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Chern number and Hall conductivity in three-dimensional quantum Hall effect in Weyl semimetals
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The three-dimensional (3D) quantum Hall effect (QHE) in topological semimetals has attracted much interest
in recent years. We study the 3D QHE in Weyl semimetals combining the Chern number calculated from Landau
levels and the Hall conductivity calculated using the Kubo formula from the bulk-edge correspondence. We
derive the Chern numbers under magnetic field using topological analysis. We get the magnetic field and Fermi
energy dependence of the Hall conductivity according to the correspondence between the Chern number and
Hall conductivity in a Weyl semimetal slab with the periodic boundary condition from the perspective of bulk
states. We numerically calculate the Hall conductivity using the Kubo formula in a Weyl semimetal slab with the
open boundary condition. The results of the Hall conductivity using the periodic boundary condition and open
boundary condition are consistent. Our study demonstrates the 3D QHE in Weyl semimetals from both the bulk
states and edge states through the bulk-edge correspondence.
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I. INTRODUCTION

The discovery of the quantum Hall effect (QHE) in two-
dimensional (2D) electron gas opens a frontier in condensed
matter physics [1]. The subsequent study of topological states
of matter has greatly enriched the development of condensed
matter physics [2–5]. To generalize the 2D QHE to three
dimensions, great efforts have been made for the last three
decades [6–23]. In recent years, the three-dimensional (3D)
QHE in topological semimetals has attracted intense interest
[11–23].

Weyl semimetals are new topological states of matter in
which the low-energy bulk states can be described by the
Weyl equation [24–33]. The energy spectrum of the Weyl
equation touches at discrete point, which are called Weyl
nodes. The topologically protected surface states between the
Weyl nodes form Fermi arcs, which is the landmark fea-
ture of Weyl semimetals [24]. It has been proposed that in
a Weyl semimetal with two Weyl nodes, the Fermi arcs at
two opposite surfaces can be connected by the Weyl nodes
via a “wormhole” tunneling forming a complete Fermi loop
producing the QHE [11]. Soon after the theoretical predic-
tion, this unique 3D QHE was experimentally observed in the
Dirac semimetal Cd3As2 [34–40]. To understand the 3D QHE
in topological semimetals, it is explained from the perspec-
tive of Fermi arc surface states and bulk states, respectively
[11–13,15,16,18]. Qin et al. explained the 3D QHE in Dirac
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semimetals from the edge states in Ref. [15]. Li et al. eluci-
dated a global picture of the edge states in Weyl semimetals in
Ref. [16]. Moreover, Ma et al. numerically calculated the QHE
in Weyl semimetals from the bulk states in Ref. [19]. In our
previous work [20], we analytically calculated the Hall con-
ductivity according to the Chern number from the perspective
of bulk states. As is known, the nontrivial bulk topological
invariant will result in the topological edge states emerging
at the edges or boundaries of the system. This relationship
between the bulk states and the edge states has been called
the bulk-edge correspondence, originally introduced for the
quantum Hall effect [41]. However, the theories of 3D QHE
in Weyl semimetals combining the bulk states and edge states
from the bulk-edge correspondence are still awaited.

In this paper, we study the 3D QHE in Weyl semimetals
combining the bulk states and edge states through the bulk-
edge correspondence. We analytically calculate the Chern
numbers of a Weyl semimetal slab with the periodic boundary
condition from Landau levels and numerically calculate the
Hall conductivities with the open boundary condition using
the Kubo formula. First, we calculate the Chern number of
a Weyl semimetal without magnetic field. Then we calculate
the Landau levels of the Weyl semimetal in a magnetic field.
Through topological analysis, we get the distribution of the
Chern number of Weyl semimetals in a magnetic field. In a
Weyl semimetal slab with the periodic boundary condition,
the Hall conductivity is calculated according to the corre-
spondence between the Chern number and Hall conductivity.
Meanwhile, the Hall conductivity is calculated numerically
using the Kubo formula when an open boundary condition is
applied.
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For a Weyl semimetal with two Weyl nodes, the Chern
number between the two Weyl nodes is nontrivial. The edge
states will form the Fermi arc surface states on the surfaces
parallel to the direction of the separation of Weyl nodes. When
a magnetic field parallel to the direction of the separation
of Weyl nodes is applied, the nonzero Chern number can be
obtained from Landau levels. The surface states give rise to
a nonzero Hall conductivity for the Fermi energy at the Weyl
nodes. For the surfaces perpendicular to the direction of the
separation of Weyl nodes, the edge states disappear when the
Fermi energy is at the Weyl nodes. The Chern number is zero
and the conductivity of the surface is zero when a a magnetic
field perpendicular to the direction of the separation of the
Weyl nodes is applied. Therefore, the Hall conductivity in
Weyl semimetals is anisotropic. Our study demonstrates the
3D QHE from the perspective of the bulk-edge correspon-
dence.

The rest of the paper is organized as follows. In Sec. II, we
introduce the model Hamiltonian and illustrate the bulk-edge
correspondence for 3D QHE in Weyl semimetals. In Sec. III,
we plot the energy spectrum of Landau levels and derive
the Hall conductivity according to the Chern number from
Landau levels. In Sec. IV, we calculate the Hall conductivity
in a Weyl semimetal slab with the open boundary condition
when a magnetic field is applied. The final section contains a
brief summary.

II. ILLUSTRATION OF BULK-EDGE CORRESPONDENCE
IN WEYL SEMIMETAL

We consider a 3D model of a Weyl semimetal with two
Weyl nodes [11,42–46],

H = A(kxσx + kyσy) + M
(
k2
w − k2

)
σz, (1)

where (σx, σy, σz) are the Pauli matrices, and k = (kx, ky, kz )
is the wave vector. A, M, and kw are the model parameters.
This model contains all the topological properties of Weyl
semimetals [46]. The energy dispersion of this model is

Ek
± = ±

√
A2

(
k2

x + k2
y

) + M2
(
k2
w − k2

)2
, (2)

with ± for the conductance and valence bands. The model has
two Weyl nodes at k± = (0, 0,±kw ) with the same energy
Ew = 0.

The Chern number of this model for a given kz can be ob-
tained. For M > 0, Ckz = −1 for −kw < kz < kw, and Ckz = 0
for other cases. Here, Ckz is the total Chern number of all the
occupied electron states below the Fermi energy at a fixed kz.
The nonzero Chern number corresponds to the Fermi arc edge
states according to the bulk-boundary correspondence.

In Fig. 1, we plot the energy spectrum of the Weyl
semimetal in the momentum space and the Fermi arc surface
states in the real space to illustrate the bulk-edge correspon-
dence in Weyl semimetals. The two Weyl nodes are located
at the z direction. The Chern number between the two Weyl
nodes is nonzero. For the surface parallel to the z direction, the
projection of two Weyl nodes on the surface forms Fermi arc
states when the Fermi energy is at the Weyl nodes. The Fermi
arc states on the opposite surfaces can form a complete Fermi
loop supporting the QHE. For the surface perpendicular to the

FIG. 1. The energy spectrum of the Weyl semimetal in momen-
tum space, and the illustration of surface states in real space. The
Weyl nodes are labeled as red and blue points. The edge states are
labeled on the surface as green lines and points.

z direction, the projection of two Weyl nodes is a point when
the Fermi energy is at the Weyl nodes. The QHE cannot occur
in this situation. Therefore, the QHE in Weyl semimetals is
anisotropic.

III. CHERN NUMBERS FROM BULK LANDAU LEVELS

Here we discuss the case in which the magnetic field is
perpendicular to the z direction, such as along the y direction.
In Fig. 1, the edge state on the x-z plane is a point for Fermi
energy at the Weyl nodes. As shown in our previous work
[20], the zero Landau levels intersect at the Weyl nodes. The
total Chern number is zero for the Fermi energy at the Weyl
nodes. According to the bulk-edge correspondence, the Hall
conductivity should be zero, which is not our focus.

When a magnetic field along the z direction is applied,
the energy spectrum is quantized to Landau bands dispersing
with kz. The vector potential under the Landau gauge is A =
(0, Bx, 0). Using the Peierls transformation, the wave vector
is replaced,

k =
(

kx, ky + x

�2
B

, kz

)
, (3)

with �2
B = h̄/|eB|. We introduce the ladder operators

a = �B√
2

[
kx − i

(
ky + x

�2
B

)]
, (4)

a† = �B√
2

[
kx + i

(
ky + x

�2
B

)]
. (5)

With the ladder operators, the Hamiltonian Eq. (1) can be
written as

H =
⎡
⎣−ωM

(
a†a + 1

2

) − Mk

√
2

�B
Aa

√
2

�B
Aa† ωM

(
a†a + 1

2

) + Mk

⎤
⎦ (6)

with ωM = 2M/�2
B, Mk = Mk2

z − Mk2
w.
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FIG. 2. In a Weyl semimetal slab, the energy spectrum of Lan-
dau levels as a function of the wave vector kz. The Landau levels
are labeled in the figure. The Chern numbers Ckz of different re-
gions enclosed by Landau levels are labeled in the figure as red
numbers. The parameters are M = 5 eV nm2, A = 0.5 eV nm, and
kw = π/10 nm−1.

The eigenenergies of the Landau levels can be solved as

Eν,kz =
⎧⎨
⎩

ωM
2 + Mk, ν = 0,

ωM
2 + sgn(ν)

√
2A
l2
B
|ν| + M2

ν , ν �= 0,
(7)

with Mν = Mk + ωM |ν|.
In Fig. 2, we plot the ν = 0 and ν = ±(1, 2, 3, 4, 5) Lan-

dau levels for magnetic field B = 5 T and B = 16 T. The
Chern numbers labeled in the figure can be obtained through
topological analyses as shown in our previous work [20].

Let us focus on Fig. 2(a). We consider (EF , kz ) as a pair of
variable parameters, which designates an observation point.
We consider a point (0,0) as the observation point. At B =
0, the Chern number at (0,0) is −1 according to the result
in Sec. II. When the magnetic field B is applied, while the
energy spectrum evolves into Landau levels, no Landau level
band crosses the observation point (0,0). Therefore, the value
of the Chern number at the observation point is unchanged at
B = 5 T. Because the closed region between ν = 0 and ν = 1
Landau levels is connected to the point (0,0), the whole region
shares the same Chern number Ckz = −1 as labeled in Fig. 2.

Next, we consider an observation point at EF = 0 on the
left of the Weyl nodes at B = 0. Apparently, the Chern number
is Ckz = 0 at this point. When magnetic field B is increased
continuously to a finite value, the Chern number on this
point is unchanged because no Landau level moves across
this observation point in this process. As a result, the Chern
number in the regions between the ν = 0 and ν = −1 Landau
levels connecting to the observation point without crossing
the Landau levels is Ckz = 0. Then, apparently, if we move an
observation point from a Ckz = 0 region to a Ckz = −1 region,
the point must cross upward from below a Landau level. This
indicates that the Chern number decreases by 1 when the
observation point crosses upward a Landau levels from below.
Therefore, we can determine the Chern numbers in different
regions. We label the Chern numbers in different regions as
shown in Fig. 2. In Fig. 2(b), the detailed distribution of Chern
numbers has been shown in the left regions.

In Fig. 2(b), the magnetic field is B = 16 T. Comparing
with the case B = 5 T, the spacing between the Landau levels
is wider. The value of the Chern numbers Ckz in different
reigns is unchanged because the whole region shares the same
Chern number. However, the total Chern number at a fixed
Fermi energy is changed. Therefore, the Hall conductivity will
depend on the magnetic field.

We consider a Weyl semimetal slab with the periodic
boundary condition in the z direction. The thickness along the
z direction is Lz. Then, the wave vector kz is discrete, given by
kz = 2π i/Lz with i an integer. The Hall conductivity and the
Chern number have the relation

σxy = n
e2

h
, (8)

where n = ∑
kz

Ckz is the total Chern number of all the oc-
cupied electron states below the Fermi energy, and the total
Chern number can be calculate by counting the Chern num-
bers Ckz of all allowed kz at a special Fermi energy. Here, Ckz

is the total Chern number of all the occupied electron states
below the Fermi energy at a fixed kz. For example, for Fermi
energy at EF , the distribution of Chern numbers at EF can be
read in Fig. 2. Therefore, we can get the Chern number carried
by each allowed kz. Then, the total Chern number at EF can be
got by counting all the Chern numbers carried by all allowed
kz at EF . Therefore, we can calculate the Hall conductivity
according to the distribution of Chern numbers in different
regions shown in Fig. 2.

First, we calculate the Hall conductivity as a function of
magnetic field. Take the Fermi energy at the Weyl nodes,
EF = 0, as an example. In Fig. 2(a), B = 5 T, only the Chern
number between the n = 0 Landau level is Ckz = −1. The
Chern number is zero in other areas. At EF = 0, the Chern
number carried by each kz lying between the intersection of
the EF = 0 Fermi energy and ν = 0 Landau levels is −1. To
calculate the Chern number, we can only count the allowed
kz between the intersection of the EF = 0 Fermi energy and
ν = 0 Landau levels and times −1,

n0 = −1 × Int

(√
k2
w − 1

l2
B

× Lz

π

)
, (9)

with Int(· · · ) taking the integer part of a real number.
As the magnetic field increases continuously, the magnetic

field will reach to a series of critical values Bc1, Bc2, Bc3, . . .,
in which the ν = −1, ν = −2, ν = −3, . . . Landau levels will
cross the Fermi energy EF = 0. The critical value Bc1 can be
calculated by solving the equation

Max
[
E−i,kz (Bci )

] = 0, i = 1, 2, 3, . . . . (10)

For the magnetic field Bc1 < B < Bc2 as shown in Fig. 2(b),
the ν = −2 Landau level crosses the Fermi energy EF = 0.
The region enclosed by the ν = −1 and the ν = −2 Landau
levels in which the Chern number is Ckz = 1 should be taken
into account. To calculate the Chern number n, we should
count the kz with Chern number Ckz = −1 and Ckz = 1.

To count the kz with Chern number Ckz = 1, we should
solve the intersections of the eigenenergies of the ν = −1
Landau level and EF = 0. For a magnetic field Bc1 < B < Bc2,
we can get four solutions kzi, with i = 1, 2, 3, 4, by solving the
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equation

E−1,kz (B) = 0. (11)

kz1 and kz4, kz2 and kz3, are symmetric about kz = 0. Hence,

n1 = 1 ×
[

Int

(
kz2Lz

π

)
− Int

(
kz1Lz

π

)]
. (12)

The total Chern number is

n = n0 + n1 (13)

for the magnetic field Bc1 < B < Bc2.
As the magnetic field increases, other regions enclosed by

the Landau levels should be considered. The relevant Chern
number can be calculated through a similar method. The total
Chern number can be obtained as

n = n0 + n1 + · · · + n j, Bc j < B < BC( j+1) (14)

with

n j = Ckz ×
[

Int

(
k j

z2Lz

π

)
− Int

(
k j

z1Lz

π

)]
. (15)

Here, k j
zi, i = 1, 2, j = 1, 2, 3, . . ., denote the points of inter-

section of the energy of ν = − j Landau levels and Fermi
energy.

We have considered the Hall conductivity as a function of
magnetic field at EF = 0 above. Now, we consider the Hall
conductivity as a function of Fermi energy. Take the magnetic
field B = 16 T as an example. When the Fermi energy is in
the gap between the ν = −1 and ν = 1 Landau levels, only
the Chern number Ckz in the region enclosed by the ν = 0 and
ν = 1 Landau levels is nonzero. The total Chern number can
be calculated by

n0 = −1 × Int

(√
EF

M
+ k2

w − 1

l2
B

× Lz

π

)
, (16)

for E−1 < EF < E1, with E1 = Min[E1,kz ] and E−1 =
Max[E−1,kz ].

For Fermi energy E−2 < EF < E−1, with E−2 =
Max[E−2,kz ], the region enclosed by the ν = −1 and ν = −2
Landau levels should be considered in which the Chern
number for each kz is Ckz = 1. The total Chern number can be
calculated by n = n0 + n1, with

n1 = 1 ×
[

Int

(
k−1

z2 Lz

π

)
− Int

(
k−1

z1 Lz

π

)]
, (17)

where k−1
zi , with i = 1, 2, 3, 4, can be got by solving the equa-

tion

E−1,kz (B) − EF = 0. (18)

For E1 < EF < E01, with E01 the energy in which the ν =
0 and ν = 1 Landau levels intersect, the small region enclosed
by the ν = 0, ν = 1, and ν = 2 Landau levels should be con-
sidered in which the Chern number for each kz is Ckz = −1.
The total Chern number can be calculated by n = n0 + n1,
with

n1 = −1 ×
[

Int

(
k1

z2Lz

π

)
− Int

(
k1

z1Lz

π

)]
, (19)

where k1
zi, with i = 1, 2, 3, 4, can be got by solving the equa-

tion

E1,kz (B) − EF = 0. (20)

For E01 < EF < E2, with E2 = Min[E2,kz ], the region en-
closed by the ν = 0, ν = 1, and ν = 2 Landau levels should
be considered in which the Chern number for each kz is
Ckz = −1 in the two small region and Ckz = −2 in the one
large region. The total Chern number can be calculated by
n = n0 + n1 + n2, with

n1 = −1 ×
[

Int

(
k0

z1Lz

π

)
− Int

(
k1

z1Lz

π

)]
(21)

and

n2 = −2 ×
[

Int

(
k1

z2Lz

π

)
− Int

(
k0

z1Lz

π

)]
. (22)

Here, k0
zi, with i = 1, 2, can be got by solving the equation

E0,kz (B) − EF = 0. (23)

As the Fermi energy crosses more Landau levels, more
regions with different Chern numbers need to be taken into
account. The total Chern number can be calculated by count-
ing the allowed Ckz in the different regions.

IV. HALL CONDUCTIVITY

Now, we numerically calculate the Hall conductivity of a
Weyl semimetal slab with the open boundary condition in a
magnetic field using the Kubo formula

σα,β = e2h̄

iVeff

∑
δ,δ′ �=δ

〈
δ|vα|
δ′ 〉〈
δ′ |vβ |
δ〉 fδ′δ

(Eδ − Eδ′ )(Eδ − Eδ′ + i�)
, (24)

where α, β = x, y, z, |
δ〉 is the eigenstate of energy Eδ for H
in a magnetic field, Veff is the volume of the slab, vα and vβ

are the velocity operators, fδ′δ = f (Eδ′ ) − f (Eδ ), and f (x) is
the Fermi distribution. The disorder can be introduced in the
Kubo formula via the level broadening �. For a small �, the
Hall conductivity can be obtained as the real part of Eq. (24).

The sheet Hall conductivity for the Weyl semimetal slab
is defined by σ s

H = σH L. We numerically calculate the sheet
Hall conductivity at zero temperature using the same method
as [11,47] as shown in the Appendix.

For the magnetic field along the y direction, the Hall
conductivity has been calculated in Ref. [11] and our pre-
vious work [21]. In our previous work, we got the zero
Hall conductivity for the Fermi energy at the Weyl nodes,
which is consistent with the bulk-edge correspondence above.
When the magnetic field is perpendicular to the Weyl node
line, the Hall conductivity of the model Hamiltonian without
anisotropic terms is zero for the Fermi energy at the Weyl
nodes as shown in our previous work [21]. This is because the
total Chern number is zero for the Fermi energy at the Weyl
nodes.

For the magnetic field along the z direction, in Fig. 3, we
plot the Hall conductivity as a function of Fermi energy at
B = 5 T. The green line is plotted using the Chern number
from the Landau levels. The red line is plotted using the
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FIG. 3. The sheet Hall conductivity σ H
s as a function of Fermi

energy EF at B = 5 T and � = 0. The red line is calculated using
the Kubo formula Eq. (24) and the green line is calculated using
the Chern number Eq. (14). The parameters are M = 5 eV nm2,
A = 0.5 eV nm, Lz = 100 nm, and kw = π/10 nm−1.

Kubo formula. In Fig. 3, the numerical results using the Kubo
formula are basically consistent with the calculations using
the Chern number.

In Fig. 4, we plot the Hall conductivity as a function of
magnetic field at EF = 0 eV. The green line and blue line
are plotted using the Chern number from the Landau levels,

FIG. 4. The sheet Hall conductivity σ H
s as a function of magnetic

field B at EF = 0 eV and � = 0 (black line), 5 K (yellow line), 10 K
(red line). The black line, yellow line, and red line are calculated
using the Kubo formula Eq. (24), the blue line is calculated using
the Chern number Eq. (9), and the green line is calculated using
the Chern number Eq. (13). The parameters are M = 5 eV nm2,
A = 0.5 eV nm, Lz = 100 nm, and kw = π/10 nm−1.

FIG. 5. The sheet Hall conductivity σ H
s as a function of the thick-

ness of the slab at B = 5 T, EF = 0 eV, and � = 0. The red line is
calculated using the Kubo formula Eq. (24) with � = 0, and the green
line is calculated using the Chern number Eq. (9). The parameters are
M = 5 eV nm2, A = 0.5 eV nm, and kw = π/10 nm−1.

and the black line, yellow line, and red line are plotted using
the Kubo formula with different �. The green line is plotted
using Eq. (13) and the blue line is plotted using Eq. (9).
When the magnetic field B < Bc1, the blue line is consistent
with the Hall conductivity using the Kubo formula. As the
magnetic field increase continuously, the two lines begin to
deviate when B > Bc1. Therefore, we can use Eq. (9) only
when B < Bc1. For the case in which the maximum magnetic
field in Fig. 4 is B = 16 T < Bc2, we can use Eq. (13) to
calculate the Hall conductivity. The results obtained by the
Chern numbers are basically consistent with the results using
the Kubo formula.

In Fig. 5, we plot the Hall conductivity as a function of
the thickness of the slab for B = 5 T and EF = 0 eV. The
red line is plotted using the Kubo formula with � = 0. The
green line is plotted using the bulk Chern number Eq. (9). As
shown in the figure, the absolute value of the Hall conductivity
increases as the thickness of the slab increases. The red line
and the green line are basically consistent.

Comparing the results obtained by the bulk Chern number
and the Hall conductivity in Figs. 3–5, the steps of the red
curves calculated using the Kubo formula seem less sharp than
those using the bulk Chern number and sometimes located
at slightly shifted fields. This is because in the numerical
calculation the Fermi energy, magnetic field, and thickness
of the slab are discrete, while in the analytical calculation
using the Chern number these values are continuous. Besides,
a finite cutoff energy has been used in the calculation of the
Kubo formula, which may introduce a small numerical error
into the result. Therefore, the steps of the red curves seem less
sharp and sometimes located at slightly shifted fields.

In conclusion, the results calculated by the bulk Chern
number are nearly consistent with the numerical Hall response
calculations except for a certain parameter region as shown
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in Figs. 3–5. The reason is that the finite cutoff energy used
in the numerical Hall response calculations will introduce a
small numerical error, leading to the discrepancy between the
two approaches. Therefore, the analytical bulk Chern number
results are more suitable.

V. SUMMARY

In summary, we demonstrate the bulk-edge correspon-
dence for 3D QHE in Weyl semimetals. We first illustrate
the relationship between the surface states and bulk topology
in Weyl semimetals. When a magnetic field is applied, we
calculate the Chern number of a Weyl semimetal slab with
the periodic boundary condition through topological analysis.
For the surfaces parallel to the direction of the separation
of Weyl nodes, the edge states form the Fermi arc surface
states due to the topology of the bulk. When a magnetic field
parallel to the direction of the separation of Weyl nodes is
applied, the nonzero Chern number can be obtained from
bulk states. The surface states can give rise to a nonzero
Hall conductivity for the Fermi energy at Weyl nodes. For
the surfaces perpendicular to the direction of the separation
of Weyl nodes, the Chern number is zero, leading to the
edge states disappearing. Therefore, for the Fermi energy at
Weyl nodes, the Hall conductivity is zero when the mag-
netic field perpendicular to the direction of the separation of
Weyl nodes is applied. We also numerically calculate the Hall
conductivity of a Weyl semimetal slab with the open bound-
ary condition. The numerical results are nearly consistent
with the analytic Chern numbers. Our study demonstrates the
distinct bulk-edge correspondence for the 3D QHE in Weyl
semimetals.
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APPENDIX

To numerically calculate the Hall conductivity for mag-
netic field along the z direction, we use the bases |s, υ, φn〉 =

|χs〉 ⊗ |υ〉 ⊗ |φn〉, where |υ〉 is the harmonic oscillator
eigenfunction, and

χ1 =
[

1

0

]
, χ2 =

[
0

1

]
, (A1)

and

φn(z) =
√

2

Lz
sin

[
nπ

Lz

(
z + L

2

)]
, n = 0, 1, 2, . . . . (A2)

The matrix elements of the Hamiltonian Eq. (6) under the
bases are

〈1, ν, ϕm|H |1, ν ′, ϕn〉

=
{

M

[
k2
w − n2π2

L2
z

− 2

�2
B

(
ν + 1

2

)]}
δνν ′δmn, (A3)

〈1, ν, ϕm|H |2, ν ′, ϕn〉 =
√

2

lB
A
√

νδνν ′+1δmn, (A4)

〈2, ν, ϕm|H |1, ν ′, ϕn〉 =
√

2

lB
A
√

ν + 1δνν ′−1δmn, (A5)

〈2, ν, ϕm|H |2, ν ′, ϕn〉

= −
{

M

[
k2
w − n2π2

L2
z

− 2

�2
B

(
ν + 1

2

)]}
δνν ′δmn. (A6)

We numerically calculate the eigenenergies and eigenstates of
the Hamiltonian matrix and the wave function for an eigen-
state of energy Eδ as


δ (x, z) =
∑
s,υ,n

Cδ,sυnϕυ (x)φn(z), (A7)

where {Cδ,sυn} are the superposition coefficients and ϕυ (x) =
〈x|υ〉.

With the help of the ladder operators, the velocity is

vx = A

h̄
σx −

√
2M

�Bh̄
(a† + a)σz, (A8)

vy = A

h̄
σy +

√
2Mi

�Bh̄
(a† − a)σz. (A9)

With the wave function of the Hamiltonian, the matrix ele-
ments of the velocity operators are given as

〈
δ|vx|
δ′ 〉 = 1

h̄

∑
ν,ν ′,n

{
− C∗

δ,1νnCδ′,1ν ′n

[√
2M

�B
(
√

νδν,ν ′+1 + √
ν + 1δν,ν ′−1)

]

+ C∗
δ,2νnCδ′,2ν ′n

[√
2M

�B
(
√

νδν,ν ′+1 + √
ν + 1δν,ν ′−1)

]
+ C∗

δ,1νnCδ′,2ν ′nAδν,ν ′ + C∗
δ,2νnCδ′,1ν ′nAδν,ν ′

}
δky,k′

y
, (A10)

〈
δ|vy|
δ′ 〉 =1

h̄

∑
ν,ν ′,n

{
− C∗

δ,1νnCδ′,1ν ′n

[
i
√

2M

�B
(
√

νδν,ν ′+1 − √
ν + 1δν,ν ′−1)

]

+ C∗
δ,2νnCδ′,2ν ′n

[
i
√

2M

�B
(
√

νδν,ν ′+1 − √
ν + 1δν,ν ′−1)

]
− iC∗

δ,1νnCδ′,2ν ′nAδν,ν ′ + iC∗
δ,2νnCδ′,1ν ′nAδν,ν ′

}
δky,k′

y
.

(A11)

Substituting the result above into the Kubo formula, we can calculate the Hall conductivity numerically.
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