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Intrinsic nonlinear thermal Hall transport of magnons: A quantum kinetic theory approach
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We present a systematic study of the nonlinear thermal Hall responses in bosonic systems using the quantum
kinetic theory framework. We demonstrate the existence of an intrinsic nonlinear boson thermal current, arising
from the quantum metric, which is a wavefunction dependent band geometric quantity. In contrast to the
nonlinear Drude and nonlinear anomalous Hall contributions, the intrinsic nonlinear thermal conductivity is
independent of the scattering timescale. We demonstrate the dominance of this intrinsic thermal Hall response
in topological magnons in a two-dimensional ferromagnetic honeycomb lattice without Dzyaloshinskii-Moriya
interaction. Our findings highlight the significance of band geometry-induced nonlinear thermal transport and
motivate experimental probe of the intrinsic nonlinear thermal Hall response with implications for quantum
magnonics.
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I. INTRODUCTION

Quantum information processing technologies require fast,
compact, and power-efficient quantum devices. A promising
approach to achieve these goals is to use magnons as carri-
ers of information [1–5]. Magnons are quasiparticles of spin
excitations in magnetically ordered materials that carry both
energy and spin angular momentum [6]. Unlike electrons,
magnons are electrically neutral and thus not subject to Joule
heating, making them attractive candidates for information
processing [7]. Recent experimental advances have demon-
strated the feasibility of using spin-orbit torque to excite
terahertz magnons and control their quantum states [8,9].
However, a deeper understanding of magnon transport is cru-
cial to fully exploit their potential for the emerging field of
quantum magnonics, which combines quantum optics, spin-
tronics, and quantum information processing [5,10,11].

The magnon thermal Hall effect is a well-known transport
signature of magnons, which arises from the Berry curvature
and band topology in bosonic systems [12–25]. Topological
magnon systems, such as the magnonic analog of spin Hall
insulators [26–28] and magnonic Dirac and Weyl semimet-
als [29–31], have been extensively explored in recent years.
These systems host linear magnon spin Nernst or thermal
Hall currents, which are induced by noncollinear spin tex-
ture or Dzyaloshinskii-Moriya interaction (DMI). However,
in the absence of DMI the linear thermal Hall signal vanishes
and transport signatures in the Hall response appear only in
the nonlinear response regime. This has motivated the re-
cent exploration of exciting nonlinear transport phenomena
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in bosonic systems. These include the nonlinear thermal Hall
effect [32] (see Fig. 1), nonlinear spin Nernst effect [33], and
nonlinear optical response [34,35], among others. The study
of topological transport in bosonic systems is not limited to
magnons and has also been explored in phonons [36–38], pho-
tons [38], and other magnetic excitations [32,39]. However, a
systematic exploration of all possible nonlinear responses in
bosonic systems is still lacking.

To address this, we present a quantum kinetic theory
[40–44] based unified framework for calculating all the lin-
ear and nonlinear transport coefficients in bosonic systems.
We reproduce the known linear and nonlinear Drude and
anomalous Hall responses. Importantly, we predict the exis-
tence of an intrinsic nonlinear thermal Hall conductivity in
bosonic systems, which is independent of the magnon scat-
tering timescale and has not been previously explored. We
show that the intrinsic nonlinear thermal Hall conductivity
arises from the quantum metric and it dominates the thermal
Hall response in the regime where the linear and nonlinear
anomalous thermal Hall responses vanish alongside the Berry
curvature. We explicitly demonstrate this by calculating the
nonlinear thermal Hall transport of magnons in a ferromag-
netic honeycomb lattice with and without DMI. Our results
provide insights into band geometry-induced nonlinear trans-
port phenomena in bosonic systems.

Our quantum kinetic approach provides an elegant alter-
native to the Boltzmann transport theory [23], enabling us
to include all interband coherence effects without the need
for boundary confining potentials. We organize the paper as
follows: In Secs. II and III, we describe the quantum kinetic
theory formalism for calculating the nonlinear thermal current
of bosons, including both intrinsic and extrinsic contributions.
Then, in Sec. IV, we apply this framework to study magnons
in a two-dimensional hexagonal honeycomb lattice. Specifi-
cally, we demonstrate the dominance of the intrinsic nonlinear
thermal Hall conductivity in the absence of DMI in Sec. V. We
discuss some potential materials for observing the intrinsic

2469-9950/2023/108(16)/165412(17) 165412-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1125-9467
https://orcid.org/0000-0002-8428-6194
https://orcid.org/0000-0001-6399-7264
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.165412&domain=pdf&date_stamp=2023-10-16
https://doi.org/10.1103/PhysRevB.108.165412


VARSHNEY, MUKHERJEE, KUNDU, AND AGARWAL PHYSICAL REVIEW B 108, 165412 (2023)

Hot End

Cold End

Transverse heat 
current 

FIG. 1. Schematic showing the setup for measuring the nonlinear
thermal Hall current of magnons. The temperature gradient (−∇T )
is applied along the y direction and the nonlinear thermal current
[J ∝ (∇T )2] is measured along the x (Hall response) and the y
(longitudinal response) direction.

nonlinear Hall current in Sec. VI, and summarize our findings
in Sec. VII.

II. NONLINEAR DENSITY MATRIX WITH THERMAL
DRIVING FOR BOSONS

To calculate the linear and the nonlinear thermal currents,
we first solve for the density matrix up to second order in
the applied temperature gradient ∇T . We use the quantum
Liouville equation to calculate the density matrix in the crystal
momentum representation ρ(k, t ). The quantum kinetic equa-
tion of the density matrix in the presence of a temperature
gradient has the form [40,41,45]

∂ρ(k, t )

∂t
+ i

h̄
[H0, ρ(k, t )] = DT [ρ(k, t )]. (1)

Here, H0 represents the grand canonical Hamiltonian satisfy-
ing H0|un

k〉 = εn
k|un

k〉. The energy of the nth band is εn
k with the

corresponding energy eigenstate |un
k〉. In Eq. (1), [A, B] is the

commutator bracket for operators A and B. For brevity, we use
ρ for ρ(k, t ) and εn for εn

k in the rest of the paper. The term on
the right-hand side of Eq. (1) is the thermal driving term [41],

DT (ρ) = − 1

2h̄
ET ·

[{
H0,

∂ρ

∂k

}
− i[Rk, {H0, ρ}]

]
. (2)

Here, ET ≡ −∇T/T is the thermal field [46] (or temperature
gradient) with T being the temperature and the bracket {A, B}
represents the anticommutator of A and B operators. In Eq. (2),
Rk is the momentum space Berry connection. In the band-
resolve form, it is defined as Rnp = i〈un

k|∂k|up
k〉.

We use a perturbative approach to solve for the density
matrix in Eq. (1). It can be done by expanding ρ in pow-
ers of the temperature gradient, ρ = ρ (0) + ρ (1) + ρ (2) + · · ·
where ρ (N ) ∝ |∇T |N with N being an integer. The equilib-
rium density matrix is given by ρ (0) =∑n |un

k〉〈un
k| f B

n , where
f B
n ≡ f B

n (εn) = (eεn/kBT − 1)−1 is the Bose-Einstein distribu-
tion function. The effect of disorder in this framework can be
included using the adiabatic switching on [42] of the temper-
ature gradient, ∇T → ∇Te−η|t |. This approach is equivalent
to a relaxation time approximation with η = 1/τ denoting the
inverse of the scattering timescale (τ ), which is assumed to be

a constant for simplicity. In the band basis representation, the
N th-order density matrix elements can be calculated using the
following equation [42]:

∂ρ (N )
np

∂t
+ i

h̄
[H0, ρ

(N )]np + ρ (N )
np

τ/N
= [DT (ρ (N−1))]np. (3)

Here, the subscript np denotes the matrix element of an the
operator O between the nth and the pth energy eigenstates,
or Onp = 〈un

k|O|up
k〉. For the steady-state solution, we ignore

the time derivative term of the density matrix. The matrix
elements of the commutator term can be evaluated to be
[H0, ρ

(N )]np = (εn − εp)ρ (N )
np . Using this in Eq. (3), we obtain

a recursive solution for the N th-order density matrix element,

ρ (N )
np = −ih̄gnp

N [DT (ρ (N−1))]np. (4)

Here, we have defined gnp
N = [εnp − ih̄N/τ ]−1 with εnp =

(εn − εp) being the interband energy gap at a given k.

A. First-order density matrix

From Eq. (4), we can extract the first-order density
matrix elements to be ρ (1)

np = −ih̄gnp
1 [DT (ρ (0) )]np. For the

equilibrium density matrix of bosonic excitations (such as
magnons), we have ρ (0)

np = f B
n δnp. Using this, we can eas-

ily evaluate [DT (ρ (0) )]np = − 1
h̄ ET · [εn∂k f B

n + iRnp(εn f B
n −

εp f B
p )]. It will be useful to express the density matrices as

a sum of diagonal and off-diagonal parts, ρ (1) = ρd + ρo.
Here, ρd includes the intraband processes, while ρo arises
from the interband processes. We calculate the diagonal and
off-diagonal components of the first-order density matrix
to be

ρd
nn = −τ

h̄
εn∂c f B

n Ec
T ,

ρo
np = −Rc

npgnp
1

(
εn f B

n − εp f B
p

)
Ec

T . (5)

For brevity, we have defined ∂c ≡ ∂kc , and used the Einstein
summation convention for repeated spatial indices.

B. Second-order density matrix

As the second-order density matrix is calculated using the
first-order density matrix, both ρd and ρo contribute to the
diagonal and off-diagonal parts of the second-order density
matrix. Therefore, we can express the second-order density
matrix as a sum of four terms, i.e., ρ (2) = ρdd + ρdo + ρod +
ρoo. Here, the first two (last two) terms constitute the diagonal
(off-diagonal) parts of the second-order density matrix. In
ραβ , the first superscript α (second superscript β) denotes
the diagonal or off-diagonal element of ρ (2). The second
superscript β in ραβ captures the diagonal or off-diagonal
element of ρ (1) from which it originates. From Eq. (4), we
have ρ (2)

np = −ih̄gnp
2 [DT (ρ (1) )]np. The detailed calculation of

the different terms of the second-order density matrix is pre-
sented in Appendix A. We obtain the “dd” part of ρ (2) to be

ρdd
nn = τ 2

2h̄2

[
h̄εnv

n
b∂c f B

n + ε2
n∂b∂c f B

n

]
Eb

T Ec
T , (6)

where vb
n = h̄−1∂bεn is the group velocity of the magnons

in the nth band along the spatial direction b = x, y, z. We
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calculate the “do” component of ρ (2) to be

ρdo
nn = iτ

4h̄

∑
p

(εn + εp)
(
gnp

1 Rc
npRb

pn + gpn
1 Rb

npRc
pn

)
×(εn f B

n − εp f B
p

)
Eb

T Ec
T . (7)

The “od” part of the second-order density matrix is given by

ρod
np = τ

h̄
gnp

2 Rb
np

(
ε2

n∂c f B
n − ε2

p∂c f B
p

)
Eb

T Ec
T . (8)

Similarly, we obtain the ρoo part to be

ρoo
np = − i

2
gnp

2 (εn + εp)Db
np

(
gnpRc

npξnp
)
Eb

T Ec
T

+ 1

2
gnp

2

∑
q 	=n 	=p

[
gnq

1 Rc
nqRb

qp(εn + εq)ξnq

− gqp
1 Rb

nqRc
qp(εq + εp)ξqp

]
Eb

T Ec
T . (9)

Here, we have defined ξnp ≡ εn f B
n − εp f B

p and used the
covariant derivative Db

np = ∂b − i(Rb
nn − Rb

pp). The second
term of Eq. (9) only contributes in systems having three
or more bands. This completes our derivation of the
second-order density matrix for a thermal perturbation to
a multi-band system. We use it to calculate the nonlinear
thermal Hall current in the next section.

III. NONLINEAR THERMAL CURRENT FOR BOSONS

For bosonic systems, the physically measurable thermal
current is identical to the energy current JE. It turns out that
JE can also have a circulating component (curl of energy
magnetization for our case), which cannot be measured in
transport experiments [24,47]. Thus, we have the measurable
transport current J = JE − JE,mag. The energy current is sim-
ply the Brillouin zone sum of the product of the energy current
operator (or energy velocity, {H0, v}/2) and the distribution
function. The energy magnetization current for bosons is spec-
ified by JE,mag = ∇r × ME, where ME is the thermal energy
magnetization density in equilibrium. The equilibrium energy
magnetization density (for a given band n) is specified by
[24] the sum of two contributions, ME

n = ME
mn

+ ME
�n

. The
first contribution arises from the particle’s magnetic moment
mn(k), and the other arises from its Berry curvature �n(k).
Explicitly, we have

ME
n =

∫
[dk]

(
εn f B

0 (εn)mn + �n

h̄

∫ ∞

εn

dε ε f B
0 (ε)

)
. (10)

Here, [dk] ≡ dd k/(2π )d is the integration measure for a
d-dimensional system. We note that the orbital magnetic mo-
ment of the quasiparticle arises from the self-rotation of the
wave-packet around its center of mass. The first term in the
energy magnetization can be interpreted as the thermody-
namic average of the orbital moment. However, the center
of mass motion of the wavepacket gives it another contribu-
tion dependent on the Berry curvature [the second term in
Eq. (10)].

Using the above definition, the linear thermal current
(within the quantum kinetic theory) can be expressed as

[41,42]

J (1) = Tr
[

1
2 {H0, v}ρ (1)

]+ Tr[(ET × m)H0ρ0]

+ 2Tr[ET × M�]. (11)

Here, m (M�) is a diagonal matrix with the band-resolved
quantities mn (M�n ) as its diagonal elements expressed in
the basis of eigenvectors of H0. As a consistency check for
Eq. (11), we note that it produces all the known linear thermal
currents, such as the Drude and the anomalous thermal Hall
current. We refer the readers to Appendix B, where we have
presented all the detailed calculations of the linear thermal
current.

The nonlinear thermal currents due to the temperature
gradient can be obtained similarly. The second-order thermal
current is given by [42]

J (2) = Tr
[

1
2 {H0, v}ρ (2)

]+ Tr[(ET × m)H0ρ
(1)]. (12)

The equilibrium magnetization current [the third term on
the right-hand side of Eq. (11)] is linear in the temperature
gradient. So, it does not contribute to the second- or higher-
order thermal current. A subtle possibility beyond Eq. (12)
is that the magnetization can get corrections induced by the
temperature gradient, m → m + mT . This idea is similar to
electric field-induced magnetization, which has been recently
explored in Refs. [48–50]. The thermal gradient-induced mag-
netization contribution mT can combine with the equilibrium
density matrix ρ (0) to possibly have a finite thermal current
similar to the second term in Eq. (12). However, in this paper,
we will not explore this possibility; it can be a potential future
project.

Following the four terms of the density matrix, we express
the second-order thermal current as J (2) = Jdd + Jdo + Jod +
Joo + Jmag. Here, the first four terms arise from the corre-
sponding component of the second-order density matrix. For
example, ρdd generates Jdd and so on. The last term Jmag rep-
resents the thermal current arising from the magnetic moment
part of Eq. (12). For the first term in Eq. (12), we can show
that

Tr

[
1

2
{H0, v}ρ (2)

]
= 1

2

∑
n,p,k

(εn + εp)vpnρ
(2)
np . (13)

Here, vpn denotes the components of the velocity operator
defined as ih̄v = [r,H0]. For notational brevity, we have used∑

k ≡ ∫ [dk]. The elements of the velocity operator are ob-
tained by the covariant derivative of the Hamiltonian (vpn =
h̄−1[DkH0]pn) and found to be

vpn = vnδpn + iωpnRpn. (14)

Here, the first term vn is the group velocity of the quasiparti-
cles in the nth band, while the second term corresponds to the
Berry phase correction to the velocity.

Using these, we calculate the “dd” component of J (2) orig-
inating from the ρdd along the spatial direction a to be

Jdd
a = τ 2

2h̄2

∑
n,k

(
h̄εnv

b
n∂c f B

n + ε2
n∂b∂c f B

n

)
εnv

a
nEb

T Ec
T . (15)

The Jdd component of the thermal current depends only on the
group velocity of the quasiparticle. Similarly, we calculate the
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nonlinear thermal current stemming from ρdo to be

Jdo
a = iτ

2h̄2

p	=n∑
n,p,k

gnp
1 Rb

pnRc
np(εn + εp)

(
εn f B

n − εp f B
p

)

× (εnv
a
n − εpv

a
p

)
Eb

T Ec
T . (16)

The “od” component of the nonlinear thermal current is given
by

Jod
a = iτ

2h̄2

p	=n∑
n,p,k

εpngnp
2 (εn + εp)Ra

pnRb
np

× (ε2
n∂c f B

n − ε2
p∂c f B

p

)
Eb

T Ec
T . (17)

Similarly, we compute the “oo” component of J (2) to be

Joo
a = − 1

4h̄

p	=n∑
n,p,k

εnpgnp
2 (εn + εp)Ra

pn

×
⎡
⎣(εn + εp)Db

np

(
gnp

1 Rc
npξnp

)

+ i
q 	=n 	=p∑

q

(
gnq

1 Rc
nqRb

qp(εn + εq)ξnq

− gqp
1 Rb

nqRc
qp(εq + εp)ξqp

)⎤⎦Eb
T Ec

T . (18)

We find that barring the Jdd contribution, all the other three
contributions depend on the band geometric quantities.

To calculate the magnetic moment-induced Jmag, we note
that the particle magnetic moment of the nth band is given by
[51,52]

mn = i

2h̄

〈∇kun
k

∣∣× [H0 − εn]
∣∣∇kun

k

〉

= − i

2h̄

p	=n∑
p

(εn − εp)(Rnp × Rpn). (19)

In writing the second line of the above equation, we have used
the completeness relation. Using this, we explicitly calculate
Jmag and it is given by

Jmag
a = τ

2h̄2

p	=n∑
n,p,k

ε2
n (εn − εp)
ab

np∂c f B
n Eb

T Ec
T . (20)

We refer the readers to Appendix B for a detailed calculation
of magnetic moment contribution to the linear thermal cur-
rent. The calculation for the second-order current in Eq. (20)
follows the same approach. In Eq. (20), the band geometric
quantity 
ab

np is commonly known as the band-resolved Berry
curvature. In our calculation, it arises from the band-resolved
quantum geometric tensor [53] defined as Qab

np = Ra
npRb

pn ≡
Gab

np − i
2
ab

np, where Gab
np is the band-resolved quantum metric.

Recently quantum metric was measured experimentally [54]
in the context of anomalous Hall drift. Here, we emphasize
that the quantum geometric tensor, quantum metric, and Berry
curvature are gauge-invariant quantities (see Appendix D for
details). The band-resolved Berry curvature can also be ex-
pressed as 
ab

np = −2 Im[Qab
np] ≡ i(Ra

npRb
pn − Rb

npRa
pn). In

this form, it is explicit that the band-resolved Berry curva-
ture is antisymmetric under the exchange of both spatial and
band indices [51,55], or 
ab

np = −
ba
np, and 
ab

np = −
ab
pn. This

band-resolved Berry curvature is related to the single-band
Berry curvature [used in Eq. (10) for example] via the relation

ab

n =∑p	=n
p 
ab

np.

A. Intrinsic and extrinsic contributions
to thermal Hall currents

While the previous section calculates all contributions to
the nonlinear thermal current of bosons, it is useful to classify
them according to their dependence on the scattering time.
By doing a systematic expansion in τ , we can express J (2) =
J (2)(∝ τ 0) + J (2)(∝ τ 1) + J (2)(∝ τ 2). Here, J (2)(∝ τ 0) is the
intrinsic part of the nonlinear thermal current independent of
the scattering time. The other two terms, namely J (2)(∝ τ 1)
and J (2)(∝ τ 2) depend on the scattering time and represent the
extrinsic nonlinear thermal current. This is useful for experi-
ments as the contributions with different τ dependence can be
separated using appropriate scaling laws [56]. This facilitates
the understanding and analysis of the physical mechanism
behind the dominant contribution to the thermal current. This
also helps us to identify the dissipationless intrinsic nonlinear
thermal currents, which originate from quantum coherence ef-
fects and carry the signature of the band geometric quantities.
Additionally, this helps us to compare results from quantum
kinetic theory with the semiclassical thermal transport frame-
work where currents are calculated in orders of the scattering
time.

The different contribution of the nonlinear thermal currents
like Jdo

a , Jod
a , and Joo

a depend upon a τ -dependent function
gnp

N , with N = 1 or N = 2. In the dilute impurity limit (DIL)
where τ � 1/ωnp or τωnp � 1, we can express gnp

N as a sum
τ -independent and τ -dependent parts, and retain only the
dominant τ contributions (see Appendix C for details). This
allows us to express each of the thermal current contributions
into an intrinsic (via subscript “int”) and extrinsic (via sub-
script “ext”) part as

J (2)
a (∝τ 0) = Jdo

a,int + Jod
a,int + Joo

a,int,

J (2)
a (∝τ 1) = Jdo

a,ext + Jod
a,ext + Jmag

a ,

J (2)
a (∝τ 2) = Jdd

a . (21)

For example, Jdo
a,int conveys the intrinsic part of the Jdo

a , while
Jdo

a,ext corresponds to the extrinsic contribution. This is also
summarized in Fig. 2, which explicitly shows the origin of the
different thermal Hall contributions in terms of the diagonal
and off-diagonal part of the density matrix involved.

Combining all the intrinsic contributions into one term, we
obtain the intrinsic nonlinear thermal current as

J (2)
a (∝ τ 0) = 1

h̄

p	=n∑
n,p,k

εn(εn + εp)

εnp

×
[

f B
n

4εnp

{(
ε2

n − ε2
p

)
∂aGbc

np − Gbc
np∂a

(
ε2

n − ε2
p

)}

+Gac
np

[
2εn∂b f B

n + f B
n ∂b(εn + εp)

]]
Eb

T Ec
T .

(22)
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FIG. 2. Origin of the different conductivity contributions in the
quantum kinetic theory framework and their scattering time depen-
dence. The off-diagonal terms of the density matrix capture the
impact of interband coherence. All band geometry-induced transport
responses arise from the off-diagonal components of the linear or
nonlinear density matrix.

The intrinsic thermal current explicitly depends on the band-
resolved quantum metric Gbc

np, which is defined as the real
part of the quantum geometric tensor, i.e., Gbc

np = Re[Qbc
np] ≡

1
2 (Rb

npRc
pn + Rc

npRb
pn). Note that Gbc

np is symmetric under the
exchange of both spatial and band indices [55,57,58], i.e.,
Gbc

np = Gcb
np and Gbc

np = Gbc
pn.

Similarly, we obtained the linear τ -dependent nonlinear
thermal current through Eq. (21) as

J (2)
a (τ 1) = τ

h̄2

p	=n∑
n,p,k

ε3
n


ab
np∂c f B

n Eb
T Ec

T . (23)

This contribution is referred to as the nonlinear anomalous
thermal current. This nonlinear thermal Hall contribution has
been calculated earlier using the semiclassical Boltzmann
transport in Refs. [23,59–61]. It is considered as the thermal
analog of the Berry curvature dipole-induced nonlinear elec-
tric Hall effect. The quadratic τ -dependent nonlinear thermal
current is determined solely by Jdd, and has the same expres-
sion as Jdd in Eq. (15), i.e., J (2)

a (∝ τ 2) = Jdd
a . We refer the

readers to Appendix C for details of this calculation. We note
that the intrinsic and Drude nonlinear thermal currents will
remain unchanged on going beyond the dilute impurity limit.
However, the nonlinear anomalous thermal Hall current gets
corrections with different powers of τ . Note that the general
expressions for all conductivity contributions (retaining all
powers of τ ) are presented in Eqs. (15)–(18).

The nonlinear thermal current can be expressed as Ja =
−κabc(τ )∇bT ∇cT with κabc(τ ) being the nonlinear thermal
conductivity tensor of rank three. κ (τ ) has all the information
of the scattering time dependence of the nonlinear thermal
current. Under time reversal symmetry, Ja picks up a negative
sign, while ∇bT ∇cT remains unaltered. Therefore, we must

have κabc(−τ ) = −κabc(τ ) in the presence of TRS. This works
out only if κabc(τ ) depends on the odd powers of τ . Or in
other words, in a TRS symmetric system, only the odd power
of τ -dependent thermal currents survives. Note that under
TRS, we have εn(−k) = εn(k) and Gab

np(−k) = Gab
np(k), while

vn(−k) = −vn(k) and 
ab
np(−k) = −
ab

np(k). Using this, we
have explicitly checked that the nonlinear thermal current
contributions J (2)(∝ τ 2) and J (2)(∝ τ 0) given in Eqs. (15) and
(22), respectively vanish in the presence of TRS. In contrast,
the linear τ -dependent nonlinear thermal current given in
Eq. (23) is finite under TRS.

Systems where parity and TRS are individually broken,
but the composite symmetry of parity-TRS is preserved are
also very interesting. In these systems, the Berry curvature is
identically zero at each point of the momentum space. This in
turn makes the Berry curvature-dependent nonlinear thermal
current to vanish. However, the remaining nonlinear thermal
currents, the Drude contribution J (2)(τ 2) and the intrinsic con-
tribution J (2)(τ 0) can be finite in such systems.

Having established the quantum kinetic theory for linear
and nonlinear transport of bosonic systems, we now explore
the thermal Hall current of magnons in two-dimensional
hexagonal lattices.

IV. MAGNONS IN HEXAGONAL FERROMAGNETS

We take a spin model on a single-layer honeycomb lat-
tice as our model to calculate different magnon transport
coefficients. Our Hamiltonian consists of different kinds of
spin-spin interactions that are relevant for ferromagnetic insu-
lators. The spin Hamiltonian is given by

H = −
∑
〈i j〉

J1Si · S j −
∑
〈〈i j〉〉

J2Si · S j

+ D
∑
〈〈i j〉〉

νi j[Si × S j]z − B
∑

i

Sz
i . (24)

In this Hamiltonian, the first two terms describe the ferromag-
netic Heisenberg coupling for the nearest (we take J1 > 0)
and the next-nearest neighbor (we take J2 > 0). The third
term is Dzyaloshinskii-Moriya interaction (DMI) between the
next-nearest-neighbor sites (the nearest-neighbor DMI cou-
pling is zero due to inversion symmetry) and the last term is
the Zeeman coupling. The sign convention of the DMI (νi j)
is shown in Fig. 3(a). The ferromagnetic ordering vector is
perpendicular to the plane of the honeycomb lattice (along the
c axis). The spins on the A and B sublattice are SA = SB = Sẑ
in the ground state.

To investigate the Hamiltonian’s energy spectrum and
transport properties in Eq. (24), we employ the linear spin-
wave theory, in which we map the spin operators to bosons
through Holstein-Primakoff (HP) transformation. In the rest
of the paper, we neglect the magnon-magnon interaction. The
HP transformation is given by

Ŝz
iA = S − â†

i âi, Ŝ+
iA =

√
2Sâi, Ŝ−

iA =
√

2Sâ†
i , (25)

and

Ŝz
iB = S − b̂†

i b̂i, Ŝ+
iB =

√
2Sb̂i, Ŝ−

iB =
√

2Sb̂†
i . (26)

165412-5



VARSHNEY, MUKHERJEE, KUNDU, AND AGARWAL PHYSICAL REVIEW B 108, 165412 (2023)

FIG. 3. (Left) The unit cell of the honeycomb lattice. 
aμ with
μ = 1, 2 denote the real-space lattice vectors. The vectors 
δi with i =
1, 2, 3, connect the nearest neighbors. The sign convention for choos-
ing the Dzyaloshinskii-Moriya interaction is also shown. (Right) The
Brillouin zone of the honeycomb lattice with the reciprocal lattice
vectors 
bμ, and the high-symmetry points marked.

Here, â, b̂ (â†, b̂†) are the magnon annihilation (creation) op-
erator for sublattice A and B, respectively. In addition, the spin
ladder operators satisfy S± = Sx ± iSy for both sublattices.
Further, the Fourier transform for the magnon operator in the
momentum space is given by[

âi

b̂i

]
= 1√

N

∑
k

eik·ri

[
âk

b̂k

]
, (27)

where N is the total number of unit cells in the lattice.
Within the linear spin-wave approximation, the Hamiltonian
in Eq. (24) can be expressed in terms of the bosons in the
momentum space, H =∑k∈1st BZ H0(k), where

H0(k) = �†(k)H (k)�(k). (28)

Here, �† = [â† b̂†], and we have defined

H (k) = h0(k)σ0 + hx(k)σx + hy(k)σy + hz(k)σz, (29)

with σx,y,z are the Pauli matrices and σ0 is the identity matrix
of order two. In Eq. (29), the different coefficients of the σ

matrices are

h0(k) = (3J1 + 6J2)S + B

−2S
√

J2
2 + D2 cos φ

∑
μ

cos(k · aμ),

hx(k) = −J1S
∑

μ

cos(k · δμ),

(30)
hy(k) = −J1S

∑
μ

sin(k · δμ),

hz(k) = 2S
√

D2 + J2
2 sin φ

∑
μ

sin(k · aμ),

with tan φ = D/J2. Here, δμ and aμ, are the nearest-neighbor-
position vectors and the lattice vector, respectively, as shown

in Fig. 3. Now we calculate the energy eigenvalues of this
Hamiltonian and it is given by εα (k) = h0(k) + αγ (k) with
γ (k) =

√
h2

x (k) + h2
y (k) + h2

z (k), and α = ±1 being the two
magnon branches. The energy eigenfunction corresponding to
each eigenvalue is given by

|�α (k)〉 = 1√
2

(
λα

+ − αe−iβ(k)λα
−
)T

, (31)

where λα
± = √1 ± αhz(k)/γ (k), T denotes the transpose of

the matrix, and we have defined β(k) = arctan[hy(k)/hx(k)].
Note that the eigenfunctions do not depend on h0(k) at all. So,
any changes in h0(k) will modify only the energy eigenvalues,
while the Berry curvature and other band geometric quantities
remain unaltered.

Without the DMI (D = 0), the magnon Hamiltonian pre-
serves both T cx (T being time-reversal symmetry and cx is
a rotation of 180◦ around the x axis in the spin space) and
inversion symmetry. This makes the Berry curvature identi-
cally zero over the whole Brillouin zone with gapless Dirac
points [29] at two nonequivalent K and K ′ points. The gapless
Dirac points are also known to be robust against higher-order
magnon-magnon coupling [29]. Including the DMI interac-
tion breaks the T cx symmetry and changes the band topology
by opening a finite gap at Dirac points. This leads to a finite
Berry curvature, which in turn gives rise to the linear magnon
Hall effect [18]. The underlying physics in the presence of
the DMI is similar to Haldane’s quantum anomalous spin
Hall model [18,62–64]. Even in the absence of the DMI in-
teraction, different quantum metric components remain finite,
making this model a suitable platform for studying intrinsic
nonlinear magnon transport.

However, the presence of inversion symmetry forces all
the second-order nonlinear responses to vanish, including the
intrinsic contribution. This is remedied by the presence of an
inversion-symmetry breaking term in the Hamiltonian, which
breaks the valley symmetry between K and K ′. For example,
it can induce a tilt in the Dirac dispersion [65] by adding a
term like Bs(kx + ky)σ0 in Eq. (29). A similar tilt can also
arise in the system, from the combined impact of the external
electric field and the spin-orbit coupling via the Aharonov-
Casher (AC) phase [66,67]; see Appendix E for details and a
numerical estimate. With both the inversion- and time-reversal
symmetry broken, all the thermal current contributions be-
come finite. The more interesting case is that of vanishing
DMI, where the T cx symmetry gets restored, and the intrinsic
nonlinear magnon thermal Hall effect is the only finite Hall
response.

We present the momentum-resolved energy dispersion of
the lowest energy magnon band in Fig. 4(b) along with the
Berry curvature in Fig. 4(c). The quantum metric tensor has
three distinct components that are shown in Figs. 4(d)–4(f).
We can clearly see that the band geometric quantities are
highly concentrated near the band edges at the K, K ′ points
having coordinates (±k0, 0), with k0 = 4π/3

√
3. It is in-

structive to study the low-energy Hamiltonian around these
band edges. With the help of the Taylor series expansion, we
obtain the low-energy Hamiltonian for Eq. (24) near K, K ′
points,

Hζ = h0σ0 + vm(ζkxσx + kyσy) + ζ�σz, (32)
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. The color plot of the magnon dispersion in the Bril-
louin zone for the (a) lower-energy band and the (b) higher-energy
band. Dzyaloshinskii-Moriya interaction opens up a gap at the K/K ′

point. (c) The distribution of the Berry curvature in momentum
space for the lower-energy band. The Berry curvature peaks near
the band edges. In contrast to the fermionic hexagonal lattices,
the Berry curvature of magnon bands in hexagonal ferromagnets
retains the same sign in both valleys. [(d)–(f)] Three distinct com-
ponents of the quantum metric. We used the following parameters:
{J2, D, B, Bs} = {0.01, 0.1, 0.001, 0.05}J1 with J1 = 1 meV. In all
panels, the hexagon in dashed lines indicates the Brillouin zone.

where ζ = ±1 for K and K ′ points, and kx/ky are measured
with respect to the corresponding K and K ′ points. The
low-energy magnon Hamiltonian is analogous to the massive
tilted Dirac Hamiltonian [56] in two-dimensional hexagonal
fermionic systems with broken inversion symmetry. However,
there is one crucial difference. For the fermionic system, the
mass term that opens up a gap near the K, K ′ points is indepen-
dent of the valley index. This results in the total Chern number
being zero for each band in fermionic systems with time-
reversal symmetry. In contrast, for our magnon Hamiltonian,
the DMI-induced gap term has an opposite sign near K − K ′,
so the gap opening is a topological transition with the magnon
bands having a finite Chern number. To have a relatively sim-
plified expression, we set the next-to-next nearest-neighbor
interaction (J2) to be vanishingly small. Consequently, the
parameters of the Hamiltonian have the following expres-
sion: h0 = 3J1S + B + Bs(kx + ky), vm = 3J1S/2, and � =
−3

√
3SD arises from the DM interaction and opens a gap

in the magnonic spectrum. The energy eigenvalues are given
by εα = h0 + αε0, with ε0 =

√
(k2

x + k2
y )v2

m + �2 , indepen-
dent of the valley index. The corresponding eigenfunctions

are

|ψα (k)〉ζ = 1√
2

⎛
⎝α

√
1 + α

ζ�

ε0
e−iθζ

√
1 − α

ζ�

ε0

⎞
⎠

T

, (33)

where we have defined θζ = arctan(ky/ζkx ). Using these sim-
plifications, we calculate different band geometric quantities.
These are given by


xy
α = −α�v2

m

2ε3
0

,

Gxx
α,−α = v2

m

(
�2 + k2

y v
2
m

)
4ε4

0

,

Gxy
α,−α = −kxkyv

4
m

4ε4
0

,

Gyy
α,−α = v2

m

(
�2 + k2

x v
2
m

)
4ε4

0

. (34)

Note that the magnon band geometric quantities are indepen-
dent of the valley index, though the Berry curvature depends
on the band index. We highlight a few things here. Firstly,
the Berry curvature is zero in the absence of the DMI, as
it is directly proportional to the �. Secondly, the tilting
term [Bs(kx + ky)σ0] introduced in the Hamiltonian with an
identity matrix does not influence any of the band geomet-
ric quantities but invalidates the relation εα (k) = εα (−k), as
expected. In the Appendix E we discuss the possible mi-
croscopic mechanism responsible for such a term in a spin
model. Lastly, in the absence of DMI and external mag-
netic field, the lowest-energy magnon dispersion reduces to
the gapless magnon excitation when k → 0. This gapless
Goldstone mode is the consequence of the spontaneously
broken symmetry in the ferromagnetic ground state. Fur-
thermore, the calculated expression of the Berry curvature
is consistent with Refs. [42,68,69], and the distinct compo-
nents of the quantum metrics are in complete agreement with
Refs. [42,70].

V. NONLINEAR MAGNON THERMAL HALL EFFECT
IN HEXAGONAL FERROMAGNETS

We present the variation of the linear and nonlinear
magnon transport coefficients with temperature in Fig. 5 for
different values of DMI strength. First, let us focus on the
linear thermal Hall conductivity depicted in Fig. 5(a). As
the linear thermal Hall conductivity is directly proportional
to the Berry curvature, its value increases with increasing
DMI coupling. For zero DMI, the Berry curvature becomes
zero and so does the Hall conductivity. The linear thermal
Hall current does not show any sign change as a function of
temperature or the DMI strength. The results are consistent
with the study in Ref. [18].

In Fig. 5(b), we show the temperature dependence of
the intrinsic nonlinear thermal Hall conductivity for several
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(d)(c)

(b)(a)

FIG. 5. Thermal Hall conductivity for magnons. (a) Linear,
(b) nonlinear intrinsic, (c) nonlinear extrinsic anomalous, and
(d) nonlinear Drude contribution to the thermal Hall conductivity for
three values of the Dzyaloshinskii-Moriya interaction (DMI). The
Berry curvature-dependent linear Hall and the extrinsic nonlinear
anomalous component of the thermal current are induced by the
presence of a finite DMI, and vanish as DMI vanishes. In contrast,
the intrinsic nonlinear contribution increases with decreasing gap
or DMI and is finite even in the vanishing DMI limit. The Drude
contribution does not depend on any band geometric quantity. In
the limit of vanishing DMI, the intrinsic Hall contribution dominates
over all other contributions. We have chosen the same parameters as
in Fig. 3 except Bs = 0.01J1. In these plots, we have used the natural
units and set h̄ = 1 and kB = 1. The grey dashed line marks the 0 and
serves as a guide to the eye.

values of DMI. Recall that the intrinsic nonlinear contribution
depends solely on the different components of the quantum
metric. From Eq. (34), we can clearly see that all the compo-
nents of the quantum metric are maximum when the DMI is
zero (G ∝ �−2, at the band edge). This is also reflected in the
plot of the nonlinear intrinsic current.

In Fig. 5(c), we plot the Berry curvature dipole-induced
extrinsic nonlinear Hall conductivity, which varies linearly
with the magnon scattering time (τ ). Note that the extrinsic
nonlinear anomalous Hall conductivity vanishes as the DMI
strength goes to zero. In Fig. 5(d), we present the Drude
contribution to the nonlinear Hall effect. This contribution is
independent of any band geometric quantities like the Berry
curvature or the quantum metric, it entirely depends on the
band dispersion and the magnon distribution function. This
can also be seen from the fact that the curves for different
DMI values are very similar in nature.

To understand the behavior of these responses at high
temperatures, we note the thermal driving force (akin to the
electric field for fermions) is ∝ ∇T/T . Thus, a constant tem-
perature gradient is less effective at higher temperatures, with
the thermal fluctuations nullifying the impact of the tem-
perature gradient. Consequently, larger thermal fluctuations
suppress the directed flow of magnons under a fixed tem-
perature gradient as T increases. This suppression is more
dominant in the nonlinear thermal responses as compared to
linear responses.

TABLE I. Demonstration of the magnitude of linear and non-
linear magnon thermal Hall current at a temperature of 20 K for
different values of the DMI. In calculating these numerical values,
we used the same parameters as in Fig. 4 except Bs = 0.01 J1, and we
assume the magnon lifetime to be of the order of τ ∼ 1 picoseconds.

DMI strength Linear Nonlinear
(in unit of J1) τ dependence response (W/m) response (W/m)

D = 0.0 τ 0 0.0 4.3 × 10−16

τ 1 0.0 0.0
τ 2 7.8 × 10−16

D = 0.1 τ 0 2.75 × 10−9 3.6 × 10−17

τ 1 0.0 8.8 × 10−17

τ 2 1.6 × 10−16

VI. DISCUSSIONS

The potential material candidates, which host magnons
in a hexagonal ferromagnetic lattice are chromium tri-
halides such as CrBr3 [71], CrI3 [72], and CrCl3 [73].
These compounds are promising materials for probing band
geometry-induced nonlinear thermal transport in magnons.
Recent measurements on CrCl3 [74] suggest the presence of
gapless Dirac-like magnon dispersion. However, the magnon
dispersion of CrBr3 [75] and CrI3 [76] indicates the presence
of a gap at K point. This suggests that the effective DMI
interaction for CrCl3 is zero. As a consequence, CrCl3 is
a potentially good platform to study the nonlinear intrinsic
magnon thermal Hall response highlighted in Fig. 5(b).

To compare the relative magnitude of different linear and
nonlinear contributions to the thermal Hall current, we present
an order of magnitude estimation of different contributions
in Table I. For the analysis, we assume the magnon lifetime
to be τ ∼ 1 picoseconds [77,78], which is the typical value
for chromium trihalide ferromagnets. The temperature gra-
dient used for a magnon transport experiment in Ref. [79]
was of the order of ∇T ∼ 10−6 K/nm. In comparison, the
magnitude of the linear magnon thermal Hall current ob-
served in Lu2V2O7 (ferromagnetic insulator) bulk sample at
T = 20 K was 4 × 10−4 W/K m [80]. Assuming the thick-
ness of the monolayer sample to be 0.5 nm, the thermal Hall
conductivity for single monolayer is 2 × 10−13 W/K [81,82].
Assuming the same temperature gradient for our case, we
find the corresponding thermal Hall current to be of the order
2 × 10−10 W/m.

An interesting issue from the experimental perspective is
to separate the intrinsic contribution (∝ τ 0) and the Drude
contribution (∝ τ 2) in the measured nonlinear thermal Hall
effect. A potential solution is to plot the measured total non-
linear transverse thermal conductivity as a function of linear
longitudinal conductivity (κL ∝ τ ) by varying some system
parameters such as temperature or strain. The intrinsic part of
the nonlinear conductivity will scale as (κL )0, and the extrinsic
Drude part will scale as (κL )2. A similar approach helped
in identifying the intrinsic and extrinsic electrical transport
contributions to the nonlinear conductivity (for fermions) in
Ref. [83], and in Ref. [84].

At finite temperature, the magnon-magnon interaction
becomes important and it can renormalize the magnon
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dispersion along with the corresponding band geometric
quantities and the magnon relaxation time [85]. It was shown
in Ref. [86] that for ferromagnetic monolayer Cr2Ge2Te6, the
relaxation time increases with temperature (τ ∝ T 2) due to
the magnon scattering while it decreases with the external
magnetic field. In our study, for simplicity, we have assumed
the relaxation time to be a constant and ignored the effects of
magnon-magnon interaction. The investigation of the impact
of magnon-magnon interaction on different nonlinear trans-
port coefficients can be an interesting study for the future.

At larger lengthscales, the dipolar interaction can also
play an important role and modify the dispersion relation,
spin-orbit coupling, magnon-magnon coupling, etc. However,
in this paper, our focus is on magnetic systems where the
exchange interactions dominate over the dipolar interactions,
allowing us to disregard the latter [87]. This is a reasonable
regime for ferromagnetic materials like CrCl3.

A critical aspect of our study is that it is valid in the weak-
disorder limit, where the quasiparticle approximation with
extended wavefunction is still reasonable, with k being a good
quantum number. In the limit of large disorder density and
disorder strength, new physics may emerge (like localization,
etc.), where a completely different framework and analysis
will be needed.

Several earlier papers have established that ∇T can be
treated as a physical force in the linear response regime for
fermionic systems. Luttinger [88] first treated ∇T as a scalar
potential, and Tatara [46] treated ∇T as a vector potential
to capture its impact on the thermal transport properties of
fermions. More recently, Ref. [41] showed that using the
quantum kinetic theory and treating ∇T as a vector potential
reproduces all the known thermal Hall and other responses
induced in the linear response regime for fermions. Motivated
by this, we showed in Ref. [42] that the treatment of ∇T as
a vector potential can be extended to the nonlinear response
regime for fermions and this framework reproduces all the
known results from the Boltzmann transport theory, which
treats ∇T as a statistical force. These studies establish that
treating ∇T as a vector potential captures the linear and
nonlinear thermal response of fermions. Our paper demon-
strates this idea for bosons. Since the single-particle quantum
mechanics of bosons and fermions are identical, they have
very similar band geometric quantities. Thus, within the quan-
tum kinetic theory, the linear and nonlinear heat transport by
bosons and fermions have very similar expressions, with their
difference being captured only by their equilibrium statistics
[42]. This should work as long as we can treat the fermions
and bosons at a single-particle level. This may not work for
strongly interacting systems where a multi-particle framework
will be needed, and the differing statistics of fermions and
bosons may play an important role.

VII. CONCLUSIONS

In conclusion we have developed a quantum kinetic theory
framework for systematically studying thermal transport in
bosonic systems up to second-order in the applied temperature
gradient. Our theoretical framework provides an alternative

to the Boltzmann transport theory. It includes all interband
coherence effects and works without the need for boundary
confining potentials.

We predict the existence of an intrinsic nonlinear boson
thermal current, which arises from the quantum metric and
is independent of the scattering time. In contrast, the extrin-
sic contributions, such as the anomalous and Drude parts of
the nonlinear thermal current, exhibit linear and quadratic
dependencies on the scattering time, respectively. Consider-
ing topological magnons in a two-dimensional ferromagnetic
honeycomb lattice as a concrete example, we show that the
intrinsic nonlinear magnon thermal Hall current dominates
over other responses in the absence of DMI. The absence of
DMI ensures that the Berry curvature and the linear Hall re-
sponse vanishes along with the nonlinear anomalous thermal
Hall response.

Our study highlights the significance of band geometry-
induced nonlinear thermal transport. It opens up avenues
for experimental probe of intrinsic nonlinear thermal Hall
response of bosons. A potentially interesting problem is to
develop framework for probing the signature of real-space
topology in magnon transport [89], similar to topological Hall
effect for fermions [90,91]. Our findings have potential impli-
cations for quantum magnonics, and our calculations can be
easily extended to explore other bosonic systems.
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APPENDIX A: CALCULATION OF THE SECOND-ORDER
DENSITY MATRIX

To calculate the second-order density matrix, we use recur-
sive Eq. (4), and write the second-order density matrix in the
following form:

ρ (2)
np = −ih̄gnp

2 [DT (ρ (1) )]np. (A1)

For ease of calculation, we segregated ρ (2) into the four parts
as ρdd, ρdo, ρod, and ρoo. Here, ρdd and ρdo are diagonal
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atrices in the band index, while ρod and ρoo are off-diagonal matrices. So, to calculate the diagonal part of ρ (2), we calculated the
diagonal elements of the thermal driving term to be

[DT (ρ (1) )]nn = − 1

2h̄
Eb

T

⎡
⎣2εn∂bρ

d
nn + i

∑
p	=n

(εn + εp)
(
ρo

npRb
pn − Rb

npρ
o
pn

)⎤⎦. (A2)

On the basis of the classification discussed in Sec. II B, the “dd” part of ρ (2) arising from the first term of the above equation is
given as

ρdd
nn = − τ

2h̄
εn∂b

(
ρd

n

)
Eb

T = τ 2

2h̄
εn

[
vn

b∂c f B
n + εn

h̄
∂b∂c f B

n

]
Eb

T Ec
T , (A3)

and the remaining part of ρ (2), which is diagonal in band index and originates from ρo is given by

ρdo
nn = iτ

4h̄

∑
p

(εn + εp)
(
gnp

1 Rc
npRb

pn + gpn
1 Rb

npRc
pn

)
ξnpEb

T Ec
T . (A4)

Following a similar approach, we now calculate the remaining two parts of ρ (2) stemming from the off-diagonal elements of the
thermal driving term. After performing a careful calculation, we obtain the off-diagonal (n 	= p) elements of the thermal driving
term as

[DT (ρ (1) )]np = − 1

2h̄
Eb

T

⎡
⎣(εn + εp)∂bρ

o
np + i

∑
q

(
(εn + εq)ρ (1)

nq Rb
qp − (εq + εp)Rb

nqρ
(1)
qp

)⎤⎦. (A5)

The second term inside the square bracket of the above equation containing summation over q can be simplified by considering
the following three cases: q = n 	= p, q = p 	= n, and q 	= n 	= p. Thus, we simplify the above expression in the form of

[DT (ρ (1) )]np = − 1

2h̄
Eb

T

⎡
⎣2i
(
εnρ

d
nn − εpρ

d
pp

)
Rb

np + (εn + εp)Db
npρ

o
np +

q 	=n 	=p∑
q

i
(
(εn + εq)ρo

nqRb
qp − (εq + εp)Rb

nqρ
o
qp

)⎤⎦, (A6)

where we have defined Db
np = ∂b − i(Rb

nn − Rb
pp). Using this

expression of the thermal driving term in Eq. (A1), we cal-
culate the off-diagonal elements of ρ (2) originating from ρd

as

ρod
np = −Eb

T gnpRb
np

(
εnρ

d
nn − εpρ

d
pp

)
= τ

h̄
gnp

2 Rb
np

(
ε2

n∂c f B
n − ε2

p∂c f B
p

)
Eb

T Ec
T . (A7)

Finally, we left out with ρoo
np, which corresponds to the off-

diagonal part of ρ (2) stemming from ρo. Explicit calculation
of this part results in the following form:

ρoo
np = − i

2
gnp

2 (εn + εp)Db
np

(
gnpRc

npξnp
)
Eb

T Ec
T

+ 1

2
gnp

2

∑
q 	=n 	=p

[
gnq

1 Rc
nqRb

qp(εn + εq)ξnq

− gqp
1 Rb

nqRc
qp(εq + εp)ξqp

]
Eb

T Ec
T , (A8)

Hence, we completed the calculation of the second-order den-
sity matrix in response to the applied temperature gradient.

APPENDIX B: LINEAR THERMAL CURRENT

In this Appendix, we present the calculation of the linear
thermal current within the quantum kinetic theory framework.
Starting from Eq. (11), we show that the first term on the right-

hand side of this equation can be written as

Tr

[
1

2
{H0, v}ρ (1)

]

= 1

2

∑
p,k

〈
up

k

∣∣H0vρ (1) + vH0ρ
(1)]
∣∣up

k

〉

=
∑
n,p,k

(εn + εp)vpnρ
(1)
np

= 1

2

∑
n,p,k

(εn + εp)(vnδpn + iωpnRpn)
(
ρd

nnδnp + ρo
np

)

= 1

2

∑
n,p,k

(εn + εp)
(
vnρ

d
nnδpn + iωpnRpnρ

o
np

)
. (B1)

Here, we use the elements of the first-order density matrix in
the form of ρ (1)

np = ρd
nnδnp + ρo

np. In the last line of the above
equation, we consider that the ωpn and ρo

np are zero when
n = p. Here, we see that the first term of Eq. (11) gives two
contributions to thermal current—one originating from ρd and
the other from ρo. So, the linear thermal current component
along the a axis arising from the ρd will be given as

Jd
a =

∑
n,k

εnv
a
nρ

d
nn = −τ

h̄

∑
n,k

ε2
nv

a
n∂c f B

n Ec
T . (B2)

This thermal current component depends entirely on the en-
ergy dispersion and the distribution function. Therefore, it
is also called the “linear Drude thermal current.” Similarly,
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another thermal current contribution arising from ρo is given
as

Jo
a = i

2h̄

∑
n,p,k

(εn + εp)εpnRa
pnρ

o
np

= − i

2h̄

∑
n,p,k

(εn + εp)εpngnp
1 Ra

pnRc
np(εn f B

n − εp f B
p )Ec

T .

(B3)

Using the dilute impurity limit, which we will discuss in
AppendixC, we can write gnp

1 ≈ 1/εnp. With this substitution,
the above equation can be simplified to

Jo
a = i

2h̄

∑
n,p,k

(εn + εp)Ra
pnRc

np

(
εn f B

n − εp f B
p

)
Ec

T

= − 1

2h̄

∑
n,p,k

(εn + εp)εn f B
n 
ac

npEc
T . (B4)

In writing the last line of the above equation, we have used
some manipulation: firstly, we decomposed the first line of the
above equation into two terms through (εn f B

n − εp f B
p ). Sec-

ondly, we shuffled the dummy indices n, p in the latter part of
the decomposition. Finally, we grouped the terms and used the
definition of the band-resolved Berry curvature. Henceforth,
we will use this manipulation to write the thermal current in
terms of the band-resolved Berry curvature and the quantum
metric. Due to the presence of the Berry curvature, this com-
ponent of the linear thermal current is always perpendicular
to the applied temperature gradient. Hence, it gives rise to the
contribution to the linear thermal Hall response.

The second term on the right-hand side of Eq. (11) gives
the particle magnetic moment-induced contribution to the lin-
ear thermal current, which can be written as

Tr[(ET × mN )H0ρ0]a =
∑
n,k

εacbEc
T mb

N,nεn f B
n . (B5)

Here, εacb is the antisymmetric Levi-Civita tensor of rank 3,
which (a, b, c) being the even cyclic permutation. Using the
expression of the particle magnetic moment given in Eq. (19),
we can show

mN,n = − i

2h̄

∑
p	=n

(εn − εp)Rnp × Rpn

⇒ ma
N,n = − i

2h̄

∑
p	=n

∑
b,c

εabc(εn − εp)Rb
npRc

pn

⇒ εabcma
N,n = − 1

2h̄

∑
p	=n

(εn − εp)
bc
np. (B6)

Using the fact that εacb = −εabc = εbac along with the above
definition of the particle magnetic moment in Eq. (B5), we
get the magnetic moment contribution of the linear thermal
current as

Tr[(ET × mN )H0ρ0]a = − 1

2h̄

∑
n,p,k

εn(εn − εp)
ac
np f B

n Ec
T .

(B7)

This contribution also gives a Hall-like response to the linear
thermal current. Further, this contribution is similar to Jo.
After combining these two terms, we write

Jo
a + Tr[(ET × mN )H0ρ0]a = −1

h̄

∑
n,k

ε2
n


ac
n f B

n Ec
T . (B8)

In obtaining this result, we used a relation connecting band-
resolved Berry curvature to single band Berry curvature via

ac

n =∑p	=n 
ac
np.

Finally, we focus on the last term on the right-hand side of
Eq. (11). We transform it as

2Tr[ET × M�]a = −2Tr[M� × ET ]a

= −2
∑
n,k

εabcMb
n,
Ec

T

= 2

h̄

∑
n,k

εabc

b
n(k)Ec

T

∫ ∞

εn

dε(ε − μ) f B(ε)

= −2

h̄

∑
n,k


ac
n (k)Ec

T

∫ ∞

εn

dε(ε − μ) f B(ε).

(B9)

In the last line of the above equation, we use mathe-
matical manipulation εabc


b
n = εbca


b
n ≡ 
ca

n = −
ac
n . After

performing the integration along with some manipulations, we
can show that∫ ∞

εn

dε(ε − μ) f B(ε)

= 1

2
(kBT )2

[
log
(
1 + f B

n

)
log

(
1 + f B

n(
f B
n

)2
)

− 2Li2
(− f B

n

)]
.

(B10)

Here, Li2 is the polylogarithmic function [92] of order 2.
Again, the contribution to the linear thermal current em-
anating the Berry curvature-induced heat magnetization is
perpendicular to the temperature gradient. Thus, the total lin-
ear anomalous thermal Hall current is the sum of Jo, Tr[(ET ×
mN )H0ρ0], and 2Tr[ET × M�]. Adding these three contribu-
tions, we have the simplified form of the linear anomalous
thermal Hall current as

JA
a = Jo

a + Tr[(ET × mN )H0ρ0]a + 2Tr[ET × M�]a

= − (kBT )2

h̄

∑
n,k


ac
n

[
β2ε2

n f B
n + log

(
1 + f B

n

)

× log

(
1 + f B

n(
f B
n

)2
)

− 2Li2
(− f B

n

)]
Ec

T . (B11)

It is straightforward to show that βεn ≡ log( 1+ f B
n

f B
n

). Using this
substitution, we simplify the above equation as

JA
a = − (kBT )2

h̄

∑
n,k


ac
n c2
(

f B
n

)
Ec

T , (B12)

where c2( f ) = (1 + f ) log( 1+ f
f )2 − log( f )2 − 2Li2(− f ).

The superscript A in the above equation is used for linear
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anomalous current. This expression of the linear anomalous
thermal Hall current is in complete agreement with the
existing work done in Refs. [11,23,93], where it has been
calculated within the semiclassical framework.

APPENDIX C: INTRINSIC AND EXTRINSIC
NONLINEAR THERMAL CURRENTS

From the main text, we note that the scattering time de-
pendence of the contributions Jdd and Jmag are τ 2 and τ ,
respectively. However, the scattering time dependence of the
remaining current is not trivial and is determined by the factor
τgnp for Jdo and Jod, and gnp for Joo. We use an identity given
in Ref. [42] to extract the scattering time dependence of these
factors. Following these identities, we write

τgnp
N = ih̄

ε2
np

(
N + η

np
τ,N

)
and gnp

N = 1

εnp

(
1 + η̃

np
τ,N

)
. (C1)

Here, η
np
τ,N and η̃

np
τ,N are dimensionless function of τωnp with

ωnp = εnp/h̄ being the interband transition frequency. The
explicit expression of these functions is given as

η
np
τ,N = −iτωnp

⎛
⎝1 − iN3 1

τ 3ω3
np

1 + N2 1
τ 2ω2

np

⎞
⎠,

η̃
np
τ,N = N

i

τωnp

⎛
⎝ 1 + N i

τωnp

1 + N2 1
τ 2ω2

np

⎞
⎠. (C2)

In the above expressions, we emphasize that n 	= p. With these
expressions, the form of the nonlinear thermal conductivities
becomes convoluted. Therefore, to represent the nonlinear
thermal conductivities in a simplified and more tractable form,
we employ the dilute impurity limit (DIL), which corresponds
to the scattering time (τ ) being greater than the inverse of the
interband transition frequency ωnp, i.e., τ � 1

ωnp
or τωnp � 1.

In DIL, we can approximate dimensionless functions η
np
τ,N and

η̃
np
τ,N straightforwardly as η

np
τ,N ≈ −iτωnp and η̃

np
τ,N ≈ 0, which

in turn give τgnp
N ≈ ih̄N

ε2
np

+ τ
εnp

and gnp
N ≈ i

εnp
. From the ap-

proximated form of the scattering time-dependent factor τgnp

within the dilute impurity limit, one expects an intrinsic and a
linear scattering time-dependent term from the Jdo component
of the thermal current. Surprisingly, we find that the extrinsic
part of the Jdo component vanishes identically, i.e., Jdo

ext = 0.
The remaining intrinsic part of the Jdo is given by

Jdo
a,int = −1

4

p	=n∑
n,p,k

1

ε2
np

Rb
pnRc

np(εn + εp)

× (εn f B
n − εp f B

p

)(
εnv

a
n − εpv

a
p

)
Eb

T Ec
T

= −1

2

p	=n∑
n,p,k

Gbc
np

ε2
np

εn(εn + εp)
(
εnv

n
a − εpv

p
a

)
f B
n Eb

T Ec
T .

(C3)

Here, we use the same manipulations discussed in Eq. (B4).
Similarly, we obtain the nonzero intrinsic and the linear scat-
tering time-dependent extrinsic contributions from the Jod

thermal current component. The intrinsic part of this current

component is determined by the band-resolved quantum met-
ric and has the form

Jod
a,int = 2

h̄

p	=n∑
n,p,k

Gab
np

εnp
ε2

n (εn + εp)∂c f B
n Eb

T Ec
T . (C4)

The extrinsic part of Jod is governed by the band-resolved
Berry curvature. Explicit calculation of this term yields

Jod
a,ext = τ

2h̄2

p	=n∑
n,p,k

ε2
n (εn + εp)
ab

np∂c f B
n Eb

T Ec
T . (C5)

Likewise, we extract the intrinsic and extrinsic parts of the
thermal current component Joo. The τ dependence of this
current is determined by the factor gnp, which is independent
of τ in DIL. Thus, Joo has only an intrinsic part. We simplify
the intrinsic part of Joo

a as follows:

Joo
a,int = − 1

4h̄

p	=n∑
n,p,k

(εn + εp)Ra
pn

[
(εn + εp)Db

np

(
1

εnp
Rc

npξnp

)

+ i
q 	=n 	=p∑

q

(
1

εnq
Rc

nqRb
qp(εn + εq)ξnq

− 1

εqp
Rb

nqRc
qp(εq + εp)ξqp

)]
Eb

T Ec
T . (C6)

Now, focus on the first term of the above equation, which we
denote by JI as

JI = − 1

4h̄

p	=n∑
n,p,k

(εn + εp)2Ra
pnDb

np

(
1

εnp
Rc

npξnp

)
Eb

T Ec
T

= − 1

4h̄

p	=n∑
n,p,k

(εn + εp)2Ra
pn

(
∂b

(
1

εnp
Rc

npξnp

)

− i
(
Rb

nn − Rb
pp

)( 1

εnp
Rc

npξnp

))
Eb

T Ec
T . (C7)

With the help of algebraic manipulations, we can write the
first term of the rounded bracket as

Ra
pn∂b

(
1

εnp
Rc

npξnp

)

= ∂b

(
1

εnp
Ra

pnRc
npξnp

)
− 1

εnp
Rc

npξnp∂bRa
pn. (C8)

In this way, we can modify JI as

JI = − 1

4h̄

∑
n,p,k

(εn + εp)2

[
∂b

(
1

εnp
Ra

pnRc
npξnp

)

− 1

εnp
Rc

npξnpDb
pnRa

pn

]
Eb

T Ec
T . (C9)

165412-12



INTRINSIC NONLINEAR THERMAL HALL TRANSPORT … PHYSICAL REVIEW B 108, 165412 (2023)

Now, we modify the second part of Eq. (C6) by exchanging the dummy indices, i.e., q ↔ p and q ↔ n. Thus, we can write the
second part of Eq. (C6) as

JII = − i

4h̄

p	=n∑
n,p,k

(εn + εp)Rc
np

ξnp

εnp

q 	=n 	=p∑
q

(
(εn + εq)Ra

qnRb
pq − (εq + εp)Ra

pqRb
qn

)
Eb

T Ec
T . (C10)

With the help of JI and JII , the intrinsic current Joo
a,int will be reduced to the following expression:

Joo
a,int = − 1

4h̄

p	=n∑
n,p,k

(εn + εp)

[
(εn + εp)∂b

(
1

εnp
Ra

pnRc
npξnp

)

− Rc
npξnp

εnp

⎛
⎝(εn + εp)Db

pnRa
pn − i

∑
q 	=(n,p)

(
(εn + εq)Ra

qnRb
pq − (εq + εp)Ra

pqRb
qn

)⎞⎠]Eb
T Ec

T . (C11)

With the help of sum rule [55], we further simplify the above equation by showing that

Da
pnRb

pn − Db
pnRa

pn = −i
∑

q 	=(n,p)

(
Ra

qnRb
pq − Ra

pqRb
qn

)
. (C12)

Thus, the intrinsic component of Joo becomes

Joo
a,int = − 1

4h̄

p	=n∑
n,p,k

(εn + εp)2

[
∂b

(
1

εnp
Ra

pnRc
npξnp

)
− Rc

npξnp

εnp
Da

pnRb
pn

]
Eb

T Ec
T

− i

4h̄

n 	=p	=q∑
n,p,q,k

(εn + εp)
Rc

npξnp

εnp

(
(εq − εp)Ra

qnRb
pq + (εn − εq)Ra

pqRb
qn

)
Eb

T Ec
T . (C13)

The second term on the right-hand side of the above equa-
tion will be nonzero only for systems having three or more
bands. Therefore, we omit this term for a two-band system
and focus on the first part of Eq. (C13). The permutation
symmetry of indices b and c renders the nontrivial part of
the U(1) covariant derivative Da

pnRb
pn. This can be viewed by

symmetrizing indices b and c followed by the exchange of
dummy indices n ↔ p. With this manipulation, we can write
the second part in the first term of the above equation as

J2 = 1

4h̄

∑
n,p,k

(εn + εp)2

εnp
ξnpRc

np∂aRb
pnEb

T Ec
T

= 1

4h̄

∑
n,p,k

(εn + εp)2

εnp
εn f B

n ∂a
(
Rc

npRb
pn

)
Eb

T Ec
T

= 1

4h̄

∑
n,p,k

(εn + εp)2

εnp
εn f B

n ∂aGbc
npEb

T Ec
T . (C14)

In obtaining this result, we have expanded the ξnp in the
second line of the above equation and then used the exchange
of dummy indices. Likewise, we transform the first part in the
first term of Eq. (C13) as

J1 = − 1

2h̄

∑
n,p,k

(εn + εp)2∂b

(
εn f B

n

εnp
Gac

np

)
Eb

T Ec
T

= 1

2h̄

∑
n,p,k

(
εn f B

n

εnp
Gac

np

)
∂b(εn + εp)2Eb

T Ec
T . (C15)

In the last step, we have shifted the derivative part to (εn +
εp)2 using integration by part. This is facilitated by the fact
that the boundary term is negligible. Finally, using all the
above manipulations, we write a simplified form of Eq. (C6)
for a two-band system as

Joo
a,int = 1

4h̄

p	=n∑
n,p,k

(εn + εp)εn

εnp
f B
n

[
(εn + εp)∂aGbc

np

+ 4Gac
np∂b(εn + εp)

]
Eb

T Ec
T . (C16)

APPENDIX D: GAUGE INVARIANCE OF THE BAND
RESOLVED QUANTUM METRIC (Gnp)

In this Appendix, we will discuss the gauge invariance
of the quantum metric. We have defined quantum metric
as Gab

np = Re[Ra
npRb

pn] with Ra
np = i〈un|∂a|up〉 and n 	= p. In

order to check gauge invariance let us consider that the eigen-
states |un〉 and |up〉 transform under gauge transformation
as |ũn〉 = eiαn |un〉 and |ũp〉 = eiαp |up〉 , respectively. Through
this, we can show that ∂a|ũn〉 = i∂aαneiαn |un〉 + eiαn∂a|un〉.
So, under gauge transformation, the Berry connection
changes as

R̃a
np = i〈ũn|∂aũp〉

= i〈ũn|[i∂aαpeiαp |up〉 + eiαp∂a|up〉]
= ei(αn−αp)[−〈un|up〉∂aαp + i〈un|∂aup〉],

R̃a
np = ei(αn−αp)

[
Ra

np − ∂aαpδnp
]
. (D1)
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Now, we investigate, “How does the product of two Berry
connections transform under gauge transformation?” With the
help of the above gauge transformed Berry connection, we can
easily show

R̃a
npR̃b

pn = ei(αn−αp)
[
Ra

np − ∂aαpδnp
]
ei(αp−αn )

[
Rb

pn − ∂bαnδpn
]

= Ra
npRb

pn − δnp
[
Ra

np∂bαn + Rb
pn∂aαp − ∂aαp∂bαn

]
.

(D2)

Since n 	= p, then the second term in the second line of the
above equation will vanish due to the Kronecker delta func-
tion. Consequently, we have R̃a

npR̃b
pn = Ra

npRb
pn. It means

that the product of the two band-resolved Berry connections is
gauge invariant. Likewise, we investigate the gauge transfor-
mation of the band-resolved quantum metric, which is written
as G̃ab

np = Re[R̃a
npR̃b

pn]. As the R̃a
npR̃b

pn is gauge invariant, so
does its real and imaginary parts. Therefore, we conclude that
the band-resolved quantum metric (Gab

np) and Berry curvature
(
ab

np) are also gauge invariant quantities.

APPENDIX E: SYMMETRY ANALYSIS

With zero DMI, the two magnon bands become degenerate
at K, K ′ points. The inclusion of the second-order Heisenberg
interaction and the out-of-plane Zeeman field shifts the en-
ergy of the Dirac points rather than creating a gap [29] (the
corresponding terms are proportional to an identity matrix).
Now, we consider the symmetries in the magnon Hamiltonian
and the lowest-order perturbation on top of the ground state.
As honeycomb lattice is a bipartite lattice, we can write SA =
Sẑ + δSA and SB = Sẑ + δSB. The first-order Heisenberg cou-
pling can be written as (S = 1),

HJ =
∑
〈AB〉

−J1
(
1 + δSz

B + δSz
A + δSB · δSA

)
, (E1)

where 〈AB〉 denotes the nearest-neighbor sites. As we are
interested in the transport properties of the magnons, all the
symmetry operator acts on δSA and δSB leaving the underlying
ferromagnetic ground state unchanged. This Hamiltonian is
invariant under a T cx symmetry, where T is the time rever-
sal operator and cx is a 180◦ rotation about x axis in spin
space. Action of the operators is as follows: cxδSx

A/B : δSx
A/B,

cxδSy
A/B : −δSy

A/B, cxδSz
A/B : −δSz

A/B, and T δSA/B : −δSA/B.
If the magnon Hamiltonian is invariant under this symme-
try, then the equation of motion of the magnon wavepacket
will also remain invariant. This leads to ε(k) = ε(−k) and

(k) = −
(−k) [ε(k) and 
(k) are magnon dispersion and
Berry curvature respectively]. The midpoint of the A-B link
in the honeycomb lattice is the inversion center. So, under
inversion operation IδSA : δSB. From Eq. (E1), it is clear
that HJ is also invariant under the inversion symmetry that
forces the relation 
(−k) = 
(k). So, the Berry curvature is
identically zero throughout the whole Brillouin zone. Now,
when nonzero DMI is turned on, the additional term in the
magnon Hamiltonian is written as

HD = D
∑

〈〈AA′〉〉

(
δSx

AδSy
A′ − δSy

AδSx
A′
)− (A −→ B), (E2)

where 〈〈AA′〉〉 denotes the second nearest-neighbor link. This
breaks the T cx symmetry, changes the band topology, and
opens up a gap at K, K ′ points hence a nonzero Berry cur-
vature, giving rise to a linear magnon Hall effect. However,
the dispersion continues to be an even function of the Bloch
momentum. As in this paper, we want to explore the magnon
transport properties coming entirely due to the presence of the
quantum metric term, we keep D = 0; in this case, the lin-
ear (depends on the Berry curvature) and nonlinear extrinsic
(depends on the Berry curvature dipole) Hall coefficient will
remain zero, and we will only have contributions coming from
the nonlinear intrinsic (quantum metric dependent) and Drude
(quantum metric/Berry curvature independent) part. For the
Hamiltonian in Eq. (24) with D = 0,

ε(k) = ε(−k), Gab
np(k) = Gab

np(−k).

When we sum over the entire Brillouin zone, the overall con-
tributions of the nonlinear intrinsic current cancel [Eq. (22)]
out since the integrand is an odd function of momentum
k. In order to explicitly break the valley symmetry, we
include the term Bs(kx + ky)σ 0 in the Hamiltonian. This in-
validates the relation ε(k) = ε(−k) keeping the eigenfunction
hence the quantum metric unchanged. This term can be engi-
neered for graphene systems by applying strain and in-plane
electric fields [94,95]. Before going into the details on how
to engineer such a term in ferromagnetic insulators, let us go
back and discuss the presence of the J2 term in our original
Hamiltonian. For D = 0, the contributions coming from J2

term go into the σ 0, but as it comes with cos (· · · ) terms, and
its effect on low energy model near K, K ′ will be proportional
to k2, which will not break the valley symmetry. Even the
anisotropic J2 results in the tilting of Dirac cones with k linear
contributions near Dirac points, but does not break the K, K ′
symmetry. The presence of a substrate has been reported to
break this symmetry by opening up a gap at K, K ′ points
nonsymmetrically [96].

Aharonov-Casher effect and the valley-symmetry breaking term

In the presence of an external electric field and spin-orbit
coupling, the Heisenberg Hamiltonian is modified by the
Aharonov-Casher (AC) phase [66,67] and its given by [97]

∑
i, j

Ji j[S
z
i Sz

j + 1

2
(e2iχi j S+

i S−
j + e−2iχi j S−

i S+
j )]. (E3)

Here, the χi j phase depends on the magnitude of the spin-
orbit interaction and the external electric field and also on
the distance between the site i and j. If we tune our external
parameter in such way that χi j ≈ π/4 for the second-nearest-
neighbor interaction then effectively the Hamiltonian will
have terms like iS+

i S−
j − iS−

i S+
j for the second-nearest neigh-

bor. In the magnon Hamiltonian this will induce a term that
is proportional to sin(kx + ky)σ0. Here we note two important
points, firstly the AC phase χi j is proportional to the distance
between neighboring sites (terms for the AA and BB links
will be exactly equal) so it will not generate a term that is
proportional to σz; as a consequence, it will never gap out the
magnon spectrum at K, K ′ points. Secondly, the AC phase will
induce an effective DMI coupling [97] between the nearest
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neighbor spins but it will go in the off-diagonal terms in the
Hamiltonian (terms with σx and σy) and will not alter the
topology of the system. In this context, we would also like
to mention that recently there have been few studies that have
explored the possibilities of electric field control of magnons
in two-dimensional heterostructures [98,99].

To estimate the magnitude of the effective Bs induced by
the AC phase, we note that for a small value of the quantum
phase, Bs ∝ χi j . In a Mach-Zehnder spin-wave interferometer,
the quantum AC phase �AC is the sum of the quantum phase
due to the AC effect, which a flipping spin acquires when it
runs around the ring once, and it is given by [67] Nχi j/2π ,
where N is the total number of sites. If we assume the distance

between the two nearby sites to be of the order of a = 1 Å, and
the radius (r0) of the interferometer [97] to be approximately
50 nm, then the number of sites N = 2πr0/a ≈ 3 × 103. With
a reasonable radial electric field value of 0.1 V/Å, the corre-
sponding quantum AC phase is given by

�AC = μEr0

h̄c2
≈ 10−4. (E4)

Here, μ is the magnetic moment in units of Bohr magneton.
This corresponds to Bs ≈ 10−6. For this Bs value, we estimate
the corresponding intrinsic nonlinear thermal Hall current to
be of the order of 10−17 W/m, which is in the experimentally
measurable range.
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