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Geometrical frustration in correlated systems can give rise to a plethora of ordered states and intriguing
phases. Here, we theoretically analyze vertex-sharing frustrated Kagome lattices of Josephson junctions and
identify various classical and quantum phases. The frustration is provided by periodically arranged 0- and
π -Josephson junctions. In the frustrated regime, the macroscopic phases are composed of different patterns
of vortices/antivortices penetrating each basic element of the Kagome lattice, i.e., a superconducting triangle
interrupted by three Josephson junctions. We obtain that numerous topological constraints, related to the flux
quantization in any hexagon loop, lead to highly anisotropic and long-range interaction between well separated
vortices/antivortices. Considering this interaction and a possibility of macroscopic tunneling between vortex
and antivortex in single superconducting triangles, we derive an effective Ising-type spin Hamiltonian with
strongly anisotropic long-range interaction. In the classically frustrated regime, we numerically calculate the
temperature-dependent spatially averaged spin polarization m(T ) characterizing the crossover between the
ordered and disordered vortex/antivortex states. In the coherent quantum regime, we analyze the lifting of the
degeneracy of the ground state and the appearance of the highly entangled states.

DOI: 10.1103/PhysRevB.108.165413

I. INTRODUCTION

The collective behavior of the low-energy magnetic exci-
tations crucially depend on the geometry of the lattice they
inhabit. For example, antiferromagnetically (AFM) interact-
ing spins on a square lattice form a Néel order with antialigned
neighbors. At the same time, their mutual antiparallel align-
ment cannot be satisfied on a triangular or kagome lattices,
which are the most typical models, which feature geometric
frustration and yield nontrivial spin order [1–7]. The frustra-
tion can also be provided by the competition of interactions of
alternating signs of the interactions [1,8], e.g., the ferromag-
netic (FM) and AFM ones in addition to a special geometry
of the lattices. Typical consequences of the frustration are the
highly degenerated ground state, a large amount of low-lying
metastable states, and long relaxation times at low tempera-
tures [2,4,9].

Apart from the natural solid-state systems demonstrat-
ing a rich plethora of interesting physics behavior due to
underlying frustration like that found in iron-based supercon-
ductors [10,11], frustrated FM chains [12], kagome magnets
[6,13–17], and superconductors [18–21], special attention
has been attracted to artificially prepared systems such
as trapped ions simulators [22], photonic crystals [23,24],
two-dimensional (2D) arrays of Rydberg atoms [25–27],
anisotropic optical lattices [28], and Josephson junctions net-
works [29–34] due to a more efficient way to tune the
frustration parameter.

The latter system coined as frustrated Josephson junc-
tion arrays (f-JJAs) is of special interest since the current
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technology allows us to form f-JJAs of various geometries
and sizes as well as to tune the frustration by an externally
applied magnetic field [30,35,36]. Furthermore, the physics
of f-JJAs can be mapped into different nonintegrable quasi-
one-dimensional (1D)/2D Ising or X -Y spins models, and
therefore, such arrays can provide a feasible experimental
platform to establish analog quantum simulations in the fields
of quantum chemistry, quantum biology, and low-dimensional
material science [37,38].

It is known that the f-JJAs display nonfrustrated and
frustrated regimes characterized by unique and highly degen-
erated ground states, accordingly. In the frustration regime,
plenty of complex ground states such as the checkerboard
and ribbon distribution of vortices [29,39] and stripe phases
[40], and sharp transitions between these magnetic patterns as
the external magnetic field varies, were observed in f-JJAs on
square and triangular lattices.

A special type of f-JJA is vertex-sharing lattices in
which each site is shared between two neighboring triangles,
e.g., quasi-1D sawtooth and diamond chains [30,35,41,42]
and 2D kagome lattices [7,43]. In the frustration regime
of such f-JJAs, the vortex/antivortex penetrates each single
superconducting triangle, and various distributions of vor-
tices/antivortices can be realized. The vortex (antivortex)
states correspond to anticlockwise (clockwise) persistent cur-
rents flowing in a single triangle.

The classical frustrated regime of sawtooth and diamond
chains of Josephson junctions has been previously theo-
retically studied in Ref. [42], where the disordered state
of vortices/antivortices was obtained. The lack of ordering
in the distribution of vortices/antivortices in such quasi-1D
f-JJAs was due to the absence of interaction between vor-
tices/antivortices of different cells. At the same time, for
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f-JJAs based on the kagome lattice, the highly anisotropic
distributions of vortices/antivortices forming the ground state
have also been predicted [43]. What, however, remains un-
clear is what type of interaction can lead to the formation of
such ordered anisotropic patterns and how the order-disorder
phase transition in vortex patterns occurs. Moreover, at low
temperatures, one can expect due to charging effects an
intriguing interplay between the quantum superposition of
classical vortex/antivortex states and the interaction of well-
separated vortices/antivortices.

In this paper, we address these questions performing
a systematic theoretical study of classical and coherent
quantum collective states occurring in an exemplary 2D
vertex-sharing frustrated kagome lattice of Josephson junc-
tions. In a complete analogy with the magnetic systems
where FM and AFM couplings coexist, we introduce the
frustration as a periodic alternation of 0- and π -Josephson
junctions. The π -Josephson junctions can be fabricated on
a basis of various multijunction SQUIDS in an externally
applied magnetic field [29,30,32–34,44–46], superconductor-
FM-superconductor junctions [47], different facets of grain
boundaries of high-temperature superconductors [48], or
Josephson junctions between two-band superconductors [49].
By making use of this model, we show explicitly that, in the
frustration regime, the vortices/antivortices penetrate a basic
element of the kagome lattice, i.e., a superconducting triangle
interrupted by three (two-0 and one-π ) Josephson junctions.
The observed collective states of vortices/antivortices are de-
termined by numerous topological constraints related to the
flux quantization in any hexagon loop leading to an effective
interaction between vortices/antivortices of different triangles.

This paper is organized as follows: In Sec. II, we present
the electrodynamic model and the general approach allowing
one to quantitatively analyze collective classical and quantum
states arising in the kagome lattice of frustrated Josephson
junctions with numerous topological constraints occurring in
such arrays. In Sec. III, we study the low-lying states of
a single building block of vertex-sharing f-JJAs, i.e., three
π/0-Josephson junctions incorporated in a single supercon-
ducting loop. In the frustrated regime, we arrive at a single
spin model in which two basis spin states correspond to
(counter)clockwise persistent currents or the penetration of
the vortex/antivortex. In Sec. IV, our analysis is extended
to the kagome lattice of frustrated Josephson junctions for
which we derive an effective (2D + 1) Ising spin model
with a long-ranged and spatially anisotropic interaction be-
tween well-separated spins. In Secs. V and VI, we analyze
the classical and coherent quantum frustrated regimes and
the corresponding phases. Section VII provides conclusions.
The details of the calculation of the partition function of
interacting spins Z and an explicit spatial dependence of the
interaction strength in the infinite kagome lattice will be pre-
sented in Appendices A and B, respectively.

II. MODEL, GENERAL APPROACH,
AND TOPOLOGICAL CONSTRAINTS

We consider a vertex-sharing 2D kagome lattice of su-
perconducting nodes (islands) in which the adjacent nodes
are connected by Josephson junctions as schematically shown

FIG. 1. Schematics of the frustrated kagome lattice of Josephson
junctions. The π - and the 0-Josephson junctions are indicated by
orange and black lines, respectively. Two kinds of closed loops, i.e.,
the triangles (blue dots) and hexagons (blue circles), are shown.

in Fig. 1. The frustration is induced by the special periodic
arrangement of 0- and π -Josephson junctions. The Josephson
junction connecting the superconducting i and j nodes is char-
acterized by two physical parameters: the Josephson coupling
energy αi jEJ and the charging energy EC/|αi j |, where EJ =
h̄Ic/(2e) and EC = e2/(2C) are determined by the critical
current Ic and the capacitance C, respectively. The parameters
αi j were chosen as αi j = α for all horizontal links (orange
lines in Fig. 1) and αi j = 1 for all other links. The parameter
α is then varied as −1 � α � 1, and therefore, α > 0 (α < 0)
defines 0 (π )-Josephson junctions. The parameter α also re-
lates to the commonly introduced frustration parameter f as
f = (1 − α)/2, which varies between 0 and 1.

The classical dynamics of Josephson junctions arrays is
determined by the time-dependent Josephson phases ϕi j (t ).
The partition function Z can be expressed via the path integral
in the imaginary time-representation:

Z =
∫

exp

(
−SE

h̄

)
D[ϕi j (τ )], (1)

where the Euclidean action is given by

SE =
∫ h̄/(kBT )

0
L{ϕi j, ϕ̇i j, iτ }dτ, (2)

and the Euclidean Lagrangian L of a Josephson junction array
is written as

L =
∑
〈i j〉

|αi j |h̄2

8EC
[ϕ̇i j]

2 + αi jEJ (1 − cos ϕi j ). (3)

Here, 〈i j〉 refers to the two nearest-neighbor nodes coupled by
a Josephson junction. Note, the measure D[ϕi j (τ )] considers
that the Josephson phases ϕi j (τ ) are not independent and must
satisfy numerous topological constraints. They originate from
the fact that the flux quantization, i.e., the sum of the ϕi j along
any closed loop of the lattice, must be 2πn, where n is an
integer. These constraints are considered explicitly in Eq. (1)
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FIG. 2. Schematics of a single superconducting triangle loop
interrupted by three Josephson junctions. In the frustrated regime
[α < αc ( f > fc)], the classical ground state is doubly degenerate.
The penetrating (anti)vortices are shown by (green)red circles. Cor-
responding Josephson phases are indicated.

as

Z =
∫

exp

(
−SE

h̄

){∏
l

δ
[
Cl (ϕkp) − 2πn

]}∏
〈i j〉

dϕi j, (4)

with

C�(ϕpk ) =
∑

〈pk〉∈closed loop,�

ϕpk,

and � is the constraint number.

III. BUILDING BLOCK OF f-JJAs: FRUSTRATED REGIME

As a starting point of our analysis, we now derive the effec-
tive Euclidean Lagrangian of a building block of the kagome
lattice: a single superconducting triangle interrupted by three
Josephson junctions, as shown in Fig. 2. Such a system is
characterized by three Josephson phases ϕ1−3(τ ), which must
satisfy a single constraint ϕ1 + ϕ2 + ϕ3 = 0. The correspond-
ing Euclidean Lagrangian of a superconducting triangle then
depends on two degrees of freedom ϕ1,2, as

L� = h̄2

8EC
[ϕ̇1 ϕ̇2]

[
1 + |α| |α|

|α| 1 + |α|
][

ϕ̇1

ϕ̇2

]

+ EJ [2 + α − cos(ϕ1) − cos(ϕ2) − α cos(ϕ1 + ϕ2)].

(5)

Introducing symmetric and antisymmetric variables ϕs =
(ϕ1 + ϕ2)/2 and ϕa = (ϕ2 − ϕ1)/2, one can obtain the ex-
trema of the potential energy. If α < αc = −0.5 ( f > fc =
3
4 ), the potential energy has two equivalent minima as ϕs =
±u0, with u0 = arccos( 1

2|α| ), and ϕa = 0. These minima are
separated by the potential barrier of the height EJ (α) =
EJ [2(1 + α) + 1/(2α)], which becomes zero at the critical
value of α = αc. Thus, the classical ground state is doubly de-
generate (frustrated) and corresponds to the counterclockwise
(a vortex) or clockwise (an antivortex) persistent currents (see
Fig. 2). Notice here that the frustrated regime is completely
equivalent to the states of a flux qubit at the symmetry point
[44,45].

Restricting ourselves to a study of low-lying excitations,
we now use the following approximations. First, we ne-
glect high-frequency oscillations of the asymmetric Josephson
phase ϕa. Second, the exact dependence of the potential en-
ergy on ϕs [Eq. (5)] is approximated by harmonic potentials
around the two classical minima. The effective classical spin

degree of freedom σ = ±1 is introduced to distinguish be-
tween the vortex/antivortex states. Then the Lagrangian of a
single superconducting triangle is written as

L� = h̄2γ

4EC
ϕ̇2

s + EJ (α)

u2
0

[ϕs(τ ) − u0σ (τ )]2, (6)

where γ = 1 + 2|α|. Such a reduced Lagrangian depends on
two degrees of freedom: the Josephson phase ϕs(τ ) and the
spin values σ (τ ). Since the Lagrangian in Eq. (6) depends
quadratically on ϕs(τ ), one can integrate out this degree of
freedom and obtain the effective spin model. Indeed, for a
single triangle, the partition function Z�{σ (τ )} is calculated
by expanding ϕs(τ ) and σ (τ ) in the sum over the Matsubara
frequencies ωm = 2πk(kBT )/h̄, where k = 0,±1..., i.e.,

ϕs(τ ) =
∑
ωk

ϕ̃(ωk ) exp(iωkτ ), (7)

and

σ (τ ) =
∑
ωk

σ̃ (ωk ) exp(iωkτ ). (8)

Integrating over all ϕ̃(ωk ), we obtain

Z�{σ̃ (ωk )} ∝ exp

⎡
⎣EJ (α)

kBT

∑
ωk

�2

ω2
k + �2

|σ̃ (ωk )|2
⎤
⎦, (9)

where the characteristic frequency � of small oscillations of
ϕs is � = [2/(h̄u0)]

√
ECEJ (α)/γ .

IV. EFFECTIVE ISING SPIN HAMILTONIAN

Next, we extend our analysis from a single superconduct-
ing triangle to the kagome lattice. It is convenient to present
the kagome lattice as a periodic repetition in two directions
� and m of the tuple (�m). Each tuple is a rhombus with the
sides connecting hexagon loop centers, and it contains two
triangles: downward (+) and upward (−) pointing. Such a
representation of the kagome lattice is presented in Fig. 3.

A single superconducting triangle belonging to the tuple
(�m) is characterized by two imaginary time-dependent de-
grees of freedom ϕ�m±(τ ) and σ�m±(τ ), and the Euclidean
Lagrangian is

L =
∑
�m±

L�[ϕ�m±, ϕ̇�m±, σ�m±], (10)

where the Lagrangian of a single superconducting triangle L�

is determined by Eq. (6).
This Lagrangian must be accompanied by the topological

constraints C�m = 2πn related to the flux quantization in the
hexagon loop (�m). Notice that, if α is not equal to specific
values −1; −(1/

√
2), one can use the constraints with n = 0

only. The expression of C�m depends on the Josephson phases
ϕi j± of triangles surrounding the hexagon loop (�m) (see
Fig. 4). It is written as

C�m(τ ) =
∑

i j

ϕi j±(τ )Gi j±;�m, (11)
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FIG. 3. Representation of the kagome lattice as the two-
dimensional (2D) periodic lattice of tuples. Each tuple (l, m) labels a
rhombus with sides connecting the nearest hexagon loops centers and
contains downward-pointing (+) and upward-pointing (−) triangles.

where

Gi j+;�m = −2δi j;[(�−1)m] + δi j;[�(m−1)] + δi j;[�m],

Gi j−;�m = −2δi j;[�(m−1)] + δi j;[(�−1)m] + δi j;[(�−1)(m−1)]. (12)

Here, δi j;[�m] is the Kronecker symbol.
By making use of the identity:

δ[C�m(τ )] =
∫

D[p�m(τ )] exp

[
− i

h̄

∫ h̄/(kBT )

0
p�mC�mdτ

]
,

(13)

Eq. (4) for the partition function Z is written as

Z ∝
∫

D[ϕi j±(τ )]D[p�m(τ )]

× exp

{
−1

h̄

∫ h̄/(kBT )

0

[
L + i

∑
�m

p�mC�m

]
dτ

}
. (14)

Substituting Eqs.(10) and (11) into Eq. (14) and performing
all integrals over ϕ̃�m±(ωk ) and p̃�m(ωk ) (details of straightfor-

FIG. 4. Topological constraint Clm = 0 for a single hexagon
loop. The Josephson phase ϕ�,m and spin degree of freedom σ are
shown.

ward but tedious calculations are presented in Appendix A),
we obtain the partition function Z{σ̃�m±(ωk )} of the interact-
ing spin model as follows:

Z{σ̃�m±(ωk )} ∝ exp

⎛
⎝−EJ (α)

kBT

∑
ωk

�2

ω2
k + �2

[F0 + Fint]

⎞
⎠,

(15)

where the the spatially local term F0 is expressed as

F0 = −
∑
�m;±

|σ̃�m±(ωk )|2, (16)

and the interaction term Fint is written as

Fint =
∑
�m

∑
i j

[σ̃i j±(ωk )G±±
i j,�mσ̃�m±(−ωk )

+ σ̃i j∓(ωk )G∓±
i j,�mσ̃�m±(ωk )]. (17)

Here, we introduce the coupling strengths between the spins
σ of different triangles:

G±±
i j,�m = Gi j±,tu(G†

+G+ + G†
−G−)−1

tu,vwG†
vw,�m±, (18)

and

G∓±
i j,�m = Gi j∓,tu(G†

+G+ + G†
−G−)−1

tu,vwG†
vw,�m±. (19)

Observe that, in all terms of Eqs. (17)–(19), the upper (lower)
indices were chosen.

To conclude this section, we notice that the partition
function Z of the effective Ising spin model contains two
contributions: quantum fluctuations of spins σ of individual
triangles and the interaction between spins of different trian-
gles.

V. CLASSICAL FRUSTRATED REGIME

Here, we present an analysis of the partition function Z and
corresponding collective spin (vortices/antivortices) phases in
the classically frustrated regime kBT � h̄�. In this limit, the
main contribution to the sum over ωk in Eq. (15) comes
from ωk = 0, and we obtain the classical 2D Ising model of
interacting spins with the partition function:

Zcl{σ�m±} ∝ exp

[
−EJ (α)

kBT
F cl

int {σ�m±}
]
, (20)

where the Ising-type interaction is given by

F cl
int =

∑
�m

∑
i j

[σi j∓G∓±
i j,�mσ�m± + σi j±G±±

i j,�mσ�m±]. (21)

One finds that, in the classical frustrated regime, the ob-
served spin patterns are determined by a single parameter
EJ (α)/kBT , and one can identify two distinguished regimes.
The first one is realized in the high-temperature limit kBT �
EJ (α), in which all distributions of spins have the same prob-
abilities, and we have a disordered spin configuration. In
the low-temperature regime kBT 	 EJ (α), the spin patterns
demonstrate a specific ordering determined by the anisotropic
and long-ranged interaction strength F cl

int.
To quantitatively characterize the order-disorder phase

transition for the kagome lattice of a small size, we
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FIG. 5. Calculated temperature dependence of m(T ) for the
kagome lattice containing a few plaquettes (from up to bottom):
1, 1×2 (2×1), 2×2, and 3×2 (2×3) are shown. The dotted lines
indicate the values of m = 1/

√
N in the limit of infinite temperature.

counted all spin configurations and obtained the temper-
ature dependence of a spatially averaged spin polariza-
tion m(T ) =

√
〈M2〉, where 〈M2〉 = ∑

M PMM2, and M =
(1/N )(

∑
i j;± σi j;±). Here, PM is the probability of a spin pat-

tern with the spin polarization M, and it is determined by the
partition function Zcl . Also, N is the total number of triangles.
The obtained dependencies of m(T ) for the kagome lattice of
different sizes N are presented in the Fig. 5. All curves show
the maximum for kBT/EJ (α) 
 1, indicating the crossover
between the ordered and disordered spin phases.

Since in the high-temperature limit PM=2n−N 
 CN
n /2N ,

where n is the number of triangles with the spin σ = +1,
we obtain m(T ) = 1/

√
N (see dotted lines in Fig. 5). In the

low-temperature limit, as shown in Ref. [43], the spin patterns
become highly anisotropic, and their number drastically re-
duces from 2N to 2

√
N . Moreover, only a few spin patterns

give nonzero contribution to the spin polarization m, and the
value of m reduces substantially with N in this limit (see
Fig. 5). As we turn to the large-sized kagome lattice, the
interaction strength between spins shows highly anisotropic
behavior. The interaction term G±± becomes a spatially local
one and does not contribute to the classical partition function
in Eq. (20). The interaction strengths G∓± are written as (the
details of calculations are presented in Appendix B)

G+−
�m;�′m′ |m−m′=�′−�−1 = −1

2

1

2|�′−�| ,

G+−
�m;�′m′ |m−m′=0 = −1

2

1

2|�−�′| ,

G+−
�m;�′m′ |m′−m≈(�−�′ )/2 ∝ 2

√
2

(|� − �′|)1/2
√

π
. (22)

The 2D color plot of G+−(−+)

ρ ρ ′ as presented in Fig. 6 shows

both algebraic and exponential decay of the interaction
strengths in vertical and horizontal directions. Moreover, the
interaction G−+

00;�m (G+−
�m;00) is absent in the upper (lower) part

of the lattice.

FIG. 6. Calculated two-dimensional color plot of the interaction
strength: (a) G−+

00;�m and (b) G+−
�m;00, where the downward-pointing (+)

and upward-pointing (−) triangles (00) are indicated.

To observe the thermodynamic phase transition, we per-
form classical Monte Carlo numerical simulations of the
30×30 frustrated kagome lattices of Josephson junctions
based on the partition function in Eqs. (20) and (21) em-
ploying open boundary conditions. In all simulations, we
started from the disordered (high-temperature) state and
cooled to temperature T . With this procedure, we obtain
the transition from the disordered vortex/antivortex pat-
terns at kBT/EJ (α) � 0.2 to the stripe-type AFM order for
kBT/EJ (α) � 0.19 and below where the ordering is FM along
the x direction and AFM along the y direction with the pe-
riod of the stripe of ∼11 coupled vertex-shared triangles. It
is presented in Fig. 7. Interestingly enough, the stripe-type
AFM order sets in despite of the long-range frustrated in-
teraction along the y direction and initial 14-fold degeneracy
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FIG. 7. Calculated typical vortex/antivortex patterns obtained in large 30×30 frustrated kagome lattices of Josephson junctions using
open boundary conditions for different temperatures: kBT/EJ (α) = 0.2 (left); kBT/EJ (α) = 0.19 (middle); and kBT/EJ (α) = 0.12 (right).
Quenching from the high-temperature disordered state was used. Dark blue (yellow) rectangles correspond to the vortex (antivortex) shared by
two vertex-shared triangles (see Fig. 4). Light blue rectangles are empty spots.

of the ground state for a single kagome plaquette. At low
temperatures, we also observed more complex patterns with
long domain walls stretched along other symmetry axes (not
shown).

VI. THE COHERENT QUANTUM REGIME

In the limit kBT 	 h̄�, the quantum fluctuations and there-
fore nonzero Matsubara frequencies in Eq. (15) start to play
an important role. Calculating the sum over the Matsubara
frequencies in Eq. (15), we obtain that a spatially local term ∝
F0 produces the interaction in the imaginary time domain as
σ (τi )σ (τ j ), where |τi − τ j | 
 1/�. For EJ (α) � h̄�, this in-
teraction yields small-amplitude quantum tunneling between
the vortex and antivortex of single triangles. The spatially
nonlocal terms in Eq. (15) lead to the strong Ising type of
interaction described by Eq. (21). Putting all terms together,
we obtain the total Hamiltonian in this regime:

Ĥ = Ĥloc + Ĥint, (23)

where

Ĥloc =
∑
�m;±

�σ̂ x
�m;±, (24)

and

Ĥint = EJ (α)F̂ cl
int

{
σ̂ z

�m;±; σ̂ z
i j;±

}
, (25)

where F̂ cl
int is described by Eq. (21), and the tunneling ampli-

tude is � 
 h̄� exp[−2EJ/(h̄�)]. Thus, the low-temperature
quantum regime is described by Eq. (23), which corresponds
to the seminal model of interacting Ising spins in the trans-
verse magnetic field.

The quantum dynamics of such a model is determined
by two parameters: � and EJ (α). Carrying out the direct
numerical diagonalization, we obtain the eigenvalues and
eigenfunctions of all quantum states in a single plaquette of
the kagome lattice as a function of the ratio EJ/�. Such a
dependence of the normalized eigenspectrum E/

√
E2

J + �2 is
presented in Fig. 8. In the absence of the interaction EJ (α) 	
�, the quantum ground state of each superconducting triangle

is the symmetric quantum superposition of vortex and an-
tivortex states. The ground state of a whole plaquette is the
direct product of these states, i.e., the symmetric quantum
superposition of all 64 classical vortex/antivortex states, and
the quantum entanglement is absent in this regime. Notice also
that this regime that can be realized as the parameter α is in
close vicinity to the critical value α = − 1

2 .
However, the most interesting case occurs as the tunneling

amplitude � is much smaller than the interaction strength
EJ (α). In this limit, the eigenspectrum is split into the well-
defined bands, as shown in Fig. 9, for the parameter � =
EJ/20. The lowest band contains different quantum super-
positions of the 14-fold degenerate classical ground state
presented explicitly in Ref. [43].

Furthermore, we obtain that, if in the classical regime the
ground state is 14-fold degenerate (blue points in Fig. 9), even
a tiny amplitude of the quantum tunneling � results in the lift-
ing of this classical degeneracy and the corresponding energy
distribution among different spin patterns (yellow points in
Fig. 9). Moreover, in the quantum regime, the wave functions

FIG. 8. Calculated energy spectrum as a function of dimension-
less parameter EJ (α)/�.
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FIG. 9. Calculated energy distribution of different spin patterns
for a single plaquette of the kagome lattice: The classical and co-
herent quantum regimes are shown by the blue and yellow points,
respectively. An enlarged area of 14 low-lying eigenstates is shown
in the inset. The tunneling parameter � = EJ (α)/20 was used.

� of the ground and excited states are formed as a highly
entangled combination of basis (classical) spin patterns |n〉.
The obtained corresponding matrix elements fn = 〈�|n〉 and
probabilities | fn|2 are shown in Figs. 10 and 11. One sees
that the maximum contribution to the quantum ground and
first excited states comes from the 12 (two highly symmet-
ric vortex/antivortex patterns are excluded) vortex/antivortex
patterns forming the classical ground state.

To conclude this section, we notice that the analysis of
spatiotemporal correlations of the quantum ground state of
the Hamiltonian in Eqs. (23)–(25) in large kagome lattices
of Josephson junctions requires using special methods going

FIG. 10. Calculated wave functions of the ground state (blue
points) and the first excited state (yellow points) represented by their
matrix elements to the basis states |n〉 of the classical spin-interacting
Hamiltonian Ĥ cl. The tunneling parameter � = EJ (α)/20 was
chosen.

FIG. 11. Calculated ground (blue points) and first excited (yel-
low points) states represented by their probabilities of the basis states
|n〉 of the classical spin-interacting Hamiltonian Ĥ cl. The tunneling
parameter is � = EJ (α)/20.

beyond direct numerical diagonalization and will be presented
elsewhere.

VII. CONCLUSIONS

To conclude, we theoretically analyzed the classical and
quantum phases occurring in a frustrated vertex-sharing
2D kagome lattice of Josephson junctions where the frus-
tration is provided by a periodic arrangement of 0- and
π -Josephson junctions. The frustrated regime is characterized
by a highly degenerated ground state once the frustration
parameter f exceeds the critical value fc = 3

4 . In this regime,
the (counter)clockwise persistent current flows into a single
building block of the kagome lattice, i.e., a superconducting
triangle interrupted by three Josephson junctions (Fig. 2).
These persistent currents are characterized by classical spin
values of σ = ±1.

The quantitative analysis of different patterns of persis-
tent currents (vortices/antivortices) occurring in the kagome
lattice of Josephson junctions is made by the exact map-
ping of the initial model of an f-JJA onto the effective Ising
Hamiltonian of interacting spins. The presence of numer-
ous topological constraints related to the flux quantization in
any hexagon loop of the kagome lattice results in long- and
short-ranged highly anisotropic interactions between well-
separated spins. For the kagome lattices of large size, the
interaction shows a weak algebraic decay along the ver-
tical axis and exponential decay along the horizontal axis
[Fig. 6 and Eq. (22)], absent of a nonlocal interaction be-
tween spins of the same pointing triangles. The spatial
anisotropy of the vortex/antivortex phases obtained at T = 0
[43] is naturally explained by the anisotropy of the interaction
G+−(−+).

In the classically frustrated regime kBT � h̄�, we ob-
tained the order-disorder phase transition (crossover due to a
finite-sized system) in the patterns of persistent currents. Such
a crossover is presented in Fig. 5 as the temperature-dependent
spin polarization m(T ) for the kagome lattice composed of a
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few plaquettes. For kagome lattices of large size, we obtain
the disordered vortex/antivortex patterns at high temperatures
and stripe-type AFM order at low temperatures (see, Fig. 7).

In the quantum regime, we obtain that the macroscopic
tunneling between vortices and antivortices in a single super-
conducting triangle lifts the degeneracy of the classical ground
state and, in the absence of interaction, yields the symmetric
quantum superposition of all 64 classical states in a single
plaquette of the kagome lattice (see Fig. 8). Such a quantum
ground state demonstrates zero entanglement. However, as
the topological constraint-induced interaction is large, i.e.,
EJ (α) � �, even a tiny amplitude of the quantum tunneling
� results in the quantum ground state composed of the highly

entangled combination of basis (classical) persistent current
patterns (see Figs. 9–11).

Finally, we notice that f-JJAs arranged in vertex-sharing
2D lattices can be used as an ideal physical platform to estab-
lish the quantum modeling of generic Ising spin models with
constraints [50] to obtain various collective states in magnetic,
optical, and superconducting systems.

ACKNOWLEDGMENTS

We acknowledge the financial support through the Euro-
pean Union’s Horizon 2020 research and innovation program
under Grant Agreement No. 863313 ’Supergalax’. We thank
Alexei Andreanov for fruitful discussions.

APPENDIX A: DERIVATION OF THE PARTITION FUNCTION OF THE EFFECTIVE ISING MODEL
OF INTERACTING SPINS

We start from Eq. (14) for the partition function, considering the topological constraints and the Lagrangians of single
triangles:

Z ∝
∫

D[ϕi j±(τ )]D[p�m(τ )] exp

{
− 1

h̄

∫ h̄/(kBT )

0

[ ∑
�m±

h̄2γ

4EC
ϕ̇2

�m± + EJ (α)

u2
0

[ϕ�m±(τ ) − u0σ�m±(τ )]2

+ i
∑
�m

p�m

∑
i j±

ϕi j(τ )±Gi j±;�m

]
dτ

}
. (A1)

Introducing M = h̄2γ /2EC , exchanging the indices in the second summation, and expanding the quadratic term, the partition
function can be expressed as

Z ∝
∫

D[ϕi j±(τ )]D[p�m(τ )] exp

{
− M

2h̄

∫ h̄/(kBT )

0

[ ∑
�m±

ϕ̇2
�m± + �2

(
ϕ2

�m± + u2
0

)

+ ϕ�m±

⎛
⎝−2u0�

2σ�m± + i
2

M

∑
i j

pi jG�m±;i j

⎞
⎠

]
dτ

}
. (A2)

In the next step, we switch to the Matsubara representation:

Z ∝
∫

D[ϕ̃i j±(ωk )]D[p̃�m(ωk )] exp

(
− M

2kBT

∑
ωk

{ ∑
�m±

(
ω2

k + �2
)
ϕ̃�m±(ω−k )ϕ̃�m±(ωk ) + 2ϕ̃�m±(ω−k )

×
[
−u0�

2σ̃�m±(ωk ) + i
1

M

∑
i j

p̃i j (ωk )G�m±;i j

]}
dτ

)
, (A3)

and notice that we have a quadratic form in every ϕ̃�m±(ωk ). Integrating out the quadratic form, we are left with

Z ∝
∫

D[p̃�m(ωk )] exp

{
− M

2kBT

∑
ωk

[ ∑
�m±

− u2
0�

4(
ω2

k + �2
) σ̃�m±(ω−k )σ̃�m±(ωk ) +

∑
i jqr p̃qr (ω−k )G†

qr;�m±G�m±;i j p̃i j (ωk )

M2
(
ω2

k + �2
)

− �2u2
0δk0 + i

u0�
2

M
(
ω2

k + �2
) ∑

i j

σ̃lm±(ω−k )G�m±;i j p̃i j (ωk ) + i
u0�

2

M
(
ω2

k + �2
) ∑

i j

p̃i j (ω−k )G†
i j;�m±σ̃lm±(ωk )

]}
. (A4)

Next, we obtain a quadratic form in the constraint fields p̃�m(ωk ). For that, we write the constraint fields and spins as vectors
with indexed lattice number (�m). We thus introduce the vectors ̃p, ̃σ+, and ̃σ− as well as the matrices G+ and G−. The partition
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function can then be written as

Z ∝
∫

D[ ̃p(ωk )] exp

{
− M

2kBT

∑
ωk

[ ∑
±

− u2
0�

4(
ω2

k + �2
) ̃σ±(ω−k ) · ̃σ±(ωk ) +

̃pT (ω−k )
(
G†

+G+ + G†
−G−

) ̃p(ωk )

M2
(
ω2

k + �2
)

+ i
u0�

2

M
(
ω2

k + �2
) ̃σ T

± (ω−k )G± ̃p(ωk ) + i
u0�

2

M
(
ω2

k + �2
) ̃pT (ω−k )G†

± ̃σ±(ωk )

]}
. (A5)

Integrating out the quadratic form over p, we obtain the final expression:

Z ∝ exp

{
−Mu2

0�
2

2kBT

∑
ωk

�2(
ω2

k + �2
) ∑

±

[
− ̃σ±(ω−k ) · ̃σ±(ωk ) + ̃σ T

± (ω−k )G±(G†
+G+ + G†

−G−)−1G†
± ̃σ±(ωk )

+ ̃σ T
∓ (ω−k )G∓(G†

+G+ + G†
−G−)−1G†

± ̃σ±(ωk )

]}
. (A6)

Realizing that Mu2
0�

2/2 = EJ (α) and going back from the vector notation to indexed notation, we arrive at Eq. (15) of the main
text.

APPENDIX B: THE ISING SPIN-SPIN INTERACTION IN THE INFINITE KAGOME LATTICE

For a spatially infinite kagome lattice, one can diagonalize the constraint-dependent interaction matrices G by the Fourier
transformation on the lattice:

ϕ̃lm±(ωk ) = 1

(2π )2

∫ π

q=−π

∫ π

r=−π

dqdrzqr±(ωk ) exp [i(lq + mr)], (B1)

p̃lm(ωk ) = 1

(2π )2

∫ π

q=−π

∫ π

r=−π

dqdrπqr (ωk ) exp [i(lq + mr)], (B2)

σ̃lm±(ωk ) = 1

(2π )2

∫ π

q=−π

∫ π

r=−π

dqdr�qr±(ωk ) exp [i(lq + mr)]. (B3)

With these constraints defined in Eq. (12), we obtain expressions for the entries of the diagonalized constraint matrices in the
Fourier space:

Gqr+ = 1 + eir − 2eiq (B4)

Gqr− = exp [i(r + q)] + eiq − 2eir, (B5)

and the modulus of the entries does not depend on the sign index ±:

|Gqr |2 = G∗
qr±Gqr± = −4 sin2

(
r

2

)
+ 8 sin2

(
q − r

2

)
+ 8 sin2

(
q

2

)
. (B6)

Since the matrices are diagonal, we can easily calculate their inverse and express the interaction matrices in Eqs. (18) and (19)
as

G±±
lml ′m′ = 1

(2π )2

∫∫ π

−π

Gqr±G∗
qr±

2|Gqr |2 exp{−i[q(l − l ′) + r(m − m′)]}drdq

= 1

(2π )2

∫∫ π

−π

1

2
exp{−i[q(l − l ′) + r(m − m′)]}drdq = 1

2
δll ′δmm′ , (B7)

and

G±∓
lml ′m′ = G∓±

l ′m′lm
1

2(2π )2

∫∫ π

−π

Gqr±G∗
qr∓

2|Gqr |2 exp{−i[q(l − l ′) + r(m − m′)]}drdq

= 1

(2π )2

∫∫ π

−π

1 + eir − 2eiq

exp[i(q + r)] + eiq − 2eir
exp{−i[q(l − l ′) + r(m − m′)]}drdq. (B8)

As one can see from Eq. (B7), the interaction between different spins within one sublattice vanishes in the infinite system. We
are thus left with interactions between the sublattices given by Eq. (B8). To evaluate the integral, we perform the substitution
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zr = eir and zq = eiq and obtain

2(2π )2G±∓
lml ′m′ = 2(2π )2G∓±

l ′m′lm

= −
∮

S1

∮
S1

z−1
r z−1

q + z−1
q − 2z−1

r

zrzq + zq − 2zr
z−(l−l ′ )

q z−(m−m′ )
r dzrdzq

= −
∮

S1

∮
S1

1

zrzq + zq − 2zr
z−(l−l ′+1)

q z−(m−m′+1)
r dzrdzq −

∮
S1

∮
S1

1

zrzq + zq − 2zr
z−(l−l ′+1)

q z−(m−m′ )
r dzrdzq

+
∮

S1

∮
S1

2

zrzq + zq − 2zr
z−(l−l ′ )

q z−(m−m′+1)
r dzrdzq

= [1] + [2] + [3], (B9)

where we labeled the last three integrals as [1], [2], [3]. First, we perform the integration over zq and then over zr . By virtue
of the residue theorem, we can compute the integral by evaluating the residue of the poles within the unit circle. We start by
investigating the function fn(zq):

fn(zq) = 1

zrzq + zq − 2zr
z−n

q . (B10)

There are only two poles for zq: the poles at zq0 = 0 and zq1 = 2zr/(1 + zr ). Since |zq| > 1 for almost all zr ∈ S1, its contribution
will vanish when performing the integral over zr . Thus, it is sufficient to calculate the residue at zq0 only:

Res( fn, 0) = 1

(n − 1)!
lim
zq→0

dn−1

dzn−1
q

1

zrzq + zq − 2zr

= 1

(n − 1)!
lim
zq→0

(n − 1)!(−1)n−1(zr + 1)n−1

(zrzq + zq − 2zr )n

= (−1)n−1(zr + 1)n−1

(−2zr )n
= −(zr + 1)n−1

2nzn
r

. (B11)

To perform integration over zr , we will take a look at the function gnh(zr ):

gnh(zr ) = (zr + 1)hz−n
r . (B12)

In the case of h � 0, we are only left with the residue at zr0 = 0:

Res(g, 0) = 1

(n − 1)!
lim
zr→0

dn−1

dzn−1
q

(zr + 1)h

= 1

(n − 1)!
lim
zr→0

(zr + 1)h−(n−1) h!

[h − (n − 1)]!

=
(

h

n − 1

)
|h�n−1. (B13)

With this in mind, we can finally evaluate our interlattice interaction:

G±∓
lml ′m′ = G∓±

l ′m′lm

= −1

2

1

2l−l ′

(
l − l ′

l − l ′ + m − m′ + 1

)
|l−l ′�0;−1�m−m′�l ′−l−1 −1

2

1

2l−l ′

(
l − l ′

m − m′ + l − l ′

)
|l−l ′�0;0�m−m′�l ′−l

+2
1

2l−l ′

(
l − l ′ − 1

m − m′ + l − l ′

)
|l−l ′�1;−1�m−m′�l ′−l . (B14)
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