1000 K.
The results were derived by NεT simulations with N =
1.2×106 atoms and a cut-off qc = 0.3 Å−1. The isotherm in
the limit T → 0 is simply τ ≡ τp = −2B0ε (to first order in
ε), as the amplitudes Aq ≡ 0 in this limit. The continuous line
approximates the locus of critical points (εc, τc), defined by
the maximum of each isotherm. This line marks the boundary
of the stable region of the flat membrane in the τ − ε diagram.
The critical strain εc is a monotonically increasing function
of the temperature. The higher the temperature, the larger the
tensile strain ε required for the flat membrane to reach its
stability region where ε � εc.
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An unstrained membrane (ε = 0) is stable only in the
limit T → 0, where the stress τ = 0. An increase in temper-
ature causes tensile tension (τ � τr ), as thermal fluctuations
increase the real area of the membrane. The stability condition
of the Helmholtz free energy is violated when ε = 0, as(

∂τ

∂ε

)
ε=0

> 0 , (44)

because [see Fig. 8(b)](
∂τr

∂ε

)
ε=0

> −
(

∂τp

∂ε

)
ε=0

= 2B0 . (45)

The constraint of fixed projected area in the NεT ensemble
renders possible to perform MC simulations in regions where
the flat membrane is thermodynamically unstable, provided
that the state points are close enough to the stability region
and display positive strain values, ε � 0. This does not hold
true for simulations in the constant stress ensemble NτT ,
where the projected area fluctuates. NτT simulations are only
possible in the stable region. State points derived from NτT
simulations at 150, 300, and 1000 K are displayed in Fig. 9
by filled symbols. We find that NτT simulations in the stable
region, but close to the critical point τc(εc) may be driven into
unstable trajectories. Unstable trajectories are characterized
by unphysical large values of the out-of-plane amplitudes Aq,
unphysical large values of the real area Sr , as well as by
a negative value of the strain ε of the membrane. In other
words, the flat morphology of the membrane is not stable. The
Nelson-Peliti Hamiltonian is an elastic model for the planar
morphology of a crystalline membrane. Therefore, apart from
the determination of the region of thermodynamic stability of
the flat membrane, no further characterization of the mem-
brane morphology in the unstable region can be derived from
this Hamiltonian. This result has been unnoticed in previous
studies using the Nelson-Peliti Hamiltonian [1,7,9,12,17].

Figure 9 shows that an unstrained flat membrane (ε = 0)
is unstable at any finite temperature. Therefore, when ε = 0,
the anomalous spectrum of out-of-plane fluctuations, defined
with a critical exponent η = 0.8, corresponds to a model of
a planar membrane that is thermodynamically unstable when
described with the Nelson-Peliti Hamiltonian. Thus, the gen-
erally accepted view that the planar morphology of graphene
and other 2D solid membranes is a consequence of displaying
such an anomalous spectrum of out-of-plane fluctuations, is
not supported by our simulations.

The strain-stress curves in Fig. 9 imply that by heating the
solid membrane at constant stress, i.e., as the state point is
moved along a horizontal line from the right to the left of
Fig. 9, then the membrane will cross the critical line separat-
ing stable and unstable regions. Therefore, the Nelson-Peliti
Hamiltonian predicts that the high temperature morphology of
the solid membrane is not planar, but crumpled. This expecta-
tion is opposite to the behavior found in graphene simulations
with realistic interatomic potentials. When a graphene layer
is heated at a constant compressive stress, the morphology
of the membrane changes from crumpled to planar as the
temperature increases [28]. This behavior of a graphene layer
with rising temperature signals the presence of additional
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FIG. 10. Real area as a function of the strain ε, as derived from
NεT simulations of a membrane with 1.2×106 atoms. The isotherms
at 600 and 1000 K are shown. The critical strain (εc) corresponds
to the minimum value of the real area at a given temperature. The
bars display the equilibrium root mean-squared fluctuation of the real
area, σSr/N = (〈S2

r 〉 − 〈Sr〉2)1/2/N , as derived in the canonical NεT
ensemble. The total bar length corresponds to the value 6σSr/N . All
results were derived with a cut-off qc = 0.3 Å−1. The dashed lines
are guides to the eye.

anharmonic effects that are not included in the Nelson-Peliti
Hamiltonian [29,30].

H. Real area and membrane stability

The state points along the critical line (εc, τc) in Fig. 9
display an interesting property related to the real area Sr of
the membrane. At any given temperature the real area of the
membrane takes its minimum value at the critical strain εc.
This behavior is displayed in Fig. 10, where the real area is
represented as a function of the strain at 600 and 1000 K,
respectively. Along the displayed isotherms, only the state
points with strain ε > εc are thermodynamically stable.

The stress and the real area display a simple relationship.
The real area in Eq. (20) can be expressed to first order in ε as

Sr = S0(1 + 2ε + εr ) , (46)

where S0 is the projected area when ε = 0 (i.e., S0 = L2
0), and

εr =
BZ∑
q

q2|Aq|2
2

. (47)

The stress in Eq. (23) can be approximated as

τ = −B0(2ε + εr ) . (48)

In this equation, the contribution of the stress terms τb + τi

is neglected, as they are small [see Fig. 8(b)]; the term τp

is approximated by its first order in ε; and in the term τr

the strain ε was neglected in comparison to 1 [see Eq. (25)].
Combining Eqs. (46) and (48), one gets a linear dependence
between stress and the real area of the crystalline membrane,

τ = B0 − B0

S0
Sr . (49)
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FIG. 11. Stress-real area isotherms as derived from NεT simula-
tions of a crystalline membrane with 1.2×106 atoms. The dashed line
corresponds to Eq. (49). The state point with the minimum real area
of each isotherm corresponds to the critical point τc(T ). All results
were derived with a cut-off qc = 0.3 Å−1.

The stress-strain isotherms previously shown in Fig. 9 are
represented in Fig. 11 as isotherms in the plane stress-real
area. The four isotherms appear as segments on a straight line
given by Eq. (49), which is shown as a dashed line. Each of
these isotherms includes both the thermodynamic stable and
unstable points already analyzed in Fig. 9. One observes that
all state points lie on the same straight line. For each isotherm,
the state point with minimum real area corresponds to the
critical point.

I. Anharmonic effects and membrane stability

Our MC simulations with the Nelson-Peliti Hamiltonian
of an unstrained membrane (ε = 0) successfully reproduce,
for a large set of membrane sizes and temperatures, the
predicted anomalous low-q behavior of the mean-square am-
plitudes, given by 〈|Aq|2〉 ∝ qη−4 with a critical exponent
η ∼ 0.8. This result demonstrates excellent agreement with
SCSA and RG methods, as well as with previous simulation
results [see Figs. 3(a) and 6(a)] [8–14]. By applying a weak
strain 0 < ε � 1 to the membrane, the strict low-q limit of
〈|Aq|2〉 changes to a regular q−2 behavior. Our simulations
with ε > 0 reveal that the anomalous low-q limit, character-
ized by a precise critical value of η, can still be accurately
determined through the analysis of 〈|Aq|2〉 across a wide range
of intermediate q values, and a subsequent extrapolation of
the results to the ε = 0 limit [see Fig. 5(c)]. Therefore, our
findings reaffirm the established view that the Nelson-Peliti
Hamiltonian captures the essential anharmonic effects on the
out-of-plane fluctuations due to the approximate treatment of
the in-plane fluctuations in the graphene layer.

However, our analysis of the strain-stress curves associ-
ated to the Nelson-Peliti Hamiltonian shows a systematic
issue that, to our knowledge, has not been previously re-
ported [see Figs. 8(a) and 9]. A membrane described by this
Hamiltonian becomes mechanically unstable at finite temper-
ature over a range of strains, ε � 0, that spans the entire

region used for extrapolating the anomalous low-q behavior.
This result contrasts with the stability of the flat morphol-
ogy of graphene found in simulations with atomistic carbon
potentials [17,28,31]. The mechanical instability arises from
the approximation used in the Hamiltonian to incorporate
in-plane fluctuations as anharmonic contributions to the out-
of-plane fluctuations. The primary goal of the Nelson-Peliti
Hamiltonian has never been to accurately describe a graphene
sheet but rather to offer the simplest RG analysis for under-
standing the anomalous behavior of the fluctuating membrane.
Therefore, one might expect that the mechanical stability of
the Hamiltonian model could be achieved, without changing
its relevant scaling properties, by some tuning of the model
parameters or by the addition of some regular contribution to
the Hamiltonian.

To search for a mechanically stable version of the Nelson-
Peliti Hamiltonian, we first explore the role of the cut-off qc

in the sums over the BZ that appear in the elastic model. This
cut-off is largely undefined in any RG model Hamiltonian and
most of our simulations were carried out with qc = 0.3 Å−1,
quite below the limit of the BZ in graphene (qc = 1.3 Å−1).
Then, we are leaving out a large contribution to the anhar-
monic term of the Hamiltonian.

To assess how the results in Figs. 9–11 are affected by
the employed cut-off, a new set of NεT simulations was
performed by varying qc in the interval 0.05 � qc � 1.3 Å−1.
The effect of changing qc is displayed in Fig. 12(a) for the
stress-strain isotherm, in Fig. 12(b) for the real area-strain
curve, and in Fig. 12(c) for the stress-real area graph. These
results correspond to a temperature of 1000 K and a mem-
brane size of N = 1.3×105 atoms. The results in Fig. 12(a) for
0.3 < qc � 1.3 Å−1 show that increasing qc produces a shift
of the stress-strain curves with a very slight, hardly noticeable
increase of the range of instability. This small effect does not
change our conclusions in connection with Figs. 9–11.

Interestingly, increased stability must be sought in the op-
posite direction, by reducing the value of qc, thus avoiding
the inclusion of anharmonic contributions for large values
of q. As observed in the stress-strain curves of Fig. 12(a),
the range of mechanical instability can be narrowed from
ε � 4×10−4 for qc = 1.3 Å−1 to approximately ε � 3×10−4

for qc = 0.1 Å−1, and further to ε � 10−4 for qc = 0.05 Å−1.
Thus, reducing anharmonic effects in the Nelson-Peliti Hamil-
tonian by lowering the value of the cut-off qc indeed makes it
stable for lower values of the strain ε.

The square amplitudes 〈|Aq|2〉 for the unstrained mem-
brane (ε = 0), previously displayed in Fig. 3(a), allowed us
to accurately fit the exponent η ∼ 0.8 over more than two
orders of magnitude for q. In Fig. 12(d), the square amplitudes
〈|Aq|2〉 are represented for ε = 0 for a fixed system size and
varying cut-off values. As the cut-off is reduced, the range of
low-q values exhibiting nonanalytical behavior in the out-of-
plane fluctuations also decreases. Further lowering of qc leads
to an enhancement of 〈|Aq|2〉 for q � qc, which deviates from
the qη−4 behavior observed in the simulations with larger qc.
Thus, the instability of the model when ε = 0 seems to be
associated to the qη−4 dependence of the out-of-plane ampli-
tudes.

A second approach to achieving mechanical stability in the
Nelson-Peliti Hamiltonian is to introduce an additional term
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FIG. 12. Effect of the cut-off qc on several isothermal properties
derived by MC simulations of a membrane in the NεT ensemble:
(a) stress-strain curve; (b) real area-strain curve; and (c) stress-real
area curve. In panel (d) the function q3L2〈|Aq|2〉 is displayed as
a function of qc for the unstrained membrane (ε = 0) and several
values of qc. The simulations correspond to membrane size of N =
1.3×105 atoms at T = 1000 K. The cut-off qc was varied between
0.05 and 1.3 Å−1. The last value corresponds to the boundary of
the BZ in graphene. The critical tensile strain εc corresponds to
the maximum of the curves in panel (a) and the minimum in panel
(b). εc becomes lower as the value of the cut-off employed in the
simulations is reduced.

that would be irrelevant for the low-q renormalization analy-
sis. The simplest choice is a higher-order dispersion term ∼q6,
achieved by adding a new elastic energy E6 to the original
Nelson-Peliti Hamiltonian of Eq. (13),

E6 =
BZ∑
q

L2K6q6|Aq|2 , (50)

where K6 is a positive constant with the dimension of
energy×length2. The isothermal stress-strain curves for a
membrane with N = 1.3×105 atoms at a temperature of
1000 K and qc = 0.3 Å−1 are displayed in Fig. 13(a) for
various values of the constant K6. The corresponding square
amplitudes 〈|Aq|2〉 are represented in Fig. 13(b). Increasing
K6 leads to a significant reduction in the amplitude of high-q
out-of-plane fluctuations, consequently weakening their an-
harmonic contribution. Figure 13(a) shows that the range of
mechanical stability increases with larger K6. However, the
largest value of K6 = 1.28×104eVÅ2, used in Fig. 13 to
achieve mechanical stability for ε � 10−4, is by far too large
to provide a physical description of graphene. The bending
〈Eb〉 and interaction 〈Ei〉 energies amounts to only 0.4% and
0.2%, respectively, while nearly all the elastic energy (99.4%)
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FIG. 13. (a) Isothermal stress-strain curves as derived from NεT
simulations of a membrane for different values of the coupling con-
stant K6 (in eVÅ2). K6 defines a q6-dispersion term in Eq. (50) that
has been added to the Nelson-Peliti Hamiltonian. The critical strain
εc (maximum of the curve) is displaced towards ε = 0 as the constant
K6 increases. Dashed lines are guides to the eye. (b) The function
q3L2〈|Aq|2〉 is plotted against q, for several values of the constant
K6, in the case of an unstrained membrane (ε = 0). All results were
derived with N = 1.3×105 atoms at 1000 K and using a cut-off
qc = 0.3 Å−1.

corresponds to the average 〈E6〉. Even more relevant is that, as
shown in Fig. 13(b), the range of q over which the anomalous
q behavior is observed is strongly reduced due to the damping
effect of the E6 term on the amplitude 〈|Aq|2〉 at large q, which
in turn reduces the anharmonic effects of the model. We have
confirmed that increasing the cut-off value, qc, from 0.3 to
1.3 Å−1 in the stress-strain curves depicted in Fig. 13(a) yields
an effect similar to that shown in Fig. 12(a). The τ (ε) curves
are rigidly shifted as qc increases, without any significant
change in the slopes of the curves.

The strong and accurate evidence for the anomalous be-
havior observed in our simulations, in excellent agreement
with the RG analysis of the Nelson-Peliti Hamiltonian, fully
disappears when we try to ensure the mechanical stability of
the model. We cannot discard that with membranes of huge
sizes, beyond the scope of simulation studies, there might be
a range of very low-q values where the goals of mechanical
stability at ε = 0 and the observation of the RG prediction
for η = 0.8 could be made compatible through appropriate
choices of qc, K6, or adding some other regular terms to
the original Nelson-Peliti Hamiltonian. However, based on
the extensive evidence from our simulations, we are inclined
to accept the alternative possibility that these two goals are
fundamentally incompatible. In other words, the same anhar-
monic effects that are included in an approximated, truncated
manner in the Nelson-Peliti Hamiltonian, and are the source

165417-12



CRYSTALLINE MEMBRANES UNDER STRESS: A MONTE … PHYSICAL REVIEW B 108, 165417 (2023)

0.01 0.1 1
q  ( Å-1 )

10-3

100

103

106

q2  L
2  |A

q|2  ( 
Å

2  )

100

103

106
q2  L

2  <
|A

q|2 > 
 ( 

Å
2  )

qc  = 0.3 Å-1

qc  = 1.3 Å-1

τc - Δ

( Δ = 3.5 × 10−3  eVÅ-2 )

τc

N = 1.3 × 105
T  = 1000 K (a)

(b)

< ε > = 10-3

ε  < 0

FIG. 14. Square amplitudes of the out-of-plane modes of a crys-
talline layer are derived in the NτT ensemble at the critical stress
τc [corresponding to the maximum of the τ (ε) curve] and at a sta-
ble state point defined at a higher tensile stress. These simulations
were performed at a temperature of T = 1000 K with N = 1.3×105

atoms, employing two different cut-off values: qc = 0.3 and 1.3 Å−1.
(a) The average square amplitudes are presented as q2L2〈|Aq|2〉 as
a function of q for a stress, τc − �, where � = 3.5×10−3 eVÅ−2,
corresponding to a thermodynamically stable state point. (b) The in-
stantaneous square amplitudes are shown at the critical stress τc after
a simulation run of 5×103 MCS. Notably, the violent fluctuations of
the out-of-plane amplitudes in panel (b) are independent of the size
of the cut-off.

of the anomalous behavior predicted by the RG analysis, are
also responsible for its mechanical instability.

In finite-size systems governed by long-range interactions,
the convexity in the Helmholtz free energy may not be strictly
necessary for thermal stability. This is because surface and
interface contributions may become significant compared to
bulk contributions [32]. In the context of our simulations of
a crystalline membrane with the Nelson-Peliti Hamiltonian,
it is important to emphasize that the evidence of the thermal
instability is not solely indicated by the positive slopes of
the τ (ε) curves. It is also evident in the violent out-of-plane
fluctuations observed at constant stress simulations.

This behavior is illustrated in Fig. 14, where the square
amplitudes of the out-of-plane modes are studied in the NτT
ensemble. We conducted simulations at the critical stress
τc and at a slightly higher tensile stress, τc − �, with � =
3.5×10−3 eVÅ−2. The latter stress corresponds to a state
point in the thermodynamically stable region. The average
out-of-plane amplitudes at this stable state point are depicted
in Fig. 14(a). The results obtained with the cut-offs qc = 0.3
and 1.3 Å−1 display excellent agreement. In this constant
stress simulations at τc − �, the projected area fluctuates with
instantaneous values corresponding to positive strains, ε > 0,
centered around an ensemble average of 〈ε〉 = 10−3.

At the critical tension τc, the out-of-plane amplitudes ex-
hibit a monotonous increase throughout the simulation run, a
manifestation of the thermodynamic instability in the constant
stress trajectory. Consequently, in Fig. 14(b), we present the

instantaneous amplitudes obtained after a simulation run with
5×103 MCS. It is noteworthy that, in stark contrast to the
average amplitudes found at the stable state point, the instan-
taneous out-of-plane amplitudes at τc fluctuate over more than
seven orders of magnitude.

Furthermore, we observe that these violent out-of-plane
fluctuations persist regardless of the chosen cut-off value,
whether it is qc = 0.3 or 1.3 Å−1. Unstable constant stress
NτcT trajectories, characterized by a monotonous increase in
out-of-plane amplitudes during the simulation run, are asso-
ciated with a continuous drift in the instantaneous value of
the membrane’s projected area, resulting in a negative strain
value, ε < 0. Consequently, in constant stress simulations,
when the flat morphology of the membrane is unstable, the
projected area exhibits a monotonous decrease along the sim-
ulation rather than fluctuating around an average value, as
observed in stable equilibrium conditions. The huge values
and fluctuations in the instantaneous amplitudes under these
unstable conditions should be interpreted as outcomes of the
simulation trajectory, rather than as representative of a stable
equilibrium.

The apparent contradiction between the stability observed
in atomistic simulations of graphene [17,28] and the in-
stability identified in the elastic Nelson-Peliti model could
potentially be resolved through the following consideration.
The coupling to an external tensile strain adds a q2 term
to the ρω2

q dispersion of the flexural modes of a flat layer
[17,27,33], which stabilizes its planar morphology. Similarly,
any intrinsic anharmonic coupling causing a q2 dispersion
of the out-of-plane modes should also contribute to the
layer’s stability. Interestingly, various independent studies
have demonstrated that intrinsic anharmonic effects induce
a q2 dispersion of the flexural modes of graphene. For ex-
ample, Michel et al., using a Hamiltonian with anharmonic
terms of third and fourth order in lattice displacements, report
an anharmonic renormalization of the flexural mode with a
q2 dispersion [34,35]. This result was also obtained within
a continuum theory of crystalline membranes incorporating
cubic interactions between in-plane and out-of-plane modes
[5]. Adamyan et al. show, by an adiabatic approximation,
that adding quadratic terms of the type (∂iu j )(∂ jui ) in the
definition of the in-plane strain in Eq. (3) results in flexural
phonon modes acquiring a q2 dispersion [29]. It appears that
the significance of these findings has not received enough
attention by the graphene community, which has favored a
model based on a critical exponent η to explain the stability of
the flat morphology of unstrained crystalline membranes. Our
MC simulations challenge the prevailing physical relevance
attributed to the critical exponent model.

V. SUMMARY

A MC study of a crystalline membrane described by the
Nelson-Peliti Hamiltonian has been presented using a set of
elastic constants appropriate to graphene. All the simulations
are performed in the classical limit, i.e., quantum effects that
may appear at low temperatures are neglected in this paper.
The membrane is studied subjected to a tensile biaxial strain
ε � 0.
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For the case of an unstrained membrane (ε = 0), our MC
simulations are in good agreement with previous simula-
tions based on the same Hamiltonian [13,14], and also with
analytical results of the SCSA and RG methods [9,12]. In
particular, the spectrum of out-of-plane fluctuations of an
unstrained membrane in the long-wavelength limit displays a
dependence |Aq|2 ∝ qη−4, with a value of the critical exponent
η = 0.80 ± 0.01. This q dependence changes in the presence
of a finite positive biaxial strain ε > 0 to |Aq|2 ∝ q−2, in good
agreement with previous numerical simulations and analytic
approximations [6,17].

Interesting results are derived from the isotherms in a
strain-stress plane of the membrane described by the Nelson-
Peliti Hamiltonian. The isotherms show that the stability of
the flat membrane is tied to a positive biaxial strain ε > εc

larger than a critical value. εc must be high enough to pre-
vent the interaction energy Ei,q from being the dominant
factor in whatever range of q. This positive critical strain
εc increases monotonically with temperature. By increasing
the temperature at a constant tensile biaxial stress, the pla-
nar morphology of the membrane becomes unstable and the
membrane crumples at high temperatures. The unstrained flat
membrane (ε = 0) is thermodynamically unstable at any finite
temperature.

The instability of the planar morphology is also related to
the dependence of the real area of the membrane with the
strain at isothermal conditions. The real area is a quantitative
measure of the square amplitude of the out-of-plane fluctua-
tions divided by the square of their wavelength. In the planar
morphology, the real area decreases as the biaxial tensile
strain decreases, until the critical strain εc is reached. By a
further decrease of the strain, with ε < εc, the real area in-
creases, and the stable morphology of the membrane becomes
crumpled.

Although anharmonic effects described by the Nelson-
Peliti Hamiltonian imply a drastic reduction of the amplitude
of the out-of-plane fluctuations, in comparison to the har-
monic limit of the bending energy, this reduction is not large
enough to stabilize the planar morphology of the unstrained
(ε = 0) membrane at finite temperatures. All the state points
where the planar crystalline membrane is stable, display a
long-wavelength dependence of the out-of-plane modes that
varies as |Aq|2 ∝ q−2.

Our results are significant for the present understanding of
the anharmonic effects that are responsible for the stability
of the planar morphology of solid membranes, like graphene.
The generally accepted picture that the spectrum of out-of-
plane fluctuations of unstrained graphene membrane has a
dependence |Aq|2 ∝ qη−4, with a critical exponent η ∼ 0.8
in the long-wavelength limit, is not supported by our simula-
tions. The prediction with this Hamiltonian is that a crystalline
membrane with such a spectrum of out-of-plane fluctuations
should be crumpled. Moreover, the Nelson-Peliti Hamiltonian
predicts that the high-temperature morphology of a crystalline
membrane is crumpled. However, previous simulations of

graphene with atomistic interatomic potentials show that a
planar morphology is favored at high temperatures, in com-
parison to a crumpled one [28]. Our final conclusion is that
a crystalline membrane, like graphene, display significant an-
harmonic effects in addition to those already included in the
Nelson-Peliti Hamiltonian.
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APPENDIX: GAUSSIAN CURVATURE

The function Ci j (q) in Eq. (19) is the Fourier transform of
a product of real space functions [6],

Ci j (q) = Fq[∂iz(r)∂ j z(r)]. (A1)

From the inverse Fourier transform of this relation and with
the definition of �(q) in Eq. (18), one derives after some
algebra

q2�(q) = Fq[2G(r)] , (A2)

where G(r) is the Gaussian curvature,

G(r) = ∂2
xxz(r)∂2

yyz(r) − [
∂2

xyz(r)
]2

. (A3)

If we define the function g(r) as that one whose mean cur-
vature is equal to minus two times the Gaussian curvature,
namely,

2G(r) = −(
∂2

xxg(r) + ∂2
yyg(r)

) = −∇2g(r) , (A4)

then by taking the Fourier transform of this expression and
comparing the result to Eq. (A2), one derives

�(q) = Fq[g(r)] . (A5)

The Parseval theorem implies that

BZ∑
q

|�(q)|2 = 1

L2

∫ L

0

∫ L

0
dxdy g(r)2 . (A6)

The right-hand side of the last equation was the form chosen
by Nelson and Peliti to express the interaction energy Ei

of Eq. (17). The function g(r) in Eq. (A4) can be written
as [1]

g(r) = −2(∇2)−1G(r) = PT
i j ∂iz∂ j z , (A7)

where PT
i j is the transverse operator

PT
i j = (∇2)−1εikε jl∂k∂l . (A8)

The sum over repeated indices is implicit, and εik is the Levi-
Civita symbol (εii = 0, ε12 = 1, ε21 = −1).
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