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Coulomb drag in metallic twisted bilayer graphene
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Strongly correlated phases in twisted bilayer graphene (TBG) typically arise as transitions from a state in
which the system behaves as a normal metal. In such a metallic regime, electron-electron interactions usually
only play a subleading role in transport measurements compared with the dominant scattering mechanism. Here,
we propose and theoretically study an exception to this based on a Coulomb drag setup between two metallic
TBGs separated so that they only couple through many-body interactions. We find that, by solely varying the
twist angle equally in both TBGs, the drag resistivity exhibits a unique maximum as the system crosses over
from a degenerate to a nondegenerate regime. When the twist angles in each TBG differ, we find an anomalous
drag resistivity characterized by the appearance of multiple peaks. We show that this behavior can be related to
the dependence of the rectification function on the twist angle.
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I. INTRODUCTION

Recently, several experiments have shown the existence
of numerous correlated phases in twisted bilayer graphene
(TBG) around a magic angle θM ∼ 1.05◦, such as unconven-
tional superconductivity and metal-insulator transitions [1–6].
These phenomena are thought to arise from electronic interac-
tions that are greatly enhanced as the bands become flat at the
magic angle [7–11]. The relation of these interactions with
external parameters, such as the temperature or the carrier
density, determines the state of the system. Consequently,
much effort has been made to elucidate the transport prop-
erties of TBG due to many-body interactions [12–14]. A
particular but relevant case is the normal metal state of TBG,
which usually occurs at temperatures above which the su-
perconductivity is observed [15,16]. The study of many-body
effects in metallic TBG may thus help us understand the origin
and nature of the correlated phases. However, although it is
clear that electron-electron interactions play a major role in
the rich phase diagram of TBG, their role within its normal
metallic state is less evident. In part, this is because in such
regime many-body interactions often only play a subleading
role in transport measurements compared with the dominant
scattering mechanism [17–20].

In this paper, we propose a direct method to study many-
body interactions within the metallic regime, based on a
Coulomb drag effect between two TBGs that are closely
spaced but such that no interlayer hopping between them is
possible. Both TBGs thus only couple through long-range
Coulomb interactions. The drag effect arises when an ex-
ternal electric current driven in one layer induces a voltage
difference in another closely spaced layer [21,22]. Typically,
such an effect depends directly on the many-body interlayer
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interactions; the main mechanism is the Coulomb interac-
tion, but phonon- or photon-mediated interactions may also
contribute, especially at large interlayer separations [23–26].
The drag resistivity, i.e., the ratio between the applied current
in the active layer and the voltage induced in the passive
layer, reflects the response of the system due to the interlayer
interactions as well as the temperature and carrier density in
each layer [27]. Thus, Coulomb drag measurements between
two metallic TBGs may allow one to elucidate properties of
the electron-electron interactions in the system, to a degree
that is not directly available in transport measurements carried
out over a single TBG.

Here, we particularly focus on the drag at low temper-
atures and carrier densities, where the transport in metallic
TBG is dominated by disorder and phonons [28,29]. We find
that the drag resistivity ρD depends strongly on the angle-
dependent Fermi velocity v� in three general aspects: (i) the
renormalization of the coupling constant α� ∝ 1/v�; (ii) the
relation between the chemical potential μ and the tempera-
ture T , which in turn determines the regime of the system;
and (iii) the interplay between intraband (ω < v�q) and inter-
band (ω > v�q) scattering. When both TBGs have the same
twist angle, the drag effect follows a conventional behavior
in which, as the system crosses over from a degenerate to
a nondegenerate regime, the drag resistivity peaks around
μ/kBT ∼ 2. However, when the twist angles are different,
we find that the drag resistivity follows a nontrivial behavior,
characterized by the appearance of several peaks. The shape
of these peaks depends strongly on the twist difference as well
as the temperature, carrier density, and distance between the
TBGs. A qualitative explanation is given in terms of the angle
dependence of the nonlinear susceptibility (NLS).

This work is organized as follows: In Sec. II, we describe
the theoretical model used to study the Coulomb drag between
two metallic TBGs, both of which are described by a two-
band model within the Dirac approximation. Semianalytical
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FIG. 1. Schematic setup to study the Coulomb drag between two
twisted bilayer graphenes (TBGs). The TBGs are assumed to be
separated by a dielectric medium by a distance d , so that no tunneling
between them is possible. Electrons on each TBG can only interact
through long-range many-body interactions. In a drag configuration,
these interactions can induce a voltage difference V2 in one TBG
if a current I1 is driven in the other TBG. The drag resistivity is
determined by the ratio ρD ∝ V2/I1.

expressions are obtained to compute the NLS, considering the
full energy dependence of the scattering time in TBG, with
contributions of both gauge phonons and charged impurities.
The dynamically screened Coulomb interaction is obtained
within the random phase approximation (RPA). In Sec. III,
we present and discuss the numerical results for the drag
resistivity, in the cases of equal twist angle in both TBGs and
different twist angles. In the latter case, we provide an intuitive
explanation for the observed anomalous drag behavior based
on how the product of two nonlinear susceptibilities changes,
depending on the difference between the twist angles. Finally,
our conclusions follow in Sec. IV.

II. THEORETICAL MODEL

A. Proposed setup

The schematic drag setup is shown in Fig. 1. The two TBGs
are separated so that no tunneling between them is possible,
and they interact with one another only through long-range
Coulomb interactions. These interactions can induce a voltage
in one TBG (referred to as passive TBG) if a current is driven
through the other TBG (referred to as active TBG). Through-
out this paper, we assume that the twist angle in each TBG
can be varied independently. Although this experimental con-
figuration has not yet been realized, it seems feasible given the
recent advances in fabricating moiré heterostructures [30–35].

The leading-order contribution to the drag conductivity
σD can be calculated using either the diagrammatic ap-
proach [27,36,37] or the kinetic theory approach [38–41]. For
a homogeneous system at a uniform temperature T , one gets

σD = e2

16πkBT

∑
q

∫ ∞

−∞
dω|U12|2 	1	2

sinh2 (h̄ω/2kBT )
. (1)

Here, U12(q, ω) is the dynamically screened interlayer
Coulomb interaction, and 	
 is the NLS in the 
 = 1, 2 TBG,

projected along the current direction in the active TBG. From
σD, the drag resistivity is obtained by inverting the 2 × 2
conductivity matrix ρD � −σD/σ1σ2, where σ
 (�σD) is the
conductivity within each TBG.

B. Two-band Dirac model of TBG

In this paper, we restrict our analysis to the drag between
two TBGs in the metallic regime. For low carrier densities, the
electronic properties of metallic TBG are well captured by a
two-band model in which electrons behave as massless chiral
fermions with a Dirac-like Hamiltonian [7,8,10]:

Ĥ0,
 = −ih̄v�



∫
drψ̂†



(r)σ · ∇ψ̂
(r), (2)

with a renormalized Fermi-velocity [42]:

v�

 = v

1 − 3α2



1 + 6γ 2α2



, (3)

where v is the Fermi velocity in monolayer graphene [43].
Here, α
 = w1/h̄vkθ,
 and 2γ 2 = 1 + (w0/w1)2, where w1 �
0.11 eV and w0 � 0.8w1 are the hopping energies of
AB/BA and AA stacking, respectively [44,45], while kθ,
 =
8π sin(θ
/2)/3a is the wave vector magnitude of the moiré
Brillouin zone (a � 2.46 Å is the lattice constant in graphene).
For low twist angles, close to (but not exactly at) the first
magic angle θM ∼ 1.05◦, the two-band model remains a good
approximation for carrier densities n � 1011 cm−2 [28].

The field operators can be expanded in momentum space
as ψ̂
(r) = A−1/2 ∑

k,s eik·rĉ
,k,suk,s, where A is the area of
the system. The operator ĉ
,k,s annihilates an electron in the

 = 1, 2 TBG, with momentum k in the s = ± band. The
Dirac approximation requires |k| 	 kθ . The pseudospinor
u†

k,s = (1 se−iϕk )/
√

2, where tan ϕk = ky/kx comes from
the sublattice structure in graphene [43,46]. Replacing the
field operators ψ̂
(r) in Eq. (2) leads to the energy operator
Ĥ0,
 = ∑

k,s ε
,k,sĉ
†

,k,sĉ
,k,s, where ε
,k,s = sh̄v�


 |k| is the dis-
persion relation in the s band. The pseudospinor uk,s yields the
well-known chirality factor within the Dirac approximation:

Fss′ (k, q) = |u†
k+q,s′uk,s|2 = 1 + ss′ cos(ϕk − ϕk+q)

2
. (4)

C. Scattering time and conductivity

The conductivity σ
 depends on the dominant scatter-
ing mechanism. In metallic TBG, at low temperatures, this
scattering has, in general, nonnegligible contribution from
impurities and phonons [20,29,47]. The latter comes from
gauge phonons that are immune to the strong screening that
arises in the flat bands of TBG around the magic angle [28].

For the impurity scattering, we consider long-range
Coulomb disorder, considering the static screening within the
RPA [48]:

1

τi,

= 2π (α�


 )2niv
�

k

∫ π

0
dθ

1 − cos2 θ

[2k sin (θ/2) + qT,
]2 . (5)

Here, α�

 = e2/4π h̄ε0εrv

�

 is the coupling constant, ni

is the impurity density, and qT,
 = q0T,
�̃
(q, T ) is the
screened Thomas-Fermi (TF) momentum, where q0T,
 =
gα�


kF,
 (g = 8 is the flavor degeneracy in TBG), and
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FIG. 2. Momentum dependence of the scattering time (ST) in
metallic twisted bilayer graphene (TBG), for different twist angles
and temperatures. Blue dashed line shows the ST τi due to long-
range screened charged impurities with density ni = 1010 cm−2, red
dot-dashed line the ST τp due to gauge phonons, and solid black line
the net ST τ−1 = τ−1

i + τ−1
p . Black dashed line schematically shows

a dependence τ ∝ 1/k. In all cases n = 5 × 1010 cm−2.

�̃
[q = 2k sin(θ/2), T ] is the static polarization at finite tem-
peratures [46]. For the phonon scattering, since we will restrict
our analysis to twist angles for which the Fermi velocity is
still much higher than the phonon velocities, we consider only
the intraband scattering [20,29]. For gauge phonons, one then
has [28,29]

1

τp,


=
∑

ν

ζ 2



2hρcνv
�



∫ 2k

0
dq

q3

k2

√
1 −

( q

2k

)2(
1 + 2n
,q,ν

)
,

(6)
where the summation is over the two acoustic phonon
branches (LA and TA), for which we assume an average
velocity cν � 2 × 106 cm/s (independent of the twist angle).
Here, ζ
 = βAv�


/v tan(θ/2) is the coupling constant [49]
(βA ∼ 3.6 eV), ρ is the mass density in monolayer graphene,
and n
,q,ν is the Bose-Einstein distribution.

Using the Matthiessen’s rule, which is a good approxima-
tion at relatively large twist angles [50], the net scattering
time is given by τ−1


 = τ−1
i,
 + τ−1

p,
 . Unless the temperature is

very low and the twist angle is relatively large, τ−1

 is mostly

determined by the phonon contribution, roughly yielding a
momentum dependence τ
 ∝ 1/k [28,29] (see Fig. 2).

Given the scattering time, the conductivity is then calcu-
lated as σ
 = ge2(v�


 )2 ∑
k,s τ
(−∂ f
,k,s/∂ε
,k,s), where f
,k,s

is the Fermi-Dirac distribution. The chemical potential μ
 is
obtained numerically from the equation for the carrier density,
n
 = (g/A)

∑
k,s[ f
,k,s(μ
) − f
,k,s(μ
 = 0)], which implies

n
 = g

2π

(
kBT

h̄v�



)2

[Li2(−e−βμ
 ) − Li2(−eβμ
 )], (7)

where Li2(x) is the dilogarithm function.

D. NLS

Within the two-band model of TBG, the NLS is calculated
as [41,51,52]

�
(q, ω) = −2πg
∑
k,s,s′

( f
,k,s − f
,k+q,s′ )Fss′ (k, q)

× (τ
,kv
,k,s − τ
,k+qv
,k+q,s′ )

× δ(h̄ω + ε
,k,s − ε
,k+q,s′ ), (8)

where v
,k,s = h̄−1∇ε
,k,s is the velocity vector. The NLS at
finite temperatures, beyond the degenerate regime, is typically
obtained by assuming a constant scattering time [27,53,54].
Since this would not capture the strong momentum-
dependence of τ
,k in metallic TBG, we compute the NLS
semianalytically by rather considering a scattering time of
the form τ
(|k| = k), only imposing the restriction that it is
isotropic [52]. After straightforward algebraic manipulations,
we then find the general expression (see Appendix A):

�
(q, ω > 0) = g

4π h̄

1√∣∣q2 − ω2



∣∣
q
q2

[�(q − ω
)	
,+(q, ω)

+�(ω
 − q)	
,−(q, ω)], (9)

where � is the step function, ω
 = ω/v�

 , and

	
,+(q, ω) =
∑
s=±1

∫ ∞

(q−sω
 )/2
dkF
,s(k, ω)K
,s(k, q, ω),

	
,−(q, ω) =
∫ (ω
+q)/2

(ω
−q)/2
dkF
,−1(k, ω)K
,−1(k, q, ω), (10)

with

F
,s(k, ω) = f
(k) + f
(−k) − f
(k + sω
) − f
(−k − sω
),

(11)

K
,s(k, q, ω) = s

k

√
|(ω
 + 2sk)2 − q2|

× τ
(k)
(
q2 − ω2


 − 2skω


)
. (12)

Semianalytical expressions for the NLS with an arbitrary
energy-dependent scattering time were obtained in Ref. [27].
In the present case of TBG, the NLSs are calculated nu-
merically at finite temperatures by using the full energy and
temperature dependence of the scattering time, as given by
Eqs. (5) and (6). We note that, in the final expression of
the drag resistivity, the divergences in Eq. (9) when q →
ω
 (which comes from the fact that the dispersion relation
is linear [22]) are cured when one considers the full dy-
namical screening of the interlayer interaction [52,55] (see
Appendix B).

E. Many-body interactions

The electron-electron interactions in the proposed setup are
described by the Hamiltonian:

Ĥ

′ = 1

2

∫
dxdyψ̂

†



(x)ψ̂†

′ (y)V

′ (x − y)ψ̂
′ (y)ψ̂
(x), (13)

where V

′ (r) = (e2/4πε0εr )/[r2 + (1 − δ

′ )d2] is the bare
Coulomb potential. In principle, the interaction in Eq. (13)
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can be treated perturbatively if the coupling constant is
small [27,36]. For TGB embedded in a homogeneous dielec-
tric medium of relative permitting εr , the coupling constant
reads α�


 ∼ αg(v/v�

 ), where αg ∼ 2.2/εr is the coupling con-

stant in monolayer graphene [43]. The value of αg is expected
to also depend on the quasiparticle renormalization due to in-
tralayer many-body interactions, which tend to lower αg [56].
In what follows, we set a bare value αg = 0.3, which roughly
corresponds to αg ∼ 1.3/εr and a uniform boron nitride di-
electric medium (εr ∼ 4) [57]. Since the resulting coupling
constant in TBG then becomes of the order of unity already
at relatively low velocity renormalizations, we restrict our
analysis to θ � 1.2◦. Although α�


 at low twist angles is clearly
not small in the context of QED, it is still within the range
found in most metals [58].

The dynamical screening is then calculated within the RPA
by coupling the passive and active TBGs with a diagonal
polarization matrix [36]. Assuming a drag setup with a ho-
mogeneous dielectric medium [53,59], the RPA yields the
screened interlayer interaction U12(q, ω) = V12(q)/ε12(q, ω),
with

ε12(q, ω) = [1 + V11(q)�1(q, ω)][1 + V22(q)�2(q, ω)]

−V 2
12(q)�1(q, ω)�2(q, ω), (14)

where V

′ (q) = (e2/2ε0εr )q−1 exp[−qd (1 − δ

′ )] is the
Fourier transform of the Coulomb potential, and �
(q, ω) is
the dynamical polarization in the 
 TBG:

�
(q, ω) = −g
∑
k,s,s′

( f
,k,s − f
,k+q,s′ )Fss′ (k, q)

h̄ω + ε
,k,s − ε
,k+q,s′ + i0+ . (15)

The polarization function gives the dependence of the
screened interaction U12 on the twist angle in each TBG.
Since electrons in TBG can crossover from a degenerate
to a nongenerate regime as the twist angle decreases, it is
essential to consider the dynamical screening at finite tem-
peratures [27]. This naturally captures the role of plasmons
in the drag, which are expected to become relevant when T �
0.2TF [27,53,60], where TF is the Fermi temperature. We com-
pute �
(q, ω) numerically, at finite temperatures, by using the
semianalytical expressions of Ref. [61] for the polarization
operator in monolayer graphene and considering the twist an-
gle by its leading-order renormalization of the Fermi velocity
(Appendix B).

III. RESULTS AND DISCUSSION

A. Equal twist angles

Figure 3 shows the drag resistivity between two TBGs with
the same twist angle θ . The observed behavior can be well
explained by a crossover of the system from a degenerate
to a nondegenerate regime [27,40,53,62]. Indeed, since the
chemical potential μ increases as the Fermi velocity in each
TBG increases, the ratio μ/kBT scales with the twist angle,
thus leading to the observed drag behavior. As small variations
in θ can lead to relatively large changes in the Fermi velocity,
the drag effect is highly sensitive to the exact twist angle in
TBG. For instance, at T = 15 K, a twist decrease �θ ∼ 0.3◦
already reduces ρD from its peak by more than one order of
magnitude. Such reduction becomes even more pronounced

FIG. 3. (a) and (b) Drag resistivity for equal twist angles. The
drag peaks as twisted bilayer graphene (TBG) crosses over from a
degenerate to a nondegenerate regime. This can take place by solely
lowering the twist angle. (c) Twist angle θmax at which the drag
resistivity is maximum; dots are numerical results, and the lines are
obtained from Eq. (16) by fixing the ratio βμ at 3.4 (d = 5 nm)
and 2.8 (d = 15 nm), around which ρD peaks in each case. (d) Drag
resistivity for different scattering times τ . The black solid line is the
full numerical calculation using Eqs. (5) and (6).

at higher temperatures. A similar high sensibility to the twist
angle is already seen in the resistivity at each TBG [28,50].

The peak of the drag resistivity generally occurs when βμ

is of the order of unity [27,40]. The ratios βμ and v�/v can
be related through the carrier density Eq. (7). Replacing the
renormalized velocity in Eq. (3) and solving for the twist angle
yields

θ �
√

3w1

h̄vkD

√
1 + 2γ 2F (βμ)T/TFg

1 − F (βμ)T/TFg
, (16)

where F (x) = √
g/2[Li2(−e−x ) − Li2(−ex )]1/2, kD =

4π/3a, and TFg = h̄v
√

πn/kB is the Fermi temperature
in monolayer graphene. Over relatively small ranges of
temperatures, as considered in Fig. 3, the value of βμ at
which ρD peaks depends weakly on T and n [27]. Thus, to
leading order in T , the maximum of the drag resistivity can be
determined by treating βμ as constant, yielding the relation
v�

max/v ∝ T/
√

n. Equation (16) is shown in solid and dashed
lines in Fig. 3(c) for fixed values of βμ. The small departure
of Eq. (16) from the numerical results is due to the small
temperature dependence of the value of βμ at which the
drag peaks. From an experimental point of view, the location
of the maxima of the drag resistivity can be used to obtain,
for example, information about the hopping parameters w0

and w1.
Figure 3(d) shows that the overall drag behavior, in the case

of equal twist angle, is largely independent of the scattering
time within each TBG. Any particular energy dependence
of the scattering mechanism appears to mainly modify the
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FIG. 4. (a)–(c) Drag resistivity for different twist angles. In each
case, the twist angle θ2 in one twisted bilayer graphene (TBG) is fixed
(thin vertical line) as the other θ1 is varied. All other parameters as in
Fig. 3. (d) Drag resistivity for different scattering times. A nonmono-
tonic behavior appears due to the particular momentum-dependence
of τ in metallic TBG.

magnitude of the drag resistivity, particularly around its peak,
but it does not modify where such a unique peak occurs
(around μ/kBT ∼ 2 [27,40]). This can be traced to the fact
that the drag resistivity comes from a ratio ∼ σD/σ1σ2 in
which all conductivities depend directly on the scattering
time, in such a way that the effect of τk tends to be com-
pensated in ρD [27,51,52]. Note that this is not the case for
the drag conductivity which, as occurs with the conductivities
σ1,2, can depend strongly on the scattering mechanism [28].

B. Different twist angles

The behavior of the drag resistivity changes drastically
when the TBGs have different twist angle. Figure 4 shows
ρD as a function of the twist angle θ1 in one TBG, when the
twist angle θ2 in the other TBG is kept fixed. In general, we
observe multiple peaks in the drag resistivity, which depend
nontrivially on other parameters of the system, such as the
temperature, carrier density, and interlayer separation. The
maximum of ρD always occurs around θ1 ∼ θ2, albeit with
a slight shift as the temperature increases. A distinctive mini-
mum in the drag resistivity is seen for θ1 > θ2 only when the
temperature and the twist angles are relatively low, such that
one TBG is at least within a nondegenerate regime. As we
discuss in detail below, the observed behavior can be related
to an interplay between the dominant scattering mechanisms
within each TBG and the twist dependence of the response
functions 	
.

The latter is directly reflected in the product ∼	1	2 in
Eq. (1). Each NLS is a piecewise function that changes quite
abruptly at v�


q = ω, which roughly divides the interband
and intraband scattering regimes, cf. Eq. (9). As a result, the
product of two NLSs can be markedly different depending on

FIG. 5. Nonlinear susceptibility (NLS) behavior in twisted bi-
layer graphene (TBG), for θ = 1.3◦, T = 10 K, n = 5 × 1010 cm−2,
and ni = 1010 cm−2. (a) shows a density plot of the scaled NLS
h̄v�	, while (b) shows cuts on the momentum plane. In both cases,
it can be seen that the NLS changes sign at each side of the line
v�q = ω. (c) and (d) Result of multiplying two NLSs with equal
and different twist angles, respectively. In the first case, the result is
always positive value and peaks only at v�q = ω. In the second case,
the result can be negative at certain regions and has two distinctive
peaks at v�

1q = ω and v�
2q = ω.

the twist angle in each TBG. The behavior of ρD is dictated
by which layer has the larger twist angle. Furthermore, it is
also strongly influenced by how the scattering mechanism
within each TBG is, see Fig. 4(d). This signals that the usual
compensation of the scattering time in the ratio ∼ σD/σ1σ2

does not take place when the twist angles differ. To understand
this behavior, in Fig. 5, we show the NLS in TBG and the
product between them as it enters the drag conductivity kernel.
The density plot in Fig. 5(a) shows the characteristic behavior
of the NLS for τ ∝ 1/k (see Fig. 2): it peaks around v�q = ω,
from which it decreases in magnitude as |v�q − ω| > 0, until
it becomes zero at certain lines along each side of v�q = ω,
from which the NLS then increases and decreases again with
an opposite sign. This change of sign in the NLS arises due
to an inverse energy dependence of the scattering time [29] (it
does not occur for, e.g., a constant scattering time or τ ∝ k).

The consequences of such behavior in the drag effect
can then be intuitively understood by analyzing Figs. 5(c)
and 5(d), which show a momentum cut at q/kF = 1 of the
product of two NLSs, in the case of (c), equal twist angles
and (d) different twist angles. In the first case, since the NLS
product ∼	2 is always positive, the change of sign as each
NLS decreases away from v�q = ω is only seen as small peaks
at each side of it. In contrast, the product of two NLSs with
different twist angles yields regions at which the result is neg-
ative and, more importantly, where it changes sign between
its peaks. This holds in general, with different weight, for
any value of q. Since all other quantities that determine σD

in Eq. (1) are positive, the net effect of a change of sign in the
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product 	1	2 is to lower or raise the drag resistivity, depend-
ing on the relation between θ1 and θ2. It is interesting to note
that sign reversals in the drag resistivity, without a change of
carrier type in each layer, have been measured in electron-hole
double bilayer graphene systems [63,64] and attributed to a
multiband mechanism that can change the sign of the product
of two NLSs [65]. Here, we emphasize that such behavior
is a direct consequence of the momentum-dependence of the
scattering time in TBG.

IV. CONCLUSIONS

We have studied the Coulomb drag between two metallic
TBGs separated so that they only couple through long-range
Coulomb interactions. The drag resistivity is calculated con-
sidering the contributions of gauge phonons and charged
impurities to the scattering in TBG. The proposed drag setup
assumes that the twist angle in each TBG can be varied
independently. In the case of equal twist angles, the drag re-
sistivity follows the expected behavior of exhibiting a unique
maximum as the system crosses over from a degenerate to a
nondegenerate regime. This crossover can take place solely by
varying the twist angle. When the twist angles in each TBG
differ, we have found an anomalous drag effect, characterized
by the appearance of multiple peaks that depend on the dif-
ference between the angles as well as other parameters of the
system. This behavior arises from sign changes in the product
of two nonlinear susceptibilities with different twist angles,
where due to the momentum dependence of the scattering time
in metallic TBG, the result can be negative or positive depend-
ing on the difference between the twist angles. Such a change
of sign influences the magnitude of the drag conductivity and
leads to a nonmonotonic drag effect.

ACKNOWLEDGMENTS

This paper was partially supported by grants of the
Argentina National Research Council (CONICET) and Uni-
versidad Nacional del Sur and by ANPCyT through PICT
2019-03491 Res. No. 015/2021, and PIP-CONICET 2021-
2023 Grant No. 11220200100941CO. J.S.A. acknowledges
support as a member of CONICET, F.E. acknowledges sup-
port from a research fellowship from this institution.

APPENDIX A: NLS FOR ISOTROPIC SCATTERING TIME

In this Appendix, we give details of the calculation of the
NLS given by Eq. (8), assuming an isotropic scattering time
τ
,k = τ
(|k|). Following Eq. (1), we only compute the NLS
for ω > 0. Within the two-band Dirac approximation of TBG
(Sec. II B), we have

ε
,k,s = sh̄v�

 |k|, v
,k,s = sv�


 k̂, (A1)

Fss′ (k, q) = 1

2

[
1 + ss′ k + q cos

(
ϕk − ϕq

)
|k + q|

]
. (A2)

We separate �
(q, ω) = ∑
s,s′ �
,s,s′ (q, ω). By introducing the

change of angle ϕ = ϕk − ϕq, the Dirac delta in the NLS can

be resolved as

δ(h̄ω + ε
,k,s − ε
,k+q,s′ )

= 2

h̄v�



|ω
 + sk| ∑i=0,1 δ(ϕ − ϕi )√(
q2 − ω2




)
[(ω
 + 2sk)2 − q2]

, (A3)

where ϕ1 = 2π − ϕ0 with cos ϕ0 = (ω2

 + 2skω
 − q2)/2kq.

Then in Eq. (8), we have

(τ
,kvk,s − τ
,k+qv
,k+q,s′ )

→ −sv�



q
2q2

1

k + sω


1

k
Yss′ (q, ω
, k), (A4)

where

Yss′ (q, ω, k) = τ [s′(ω + sk)]k(q2 + ω2 + 2skω)

+ τ (k)(k + sω)(q2 − ω2 − 2skω). (A5)

In the above, we have used that k = q(k/q) cos ϕ + (ez ×
q)(k/q) sin ϕ, and we have dropped terms proportional to
sin ϕ because they vanish after the integration over the angle
[cf. Eq. (A3)]. Resolving the angle integration by imposing
the restrictions | cos ϕ0| < 1 and ω > 0, we find

�
,−,−(q, ω>0) = − g

4π h̄
�(q − ω
)

q√∣∣q2 − ω2



∣∣
1

q2

×
∫ ∞

(q+ω
 )/2
dkI−(q, ω
, k)Y−−(q, ω
, k),

(A6)

�
,−,+(q, ω > 0) = − g

4π h̄
�(ω
 − q)

q√∣∣q2 − ω2



∣∣
1

q2

×
∫ (ω
+q)/2

(ω
−q)/2
dkI−(q, ω
, k)Y−+(q, ω
, k),

(A7)

�
,+,−(q, ω > 0) = 0, (A8)

�
,+,+(q, ω > 0) = g

4π h̄
�(q − ω
)

q√∣∣q2 − ω2



∣∣
1

q2

×
∫ ∞

(q−ω
 )/2
dkI+(q, ω
, k)Y++(q, ω
, k),

(A9)

where

I±(q, ω, k) = [ f
(±k) − f
(ω ± k)]

×
√

|(ω ± 2k)2 − q2| 1

k(k ± ω)
. (A10)

From here, Eq. (9) follows after rewriting the k integrals by
changing variables and regrouping terms.

APPENDIX B: DYNAMICAL SCREENING
AND COLLINEAR SINGULARITY

The collinear singularity, within the Dirac approximation,
gives rise to the divergences in the NLS when v�


q → ω [22].
Here, we show that these divergences are cured in the calcu-
lation of the drag conductivity when the dynamical screening
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of the interlayer interaction is considered [52]. We start by
writing the effective dielectric function in Eq. (14) as

ε12(q, ω) =
(

1 + q1

q

)(
1 + q2

q

)
− q1q2

q2
e−2qd . (B1)

Here, we defined an effective TF wave vector q
 = qR,
 +
iqI,
 in the TBG 
 = 1, 2, where qR/I,
 = q0T,
�̃R/I,
, with
q0T,
 = gα
kF,
 being the zero temperature TF vector, and
�̃R/I,
 = �R/I,
/D0 the real and imaginary parts of the po-
larization function in Eq. (15), scaled by the density of states
D0 = gkF,
/2π h̄v�


 . To compute �̃R and �̃I , we use the semi-
analytical expressions of Ref. [61], which for ω > 0 can be
written as

�̃R,
 = kBT

EF,


F
− q

4kF,


1√∣∣1 − ω2

/q2

∣∣ [�(ω
− q)G
(q, ω, T )

+�(q − ω
)H
(q, ω, T )], (B2)

�̃I,
 = q

4kF,


1√∣∣1 − ω2

/q2

∣∣ [�(q − ω
)G
(q, ω, T )

−�(ω
 − q)H
(q, ω, T )], (B3)

where F
 = ln[2(1 + cosh βμ
)], and
G
(q, ω, T )

=
∑

a,b=±1

∫ ∞

1
du

a
√

u2− 1

exp[(h̄|v�

qu − aω|+ 2bμ
)/2kBT ]+ 1

,

(B4)

H
(q, ω, T ) = −π

2
+

∑
a,b=±1

∫ 1

0

× du

√
1− u2

exp[(h̄|v�

qu − aω|+ 2bμ
)/2kBT ]+ 1

.

(B5)

Now we redefine

�̃R/I,
 → 1√∣∣1 − ω2

/q2

∣∣�̃R/I,
, (B6)

which in turn implies qR/I,
 → q̃R/I,
[1 − ω2

/q2]−1/2. The di-

electric function can then be written as

ε12(q, ω) = ε̃12(q, ω)

q2
√∣∣1 − ω2

1/q2
∣∣∣∣1 − ω2

2/q2
∣∣ , (B7)

where

ε̃12(q, ω) = (
q
√∣∣1 − ω2

1

/
q2

∣∣ + q̃1
)(

q
√∣∣1 − ω2

2

/
q2

∣∣ + q̃2
)

− q̃1q̃2e−2qd , (B8)

with q̃
 = q̃R,
 + iq̃I,
. The divergences now only appear
in the denominator of Eq. (B7). By replacing ε12(q, ω)
above and the projected NLS given by Eq. (9) (choosing
the current in the x axis), the drag conductivity in Eq. (1)
becomes

σD = e2

h

g2

64π

h̄

kBT
α�

1α
�
2v

�
1v

�
2

∫
dq

e−2qd

q

×
∫ ∞

0
dω

√∣∣1 − ω2
1

/
q2

∣∣√∣∣1 − ω2
2

/
q2

∣∣
|ε̃12(q, ω)|2

× 	1(q, ω)	2(q, ω)

sinh2 (h̄ω/2kBT )
, (B9)

where

	
(q, ω) = �(q − ω
)	
,+(q, ω) + �(ω
 − q)	
,−(q, ω).
(B10)

The expression in Eq. (B9) explicitly shows that the diver-
gences in both the dielectric function and the NLS, when
v�


q → ω, are effectively cured in the integral kernel.
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